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Abstract. The Copernicus Arctic Regional Reanalysis (CARRA) is a novel regional high-resolution atmospheric reanalysis

product that covers a considerable part of the European Arctic including substantial amounts of ice-covered areas. Sea ice in

CARRA is modelled by means of a one-dimensional thermodynamic sea ice parameterisation scheme, which also explicitly

resolves the evolution of the snow layer over sea ice. In the present study we assess the representation of sea ice cover in

the CARRA product
:::::::
CARRA

:
and validate it against a wide set of satellite products and observations from ice mass balance5

buoys. We show that sea ice cover in CARRA adequately represents general interannual trends towards thinner and warmer

ice in the Arctic. Compared to ERA5, sea ice in CARRA shows a reduced warm bias in the ice surface temperature. The

strongest improvement was observed for winter months over the Central Arctic, and the Greenland and Barents seas where

a 4.91°C median ice surface temperature error of ERA5 is reduced to 1.88°C in CARRA on average. Over the Baffin Bay,

intercomparisons suggest the presence of a cold winter-time ice surface temperature bias in CARRA. No improvement over10

ERA5 was found in the ice surface albedo with spring-time errors in CARRA being up to 8%
::::
0.08 higher on average than those

in ERA5 when computed against the CLARA-A2 satellite retrieval product. Summer-time ice surface albedos are comparable

in CARRA and ERA5. Sea ice thickness and snow depth in CARRA adequately resolve the annual cycle of sea ice cover in

the Arctic and bring added value compared to ERA5. However, limitations of CARRA indicate potential benefits of utilising

more advanced approaches for representing sea ice cover in next generation reanalyses.15

Copyright statement. TEXT

1 Introduction

Many scientific and engineering applications require, or can benefit from, information about the past and present states of

the Earth’s atmosphere provided by atmospheric reanalysis products (see, e.g., Frank et al., 2020; Chung et al., 2013; Serreze

et al., 2003). These products
::::
These

::::::::
products

:::::
utilise

:::::::::
numerical

:::::::
weather

::::::::
prediction

:::::::
(NWP)

:::::::
systems

:::::::::
constrained

:::
by

:
a
:::::::::

multitude20

::
of

:::::::::::
observational

::::
data

::
to offer a pragmatic solution to the problem of obtaining a consistent multiyear gridded data set of atmo-

spheric and surface variablesby utilising a numerical weather prediction (NWP) system. Operational
:
.
::::::::
However,

::::::::::
operational

NWP systems applied in routine weather forecasting are under constant development, and
:
, as a result, archives of

:::::::::
operational

weather forecasts comprise subsets produced with different versions of atmospheric models, each having its own biases and
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limitations, resulting in
::::::
leading

::
to
:
inconsistent data sets. Therefore, to have a consistent gridded data set of past atmospheric25

states, a series of objective analyses is repeated using the same version of an NWP system, which results in an atmospheric

reanalysis data set (Bengtsson and Shukla, 1988).

Reanalysis systems are usually based on a short range operational NWP system
::::::
systems

:
(using an up-to-date model version

at the time of the start of reanalysis production), which is
::
are

:
kept unmodified. In the same way as the underlying NWP sys-

tems, atmospheric reanalysis data sets can be split into two categories: global and regional. Global reanalyses such as ERA530

(Hersbach et al., 2020), NCEP-DOE Reanalysis version 2 (Kanamitsu et al., 2002) or MERRA-2 (Gelaro et al., 2017) pro-

vide consistent gridded series of atmospheric and surface variables spanning multiple decades and covering the whole Earth.

However, these reanalysis products usually have relatively coarse spatial resolution, ranging from hundreds of kilometres (in

older products) to a few tens of kilometres in latest generation products (see, e.g., Fujiwara et al., 2017). Regional atmospheric

reanalysis systems, unlike their global counterparts, are based on limited area NWP systems. Thus, they are less computation-35

ally expensive and allow higher spatial resolution and more advanced model formulations. Contemporary regional atmospheric

reanalysis systems provide gridded data sets with spatial resolution close to 10 km and below (see, e.g., Kaiser-Weiss et al.,

2019).

Ongoing climate change is leading to unprecedented modern-time warming of the Arctic, which is stronger than in any

other region on Earth (Cohen et al., 2014; Serreze and Barry, 2011). Retreating sea ice and growing economic activity result40

in increasing scientific attention to the region,
:
and demand on accurate and reliable atmospheric data sets. However, the Arctic

region is challenging
:
is

:
a
::::::::::

challenging
::::::
region

:
to accurately model in NWP systems due to several factors. Firstly, the remote

location of the Arctic limits the availability of in situ observations that can be used for constraining the models, although

this lack of
::::::::
so-called conventional observations is partly compensated by higher availability of the satellite observations from

polar orbiting satellites (Lawrence et al., 2019). Secondly, operational short range NWP systems that are used as the modelling45

component in atmospheric reanalysis systems are usually tuned to perform best in the mid-latitude regions
:::::::
seldomly

:::::::::
developed

::::
with

:::
the

:::::
focus

::
on

::::::::
resolving

:::::::::::
smaller-scale

:::::::::::
atmospheric

::::::::
processes

::::::
typical

:::
for

:::::
polar

::::::
regions

:::::::::::::::::
(Vihma et al., 2014). Additionally,

::::
even

::::::
though accurate representation of the surface processes in NWP systems is crucial for

::
in

:
modelling interactions between

the surface and the model atmosphere, however, traditionally applied parameterisation schemes
::::::::
numerical

::::::
models

::::
often

:
employ

various simplifications to reduce their computational costs, which can lead to
::::::::
increased modelling errors and biases. One50

example, more specific to the Arctic region, is the representation of sea ice cover. Sea ice, still abundant in the present-

day Arctic, moderates the heat exchange between the ocean and the atmosphere, meaning that its accurate representation is

vital to proper modelling of the surface energy balance, and, as a consequence, of near-surface atmospheric variables in the

Arctic. Despite that fact, short-range NWP systems, and in turn, reanalysis systems that are based upon them, both global and

regional, traditionally apply simplified one-dimensional parameterisation schemes for representing sea ice . So called
:::::
cover55

::::::::::::::::::::::::::::::::::::::::::::::::::
(Hines et al., 2015; Køltzow et al., 2019; Solomon et al., 2023)

:
.
:::
On

:::
the

:::::
other

:::::
hand,

:
fully-coupled short-range NWP systems,

which represent the atmosphere and the ocean three-dimensionally, as well as the dynamics and the evolution of sea ice cover,

even though they are in the active development, to our knowledge are yet to be applied in contemporary atmospheric reanalysis
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systems (it must be noted, however, that fully coupled atmospheric reanalyses exist, for example, the Climate Forecast System

Reanalysis (CFSR, Saha et al., 2010), albeit not based on a short range NWP system).60

Contemporary atmospheric reanalysis systems utilise sea ice parameterisation schemes of various complexity ranging from

those representing ice by means of computing the thermal balance of a thin ice layer (MERRA2) to thermodynamic sea ice

models, often with prescribed ice thickness (ASRv2, ERA5), or the snow layer omitted (ERA5). These schemes are developed

with a focus on representing the surface energy balance of the ice layer since sea ice
:::::
sea-ice

:
specific variables such as ice thick-

ness or ice salinity are of secondary interest in an atmospheric reanalysis. However, errors and biases found in the reanalysis65

products over the Arctic ocean (Graham et al., 2019; Wang et al., 2019) suggest potential benefits to implementing a more

detailed representation of the evolution of sea ice in the current and next generation reanalysis systems.

