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Abstract 19 

Rapid decline of Arctic sea ice has created more open water for ocean wave development 20 

and highlighted the importance of wave-ice interactions in the Arctic. Some studies have made 21 

contributions to our understanding of the potential role of the prognostic floe size distribution 22 

(FSD) on sea ice changes. However, these efforts do not represent the full interactions across 23 

atmosphere, ocean, wave, and sea-ice. In this study, we implement a modified joint floe size 24 

and thickness distribution (FSTD) in a newly-developed regional atmosphere-ocean-wave-sea 25 

ice coupled model and conduct a series of pan-Arctic simulation with different physical 26 

configurations related to FSD changes, including FSD-fixed, FSD-varied, lateral melting rate, 27 

wave-fracturing formulation, and wave attenuation rate. Firstly, our atmosphere-ocean-wave-28 

sea ice coupled simulations show that the prognostic FSD leads to reduced ice area due to 29 

enhanced ice-ocean heat fluxes, but the feedbacks from the atmosphere and the ocean partially 30 

offset the reduced ice area induced by the prognostic FSD. Secondly, lateral melting rate 31 

formulations do not change the simulated FSD significantly, but they influence the flux 32 

exchanges across atmosphere, ocean, and sea-ice and thus sea ice responses. Thirdly, the 33 

changes of FSD are sensitive to the simulated wave height, wavelength, and wave period 34 

associated with different wave-fracturing formulations and wave attenuation rates, and the 35 

limited oceanic energy imposes a strong constraint on the response of sea ice to FSD changes. 36 

Finally, our results also demonstrate that wave-related physical processes can have impacts on 37 

sea ice changes with the constant FSD, suggesting the indirect influences of ocean waves on 38 

sea-ice through the atmosphere and the ocean.  39 
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1. Introduction 41 

Arctic sea ice, a major component in the climate system, has undergone dramatic changes 42 

over the past few decades associated with global climate change. September and March Arctic 43 

sea ice extent show decreasing trends of -13.1% and -2.6% per decade from 1979 to 2020, 44 

respectively (Perovich et al., 2020). The mean Arctic sea ice thickness has decreased by ~1.5-45 

2 meters from the submarine period (1958-1976) to the satellite period (2011-2018), largely 46 

resulting from the loss of multiyear ice (Kwok, 2018; Tschudi et al., 2016). The drifting speed 47 

of Arctic sea ice exhibits an increasing trend based on satellite and buoy observations (e.g., 48 

Rampal et al., 2009; Spreen et al., 2011; Zhang et al., 2022). As the Arctic Ocean has been 49 

dominated by thinner and younger ice, Arctic sea ice is more likely to be influenced by forcings 50 

from the atmosphere and the ocean.  51 

Associated with the above Arctic sea ice changes, the Arctic fetch (open water area for 52 

ocean wave development) is less limited by the ice cover. The increased Arctic fetch and 53 

surface wind speed can lead to higher ocean waves in the Arctic Ocean based on observations, 54 

reanalysis, and future projections (Casas-Prat and Wang, 2020; Dobrynin et al., 2012; Liu et 55 

al., 2016; Stopa et al., 2016; Waseda et al., 2018). The higher ocean waves are more likely to 56 

propagate deeper into the ice pack and have sufficient energy to break sea ice into smaller floes 57 

(e.g., Kohout et al., 2014). Sea ice with mostly smaller floes has larger surface areas, 58 

particularly lateral surfaces. The increased lateral surface accelerates ice melting through 59 

enhanced ice-ocean heat fluxes (e.g., Steele, 1992). Some studies also showed that the ice-floe 60 

melting rate is associated with the horizontal mixing of oceanic heat across ice floe edge 61 
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between open water and under-floe ocean by oceanic eddies, in particular sub-mesoscale eddies, 69 

and the strength of this effect depends on floe size (Gupta and Thompson, 2022; Horvat et al., 70 

2016). The enhanced ice melting creates more open water (i.e., fetch), which is a favorable 71 

condition for further wave development as well as the ice-albedo feedback (Curry et al., 1995). 72 

These processes create a potential feedback loop between ocean waves and sea ice (e.g., Asplin 73 

et al., 2014; Thomson and Rogers, 2014).  74 

Arctic cyclones and their high surface wind are the important drivers for large wave events 75 

in the Arctic Ocean. Previous studies showed that intense storms like the “Great Arctic Cyclone” 76 

of 2012 (Simmonds and Rudeva, 2012) and a strong summer cyclone in 2016 could be one of 77 

the contributors to the anomalously low sea ice extent in 2012 and 2016 (e.g., Lukovich et al., 78 

2021; Parkinson and Comiso, 2013; Peng et al., 2021; Stern et al., 2020; Zhang et al., 2013). 79 

Statistical analyses based on cyclone-tracking algorithm across multiple reanalyses suggested 80 

that the number of Arctic cyclones shows a significantly positive trend in the cold season (e.g., 81 

Sepp and Jaagus, 2011; Valkonen et al., 2021; Zahn et al., 2018). The increased cyclone 82 

activities and more open water areas cause more extreme wave events in the Arctic (e.g., 83 

Waseda et al., 2021). Blanchard-Wrigglesworth et al. (2021) found that extreme changes in 84 

Arctic sea ice extent are correlated with distinct wave conditions during the cold season based 85 

on the observations. 86 

The potential feedback loop associated with ocean waves and sea ice and more extreme 87 

wave events indicates the importance of representing these processes in climate models for 88 

improving sea ice simulation and prediction (e.g., Collins et al., 2015; Kohout et al., 2014). 89 
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However, state-of-the-art climate models participating in the latest Coupled Model 95 

Intercomparison Project Phase 6 (CMIP6) have not incorporated the interactions between 96 

ocean waves and sea ice in their model physics (e.g., Horvat, 2021). The coupled effects of 97 

ocean waves and sea ice include; the amplitude of ocean waves decays as the waves travel 98 

under the ice cover due to the combination of scattering and dissipation (e.g., Squire, 2020). 99 

Crests and troughs of ocean waves exert strains on sea ice, and sea ice breaks if the maximum 100 

strain exceeds a certain threshold (e.g., Dumont et al., 2011). The wave-induced ice-breaking 101 

changes the size of floes, which in turn changes the floe size distribution (FSD; Rothrock and 102 

Thorndike, 1984). In addition to the interactions between ocean waves and sea ice, the floe size 103 

contributes to the changes in the atmospheric boundary layer (e.g., Schäfer et al., 2015; Wenta 104 

and Herman, 2019), mechanical responses of sea ice (e.g., Vella and Wettaufer, 2008; Weiss 105 

and Dansereau, 2017; Wilchinsky et al., 2010), the flux exchanges across air-sea ice-ocean 106 

interfaces (Cole et al., 2017; Loose et al., 2014; Lu et al., 2011; Martin et al., 2016; Steele et 107 

al., 1989; Tsamados et al., 2014), and the scattering of ocean wave propagation (e.g., Montiel 108 

et al., 2016; Squire and Montiel, 2016). Thus, it is essential to have a prognostic FSD to 109 

properly reflect wave-ice interactions as well as other processes related to the floe size in 110 

climate models. 111 

Recently, several studies have made contributions on understating responses of sea ice to 112 

the prognostic FSD (e.g., Bateson et al., 2020; Bennetts et al., 2017; Boutin et al., 2020; Horvat 113 

and Tziperman, 2015; Roach et al., 2018a, 2019; Zhang et al., 2015, 2016). However, these 114 

studies used simplified model complexity (i.e., standalone sea ice model, ice-wave coupling, 115 
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ice-ocean coupling) and were unable to give a full representation of sea ice responses to the 120 

evolving states of atmosphere, ocean, and wave based on explicit model physics as well as 121 

feedbacks from sea ice to them. Motivated by this, here we introduce a newly-developed 122 

atmosphere-ocean-wave-sea ice coupled model, in which we implement physical processes 123 

that simulate the evolution of floe size distribution. We use this new coupled model to 124 

investigate the responses of sea ice to ocean waves, as well as interactions in the Arctic climate 125 

system. This paper is structured as follows. Section 2 provides an overview of the new coupled 126 

model, focusing on the wave component and the implementation of the prognostic FSD. 127 

Section 3 describes the design of numerical experiments and the related model configurations. 128 

Section 4 examines the responses of sea ice to wave-ice interactions with the prognostic FSD, 129 

as well as other ocean wave-related processes. Discussions and concluding remarks are 130 

provided in section 5. 131 

 132 

2. Model description 133 

The newly-developed atmosphere-ocean-wave-sea ice coupled model is based on 134 

Coupled Arctic Prediction System (CAPS, Yang et al., 2022), which consists of the Weather 135 

Research and Forecasting Model (WRF), the Regional Ocean Modeling System (ROMS), and 136 

the Community Ice CodE (CICE). The detailed description of each model component in CAPS 137 

is referred to Yang et al. (2020; 2022). In this section, we focus on newly-added features in 138 

CAPS as described below. 139 

2.1. Wave model component 140 
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To represent wave-ice interactions, an ocean wave model is coupled into CAPS, which is 145 

the Simulating Waves Nearshore (SWAN). SWAN is a third-generation wave model and 146 

includes processes of diffraction, refraction, wave-wave interactions, and wave dissipation due 147 

to wave breaking, whitecapping, and bottom friction (Booij et al., 1999). Recently, the SWAN 148 

model has implemented wave dissipation due to sea ice based on an empirical formula, which 149 

is called IC4M2 (Collins and Rogers, 2017; Rogers, 2019). Specifically, the temporal 150 

exponential decay rate of wave energy due to sea ice is defined as, 151 

𝑆𝑖𝑐𝑒 𝐸⁄ = −2𝑐𝑔𝑘𝑖 (1) 154 

where 𝑆𝑖𝑐𝑒 is the sink term induced by sea ice, 𝐸 is the wave energy spectrum, and 𝑐𝑔 is the 152 

group velocity. 𝑘𝑖 is the linear exponential rate that is a function of frequency as follow, 153 

𝑘𝑖(𝑓) = 𝑐0 + 𝑐1𝑓 + 𝑐2𝑓2 + 𝑐3𝑓3 + 𝑐4𝑓4 + 𝑐5𝑓5 + 𝑐6𝑓6 (2) 158 

where 𝑐0 to 𝑐6 are the user-defined coefficients and their values as described in Section 3. In 155 

the SWAN model, both the wind source term 𝑆𝑖𝑛, and the sea ice sink term are scaled by sea 156 

ice concentration 𝑎𝑖𝑐𝑒, which is provided by the CICE model through the coupler in CAPS, 157 

𝑆𝑖𝑐𝑒 → 𝑎𝑖𝑐𝑒𝑆𝑖𝑐𝑒 (3) 159 

𝑆𝑖𝑛 → (1 − 𝑎𝑖𝑐𝑒)𝑆𝑖𝑛 (4) 160 

2.2. Prognostic FSD 161 

For the prognostic FSD implemented in the CICE model, we follow the joint floe size and 162 

thickness distribution (FSTD; Horvat and Tziperman, 2015). The FSTD is defined as a 163 

probability distribution 𝑓(𝑟, ℎ)𝑑𝑟𝑑ℎ. 𝑓(𝑟, ℎ) represents the fraction of cell covered by ice with 164 

floe size between 𝑟 and 𝑟 + ∆𝑟, thickness between ℎ and ℎ + ∆ℎ, and the FSTD satisfies, 165 
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∫ ∫ 𝑓(𝑟, ℎ)𝑑𝑟𝑑ℎ
ℋℛ

＝1 (5) 169 

The ice thickness distribution 𝑔(ℎ) (ITD; Thorndike et al., 1975), which is simulated by the 166 

CICE model, and the FSD 𝐹(𝑟), can be obtained by integrating the FSTD over all floe sizes 167 

and all ice thicknesses, 168 

∫ 𝑓(𝑟, ℎ)𝑑𝑟 = 𝑔(ℎ)
ℛ

∫ 𝑓(𝑟, ℎ)𝑑ℎ =  𝐹(𝑟)
ℋ

 (6) 172 

Roach et al. (2018a) suggested the modified FSTD, 𝐿(𝑟, ℎ) , to preserve the governing 170 

equations of ITD in the CICE model, which satisfies, 171 

∫ 𝐿(𝑟, ℎ)𝑑𝑟 = 1
ℛ

 (7) 178 

and 173 

𝑓(𝑟, ℎ) = 𝑔(ℎ) 𝐿(𝑟, ℎ) (8) 179 

As described in Roach et al. (2018a), the implementation of the modified FSTD ignores the 174 

two-way relationship between floe size, that is, physical processes associated with FSD 175 

changes (i.e., 𝐿(𝑟, ℎ)  changes) are independent across each ice thickness category. The 176 

governing equation of FSTD is defined as, 177 

𝜕𝑓(𝑟, ℎ)

𝜕𝑡
= −∇ ∙ (𝑓(𝑟, ℎ)𝑣⃑) + ℒ𝑇 + ℒ𝑀 + ℒ𝑊 (9) 183 

The terms on the right-hand side represent advection, thermodynamics, mechanical, and wave-180 

induced floe-fracturing processes. For these terms, except the last term ℒ𝑊 , we follow the 181 

approach described in Roach et al. (2018a) and related values for coefficients as described in 182 
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Section 3. The formulations of ℒ𝑊  proposed by Horvat and Tziperman (2015) involve a 187 

random function to generate sub-grid scale sea surface elevation to determine how floes are 188 

fractured by ocean waves. As a consequence, simulations are not bitwise reproducible with the 189 

formulation including a random function. To avoid this issue, we propose different approaches 190 

for our implementation of FSTD as described below. 191 

2.3. Floe fracturing by ocean waves 192 

For the floe-fracturing term ℒ𝑊 , we follow the formulation suggested by Zhang et al. 193 

(2015), which has similar form as Horvat and Tziperman (2015) and can be described as, 194 

ℒ𝑊 = −𝑄(𝑟) 𝑓(𝑟, ℎ) + ∫ 𝛽(𝑟′, 𝑟)𝑄(𝑟′)𝑓(𝑟′, ℎ)𝑑𝑟′

ℛ

    (10) 200 

The first term on the right-hand side represents the areal fraction reduction due to floe-195 

fracturing and the second term is the areal fraction gain from other floe size categories that 196 

have floe-fracturing. In equation (10), 𝑄(𝑟) is the probability that floe-fracturing occurs for 197 

floe size between 𝑟  and 𝑟 + ∆𝑟 , and 𝛽(𝑟′, 𝑟)  is the redistributor that transfers fractured floe 198 

from floe size 𝑟′ to 𝑟. ℒ𝑊 does not create or destroy ice so it must satisfy, 199 

∫ ℒ𝑊𝑑𝑟 = 0
ℛ

   (11) 202 

In this study, we propose two different formulations for 𝑄(𝑟) and 𝛽(𝑟′, 𝑟). 201 

(a) Equally-redistribution 203 

We follow the same assumption in Zhang et al. (2015). That is, ice-fracturing by ocean 204 

waves is likely to be a random process and the size of fractured floe does not have favored floe 205 

size based on aerial photographs and satellite images (e.g., Steer et al., 2008; Toyota et al., 206 

删除了: in207 

删除了: involves208 

删除了: in209 

删除了: -210 



 

10 

 

2006, 2011). Thus, fractured floe is equally-redistributed into smaller floe sizes. The 211 

redistributor is defined as, 212 

𝛽(𝑟1, 𝑟2) = {
1 (𝑐2𝑟1 − 𝑐1𝑟1)⁄ 𝑖𝑓 𝑐1𝑟1 ≤ 𝑟2 ≤ 𝑐2𝑟1

0 𝑖𝑓  𝑟2 < 𝑐1𝑟1 𝑜𝑟 𝑟2 > 𝑐2𝑟1
     (12) 215 

where 𝑐1 and 𝑐2 are constants that define upper- and lower-bound of floe size redistribution. 213 

Details of 𝛽(𝑟′, 𝑟) in this formulation are referred to Zhang et al. (2015). 214 

For the probability 𝑄(𝑟), Zhang et al. (2015) used a user-defined coefficient to reflect 216 

wave conditions and determine 𝑄(𝑟). Zhang et al. (2016) suggested that the coefficient is a 217 

function of wind speed, fetch, ITD, and FSD. Since CAPS has a wave component to simulate 218 

wave conditions, we reformulate 𝑄(𝑟) to include simulated wave information from the coupler, 219 

and 𝑄(𝑟) is defined as, 220 

𝑄(𝑟) = 𝑐𝑤𝐻(𝜀)𝑒𝑥𝑝 [−∝ (
1 − 𝑟

𝑟𝑚𝑎𝑥
)]   (13) 227 

where 𝐻(𝜀) is the Heaviside step function, the exponential function determines the fraction of 221 

each floe size participating in fracturing, and user-defined coefficients, 𝑐𝑤 and ∝, control the 222 

upper-bound of 𝑄(𝑟) and the shape of the exponential function. To include wave conditions 223 

from the SWAN model, we apply the floe-fracturing parameterization suggested by Dumont et 224 

al. (2011) to calculate the strain induced by ocean waves on ice floes, and use this 225 

parameterization to define 𝐻(𝜀) as, 226 

𝐻(𝜀) = {
1, 𝑖𝑓 𝜀 ≥ 𝜀𝑐

0, 𝑖𝑓𝜀 < 𝜀𝑐
    (14) 230 

𝜀 =
2𝜋2ℎ𝑖𝑐𝑒𝐴𝑤𝑎𝑣𝑒

𝐿𝑤𝑎𝑣𝑒
2     (15) 231 

where the strain 𝜀 is proportional to the ice thickness ℎ𝑖𝑐𝑒 and the mean amplitude of wave 228 

𝐴𝑤𝑎𝑣𝑒, and inversely proportional to the square of the mean surface wavelength 𝐿𝑤𝑎𝑣𝑒. If the 229 
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strain exceeds the strain yield limit 𝜀𝑐 (see Section 3), floe-fracturing occurs (i.e., 𝐻(𝜀) = 1). 233 