In the present study we assess the performance of the Copernicus Arctic Regional Reanalysis (CARRA), a novel regional

atmospheric reanalysis product for Greenland and the European Arctic based on the HAMRONIE-AROME NWP system

(Bengtsson et al., 2017), in representing the evolution of sea ice cover. Additionally, we compare the representation of sea ice70

cover in CARRA, which employs a considerably more advanced sea ice parameterisation scheme, against the ERA5 reanalysis

product used for obtaining lateral boundary conditions in the CARRA system. We focus on the following sea ice
:::::
sea-ice

:
specific

variables: ice surface temperature, ice albedo, ice thickness and snow depth over sea ice. However, sea ice concentration, which

is prescribed over the Arctic ocean in both CARRA and ERA5 from well-established satellite-based products is not validated in

the present study. Near surface atmospheric variables over sea ice, such as two metre air temperature or ten metre wind speed,75

are not discussed in the present study mainly due to a limited number of available observations of these variables over sea ice

within the area represented in CARRA. When performing comparisons
:
, a wide set of remote sensing products is employed

for assessing the performance of the reanalysis on the large scale. Additionally, observations reported from a set of ice mass

balance buoys are used to complement comparisons against the remote sensing products.

The paper is organised as follows. Section 2 provides an overview of the studied atmospheric reanalysis products and80

underlying modelling systems
:
, with special attention to the applied parameterisations of the sea ice cover. Section 3 describes

::
the

:
observational data sets utilised and the analysis methods applied in the present paper. Section 4 evaluates sea ice cover in

CARRA and ERA5 by comparison against observational products. The final section provides a short summary of the obtained

results and discusses their implications as well as opportunities for further improvements in representing sea ice cover in next

generation reanalysis systems.85

2 Representation of sea ice in CARRA and ERA5

2.1 CARRA

CARRA is a regional atmospheric reanalysis product which covers a sector of Arctic between 56°N and 86°N spanning from

the Baffin Bay in the west to the Kara Sea in the east. The data set covers the time period from
:::::::::
September 1990 to the present

(2023, at the moment of writing this manuscript) with an analysis provided every
:::
and

:::::::
analysis

:::::
fields

::
in

:::::::
CARRA

:::
are

::::::::
provided90

::::
with

:
a
::::::::
temporal

::::::::
resolution

:::
of 3 hours. Additionally

:
In

:::::::
addition

:::
to

:::::::
objective

::::::::
analysis

:::::
fields, the CARRA data set includes the
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output from model integration, which is
:::::
model

:::::::::
forecasting

::::
data,

::::::
which

::
are

:
provided with hourly temporal resolution for the lead

times under 6 hours and with three-hourly resolution for lead times over 6 hours (lead times longer than 3 hours are available

only for the forecasts initialised at 00 and 12 UTC). The CARRA system is based on the HARMONIE-AROME NWP system

::::::
limited

::::
area

:::::
NWP

::::::
system

:::::::::::::::::::
HARMONIE-AROME

:
(Bengtsson et al., 2017) and is forced by ERA5 on the boundaries

:::::
ERA595

:::
data

:::
on

:::
the

:::::
model

:::::::
domain

::::::::
boundary. The reanalysis product is provided for two overlapping model domains: a larger western

domain centred on Greenland, and a smaller eastern domain covering the European Arctic (see Fig. 1). For both model domains

a Lambert conformal conic grid with a horizontal resolution of 2.5 km is used.

Sea ice in the CARRA system is represented by a one-dimensional thermodynamic sea ice scheme (SICE, Batrak et al.,

2018; Batrak and Müller, 2019) which resolves the processes of thermodynamic ice growth and melting. Snow cover on top100

of the sea ice is explicitly modelled by an adapted version of a multilayer parameterisation scheme originally developed for

snow cover over land (Boone, 2000; Boone and Etchevers, 2001). The ice scheme of CARRA does not resolve the processes

of snow-ice formation and internal melting of the ice, and sea ice salinity in the scheme is prescribed and constant. Surface

albedo of the sea-ice covered grid cells in CARRA is computed by applying simple parameterisation schemes. For snow-free

ice cover, a temperature-dependent broadband albedo scheme is applied (defined as HIRHAM in Liu et al., 2007), and when105

ice is covered by snow an adapted version of the broadband snow albedo scheme by Douville et al. (1995) is used. When

computing albedo of cold dry snow covering sea ice in the CARRA system, the albedo scheme of Douville et al. (1995) is

modified to increase the value of the lowest possible albedo in the dry albedo degradation term from the original 0.5 to 0.75.

Sea ice albedo schemes applied in CARRA do not
::::::::
explicitly

:
distinguish between direct and diffuse components of surface

albedo . The
:::::::::
(sometimes

:::::::
referred

:::
to

::
as

::::::::
black-sky

::::
and

:::::::::
white-sky

::::::
albedo,

::::
see,

::::
e.g.,

::::::::::::::::
Lucht et al. (2000)

::
for

:::::::::
additional

:::::::
details)110

:::
and

:::::::
compute

::::::
model

::::::
albedo

:::::
based

::::
only

:::
on

:::
the

:::::
state

::
of

:::
the

:::
ice

::::::
surface

:::::::
without

::::::
taking

:::
into

:::::::
account

:::::::::::
atmospheric

::::
state

::
or

:::::
such

:::::::
variables

::
as

:::::
solar

:::::
zenith

::::::
angle.

:::
For

:::
the

:::::::::
open-ocean

::::
part

::
of

::
a

:::
grid

::::
cell,

:::
the

::::::
albedo

:::::::
scheme

::
of

::::::::::::::::
Taylor et al. (1996)

:::
and

::
a

:::::::
constant

:::::
albedo

:::
of

::::
0.06

:::
are

::::
used

::
as
::::::

direct
:::
and

::::::
diffuse

::::::
albedo

:::::::::::
components,

:::::::::::
respectively.

::::::
Finally,

::::
the

:::::::
grid-cell

:::::::
average

::::::
albedo

::
of

::
a

:::
sea

::
ice

::::
grid

:::
cell

::
is
:::::::::
computed

::
as

:
a
::::::::
weighted

:::
by

:::
the

:::
ice

:::::::::::
concentration

:::::
mean

::
of

:::
sea

:::
ice

:::
and

:::::
open

:::
sea

:::::::
albedos

:::::
(when

:::
the

::::
land

:::::::
fraction

:::::
within

::
a

:::
grid

::::
cell

::
is

:::
not

:::::
zero,

::::::
further

::::::::
weighted

::::::::
averaging

::
is

:::::::::
performed

::
to

::::::::::
incorporate

:::
the

::::
land

::::::
surface

:::::::
albedo).

:::::::::
However,

:::
the115

HARMONIE-AROME NWP system does not produce grid-cell averaged albedo as an output variable, therefore in the
:::::::
released

CARRA product the surface albedo field is a
:::::::::
diagnostic

:
computed from the hourly accumulated downwelling and upwelling

shortwave radiation fluxes and available only from the model integration output.