The distribution of wave heights is, in general, a Rayleigh distribution, which allows us to use 234 

the simulated significant wave height from the SWAN model to determine the mean wave 235 

amplitude with the following relationship (e.g., Bai and Bai, 2014), 236 

𝐴𝑤𝑎𝑣𝑒 =
𝐻𝑤𝑎𝑣𝑒

2
≅

5

16
𝐻𝑠   (16) 238 

where 𝐻𝑤𝑎𝑣𝑒 is the mean wave height, and 𝐻𝑠 is the significant wave height. 237 

The exponential function is built on that the wave strain on ice floes is separated by the 239 

wavelength (e.g., Dumont et al., 2011, their Fig. 4). Floe size smaller than the wavelength is 240 

more likely to move along with ocean waves with little bending (e.g., Meylan and Squire, 1994). 241 

That is, the exponential function preferentially has a higher fraction for larger floes. 242 

(b) Redistribution based on a semi-empirical wave spectrum 243 

As discussed in Dumont et al. (2011, their Fig. 4), fractured floes have a maximum size 244 

with half of the surface wavelength. Thus, the wave distribution of different wavelengths in 245 

each grid cell allows us to predict floe sizes after fracturing. The sea surface elevation is a result 246 

of the superimposition of waves with different periods, amplitudes, and directions in space and 247 

time. Empirical wave spectra have been proposed to describe wave conditions with a finite set 248 

of parameters. Based on wave observations from a wide variety of locations, Bretschneider 249 

(1959) suggested the formulation of wave spectrum, which is used to formulate the 250 

redistribution of fractured floe as described below. 251 

The Bretschneider wave spectrum is defined as, 252 
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𝑆𝐵(𝑇) =
1.25𝐻𝑠

2𝑇5

8𝜋𝑇𝑝
4 𝑒𝑥𝑝 [−1.25 (

𝑇

𝑇𝑝
)

4

]   (17) 259 

where 𝑇𝑝 is the peak wave period, and the spectral wave amplitude is defined as (Dumont et 257 

al., 2011), 258 

𝐴(𝑇) = √
4𝜋𝑆𝐵(𝑇)

𝑇
       (18) 262 

Similar to the distribution of wave height, Bretschneider (1959) found that the distribution of 260 

wave period is, in general, a Rayleigh distribution and defined as, 261 

𝑃(𝑇) = 2.7 (
𝑇

𝑇𝑎𝑣𝑒
)

3

𝑒𝑥𝑝 [−0.675 (
𝑇

𝑇𝑎𝑣𝑒
)

4

]       (19) 266 

where 𝑇𝑎𝑣𝑒 is the mean surface period. With the deep-water surface wave dispersion relation 263 

𝐿(𝑇) = 𝑔𝑇2 2𝜋⁄ , the corresponding wave length for each wave period bin can be obtained, 264 

and the wave-strain distribution can be calculated with the modified equation (15), 265 

𝜀(𝑇) =
2𝜋2ℎ𝑖𝑐𝑒𝐴(𝑇)

𝐿(𝑇)2
    (20) 269 

Combined with the Heaviside step function defined in the equation (14), the probability of floe-267 

fracturing for each wave period is obtained, 268 

𝑃𝑓(𝑇) = 𝐻(𝜀(𝑇))𝑃(𝑇)     (21) 275 

where 𝑃(𝑇) is the normalized 𝑃(𝑇). Based on 𝑃𝑓(𝑇) and the assumption that fractured floes 270 

have a maximum size with half of the surface wavelength, the redistributor 𝛽(𝑟1, 𝑟2) can be 271 

obtained based on following criteria: 1) floe size between 𝑟 and 𝑟 + ∆𝑟 (in radius) must be 272 

greater than half of wavelength 𝐿(𝑇), 2) floes fractured by the wavelength 𝐿(𝑇) have the size 273 

of 𝐿(𝑇) 2⁄ , and 3) 𝑃𝑓(𝑇) represents the fraction of floe with 𝑟 and 𝑟 + ∆𝑟 transferred to new 274 
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size with 𝑟′ and 𝑟′ + ∆𝑟 determined by the criterion (2). The probability 𝑄(𝑟) is the summation 276 

of 𝑃𝑓(𝑇) and represents the total fraction of floe participating in wave-fracturing. 277 

3. Model configurations and experiment designs 278 

The WRF, ROMS, SWAN, and CICE models use the same model grid with 320 (440) x- 279 

(y-) grid points and ~24km horizontal resolution (Fig. 1). Initial and boundary conditions for 280 

the WRF, ROMS, CICE models are generated from the Climate Forecast System version 2 281 

(CFSv2, Saha et al., 2014) operational analysis, archived by National Centers for 282 

Environmental Information (NCEI), National Oceanic and Atmospheric Administration 283 

(NOAA). In our configurations, the SWAN model starts with the calm wave states (i.e., zero 284 

wave energy in all frequencies). The modified FSTD, 𝐿(𝑟, ℎ), is initialized based on the power-285 

law distribution of floe number, 𝑁(𝑟) ∝ 𝑟−𝑎 (e.g., Toyota et al., 2006), with the exponent 𝑎 as 286 

2.1 for all grid cells. Physical parameterizations of each model component are mostly identical 287 

to those used in Yang et al. (2022) and summarized in Table 1.  288 

Cassano et al. (2011) suggested that the use of a higher model top (10 mb) or applying 289 

spectral nudging in the upper model levels leads to significantly reduced bases in pan-Arctic 290 

atmospheric circulation in the standalone WRF model. Thus, compared with Yang et al. (2022), 291 

we change the model top of the WRF model in CAPS from 50 mb to 10 mb. With coupling to 292 

the SWAN model in CAPS, the corresponding configurations are modified to reflect wave 293 

effects on the atmosphere and the ocean. In the Mellor-Yamada-Nakanishi-Niino planetary 294 

boundary layer scheme (MYNN; Nakanishi and Nino, 2009), the surface roughness, 𝑧0 , is 295 

modified to include the effect of waves based on the following formulation, 296 
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𝑧0 = 1200𝐻𝑠 (
𝐻𝑠

𝐿𝑤𝑎𝑣𝑒
)

4.5

+
0.11𝜐

𝑢∗
 (22) 321 

where 𝜐 is the viscosity, and 𝑢∗ is the friction velocity (Taylor and Yelland, 2001; Warner et al., 301 

2010). For the interaction of ocean waves and currents, the vortex-force (VF) formulation is 302 

applied that represents conservative (e.g., vortex and Stokes-Coriolis forces) and non-303 

conservative wave effects.  The non-conservative wave effects in the VF formulation include 304 

wave accelerations for currents and wave-enhanced vertical mixing (Kumar et al., 2012; 305 

Uchiyama et al., 2010). The dissipated wave energy due to surface wave breaking and 306 

whitecapping is transferred to the ocean surface layer as additional turbulent kinetic energy, 307 

which in turn enhances the vertical mixing. For the effect of currents on the dispersion relation 308 

in wave propagation, we employ a depth-weighted current to account for the vertically-sheared 309 

flow following Kirby and Chen (1989). As discussed in previous studies (e.g., Naughten et al., 310 

2017; Yang et al., 2022), the upwind third-order advection (U3H, Table 1) scheme, which is an 311 

oscillatory scheme, can lead to increased non-physical frazil ice formation. To address this 312 

issue, we implement the upwind flux limiter suggested by Leonard and Mokhtari (1990) to 313 

reduce false extrema caused by the oscillatory behavior of the U3H scheme. The value of 314 

yielding strain 𝜀𝑐 , described in Section 2.3 is chosen as ≅ 3 × 10−5  (Dumont et al., 2011; 315 

Horvat and Tzipermann, 2015; Langhorne et al., 1998). The floe welding parameter in the 316 

thermodynamic term ℒ𝑇, is chosen as 1 × 10−7 𝑘𝑚−2𝑠−1. Roach et al. (2018b) found a lower 317 

bound of floe welding parameter as 1 × 10−9 𝑘𝑚−2𝑠−1  in the autumn Arctic based on the 318 

observations. Also, the floe welding process only occurs in the freezing condition (Roach et al., 319 

2018a), and the freezing condition is determined by net ice mass increase by thermal mass 320 
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change (see Figure 3). The floe welding parameter will behave like a step function during the 323 

freeze-thaw transition. For the user-defined coefficients in equation (4), all experiments use the 324 

equally-redistributed formulation described in Section 2.3 with 𝑐𝑤 as 0.8 and ∝ as 1.0. Based 325 

on the formation of ℒ𝑇  in the equation (9)  (see Roach et al., 2018a), the floe size change 326 

through the lateral surface is determined by both the floe size and the lateral melting rate. In 327 

the existing sea ice models, the lateral melting rate 𝑤𝑙𝑎𝑡  is all based on the empirical 328 

formulation suggested by Perovich (1983, hereafter P83), 329 

𝑤𝑙𝑎𝑡 = 𝑚1∆𝑇𝑚2  (23) 336 

where ∆𝑇 is the temperature difference between sea surface temperature (SST) and the freezing 330 

point, and 𝑚1, 𝑚2 are empirical coefficients based on the observations from a single sea ice 331 

lead in the Canadian Arctic. This empirical formulation is also the default lateral melting rate 332 

in the CICE model. Maykut and Perovich (1987, hereafter MP87) showed a different approach 333 

to parameterize the lateral melting rate that includes the friction velocity 𝑢∗  based on the 334 

observations from the Marginal Ice Zone Experiment, which is defined as, 335 

𝑤𝑙𝑎𝑡 = 𝑢∗𝑚3∆𝑇𝑚4  (24) 343 

Both formulations (Equ. 23, 24) are examined in this study (see Table 2). In the equation (2), 337 

the user-defined coefficients for the wave attenuation are set as 𝑐2 = 1.06 × 10−3 and 𝑐4 =338 

2.3 × 10−2 (case 1), which follow the polynomial of Meylan et al. (2014, hereafter M14) from 339 

the observations with 10-25m floe in diameter in the Antarctic, and 𝑐2 = 2.84 × 10−4  and 340 

𝑐4 = 1.53 × 10−2 (case 2), which follow the polynomial of Rogers et al. (2018, hereafter R18) 341 

based on the observations for pancake and frazil ice in the Arctic. 342 
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 In this study, a series of numerical experiments for the pan-Arctic sea ice simulation have 344 

been conducted, starting from January 1st, 2016 to December 31st, 2020. Table 2 provides the 345 

details of the configurations for these experiments, which allow us to examine the influence of 346 

ocean waves and related physical processes on Arctic sea ice simulation in the atmosphere-347 

ocean-wave-sea ice coupled framework. Specifically, these experiments focus on 1) the 348 

comparison between constant FSD and prognostic FSD (Exp-CFSD and Exp-PFSD), 2) sea ice 349 

responses to different lateral melting rate parameterizations (Exp-CFSD, Exp-PFSD, Exp-350 

LatMelt-C and Exp-LatMelt-P), 3) the difference between the equally-redistributed 351 

formulation and the Bretschneider formulation for floe fracturing (Exp-PFSD and Exp-352 

WaveFrac-P), and 4) the contribution of different wave attenuation rates to sea ice changes 353 

(Exp-CFSD, Exp-PFSD, Exp-WaveAtt-C and Exp-WaveAtt-P). 354 

4. Results 355 

4.1 Constant vs. Prognostic floe size 356 

Figure 2 shows the evolution of sea ice area (SIA) for all experiments conducted in this 357 

study (as well as the values of seasonal maximum and minimum SIA for all experiments are 358 

summarized in Table S1).  SIA is calculated as the sum of the ice-covered area of all grid cells 359 

(cell-area times sea ice concentration). In addition to the evolution of SIA, the 2016-2020 360 

averaged March and September sea ice concentration (SIC) for all experiments are shown in 361 

Figure S1. Compared with Exp-CFSD, which uses a constant floe diameter (300m) in the 362 

lateral melting scheme (Steele, 1992), Exp-PFSD uses the equations described in Section 2.2 363 

to determine the prognostic FSD and related physical processes (see Table 2). With the 364 
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prognostic FSD, the evolution of SIA in Exp-PFSD (Fig. 2a, red line) shows smaller SIA in the 365 

melting months (June to September) and similar magnitude of SIA in other months compared 366 

to that of Exp-CFSD (Fig. 2a, blue line) during 2016-2018. After that, Exp-PFSD simulates 367 

smaller SIA than that of Exp-CFSD for most months during 2019-2020, especially for the 368 

seasonal maximum of 2019 and SIA after May 2020.  369 

Figure 3 shows the evolution of sea ice mass budget terms with cell-area weighted 370 

averaging over the entire model domain with a 15-day running-average for smoothing out high-371 

frequency fluctuations for all experiments. The most notable difference between Exp-CFSD 372 

and Exp-PFSD is the magnitude of basal melt (red lines) and lateral melt (grey lines). In Exp-373 

CFSD, basal melt plays the dominant role in reducing sea ice mass compared to lateral melt 374 

which has negligible contribution to the total mass change. As discussed in Maykut and 375 

Perovich (1987), the inclusion of friction velocity in calculating the lateral melting rate results 376 

in 𝑤𝑙𝑎𝑡 → 0 as 𝑢∗ → 0, which contributes to negligible lateral melt in Exp-CFSD. By contrast, 377 

Exp-PFSD with prognostic floe size shows that lateral melt has the major contribution in 378 

reducing ice mass (Fig. 3b), a result of smaller floe size near the ice edge simulated by Exp-379 

PFSD (Fig. 10a). It is also notable that the increased lateral melt in Exp-PFSD tends to be 380 

compensated by the decreased basal melt (Fig. 3b). The overall ice melt due to oceanic 381 

processes in Exp-PFSD (i.e., the sum of lateral melt and basal melt) does not change 382 

significantly compared to that of Exp-CFSD (Fig. S2e). The melting potential in the CICE 383 

model of CAPS, the available energy from the ocean to melt sea ice, is defined as the vertical 384 

integral of the difference between ocean temperature and freezing point within the surface layer 385 
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(to 5-meter depth in CAPS) from the ROMS model. When the available oceanic energy is less 389 

than the sum of heat fluxes used for lateral and basal melt, the CICE model performs a linear 390 

scaling to maintain the relative magnitude of heat fluxes for lateral and basal melt. Thus, the 391 

increased energy consumption by lateral melt due to smaller floe size reduces the available 392 

energy for basal melt. Such change between lateral and basal melt has been shown in some 393 

studies (e.g., Bateson et al., 2020, 2022; Roach et al., 2018a, 2019; Smith et al., 2022; Tsamados 394 

et al., 2015). Although the rough compensation, Exp-PFSD simulates more ice melted by the 395 

oceanic energy compared to Exp-CFSD from January to July (Fig. S2e).  396 

Figure 4 shows the evolution of ice-ocean heat flux, the friction velocity at the ice-ocean 397 

interface, and the temperature difference between SST and freezing point for Exp-CFSD and 398 

Exp-PFSD. These variables are the average of ice-covered cells with at least 1% ice 399 

concentration, and the ice-ocean heat flux is weighted by the ice concentration so that the 400 

weighted heat flux represents the mean value of the cell, rather than the mean value of the ice-401 

ocean interface. It should be noted that cells with negative values of the temperature difference 402 

(i.e., supercooled water) are forced to be zero. This is consistent with the treatment in the CICE 403 

model for the calculation of ice-ocean heat flux. As shown in Fig. 4a and Fig. S2e, the evolution 404 

of ocean-induced ice melt is consistent with that of the ice-ocean heat flux for both Exp-CFSD 405 

and Exp-PFSD. Both Exp-CFSD and Exp-PFSD show relatively similar evolution of the 406 

friction velocity (Fig. 4b). The temperature difference of Exp-PFSD is much smaller than that 407 

of Exp-CFSD (Fig. 4c). The ice-ocean heat flux is the total heat flux from ocean to ice through 408 

ice bottom surface and lateral surface. Although Exp-PFSD has smaller temperature difference 409 
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as well as the melting potential under ice-covered cells, the larger total ice surface area due to 410 

smaller floe size increases the efficiency of Exp-PFSD extracting energy from the ocean. The 411 

smaller temperature difference of Exp-PFSD and the compensation between lateral and basal 412 

melt suggest that the ocean surface layer of Exp-PFSD is closer to the freezing point compared 413 

to that of Exp-CFSD. Energy loss from the ocean through air-sea heat flux that further cools 414 

the upper ocean, freshwater input (e.g., ice melting, precipitation) that raises the freezing point, 415 

as well as non-physical numerical oscillations (Naughten et al., 2017; Yang et al., 2022), can 416 

lead to increased frazil ice formation of Exp-PFSD as shown in Fig. 3a-b and Fig. S2g. 417 

Figure 5 shows the heat flux budget at the ice surface averaged for all ice-covered cells. 418 

The positive ice-atmosphere heat fluxes of Exp-CFSD and Exp-PFSD in July (Fig. S3a) 419 

correspond to top melt in Fig. 3a-b and Fig. S2b (as well as Table S2). The ice-atmosphere heat 420 

flux not only determines the magnitude of ice surface melt in summer but also the energy loss 421 

from the ice interior in winter, which is crucial for ice growth. As shown in Fig. S3a, Exp-422 

PFSD loses more energy to the atmosphere than that of Exp-CFSD in most winters. The 423 

conductive heat flux also shows similar evolution, suggesting that more energy is conducted to 424 

the ice top from ice layers below in Exp-PFSD (Fig. S3b). The loss of ice energy then 425 

contributes to increased ice growth at the ice bottom as shown in Fig. 3a-b and Fig. S2f (as 426 

well as Table S2). Generally, the net shortwave flux of Exp-PFSD is larger (ice gains more 427 

energy) than that of Exp-CFSD, especially during the melting season (Fig. S3c). In contrast to 428 

the net shortwave flux, for most of the time, the net longwave flux of Exp-PFSD is smaller (i.e., 429 

ice loses more energy) than that of Exp-CFSD (Fig. S3d). Exp-PFSD loses more energy 430 
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through sensible heat flux compared to Exp-CFSD (Fig. S3e). For latent heat flux, there are no 436 

common features between Exp-PFSD and Exp-CFSD, suggesting the difference in the 437 

simulation of atmospheric transient systems (Fig. S3f).  438 

The ice mass budget in Fig. 3 is not directly related to the evolution of SIA in Fig. 2 since 439 

each process acts differently in changing SIA. For vertical processes (i.e., top melt, basal melt), 440 

ice must be vertically-melted completely to reduce SIA. Lateral melt, on the contrary, can 441 

directly reduce SIA (Smith et al., 2022). Figure 6 shows the evolution of SIA changes due to 442 

thermal processes (top melt, basal melt, lateral melt, frazil ice formation) and dynamical 443 

processes (transport, ridging). For thermal area changes, Exp-PFSD (red line), in general, 444 

shows comparable ice area changes compared to Exp-CFSD (blue line) for most of the period 445 