The CARRA system is based on a classic non-coupled regional short-range NWP system that does not include a prognostic

ocean model nor a slab mixed layer parameterisation scheme. The sea surface temperature and ice concentration fields in120

CARRA are prescribed from observational data sets and, as a result, the sea ice scheme can not freeze new ice during the

model integration. Therefore, sea ice extent in the CARRA system is updated only at the analysis time by means of updating

the ice concentration field and using a simple extrapolation-like procedure for initialisation of the prognostic variables of the sea

ice scheme. This new ice,
::::::
placed

::
in

:::::::::
previously

:::::::
ice-free

:::
grid

:::::
cells,

:
is always snow-free and snow cover over sea ice in CARRA

is accumulated during the model forecast from the model precipitation.
::
In

::::
cases

:::::
when

:::
ice

::::::::::::
concentration

::
is

:::::::
adjusted

::::
from

::::
one125

:::::::
non-zero

:::::
value

::
to

:::::::
another

:::::::
non-zero

:::::
value

::::::
within

::
a

:::
grid

::::
cell,

::::
both

:::
ice

::::::::
thickness

::::
and

:::::
snow

:::::
depth

::::::
remain

::::::::::
unmodified

:::::
(thus,

:::
the
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::::
snow

:::::::
volume

::
is

:::
not

:::::::::
conserved

:::::
when

::
ice

::::::::::::
concentration

::::::::
increases

::
in

::
a

:::
grid

:::::
cell).

:
The following satellite sea ice concentration

products are used in CARRA
::::
over

:::
the

:::::
Arctic

::::::
Ocean: ESA CCI SICCI (Toudal Pedersen et al., 2017), which is applied whenever

available, and OSISAF OSI-450 (Tonboe et al., 2016) as a fallback data set
:
to

:::
be

::::
used

:::::
when

::::
ESA

::::
CCI

::::
data

:::
are

::::::
missing

:
(Yang

et al., 2020).130

Over the ice-covered grid cells the CARRA system does not apply any surface data assimilation or
::::::::
relaxation procedure,

thus the sea ice model is not constrained by observations (except for prescribing the sea ice concentration from an external data

set). At the initial cold start of a reanalysis production stream the system is initialised with snow-free ice cover with a uniform

thickness of 0.75 m and the temperature set to the freezing point of the sea water. Then, a one year spin-up period is used for

preparing the initial model state in that CARRA production stream.
:::
This

:::::::
spin-up

:::::
period

::::
was

:::::::
deemed

:::::::::::::::::
practically-sufficient

:::
for135

::
the

:::::::::
reanalysis

::::::::::
production,

:::::::
however

::
it

:::
can

:::
not

::::::::
eliminate

:::::::::::::
discontinuities

::
in

::::::
slowly

::::::
varying

::::::::::::
unconstrained

::::::::
variables,

:::::
such

::
as

:::
ice

:::::::
thickness

:::
for

::::
grid

::::
cells

::::
with

::::::::
multiyear

:::
ice

:::::
cover

::::
(see

::::::::
Appendix

::
A

:::
for

:::::
more

::::::
details).

:

Coupling between the ice surface and the model atmosphere follows the original implementation of Batrak et al. (2018),

however, form drag over sea ice is not taken into account in the CARRA system.

2.2 ERA5140

ERA5 (Hersbach et al., 2020) is a fifth-generation global atmospheric reanalysis product developed by the ECMWF
::::::::
European

:::::
Centre

:::
for

::::::::::::::
Medium-Range

:::::::
Weather

::::::::
Forecasts

:::::::::
(ECMWF), which covers the time period from 1950 to the present (2023, at

the moment of writing this manuscript). The ERA5 reanalysis system is based on the
::::::::
ECMWF

::::::
4D-Var

::::
data

::::::::::
assimilation

::::
and

:::::::::
forecasting

::::::
system

::
(IFS-HRESNWP system by ECMWF

:
), and provides data on a reduced Gaussian grid with a nominal

horizontal resolution of 31 km.145

Sea ice cover in the ERA5 system is modelled in a way similar to CARRA
::::
way,

:
by using a one-dimensional sea ice param-

eterisation scheme, although the sea ice model of ERA5 is considerably simplified compared to that of CARRA. In ERA5, sea

ice has a constant and uniform thickness of 1.5 m without
:::
and

::
it

::::
does

:::
not

:::::
apply

::
an

:
explicit prognostic parameterisation of the

snow cover. Sea ice concentration in ERA5 is also provided from an external source (several data sets are used throughout the

time period covered by the ERA5 product, see Hersbach et al. (2020) for additional details) and not modified by the modelling150

system during the model integration. Surface albedo of the sea ice cover in the ERA5 system is represented by time-interpolated

monthly values of Ebert and Curry (1993). For winter months the dry snow albedo is used to simulate the effects of snow cover

in the snow-free parameterisation scheme (ECMWF, 2016).

3 Observational data sets and methods

To assess the performance of CARRA in representing Arctic sea ice cover, we validate the model output against a wide set of155

remote-sensing and observational products as well as in situ observational data sets. In this section we provide a summary of

the applied processing methods and an overview of the utilised data sets.
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3.1 General design of the validation procedure

Where applicable, we use verification scores computed for
::::
both

:::::::
CARRA

::::
and ERA5 as a baseline against which to show the

added value
::::::::::
performance of the new regional reanalysis product

:
as

:::::::::
compared

::
to

::
the

::::::
global

:::
one. However, ERA5 has much lower160

spatial resolution than CARRA and
:::
(for

:::
the

::::
sake

::
of

:::::::::::
convenience, in the present study we use ERA5 data interpolated from the

native reduced Gaussian grid to a 0.25° regular latitude-longitude grid
:
,
:::::
which

:::::
does

:::
not

:::::
result

::
in

::::
any

:::::::::
significant

::::::::::
information

:::
loss

:::
but

::::::
greatly

:::::::::
simplifies

:::
the

::::::
further

::::
data

::::::::::
processing). Thus, when computing scores based on high-resolution observational

data sets (fore
::
for example, for the

:::
sea ice surface temperature) for the ERA5 reanalysis we resample the data from the regular

0.25° grid onto the 2.5 km CARRA grid using nearest neighbour interpolation. After applying such a procedure the ERA5165

fields on the CARRA model grid still represent the variability of the original ERA5 data set thus potentially degrading some of

the verification scores due to oversampling when using observational data sets with high spatial resolution. However,
::::::
impacts

::
of

:::
this

:::::::::::
oversampling

:::
on

::::::
ERA5

:::::
scores

:::
are

:::
not

::::::::
assessed in the present study we do not penalise the regional reanalysis field by

discarding extra information available due to a denser model grid. When comparing reanalyses against
:::
and

::::::::
computed

::::::
scores

:::
are

::::
used

::::::
without

::::::
further

:::::::::
correction

:::::
when

:::::::::
comparing

:::::::::::
performance

::
of

::::::
ERA5

:::
and

::::::::
CARRA.

:::
On

:::
the

:::::
other

:::::
hand,

::::
when

:::::
using

:
coarse-170

resolution products,
::::
such

::
as

:::::::
satellite

:::
ice

::::::::
thickness

::::::::
retrievals,

:
both CARRA and ERA5 are aggregated on the product grid as a

first step before computing
:::::::::
verification

:
scores.

The model domains of CARRA include considerable parts of the European and Canadian Arctic , although
:::
and

:
the charac-

teristics of sea ice cover vary in different parts of the area represented in CARRA. For example, Baffin Bay, which is locked

between Baffin Island and Greenland, and connected to the Central Arctic by a few straits, is primarily covered by first-year175

ice and has a low amount of multiyear ice transported from the Central Arctic (Tang et al., 2004; Dunbar, 1973). In contrast,

sea ice cover of the Greenland Sea includes a considerable amount of old multiyear ice exported through the Fram Strait by

the East Greenland Current (Aagaard and Coachman, 1968; Schmith and Hansen, 2003). The Barents Sea, unlike Baffin Bay,

is not locked between land masses and is better connected with the central Arctic Ocean, thus it has a very dynamic ice cover

(Vinje and Kvambekk, 1991). Therefore, in the present study we assess performance of CARRA in representing the ice con-180

ditions for a selected set of regions in addition to verifying the performance of the system over the whole ice-covered part of

the model domain. The following four areas of interest are introduced (see Fig. 1): zone A – Baffin Bay (including the Nares

Strait) and Davis Strait; zone B – Greenland Sea and the part of the North Atlantic Ocean adjacent to the Greenland coast;

zone C – Barents Sea, Kara Sea, White Sea; zone D – central part of the Arctic Ocean within the CARRA domains defined

by the northern borders of zones A, B and C. Borders of the zones A–D are set following the definitions of sea boundaries by185

IHO (International Hydrographic Organization) (1953) complemented by the proposed by
:::
the IHO boundaries of the Iceland

sea for the sake of convenience.

To study the long-term evolution of sea ice in the CARRA product, in addition to validation against observational products,

we assess the series of mean monthly anomalies of sea ice surface temperature, ice thickness and snow depth. The anomalies

are computed against reference multiyear mean fields constructed using the CARRA data over a 20 year time period from 2000190
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to 2020. The reference period of 20 years was selected to allow comparisons of the the sea ice surface temperature anomaly

trends in CARRA to these
:::::
those derived from an observational product, which is not available prior to 2000.

The large data volumes of the CARRA product
:::
and

:::::
ERA5

:::::::
products

:
often do not allow for the direct computation of quantiles

of a parameter of interest due to limitations of the processing hardware. Thus, when direct computation is not feasible, we use

the algorithm suggested by Greenwald and Khanna (2001) to compute quantiles which, while not being mathematically precise,195

are accurate enough for the purposes of the present study. In the text we explicitly distinguish between approximate and precise

quantiles by using the term ‘estimated qunatiles
:::::::
quantiles’ for the former case.

3.2 MODIS ice surface temperature products

The majority of the atmospheric reanalyses are based on adapted versions of operational NWP systems, and sea ice in these

products is often represented by simplified one-dimensional sea ice parameterisation schemes. Ice surface temperature is one200

of the most important parameters in such schemes since ice
::::
cover

:
is treated as a lowest boundary condition for an atmospheric

model of an NWP system and not as one of the main prognostic components of the system. Other parameters such as ice

thickness, snow depth or snow-ice interface temperature, while undoubtedly important to accurately represent the evolution of

ice cover and valuable for end users of a reanalysis product, do not directly affect the energy exchange between the ice surface

and the model atmosphere, thus their quality (as long as the produced surface temperature is realistic) is less critical to the205

reanalysis system itself.

In situ observations are local and sparse in the Arctic, thus, to obtain a general overview of the quality of ice surface tem-

perature in CARRA, remote-sensing products are employed as the main source of observational data. In the present study we

use near real time (NRT) level-2 (Parkinson et al., 2006) ice surface temperature products based on data from the MODIS

instrument onboard the Terra and Aqua satellites (Hall and Riggs, 2015a, b). The MODIS sea ice surface temperature prod-210

uct is provided in 5 minute swathes, which have a nominal resolution of 1 km. Since the product is based on data from

infrared-sensitive channels of the instrument it provides estimates of the ice surface temperature only in cloud-free condi-

tions. Therefore, MODIS retrievals of ice surface temperature tend to have a cold bias when compared to in situ observations

:::::::::::::::::::::::::::::::::::::::::::::::::::
(Hall et al., 2004; Herrmannsdörfer et al., 2023; Li et al., 2020). Moreover, errors in cloud-detection, which can be challeng-

ing over sea ice, would result in spurious ‘cold’ pixels in the product. Nevertheless, the MODIS product has been shown to215

provide ice surface temperature fields of high enough accuracy (Hall et al., 2004) for the needs
:::::::
purposes

:
of the present study.

Additionally, the MODIS data record covers a considerable time period allowing for assessing the multiyear performance of a

reanalysis product without employing different products
::
the

:::::::::
reanalysis

::::::::
products

::::::
without

:::::::::
employing

::::::::
multiple

::::::::
retrievals based

on data from different satellite instruments which simplifies intercomparisons and analysis.

For the intercomparisons we use the MODIS product data sets from both Terra and Aqua satellites covering the period from220

2000 (Terra, the product from the Aqua satellite is available from 2002) to 2020. When processing, the two observational

products are treated as a single merged data set and referred to as the MODIS ice surface temperature product in the following

text. To reduce the impact of the misrepresented pixels of the MODIS product, we select only the pixels marked as ‘good

quality’ by the quality assessment procedure of the ice surface temperature retrieval algorithm. To compare gridded reanalysis
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fields against the non-projected satellite product, MODIS data are aggregated on the CARRA model grid (separately for the225

two CARRA model domains). When aggregating for a selected valid time of a reanalysis product all the MODIS swathes

within the [−30;30) min interval are used without any time interpolation or adjustment. When comparing model data against

the MODIS product, only the cloud-free sea ice grid cells of a reanalysis product (total cloud cover is less than 0.125) with ice

concentration over 15% are used.

3.3 Satellite albedo products230

Similarly to the ice surface temperature, sea ice albedo is an important parameter which has a strong effect on the surface

energy budget through the albedo feedback mechanism: a decreased albedo leads to more absorbed radiation, which again

leads to higher surface temperatures and loss of sea ice (Riihelä et al., 2021; Pistone et al., 2014; Curry et al., 1995). Therefore,

to assess the modelled albedo fields in CARRA we compare them to a satellite-based surface albedo product. Additionally we

perform a similar comparison using ERA5 to study the potential added value of the regional reanalysis product.235

In the present study we use the surface albedo product (SAL) of the CLARA-A2 data record, a 34-year time series of

black-sky surface albedo (covering the time period from 1982 to 2019), which is based on Advanced Very High Resolution

Radiometer (AVHRR) data from the polar orbiting NOAA and METOP satellites (Karlsson et al., 2017). This product has been

validated against in situ observation in earlier studies (see, e.g., Karlsson et al., 2017; Anttila et al., 2016) and it is known to

perform reasonably well over sea ice. Technically, SAL is provided on a 25×25 km equal-area grid (over the polar regions)240

and it is available as monthly or 5-day means.