(Fig. 6a). Compared with Fig. S2g, the timings that Exp-PFSD shows more thermally-increased 446 

ice area correspond to increased frazil ice formation, which primarily occurs in open water. In 447 

contrast to thermal area changes, dynamical area changes of Exp-PFSD tend to reduce ice area 448 

relative to that of Exp-CFSD (Fig. 6e). Dynamically-induced area changes are partly due to the 449 

ridging scheme (Lipscomb et al., 2007) that favors the conversion of thin ice to thicker ice and 450 

reduces total ice area but preserves the total volume. In general, Exp-PFSD has a higher fraction 451 

of ice in the thinner ITD range than Exp-CFSD. 452 

Based on geographic features, we define the following subregions for further analysis: 1) 453 

Barents and Greenland Seas (ATL, 45W-60E, 65N-85N), 2) Laptev and Kara Seas (LK, 60E-454 

150E, 65N-85N), and 3) Beaufort, Chukchi, and East Siberian Seas (BCE, 150E-120W, 65N-455 

85N, see black boxes in Fig. 1 for the geographic coverage of subregions). The fetches of ATL, 456 
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LK, and BCE regions are limited by the surrounding continents and the seasonal evolution of 466 

ice-covered areas. The ATL region is only partially-limited by ice-covered areas while the LK 467 

and BCE regions can be fully-covered by sea ice in winter. Figure 7 shows the evolution of sea 468 

ice extent, sea ice area, domain-averaged significant wave height, melting potential, and heat 469 

flux at the ocean surface (FLUXOCN, including ice-ocean and atmosphere-ocean interfaces) of 470 

Exp-CFSD and Exp-PFSD. As shown in Fig. 7a-i, it is clear that the higher (lower) significant 471 

wave height corresponds to less (more) regional ice coverage for all subregions. For the melting 472 

potential (Fig. 7j-l), the difference between Exp-CFSD (blue line) and Exp-PFSD (red line) in 473 

August, in general, is correlated with FLUXOCN in July (Fig. 7m-o). The more (less) incoming 474 

heat flux to the ocean due to less (more) ice-covered area increases (decreases) energy stored 475 

in the ocean surface layer. However, FLUXOCN alone cannot explain the difference in the 476 

melting potential for the entire period. For example, Exp-PFSD shows more melting potential 477 

after December 2019 in the ATL region (Fig. 7j), and more melting potential in December 2017 478 

in the LK region (Fig. 7k) compared to Exp-CFSD. These timings do not show corresponding 479 

FLUXOCN in the preceding month, suggesting the contribution of different processes. Figure 8 480 

shows the evolution of wave energy dissipation due to whitecapping and the difference of 481 

temperature profile in the upper 150m for Exp-CFSD and Exp-PFSD. As described in section 482 

3, wave energy dissipation increases the turbulent kinetic energy in the surface layer and thus 483 

vertical mixing. Dissipation due to surface wave breaking is zero for most of the period. 484 

Occasionally, there are non-zero dissipations due to surface wave breaking for Exp-CFSD and 485 

Exp-PFSD. The evolution of wave dissipation due to whitecapping (Fig. 8a-c) is in good 486 
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agreement with that of significant wave height in Fig. 7g-i. This suggests that stronger wave 500 

conditions associated with less ice-covered areas increase the effect of vertical mixing. 501 

Combined with the warmer upper ocean in Exp-PFSD after January 2020 in the ATL region 502 

and in December 2017 in the LK region in Fig. 8d-e, the strengthened vertical mixing brings 503 

warmer water of the subsurface upward and maintains/increases the melting potential in the 504 

subregions. Figure 8d-f also shows that the warmer signal in the upper ocean (at least to 60m 505 

depth) of Exp-PFSD persists after July 2018 in the ATL region while the LK and BCE regions 506 

show seasonal oscillation of ocean temperature in the upper ocean for the entire simulation. 507 

Combined with the regional SIA shown in Figure 7d-f, seasonal fully ice-covered states in the 508 

LK and BCE regions force the upper ocean to restore to certain states (i.e., near freezing point 509 

under sea ice, near zero melting potential shown in Fig. 7k-l) for both Exp-CFSD and Exp-510 

PFSD, which might mitigate the effects of ocean wave activities and other processes on the 511 

upper ocean. With less restoring effect by sea ice on the upper ocean in the ATL region, the 512 

difference of thermally-induced mass change between Exp-PFSD and Exp-CFSD shows a 513 

larger variation once the upper ocean difference starts to persist after July 2018 (Fig. 8d, S4d) 514 

while the variations in the LK and BCE regions remain relatively unchanged for the entire 515 

simulation (Fig. S4e-f). 516 

Additionally, atmospheric circulation responds to the changes in the spatial distribution of 517 

sea ice (Fig. S1). As shown in Figure S5, Exp-PFSD tends to have anomalous anti-cyclonic 518 

circulations in September compared to Exp-CFSD, but there is no consistent center of action 519 

during the entire period. In March, Exp-PFSD tends to simulate anomalous cyclonic 520 
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circulations in the Barents-Kara Sea for most of the years compared to Exp-CFSD, except in 527 

2019. The responses in the atmospheric state in both experiments also influence sea ice 528 

movement, which further contributes to the regional ice differences in Fig. 7a-f, as well as the 529 

heat flux budgets in Fig. S3. 530 

4.2 Sensitivity to lateral melting rate parameterization 531 

In addition to the floe size as discussed in the above section, the lateral melting rate (𝑤𝑙𝑎𝑡) 532 

is an important factor contributing to the relative strength of lateral and basal melt. As described 533 

in section 3, we conduct the experiments with the lateral melting rate suggested by Perovich 534 

(1983, P83), and Maykut and Perovich (1987, MP87) (see Table 2), to examine the sensitivity 535 

of Arctic sea ice simulation to different lateral melting rate parameterizations. As shown in Fig. 536 

2b, the simulated summer sea ice area of Exp-LatMelt-C (green line) and Exp-LatMelt-P (grey 537 

line), in general, is larger than those of Exp-CFSD (blue line) and Exp-PFSD (red line). 538 

As shown in the sea ice mass budget (Fig. 3a, 3c), Exp-LatMelt-C, which does not include 539 

the friction velocity in the formulation (Equ. 23), but keeps other model configurations same 540 

as Exp-CFSD only shows a slightly larger contribution to lateral melt during summer months 541 

(Fig. S6d). Also, the contribution to basal melt by Exp-LatMelt-C is generally smaller than that 542 

in Exp-CFSD (Fig. S6c). Similar to the experiments with the MP87 scheme, Exp-LatMelt-P 543 

with the prognostic FSD also shows the compensation between lateral melt and basal melt 544 

compared to Exp-LatMelt-C (Fig. 3c, 3d). Exp-LatMelt-P shows stronger lateral melt 545 

compared to Exp-PFSD, which is contributed by the P83 formulation (Fig. S6d). Despite the 546 

stronger lateral melt in Exp-LatMelt-P, its basal melt is smaller compared to Exp-PFSD (Fig. 547 
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S6c). Thus, the ocean-induced melt of Exp-LatMelt-P is broadly similar to that of Exp-PFSD. 555 

The result of Exp-LatMelt-P and Exp-PFSD suggests that the changes in lateral and basal melt 556 

due to different lateral melting rate parameterizations are mostly controlled by the available 557 

energy from the ocean (i.e., melting potential).  558 

Exp-LatMelt-P simulates more basal growth in winter (Fig. S6f), which is contributed by 559 

more energy loss to the atmosphere (Fig. 5a), in comparison to Exp-PFSD. Also, more frazil 560 

ice formation is simulated in Exp-LatMelt-P than Exp-PFSD during most of the simulation 561 

period (Fig. S6g). The combined effects of the above processes lead to Exp-LatMelt-P showing 562 

less total ice melt in summer and similar ice growth in winter compared to Exp-PFSD (Fig. 563 

S6a). Due to more frazil ice formation, Exp-LatMelt-P shows more thermally-increased ice 564 

area compared to Exp-PFSD (Fig. 6, Fig. S6g). Frazil ice formation reduces open-water areas 565 

and blocks the energy exchange between the atmosphere and the ocean. That is, the upper ocean 566 

under sea ice in Exp-LatMelt-P receives less incoming flux from the atmosphere (i.e., solar 567 

radiation) during April to September (not shown) to balance the energy consumption by ice 568 

melt, which leads to smaller ocean temperature difference compared to Exp-PFSD (Fig. 4c, 569 

green and red lines).  570 

Figure 9 shows the spatial distribution of sea ice concentration, sea surface temperature, 571 

and friction velocity in September 2020 for the experiments using MP87 and P83 schemes. 572 

Exp-CFSD, Exp-PFSD, and Exp-LatMelt-C simulate large areas with ice concentration less 573 

than 5% (they are mostly much less than 1%, Fig. 9a-c). In opposite to these three experiments, 574 