For the albedo comparison we selected a 15-year time period, 2000-2015
::::
(thus,

:::::::
avoiding

:::
the

::::::::
extension

::::
part

::
of

:::
the

::::::::::
CLARA-A2

:::
data

:::::::
record), which reflects modern sea ice conditions of the Arctic well. To match the monthly means of the SAL product, we

perform similar averaging of the hourly output data from both CARRA and ERA5 over each month from April to September

(for other months the SAL product does not provide enough observations over the study area due to insufficient light condi-245

tions). Only the product grid cells with
:::
the SAL monthly means derived from over 100 valid clear-sky AVHRR observations at

global-area coverage resolution (4 km) are included in the analysis. Both CARRA domains are included in the intercompari-

son, and for the overlapping region an average of the albedo fields from both domains is used. To compare the albedo from the

coarser-gridded SAL to the reanalyses, we aggregate CARRA and ERA5 albedo fields in the product grid. Additionally, for

CARRA we consider only the aggregates with at least 40 CARRA grid cells within a SAL product pixel, and for ERA5 with at250

least 2 grid cells. For both reanalyses this extra check ensures that no less than a half of the SAL grid cell area is represented,

without extending to the adjacent grid cells. Finally, the monthly mean error is computed for each grid cell of the aggregated

reanalysis fields.

3.4 Satellite sea ice thickness retrievals

The evolution of sea ice thickness is not the main target process of the one-dimensional sea ice scheme of HARMONIE-255

AROME applied in CARRA, and, in absence of ice dynamics, it can not be reproduced with all its complexity. Nevertheless,
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since ice thickness is provided as one of the model parameters in the CARRA product, we compare it against an observational

product to highlight the limitations of the produced data set.

For this task, similarly to ice surface temperature and ice albedo, we use a satellite product to obtain a considerable spatial

and temporal coverage of sea ice within the area covered by CARRA. Specifically, we utilise a weekly combined CryoSat-2260

and SMOS product (Ricker et al., 2017), which uses satellite altimetry data from the CryoSat-2 satellite for estimating the

thickness of thick ice while taking estimates based on passive-microwave observations taken by the SMOS satellite over thin

ice. The product covers the time period from 2010 to 2021 (at the moment of writing this paper) and it is provided on a 25 km

grid. Data gaps in the estimated weekly ice thickness fields are filled by means of an optimal interpolation procedure where

the background field is produced by merging past and future (relative to the valid time of the produced analysis field) estimates265

derived from CryoSat-2 and SMOS (Ricker et al., 2017). Due to the limitations of the retrieval algorithms, the product does

not provide ice thickness estimates between May and October.

When comparing the ice thickness reported by CARRA against the observational product, the three-hourly CARRA fields

are aggregated on the 25 km grid of the product and then weekly-average values are computed. Over the overlap area of the

western and eastern CARRA model domains, the final ice thickness within a grid cell is computed as a mean of the values270

obtained from the two domains. Additionally, to assess the potential added value of applying a thermodynamic sea ice model

in the CARRA system we use
:::::
scores

:::::::::
computed

::::
from

:
the uniform value of 1.5 m of ERA5 as a baseline.

3.5 Satellite snow depth over sea ice retrievals

The quality of snow cover in the CARRA product is of higher interest than that of ice thickness since misrepresented snow

cover can result in larger errors in the modelled surface energy balance compared to the effects induced by errors of a similar275

scale in a misrepresented ice layer beneath the snow cover. Despite that
:::::::
However, satellite-based snow depth retrievals are much

more uncertain and less reliable compared to ice thickness retrievals. Moreover, drifting ice mass balance buoys, which can be

a valuable source of in situ observations tend to enter the area covered by the CARRA model domains in the spring time when

snow cover starts actively melting thus provide little insight into the snow accumulation period.

Thus, in the present study we use a satellite-based snow depth product (Lee et al., 2021) for assessing the snow depth in280

CARRA and complement it by the Operation IceBridge (Sec. 3.6) flight campaign retrievals. The utilised product is based on

the algorithm of Shi et al. (2020) where monthly estimates of the snow depth over sea ice are computed using sea ice freeboard

derived from passive-microwave data. The applied algorithm uses monthly surface and snow ice interface temperature fields

for estimating the snow depth to ice thickness ratio, which is, in turn, used to derived
:::::
derive the snow depth from the estimated

freeboard. The product covers the time period from 2003 to 2020 and provides pan-Arctic fields of the estimated snow depth285

on a 25 km grid for January, February, and March.

Similar to the ice thickness fields, snow depth over sea ice in the CARRA product is aggregated on the 25 km grid of the

product and monthly means are computed. The region where western and eastern CARRA domains overlap is treated in the

same way as when assessing the ice thickness.
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Additionally, when comparing the CARRA data against the observational product, monthly CARRA snow depth ‘estimates’290

are computed by applying the algorithm of Shi et al. (2020) to the model freeboard obtained by using the actual snow and sea

ice parameters (i.e. the model snow water equivalent, model snow density and ice thickness). Applying the same algorithm

as was used in the product to the model data reduces
:::::
allows

::::::::::
highlighting

:
the discrepancy between the model snow depth in

CARRA and the product arising from the differences in the snow and ice parameters. The snow depth in CARRA retrieved

using the Shi et al. (2020) algorithm is referred to as ‘corrected snow depth‘ later in the text.295

Since the ERA5 reanalysis system does not resolve the evolution of the snow cover over sea ice, ERA5 was excluded from

the snow depth intercomparisons.

3.6 Operation IceBridge snow depth data

Since the satellite snow depth retrievals tend to have high uncertainty, we use an additional independent data set to complement

the comparisons against the satellite product. In the present study we use snow depths obtained from the radar altimetry300

observations taken during the Operation IceBridge (OIB) flights (Kurtz et al., 2015, 2016). This data set spans over the time

period from 2009 to 2019 and has uneven spatial coverage with most of the flights within the CARRA domains conducted over

the north of Greenland and only few tracks entering the areas south of 80°N.

To compare the CARRA snow depth against the OIB data, the snow depth estimates along the OIB flight tracks, which have

a spatial resolution of 40 m, are aggregated on the 2.5 km grid of the CARRA product. For intercomparisons, snow depths305

from the CARRA analysis with the closest valid time are considered for each data point of the aggregated OIB track.

3.7 In situ data and ice mass balance buoys

Satellite retrievals discussed so far in the previous sections provide estimates of the sea ice properties in the Eulerian frame,

or in other words, over a prescribed grid. Thus, for these products changes in sea ice state within each grid cell arise due to

contributions from both thermodynamic and dynamic processes. However, the CARRA system uses a greatly simplified sea310

ice parameterisation scheme which represents only thermodynamic processes in the ice column. Therefore, to better assess the

performance of the CARRA system in representing these processes we compare the CARRA product against a set of in situ

observations reported by drifting ice mass balance buoys.

The unmanned ice mass balance buoys (IMB) usually measure snow depth, ice thickness and temperature and can vary

in design and complexity. In the present study we use data from two types of IMBs: acoustic sounder-based buoys (Richter-315

Menge et al., 2006), referred to as CRREL buoys in the text, and simpler thermistor string-based buoys (Jackson et al., 2013),

referred to as SIMBA buoys in the text. The CRREL IMBs measure the distances between the downward-looking sounder

and the snow surface, and the upward-looking sounder and the ice bottom. Based on initial sea ice conditions at the time of

buoy deployment, these distances can be converted to snow depth and ice thickness. Additionally, CRREL buoys employ a

separate thermistor string that measures the vertical temperature profile through air-snow-sea ice-ocean. The thermistor string320

of CRREL buoys has individual sensors located at a distance of 10 cm between each one. The SIMBA IMBs measure only the

series of vertical temperature profiles by means of a thermistor string with sensors located every 2cm cm. However, two types
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of temperatures are measured by the SIMBA buoys. Firstly, they report the environment temperature of air, snow, ice and water

where SIMBA thermistor sensors are located, which is consistent with the temperature profiles reported by CRREL buoys.