Exp-LatMelt-P does not show wide areas with non-zero and infinitesimal ice concentration 575 
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(Fig. 9d). Although these areas only account for a tiny fraction of total sea ice, they may still 586 

be a source of uncertainty for sea ice simulations. Ice-existed cells can be influenced by all 587 

processes involved in sea ice mass budget (Fig. 3) while ice-free cells can only be affected by 588 

frazil ice formation and dynamical advection. Under these small-ice areas, SST is well above 589 

the freezing point (Fig. 9e-h) and the friction velocity is mostly less than 5 × 10−4  𝑚 𝑠⁄  (Fig. 590 

9i-l). In our configuration of the CICE model, the minimum value of friction velocity is set to 591 

5 × 10−4  𝑚 𝑠⁄  . This suggests that the friction velocity is the limit factor for heat flux 592 

transferred into sea ice in the small-ice areas. For basal heat flux, the formulation in the CICE 593 

model is based on Maykut and McPhee (1995), which is controlled by the friction velocity and 594 

the temperature difference. Thus, basal heat fluxes with small friction velocities may not be 595 

large enough to satisfy the energy convergence (in conjunction with conductive heat flux at the 596 

ice bottom) at the ice-ocean interface to melt ice if the temperature difference does not show a 597 

larger magnitude. Since the MP87 scheme includes the friction velocity, lateral heat flux is also 598 

limited in small-ice areas. Exp-PFSD has a much smaller floe size (compared to 300m) in these 599 

small-ice areas, but the increased strength of lateral melt does not overcome the limitation of 600 

friction velocity to melt ice completely (Fig. 9b). The P83 scheme, which does not include the 601 

friction velocity, is controlled by the temperature difference, but the effect of lateral melting in 602 

Exp-LatMelt-C is largely constrained by constant 300m floe diameter. Liang et al. (2019) 603 

suggested these small-ice areas can be eliminated by assimilating SST observations. The results 604 

of Exp-LatMelt-P suggest a model physic approach that considers the prognostic FSD and the 605 

lateral melting rate to reduce the coverage of small-ice near the ice-edge.  606 
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4.3 Sensitivity to floe-fracturing parameterization 615 

The equally-redistributed formulation (hereafter PF1) for floe-fracturing described in 616 

section 2.3.a does not have preferential floe size after fracturing (i.e., a stochastic process). 617 

However, the size of fractured floes can be predicted based on the properties of surface ocean 618 

waves, particularly wavelength (Dumont et al. 2011; Horvat and Tziperman, 2015). In this 619 

section, we conduct an experiment (Exp-WaveFrac-P, see Table 2), which utilizes a semi-620 

empirical wave spectrum to redistribute fractured floes (see section 2.3.b for details and 621 

hereafter PF2) to explore the effects of different wave-fracturing formulations on Arctic sea ice 622 

simulation. As shown in Fig. 2c, Exp-WaveFrac-P (orange line) simulates larger SIA in summer 623 

and comparable SIA in winter compared to that of Exp-PFSD (red line). 624 

By applying different formulations for floe-fracturing (as well as different lateral melting 625 

rate formulations), the FSD responds accordingly. To quantify the responses of FSD associated 626 

with different physical configurations (Table 2), the representative floe radius 𝑟𝑎, as well as its 627 

tendency due to different processes in the equation (9) are utilized and calculated as (Roach et 628 

al., 2018a), 629 

𝑟𝑎 =
∫ ∫ 𝑟𝑓(𝑟, ℎ)𝑑𝑟𝑑ℎ

ℋℛ

∫ ∫ 𝑓(𝑟, ℎ)𝑑𝑟𝑑ℎ
ℋℛ

 (25) 630 

𝑑𝑟𝑎

𝑑𝑡
=

∫ ∫ 𝑟
𝑑𝑓(𝑟, ℎ)

𝑑𝑡
𝑑𝑟𝑑ℎ

ℋℛ

∫ ∫ 𝑓(𝑟, ℎ)𝑑𝑟𝑑ℎ
ℋℛ

 (26) 631 

Figure 10 shows the spatial distribution of the representative floe radius in winter and 632 

summer for all experiments with the prognostic FSD. As described in section 3, 𝐿(𝑟, ℎ)  is 633 

initialized by the power law distribution with the exponent as 2.1 for all experiments. Exp-634 
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WaveFrac-P shows a smaller floe radius in the Chukchi and East Siberian Seas and north of 638 

Greenland at the early stage of simulation compared to experiments using PF1 formulation (Fig. 639 

10a-o, upper panel). Small-floe areas in Exp-WaveFrac-P are mostly contributed by the effect 640 

of wave-fracturing where decreasing tendency of floe radius can extend further into the central 641 

Arctic from the Atlantic and the Bering Strait compared to PF1 experiments (Fig. S7). After 642 

September 2016, the representative floe radii of PF experiments emerge, that is, Exp-643 

WaveFrac-P has a smaller floe size compared to PF1 experiments for both winter and summer 644 

(Fig. 10a-o). In summer, Exp-WaveFrac-P shows mostly fully-fractured floe (<10m, Fig. 10k-645 

o, bottom panel). The stronger wave-fracturing shown in Exp-WaveFrac-P is partly contributed 646 

by the semi-empirical wave spectrum used in PF2. The simulated wave parameters under ice-647 

covered area are mostly with 𝐻𝑠 < 0.01 𝑚 𝑠⁄  and 𝑇𝑝 > 15 𝑠. The constructed wave spectrum 648 

and amplitude based on simulated wave parameters under sea ice and equations (17) and (18) 649 

still include the contribution from high-frequency waves (𝑇 = 2𝑠 𝑏𝑖𝑛), especially in the ice 650 

pack far from the ice edge. The high-frequency waves only account for a small fraction in the 651 

wave period distribution 𝑃(𝑇) , and have small wave amplitude 𝐴(𝑇)  (~ 7 × 10−4𝑚 ). The 652 

strain of the high-frequency bin based on equation (20) still exceeds the yielding strain and 653 

then fractures ice floe into the smallest floe size category. Observational and numerical studies 654 

showed that high-frequency waves rapidly decay and reach the “zero” transmission state for 655 

high-frequency waves when traveling under sea ice (e.g., Collins et al., 2015; Liu et al., 2020). 656 

Despite the over-fracturing behavior shown in Exp-WaveFrac-P, the prevalence of small-floe 657 

does not translate into the stronger ocean-induced ice melt but weaker melt in summer 658 
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compared to Exp-PFSD (Fig. 3d-e, Fig. S8e), indicating the limiting role of melting potential. 664 

The weaker ocean-induced ice melt in the summer of Exp-WaveFrac-P corresponds to smaller 665 

ice-ocean heat fluxes (Fig. S9a), which is contributed by both smaller friction velocity and 666 

temperature difference (Fig. S9b-c). 667 

4.4 Sensitivity to wave-attenuation parameterization 668 

We have shown that ocean waves can alter the upper ocean through wave-enhanced 669 

mixing, which may affect sea ice locally (Fig. 8, see section 4.1). The results from PF1 and 670 

PF2 experiments imply that the simulated wave parameters can determine how ice floes are 671 

fractured. As described in section 2.1, we can choose different coefficients in equation (2) to 672 

control the wave attenuation rate of each frequency. In this section, we conduct experiments 673 

using R18 coefficients (see section 3 and Table 2) to study the impacts of wave-attenuation rate 674 

on Arctic sea ice simulation. The simulated sea ice area in Exp-WaveAtt-C (Fig. 2d, light-blue 675 

line) resembles that in Exp-CFSD (Fig. 2d, blue line) before 2019. After 2019, Exp-WaveAtt-676 

C simulates smaller SIA compared to Exp-CFSD. Since both Exp-CFSD and Exp-WaveAtt-C 677 

use constant floe size, which allows us to neglect the effect of the spatial distribution of floe 678 

size and the MP87 scheme, which makes lateral melt have a negligible contribution (Fig. S10d), 679 

basal melt is the primary factor for the ocean-induced ice melt during the entire period (Fig. 3a, 680 

3f, and Fig. S10e). The strength of basal melt in Exp-WaveAtt-C is weaker than that in Exp-681 

CFSD from April 2018 to January 2020 (Fig. S10c). Basal growth of Exp-WaveAtt-C is also 682 

smaller than that of Exp-CFSD in the winter of 2018 and 2019 (Fig. S10f). Compared to Exp-683 

CFSD, Exp-WaveAtt-C shows stronger top melt in the summer of 2018 (Fig. S10b). The 684 
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combined effects of the above processes lead to a thinner ice state in Exp-WaveAtt-C before 699 

2019 (Fig. S10a). The thinner state of Exp-WaveAtt-C in the winter of 2019 causes more open 700 

water be created by basal melt (regardless of its smaller magnitude) and thus smaller SIA (Fig. 701 

2d), which is also shown in the thermally-induced ice area changes that Exp-WaveAtt-C has 702 

smaller magnitude in the corresponded period (Fig. 6d). As discussed in section 4.1, top melt 703 

and basal growth is in good agreement with the ice-atmosphere heat flux (Fig. S10, S11a). That 704 

is, ice mass and area changes described above are mainly driven by the ice-atmosphere heat 705 

flux associated with the atmospheric responses to the changes in ocean wave conditions. 706 

Different from the M14 experiments, the simulated SIA of Exp-WaveAtt-C (light-blue 707 

line) and Exp-WaveAtt-P (yellow line) show relatively similar evolution during 2016-2020 708 