Secondly, SIMBA buoys measure the temperature change after each thermistor is applied with an identical amount of heat by325

means of heating elements adjacent to the sensors. The changes in the temperature reading after a heating cycle depend on the

thermal properties of air, snow, ice and water, and therefore can be used to identify the type of medium surrounding the sensors.

Thus, temperatures reported by SIMBA buoys can be used to derive snow depth and ice thickness manually (Lei et al., 2018)

or automatically (Liao et al., 2018; Cheng et al., 2021). Both types of IMBs are normally deployed on undeformed ice floes

at a selected location and then drift along with the ice floe. The standard observations are made every 6 hours, and the buoy’s330

GPS location is recorded every hour. Both types of IMB have been deployed in the Arctic Ocean for many years. Their data

are representative for regional, seasonal and interannual sea ice mass balance (Perovich and Richter-Menge, 2015; Lei et al.,

2018) and air-sea ice-ocean interactions along IMB drift trajectories (Provost et al., 2017; Koo et al., 2021; Cheng et al., 2021;

Lei et al., 2022). In this study, we use data from 19 individual IMBs (see Table S5) collected from various field programs and

compare them against the CARRA product (using ERA5 as a baseline, where applicable). Other IMB buoys
::::
IMBs, which also335

entered the CARRA domains throughout the time period covered by the product, were excluded from the intercomparisons due

to issues with the reported parameters. We target
:::
the

::::::::
following four parameters: snow depth, ice thickness, surface temperature

and snow-ice interface temperature. The surface temperature was obtained by linear interpolation based on snow depth (or ice

thickness) and readings from the thermistor sensors closest to the snow-air interface (or ice-air interface in case of missing

snow cover). The snow-ice interface is assumed to remain unchanged from its initial position when an IMB was deployed.340

Although, dynamic and thermodynamic interactions between snow and ice may result in a moving snow-ice interface because

of snow-ice and superimposed ice formation, especially during the early melting season and early winter when ice is still thin

(Cheng et al., 2003, 2008, 2021). However, the IMBs used in this study were deployed in late autumn on thick ice floes when

the ice was about to freeze up and the snow was thin, thus reducing the chances of snow-ice formation processes affecting the

IMB reading. Therefore, the assumption of a static snow-ice interface is adequate for the purposes of the present study.345

When processing IMB data we first identify parts of an IMB trajectory that are located within the two CARRA model

domains, and a corresponding subset of observed parameters is extracted. Then, for each GPS position reported by an IMB, the

same parameters
::::::
selected

:::
set

::
of

:::::::::
parameters

::
is
::::::::
retrieved from the nearest CARRA model grid cellare retrieved. Note that in the

CARRA product there is no dedicated snow-ice interface temperature field, therefore we used the temperature of the top-most

ice layer (which can be up to 5 cm thick, see Batrak et al. (2018) for the details) as an analogue. To facilitate intercomparisons350

both IMB and CARRA data were resampled to hourly temporal resolution.

4 Results and discussion

4.1 Ice surface temperature

When assessing the quality of ice surface temperature in CARRA we first study the multiyear performance of the product

in order to evaluate whether it reasonably represents temperature trends linked to ongoing climate change. As a second step355
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we evaluate the annual cycle of modelling errors computed against the MODIS satellite product. Figure 2 shows the obtained

anomalies as well as the computed ice surface temperature anomaly trends for both CARRA and the MODIS satellite product.

As can be seen from the figure both CARRA domains show a positive anomaly trend with a value of 0.08 ◦Cy−1 (95% CI

[0.06; 0.11] ◦Cy−1) and of 0.20 ◦Cy−1 (95% CI [0.16; 0.25] ◦Cy−1) for the western and eastern CARRA model domains,

respectively. Monthly sea ice surface temperature anomaly trends found in the MODIS product show comparable values for360

both CARRA model domains; 0.07 ◦Cy−1 (95% CI [0.05; 0.10] ◦Cy−1) for the western domain and 0.17 ◦Cy−1 (95% CI

[0.13; 0.21] ◦Cy−1) for the eastern domain. These values are in line with the findings of previous studies (see, e.g., Rantanen

et al., 2022; Nielsen-Englyst et al., 2023), but differences in the lengths of the anomaly series and covered areas, as well

as the shorter period used for computing multiyear means in the present study (20 versus 30 years), do not allow the direct

comparisons. The eastern CARRA model domain showing a considerably larger anomaly trend than that found for the western365

domain, is also in agreement with earlier works, which suggest the Barents Sea region has higher warming rates than the

Greenland Sea and the Central Arctic region (see, e.g., Screen and Simmonds, 2010; Comiso and Hall, 2014; Isaksen et al.,

2022; Nielsen-Englyst et al., 2023).

After assessing the multiyear trends in the CARRA product we focus on annual variability found in the CARRA data and

on the performance of the regional reanalysis compared to the ERA5 data set. First, we assess the general performance of370

CARRA in terms of ice surface temperature throughout the year. Figures 4 and 3
:
3

:::
and

::
4 show monthly estimated quantiles

of ice surface temperature in CARRA and ERA5 compared to the estimated quantiles of the MODIS product computed for

the period from January 2000 to January 2020. The figures show that for both model domains CARRA tends to have lower

ice surface temperature than ERA5 for all months, except September for the western CARRA domain where ERA5 is slightly

colder. The lower temperatures of the CARRA product better agree with MODIS, especially during the winter and spring375

seasons over the eastern CARRA domain. During the active melting season in the summer, both CARRA and ERA5, compared

to MODIS, tend to have higher ice surface temperatures than in the retrieval and show comparable performance. With the onset

of the freezing season (starting from September) and until December the two reanalysis products show a considerable warm bias

similar to
:::
that

:::::
found

:::
for the summer months. Moreover, during this period CARRA does not show any noticeable improvement

over ERA5 for the western domain. For the eastern domain, CARRA is slightly colder than ERA5 in October and November,380

however it still has a higher ice surface temperature than that reported by the MODIS product.

Differences in the ice surface temperature quantiles between the two CARRA model domains suggest that sea ice cover

is represented with a varying degree of accuracy over the different parts of the joint area covered by the CARRA product.