(Fig. 2d). The R18 coefficients represent weaker wave attenuation relative to the M14 709 

coefficients. Thus, ocean waves in the R18 experiments are expected to transmit further into 710 

the ice pack while maintaining relatively higher wave energy. To quantify to what extent the 711 

ice can be affected by ocean waves, we calculate the wave-affected extent (WAE), which is 712 

defined as the sum of the area of cells with ice concentration greater than 15% and significant 713 

wave height greater than 30cm (Cooper et al., 2022). Figure 11 shows the evolution of WAE 714 

for the M14 and R18 experiments with a 15-day running average to smooth the high-frequency 715 

changes of wave conditions. The weaker attenuation in Exp-WaveAtt-C and Exp-WaveAtt-P 716 

results in generally larger WAE compared to Exp-CFSD and Exp-PFSD (as well as all previous 717 

experiments with M14 coefficients, not shown). The direct impact of larger WAE in Exp-718 

WaveAtt-P is that the representative floe radius is mostly smaller than 10m (fully-fractured by 719 
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ocean waves) (Fig. 10p-t). The decreasing tendency of floe radius due to wave-fracturing is the 726 

dominant factor contributing to the fully-fractured condition (Fig. S7). Similar to Exp-727 

WaveFrac-P, the fully-fractured condition does not lead to stronger ocean-induced melt due to 728 

limited oceanic energy (Fig. 3b, 3e, 3g, S10e). 729 

5. Conclusions and Discussions  730 

This study investigates the impacts of ocean waves on Arctic sea ice simulation based on 731 

a newly-developed atmosphere-ocean-wave-sea ice coupled model, which is built on the 732 

Coupled Arctic Prediction System (CAPS) by coupling the Simulating Waves Nearshore 733 

(SWAN) and the implementation of the modified joint floe size and thickness distribution 734 

(FSTD). A set of pan-Arctic experiments with different configurations of FSD-related 735 

processes are performed for the period 2016-2020. Specifically, we examine the contrasting 736 

behaviors of sea ice between constant and prognostic floe size, the responses of sea ice to 737 

different lateral melting rate formulations, and the sensitivity of sea ice to the simulated wave 738 

parameters under the atmosphere-ocean-wave-sea ice coupled framework. 739 

The results of FSD-fixed and FSD-varied experiments show that the simulated sea ice 740 

area is generally lower with smaller floe size associated with physical processes that change 741 

FSD. According to sea ice mass budget analysis, smaller floe size contributes to increased 742 

lateral melt, but its effect is reduced by decreased basal melt. The combined effects of lateral 743 

and basal melt associated with smaller floe size result in relatively more ice melt by the ocean 744 

energy, which is similar to previous studies (e.g., Bateson et al., 2022; Roach et al., 2019; Smith 745 

et al., 2022). The simulations in Smith et al. (2022) with varying lateral melting strength based 746 
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on the Community Earth System Model version 2 (CESM2) with a slab-ocean model showed 751 

minimal change in frazil ice formation. In our simulation with a full ocean model, the enhanced 752 

ice melt by the ocean, though it is partially balanced by increased frazil ice formation due to 753 

the depletion of melting potential in the surface layer. This suggests negative feedback from 754 

the full ocean physics. Our simulations also show that the prevalence of small floes does not 755 

necessarily lead to stronger ice melting due to limited oceanic energy. To further illustrate the 756 

constraint role of limited oceanic energy, the mixed layer depths (MLDs) based on 0.1 degree 757 

Celsius difference relative to the surface temperature (e.g., Courtois et al., 2017, their Table 2) 758 

for Exp-CFSD and Exp-PFSD are shown in Figure 12. In general, Exp-CFSD and Exp-PFSD 759 

(as well as other experiments, not shown) exhibit similar evolution of MLD, that is MLD is 760 

deeper (up to 150m) in March and shallower (up to 80m) in September. MLD in the open 761 

waters is broadly similar across all experiments and MLD near the ice edge (15% ice 762 

concentration, black contour in Fig. 12) is shallower (10-30m) relative to other areas. In March, 763 

MLDs under ice-covered areas become deeper as lead time increases. To calculate the heat 764 

content within MLD, the same approach for calculating melting potential in the ROMS model 765 

is used, which is defined as the vertical integral from the surface to MLD of the difference 766 

between ocean temperature and freezing point. The calculated values of heat content and 767 

melting potential have the same unit (W/m2) and directionality (positive downward) as ice-768 

ocean heat flux, and they represent the “maximum” heat flux that the ice can extract. Figures 769 

13 and 14 show the heat content of MLD and melting potential for Exp-CFSD and Exp-PFSD 770 

in March and September. As shown in Fig. 13-14, Exp-PFSD shows less melting potential (0-771 
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5m) and the heat content within MLD under ice-covered areas compared to Exp-CFSD. This 772 

feature is more pronounced in September than in March. Also, heat content in MLD near the 773 

ice edge of Exp-PFSD reduces more than other ice-covered areas compared to that of Exp-774 

CFSD, suggesting the role of ice-ocean heat flux. Figures 13 and 14 further support the 775 

constraint role of limited oceanic energy to ice melting with respect to varied floe size not only 776 

in the surface layer (i.e., melting potential) but also in the mixed layer. 777 

Our fully-coupled simulations also show that atmospheric states respond to changing ice 778 

distributions and then modify the energy budget at the ice surface that determines top melt in 779 

summer and basal growth in winter. The FSD-varied experiments, in general, show more 780 

energy loss from ice to the atmosphere in winter, and all experiments show year-to-year 781 

variations of energy gain for sea ice in summer.  782 

The depletion of ocean energy in the surface layer as well as enhanced frazil ice formation 783 

are the direct responses to the changes of ice-ocean coupling with the prognostic FSD. The 784 

fractured sea ice enlarges the ice-ocean heat flux while the freezing temperature is still 785 

determined by the sea surface salinity in the ocean model. However, the local salinity at the 786 

ice-ocean interface can be significantly lower than sea surface salinity, and thus higher freezing 787 

temperature locally due to the meltwater from sea ice (e.g., the false-bottom, Notz et al., 2003). 788 

Schmidt et al. (2004) proposed the ice-ocean heat flux formulation that considers the local 789 

salinity equilibrium but its formulation is only for the ice-bottom interface. The generalization 790 

of ice-ocean heat flux with the consideration of local salinity equilibrium for both bottom and 791 

lateral interface might yield a more realistic ice-ocean coupled simulation. Although the lateral 792 
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melting rate formulation does not have a major effect on the simulated floe size distribution, 794 

the simulated sea ice area and ice mass budget are sensitive to the choice of the formulation. 795 

The lateral melting rate formulations applied in this study as well as previous laboratory results 796 

are not related to the ice properties (i.e., ice thickness and floe size, Josberger and Martin, 1981; 797 

Maykut and Perovich, 1987; Perovich, 1983). A recent laboratory study suggested that the 798 

lateral melting rate is a function of temperature difference and the ratio of floe size to ice 799 

thickness (Li et al., 2021). Smith et al. (2022) also suggested that Arctic sea ice simulation can 800 

be sensitive to the lateral melting rate of Perovich (1983) with different weights on each ice 801 

thickness category. Further studies are required to investigate improved lateral melting rate 802 

parameterization with observational constraints (e.g., data from the MOSAiC campaign in 803 

2020, Nicolaus et al., 2021) within the prognostic FSD framework. 804 

As discussed in Horvat and Tziperman (2015), the FTSD is sensitive to the wave 805 

attenuation coefficients. Our simulations also show substantially contrasting behaviors in the 806 

simulated floe size distribution associated with simulated wave parameters, suggesting that 807 

several aspects need further investigation. First, the empirical wave attenuation (i.e., IC4M2) 808 

may have reasonable performance in simulating the changes of wave energy spectrum locally 809 

with specific ice conditions (e.g., Liu et al., 2020). However, the dissipation of wave energy 810 

varies spatially for the pan-Arctic (as well as pan-Antarctic) scale simulation with the different 811 

sea ice properties (i.e., ice concentration, ice thickness, floe size). Thus, a viscous boundary 812 

layer model (Liu et al., 1991) or a viscoelastic model (Wang and Shen, 2010) for wave 813 

attenuation, which provides spatially-varied wave attenuation with respect to sea ice properties, 814 
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might be able to give more realistic simulations in the wave-fracturing process and thus the 816 

floe size distribution. Also, the current implementation of sea ice effects in the SWAN model 817 

does not include the reflection and scattering due to sea ice, which redistributes the wave energy 818 

spatially and potentially changes the wave-fracturing behavior. Second, the probability of floe-819 

fracturing 𝑄(𝑟)  in both formulations applied in this study are uncertain. Both formulations 820 

result in floe-fracturing into smaller floe size categories within a short time interval as long as 821 

the simulated wave parameters satisfy the yielding strain. This strong contribution in the wave-822 

fracturing term is not easily balanced by the floe-welding term. The floe-welding term (Roach 823 

et al., 2018a, b) acts to reduce the floe number density so that it is less effective in increasing 824 

the representative floe radius if the floe is mostly fractured with the smallest floe size. Third, 825 

the attenuated wave energy by sea ice does not influence sea ice conditions in this study. As 826 

suggested by Longuet-Higgins and Steward (1962), the attenuated wave energy is transferred 827 

into the ocean (as we described in section 3 for wave-enhanced mixing) or sea ice. For sea ice, 828 

the transferred energy acts as a stress, called wave radiation stress (WRS), pushing sea ice to 829 

the direction of wave propagation. By including the WRS in the momentum equation of ice, 830 

the WRS then can affect sea ice drift (e.g., Boutin et al., 2020). 831 

For quantitative applications (e.g., forecasting sea ice), more observations (especially 832 

ocean waves under sea ice and FSD) are needed to reduce uncertainties in the atmosphere-833 

ocean-wave-sea ice coupled model, particularly wave-related processes in ice-covered regions. 834 