Thus, Fig. 5 shows the annual evolution of the ice surface temperature bias over the four selected areas of interest computed

against the MODIS product for the period from January 2000 to January 2020. As can be seen from the figure, evolution of385

the ice surface temperature bias differs considerably over the selected areas, although CARRA still shows a lower mean error

compared to ERA5 for all zones and months except for January and September
::::::::::
mid-August

::
to

:::::::::::
mid-October

:
in zone A, and

::::
from

::::::::::
mid-August

::
to

:::
the

::::
end

::
of September in zone B. While ERA5 almost universally has a warm bias when compared to the

MODIS product (except for September in zone A) CARRA shows periods of distinct negative median bias within zone A from

December to April
::
the

::::
end

::
of

::::::
March.390
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Over zone A, which includes the Baffin Bay and the Davis Strait, ERA5 shows relatively low variation of the ice surface

temperature bias, which has a value close to 2 ◦C with the only major drop to a value of approximately 0 ◦C observed in

September. Contrary to ERA5, CARRA has the highest positive bias in September with the value reaching 2.05 ◦C which is

reduced to zero by December and then becomes negative. A negative median bias in CARRA over zone A is found throughout

the period from December to April
::
the

::::
end

::
of

::::::
March

:
with the lower-most values of -1.66 ◦C observed in January–February.395

Over the summer season CARRA has a near-constant median bias, with values within the range of 0.87–1.45 ◦C, which starts

growing in August.

For zone B, covering the Greenland Sea and the North Atlantic Ocean, both CARRA and ERA5 show positive median bias

throughout the year. ERA5 has the highest bias in December with a value of 5.75 ◦C which then gradually decreases over the

following months and reaches a minimum value of 1.41 ◦C in August before starting to grow again. For this zone CARRA400

shows a similar annual cycle of the median bias, although it is shifted with a maximum value of 3.63 ◦C observed in November

and a minimum value of 0.79 ◦C found in July. For the period from mid-August to the beginning of October CARRA tends to

have a higher positive bias than ERA5 due to a shift in the annual cycle of modelling errors.

For ERA5, zones C and D show a qualitatively similar evolution of the median ice surface temperature bias with the annual

maximum observed in the autumn months and lowest bias found in July, although over zone D bias is higher on average. On405

the other hand, the CARRA product features noticeable differences in the annual cycle of the median ice surface temperature

bias for these two zones. For zone C, CARRA, while having the highest median bias of 3.83 ◦C in September–October (similar

to ERA5, which has a value of 4.62 ◦C), shows a period of the median bias reduced to near-zero from January to March (unlike

ERA5 with a winter-time median bias close to 3 ◦C). This bias starts growing again in April to reach the summer value of

approximately 1.5 ◦C, which is close to that of ERA5. Over zone D, CARRA does not show a winter-time near-zero median ice410

surface temperature bias as was found over zone C and exhibits a similar to ERA5 annual cycle with a maximum of 5.54 ◦C in

September–October and a minimum of 0.97 ◦C in July. However, the autumn-time maximum of the bias, which is not present

in ERA5, is well-pronounced in CARRA, similar to zone C. For zone D, the median ice surface temperature bias in ERA5 has

a maximum value of 7.17 ◦C (November) and a minimum of 2.37 ◦C (July).

In general, CARRA shows the most noticeable decrease of the median bias during the winter months, when this difference415

can reach values of up to 4 ◦C, and during the melting season the difference between CARRA and ERA5 is reduced. These

results, arising from including an explicit representation of the snow cover over sea ice in the CARRA systems are in line with

the result of Arduini et al. (2022) assessing the effects of resolving the snow layer over sea ice in IFS-HRES. Additionally, the

year-to-year variability of the ice surface temperature bias is noticeably different between CARRA and ERA5 with CARRA

tending to have more variability than the global reanalysis product. This variability in CARRA is considerably higher in420

zones B and D than in zone A. Notably, scores over zone C in CARRA show increased variability mainly during the autumn

freeze-up season, similarly to ERA5.
::::
This

::::::
feature

::
is

::::::::
attributed

::
to
::

a
::::::
greatly

::::::::::
diminished

:::
by

:::
the

::::
start

::
of

:::
the

:::::::::
freeze-up

::::::
season

::::::
sea-ice

::::::
covered

::::
area

::::::
within

:::
the

::::
zone

::
C,

:::::
which

:::::
leads

::
to

::::::
higher

::::::::::
contribution

::
of

::::
areas

::::
with

::::::::
relatively

::::
low

:::
ice

:::::::::::
concentration,

::::::
which

:::
can

::::
have

:::::::::::
considerable

:::::::::
uncertainty,

:::
to

::
the

:::::::::
computed

:::::
score.

:
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4.2 Ice albedo425

To assess the sea ice albedo fields in CARRA and ERA5 reanalysis products, we examine the monthly mean error maps for

CARRA and ERA5 SALs.

Qualitatively, as can be seen from Fig. 6, sea ice albedo in CARRA and ERA5 show similar features throughout the studied

months, and in both reanalyses it is higher in April, May and September compared to the satellite-based product, while in July

the sea ice albedo is underestimated. For June and August CARRA and ERA5 show noticeable difference in the sea ice albedo430

errors. Specifically, in June CARRA shows a positive bias in the albedo field over the northern Barents Sea, where bias is

weakly negative in ERA5. In August, ERA5 shows good agreement with the CLARA-A2 product, while albedo in CARRA is

overestimated in the northernmost areas of the model domain (zone D in Fig. 1).

Quantitatively, sea ice albedo in CARRA is consistently higher than values reported by the SAL product for all studied

months except June and July. These high albedo values lead to larger errors than in ERA5 on average, which can be traced in435

the error probability density functions (PDFs, see Fig. S1). For example, in the April PDF of the albedo error, CARRA has

a mode of 14%
:::
0.14, which is considerably higher than the 6%

::::
0.06 found in ERA5, although these values are reduced for

other months. In June, sea ice albedo errors in CARRA are distributed around zero with a mode of 0.1%
::::
0.001, but in July both

CARRA and ERA5 show a clear underestimation of the albedo with the mode of the error PDF close to -5%
::::
-0.05. In August,

the error PDF of the sea ice albedo in CARRA shows a bimodal distribution which is attributed to the fresh snow accumulation440

and temperature drop over the ice-covered central Arctic
:::
zone

::
D
:::::::::
combined

::::
with

:
a
::::::::::
considerable

:::::::
amount

::
of

::::::::
snow-free

:::
sea

:::
ice

::::
grid

::::
cells

:::
still

::::::
present

::::::
within

:::
the

::::::::
CARRA

:::::
model

:::::::
domains. As a result, the first mode of 8%

:::
0.08

:
indicates the previously observed

characteristic overestimation of the surface albedo while the second mode of -1%
:::::
-0.005

:
is related to the snow-free ice cover

within the model domain. This value of the second mode of the albedo error PDF is close to that found in the ERA5 data,

namely 0.1%
::::
0.001.445

In general, the observed errors in the CARRA sea ice albedo can be attributed to several factors. Firstly, sea ice albedo

parameterisation schemes applied in CARRA and ERA5 systems differ in their philosophy: CARRA uses modelled albedos,

while ERA5 relies on time-interpolated observation-based albedos. Therefore, in CARRA surface albedo over sea ice has more

degrees of freedom and depends on the surface temperature and model precipitation. Applying an unconstrained parameterisa-

tion can result in considerable errors, even though such an approach gives a more consistent model state. Secondly, snow cover450

over sea ice is represented as a flat and uniform layer covering a whole grid cell with the surface albedo computed by the snow

scheme. This idealised approach results in a more reflective ice surface compared to real sea ice cover. Thirdly, the negative

summer-time sea ice albedo bias found in CARRA (and also observed in ERA5) indicates shortcomings in the representation

of the melting regime of the sea ice. Specifically, processes of melt pond formation and evolution are not explicitly represented

in the CARRA system and a simple temperature-based sea ice albedo scheme can not accurately reproduce all the effects of455

melt ponds. Finally, it is also possible that the SAL of the CLARA-A2 product underestimates sea ice albedo in the spring

months. However, characteristic biases found in CARRA and ERA5 (for example, spring-time overestimation of the sea ice

albedo) are not unique to the CLARA-A2 SAL product, and similar performance of ERA5 was observed when using other
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satellite based albedo retrievals as a reference (Pohl et al., 2020). Nevertheless, uncertainties in the intercalibration method of

the AVHRR data record can influence the average level of the albedo, and it is expected that the upcoming next edition of the460

albedo product, CLARA-A3 SAL, will have somewhat higher sea ice albedo values in spring (personal communication, Aku

Riihelä).