Horvat et al. (2019) developed a new technique to retrieve pan-Arctic scale FSD climatology 835 

and seasonal cycle from CryoSat-2 radar altimeter and this method can resolve floe size from 836 
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300 m to 100 km and potentially up to 20 m scale if applied to ICESat-2 data. ICESat-2 840 

altimetry also provides a new opportunity to observe ocean waves in sea ice at hemispheric-841 

scale coverage by directly observing the vertical displacements of the ice surface (e.g., Horvat 842 

et al., 2020). In situ observations, despite their limited spatial coverage, are valuable wave 843 

spectra measurements for wave-physics validation and improvement (e.g., Cooper et al., 2022; 844 

Liu et al., 2020). 845 
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7. Tables 1242 

Table 1 The summary of physic parameterizations used in all pan-Arctic simulations.  1243 

WRF physics 

Cumulus  Grell-Freitas (Freitas et al. 2018) 

Microphysics  Morrison 2-moment (Morrison et al. 2009) 

Longwave radiation  CAM spectral band scheme (Collins et al. 2004) 

Shortwave radiation  CAM spectral band scheme (Collins et al. 2004) 

Boundary layer MYNN (Nakanishi and Niino, 2009) 

Land surface Unified Noah LSM (Chen and Dudhia, 2001) 

  

ROMS physics 

Tracer advection Upwind third-order horizontal advection (U3H; Shchepetkin, 

and McWilliams, 2005) 

Centered fourth-order vertical advection 

(C4V; Shchepetkin, and McWilliams, 2005)  

Tracer vertical mixing Generic Length-Scale scheme (Umlauf and Burchard, 2003) 

  

CICE physics 

Ice dynamics EVP (Hunke and Dukowicz, 1997) 

Ice thermodynamics Bitz and Lipscomb (1999) 

Shortwave albedo Delta-Eddington (Briegleb and Light, 2007) 

  

SWAN physics 

Exponential wind growth Komen et al. (1984) 

Whitecapping Komen et al. (1984) 

Quadruplets Hasselmann et al. (1985) 

Depth-induced breaking Battjes and Janssen (1978) 

Bottom friction Madsen et al. (1988) 

Sea ice dissipation Collins and Rogers (2017); Rogers (2019) 

 1244 

  1245 
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Table 2 The summary of the experiments conducted in this study and their main changes in the 1246 

experiment design. MP87: Maykut and Perovich (1987). P83: Perovich (1983). M14: Meylan 1247 

et al. (2014). R18: Rogers et al. (2018). 1248 

Experiment Floe size Lateral melting 

rate 

Wave fracturing 

formulation 

Wave 

attenuation 

coefficients 

Exp-CFSD Const. 300m MP87 None M14 

Exp-PFSD FSTD MP87 Equally (PF1) M14 

Exp-LatMelt-C Const. 300m P83 None M14 

Exp-LatMelt-P FSTD P83 Equally (PF1) M14 

Exp-WaveFrac-P FSTD MP87 Bretschneider 

(PF2) 

M14 

Exp-WaveAtt-C Const. 300m MP87 None R18 

Exp-WaveAtt-P FSTD MP87 Equally (PF1) R18 

 1249 
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8. Figures 1251 

 1252 

Figure 1 The model domain used in CAPS for pan-Arctic sea ice simulations. Black boxes 1253 

indicate the subregions for analysis performed in this study. 1254 
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 1256 

Figure 2 Time-series of Arctic sea ice area for Exp-CFSD (blue line), Exp-PFSD (red line), 1257 

Exp-LatMelt-C (green line), Exp-LatMelt-P (grey line), Exp-WaveFrac-P (orange line), Exp-1258 

WaveAtt-C (light-blue line) and Exp-WaveAtt-P (yellow line). 1259 
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 1261 

Figure 3 Time-series (15-day running-averaged) of sea ice mass budget terms for (a) Exp-1262 

CFSD, (b) Exp-PFSD, (c) Exp-LatMelt-C, (d) Exp-LatMelt-P, (e) Exp-WaveFrac-P, (f) Exp-1263 

WaveAtt-C, and (g) Exp-WaveAtt-P. Ice mass budget terms include: total mass change (black 1264 

line), sea ice melt at the air-ice interface (top melt, green line), sea ice melt at the bottom of the 1265 

ice (basal melt, red line), sea ice melt at the sides of the ice (lateral melt, grey line), sea ice 1266 

growth at the bottom of the ice (basal growth, blue line), sea ice growth by supercooled open 1267 

water (frazil, orange line), sea ice growth due to transformation of snow to sea ice (snowice, 1268 

light-blue line), and sea ice mass change due to dynamics-related processes (dynamics, purple 1269 

line) (Notz et al., 2016; Yang et al., 2022). For reference, snow melt term (yellow line) is 1270 

included.  1271 
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 1272 

Figure 4 Time-series (15-day running-averaged) of (a) ice-ocean heat flux, (b) friction velocity 1273 

at ice-ocean interface, and (c) the temperature difference between SST and freezing point for 1274 

Exp-CFSD (blue line), Exp-PFSD (red line), Exp-LatMelt-C (green line), and Exp-LatMelt-P 1275 

(grey line). Note: (a) is positive downward and weighted by ice concentration.  1276 



 

58 

 

 1277 

Figure 5 Time-series (15-day running-averaged) of (a) ice-atmosphere heat flux, (b) conductive 1278 

heat flux at the ice top layer, (c) net shortwave flux, (d) net longwave flux, (e) sensible heat 1279 

flux, and (f) latent heat flux for Exp-CFSD (blue line), Exp-PFSD (red line), Exp-LatMelt-C 1280 

(green line), and Exp-LatMelt-P (grey line). Note: (a)-(e) are positive downwards and weighted 1281 

by ice concentration. 1282 
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 1284 

Figure 6 Time-series (15-day running-averaged) of sea ice area changes due to thermal 1285 

processes (a-d, upper panel) and dynamical processes (e-h, bottom panel) for Exp-CFSD (blue 1286 

line), Exp-PFSD (red line), Exp-LatMelt-C (green line), Exp-LatMelt-P (grey line), Exp-1287 

WaveFrac-P (orange line), Exp-WaveAtt-C (light-blue line) and Exp-WaveAtt-P (yellow line).  1288 
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 1289 

Figure 7 Time-series of (a-c) ice extent, (d-f) ice area, (g-i) significant wave height, (j-l) melting 1290 

potential, and (m-o) heat flux at the ocean surface in ATL, LK, and BCE regions for Exp-CFSD 1291 

(blue line) and Exp-PFSD (red line). Note: significant wave height, melting potential, and heat 1292 

flux at the ocean surface are region-averaged and 15-day running-averaged values. 1293 
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 1304 

 1305 

Figure 8 Time-series (15-day running-averaged) of white capping dissipation averaged over (a) 1306 

ATL, (b) LK, and (c) BCE regions for Exp-CFSD (blue line) and Exp-PFSD (red line), and the 1307 

temperature profile difference between Exp-CFSD and Exp-PFSD in the upper 150 m averaged 1308 

over (d) ATL, (e) LK, and (f) BCE regions. 1309 
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 1313 

Figure 9 The monthly-mean of (a-d) sea ice concentration, (e-h) sea surface temperature, and 1314 

(i-l) friction velocity in September 2020 for Exp-CFSD, Exp-PFSD, Exp-LatMelt-C, and Exp-1315 

LatMelt-P. 1316 
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Figure 10 The spatial distribution of the representative floe radius in March (upper panel) and 1328 

September (bottom panel) of (a-e) Exp-PFSD, (f-j) Exp-LatMelt-P, (k-o) Exp-WaveFrac-P, and 1329 

(p-t) Exp-WaveAtt-P for 2016-2020. Note: cells with less than 15% ice concentration are 1330 

treated as missing values. 1331 
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 1336 

Figure 11 Time-series (15-day running-averaged) of Arctic wave-affected extent for Exp-CFSD 1337 

(blue line), Exp-PFSD (red line), Exp-WaveAtt-C (light-blue line) and Exp-WaveAtt-P (yellow 1338 

line). 1339 
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 1341 

Figure 12 Monthly mean of MLD in March (top panel) and September (bottom panel) of Exp-1342 

CFSD and Exp-PFSD for 2016-2020. Note: the black contour represents the average location 1343 

of 15% ice concentration. 1344 
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 1346 

Figure 13 March-averaged heat content of MLD (top panel) and melting potential (bottom 1347 

panel) of Exp-CFSD and Exp-PFSD for 2016-2020. Note: the black contour represents the 1348 

average location of 15% ice concentration. 1349 
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 1351 

Figure 14 Same as Figure 13, but for September-averaged values. 1352 