4.3 Ice thickness

The CARRA system is based on a non-coupled atmospheric NWP system, therefore it uses a simplified one-dimensional

parameterisation scheme for representing sea ice cover in the model. However, CARRA uses a more advanced sea ice scheme465

compared to ERA5 and the CARRA data set includes such fields as ice thickness and snow depth. Therefore, in the present

study, we use available remote-sensing and in situ observations for assessing the performance of the sea ice scheme in the

CARRA system with respect to these additional parameters.

Sea ice thickness, specifically in the grid cells with perennial ice ice cover, is the prognostic model variable with longest

memory in the CARRA system since it is not constrained by observations and does not disappear during summer melts, unlike470

snow over sea ice, for example. Thus, consistent long-term performance of the sea ice scheme becomes more important to avoid

unrealistic features in the produced data set. The long memory of sea ice becomes especially important when considering the

initial production of a reanalysis data set, which represents multiple decades of data and is therefore usually generated by

means of a number of separate production streams to reduce the integration time. In these streams sea ice cover is initialised

independently and it can be challenging to achieve a seamless transition from one stream to another if the scheme is not475

constrained. Therefore, we assess the long-term performance of the CARRA system in representing sea ice cover by computing

monthly mean ice thickness anomalies over the period covered by the product. Figure 7 shows the computed anomalies as well

as the fitted anomaly trend for both model domains of the CARRA system. As can be seen from the figure, the CARRA

product shows a general trend towards decreasing ice thickness for both model domains, namely -1.2
::::
-1.24 cmy−1 (95% CI

[-1.4; -1.1
:::::
-1.38;

:::::
-1.10] cmy−1) for the western domain, and -1.4

::::
-1.35 cmy−1 (95% CI [-1.5; -1.2

:::::
-1.48;

:::::
-1.21] cmy−1) for480

the eastern domain. These values are in line with the general trend towards thinner ice in the Arctic observed and reported by

multiple studies (see, e.g., Renner et al., 2014; Hansen et al., 2013; Lindsay et al., 2009), albeit with weaker thinning rates.

However, Fig. 7 reveals an inconsistency in the computed anomaly series caused by separating the CARRA production into a

set of parallel production streams. This inconsistency, which can be illustrated as a sudden anomaly drop between streams BE

::::
BE3 and S1 of the western CARRA domain as shown in Fig 7a, affects the long-term ice thickness statistics. Similar feature485

can be traced for the eastern domain as well, although much less apparent.

The sea ice scheme applied in the CARRA system (Batrak et al., 2018) does not resolve ice dynamics and represents only

thermodynamic processes in the ice column. Thus, comparing CARRA against a gridded satellite product can highlight the

limitations of the reanalysis. On the other hand, comparisons against measurements taken by drifting platforms (for example,

ice mass buoys), which essentially observe only the thermodynamic processes in a single ice floe, can highlight
::::::::::
complement490

::
the

::::::::::
assessment

::
of the performance of the parameterisation scheme applied.

15



An initial intercomparison against the composite CryoSat-2/SMOS satellite product for all available dates shown in Fig. 9a

indicates high spatial non-uniformity of the modelling errors. In general, sea ice thickness in the CARRA data set tends to

be underestimated over the coast of Greenland within zone B and in the central Arctic (zone D). For other zones and areas

sea ice in CARRA is thicker than reported by the satellite product.
::::
These

::::::
errors

::
in

:::
the

::::::::
modelled

:::
ice

::::::::
thickness

:::::
show

::::::
values495

:::::::
between

:::
-2.2

:
m

:::
and

:::
0.9

:
m,

::::
and

:::
are

:::::
higher

::::
than

:::
the

::::::::::
uncertainty

::::
level

::::::::
reported

::
by

:::
the

:::::::
satellite

:::::::
product

:::
for

::::
most

:::
of

:::
the

::::::
sea-ice

::::::
covered

:::::
areas

:::::
within

:::
the

::::::::
CARRA

:::::
model

::::::::
domains. Similarly, non-systematic errors in the modelled ice thickness (expressed as

the standard deviation of errors (ESTD), see Fig. 9b) are very non-uniform within the model domain. The highest ice thickness

ESTD values are found over the Greenland Sea while over Baffin Bay and the Kara Sea CARRA shows mainly systematic

errors. This distinction can be attributed to the characteristic sea ice regime of the Greenland Sea where transport of old ice500

from the central Arctic makes ice cover more variable and challenging to reproduce.

The annual evolution
::
of

:::
the

::::::
average

:::::
mean

:::::
error

::
of

:::
the

::::
sea

:::
ice

::::::::
thickness

::::::::
modelled

:::
by

:::
the

:::::::
CARRA

::::::
system

:
(limited to the

period of availability of the satellite ice thickness retrieval, namely from October to April) of the average mean error of the

sea ice thickness modelled by the CARRA system is presented in Fig. 8. As can be seen from the figure, and supported by the

features found in Fig. 9, CARRA shows distinct differences in the ice thickness modelling errors and their temporal evolution505

between the four zones of interest. The figure shows persistent negative bias in zones B and D where the multiyear average

ice thickness mean error (ME) reaches -0.88 m over zone B in January, and -1.05 m over zone D in April. For zones A and

C, where ice is thinner on average, CARRA shows better performance, although the modelled ice thickness shows a positive

average ME, which tends to grow throughout the winter. Thus,
:
the ice thickness ME for zone A at the beginning of the freeze-

up period is 0.07 m on average, but by mid-April it reaches values of 0.57 m. For zone C the situation is similar with the510

average ME ranging from 0.17 m in October to 0.52 m in April. Therefore, thermodynamic ice growth rates in CARRA over

zones A and C tend to overestimate the values observed in reality. On the other hand, the zones B and D annual variability of

the multiyear average ME is less pronounced.
:::
The

::::::
period

::
of

:::
ice

::::::::
thickness

:::
ME

:::::::
growth

:::::::
between

:::::::
January

:::
and

:::::
April

::
in

:::::
zone

::
A

::::::::
coincides

::::
with

:
a
::::::
period

::
of

:::::::
negative

::::
bias

:::
in

:::
the

:::::::
CARRA

:::
sea

:::
ice

:::::::
surface

::::::::::
temperature

::::
field

::::
(see

::::::
Section

:::::
4.1),

:::::
which

:::::::::
highlights

::
the

:::::::
impacts

::
of
:::::::::::::

misrepresented
:::
ice

::::::::
thickness

:::
on

:::
the

::::::
surface

::::::
energy

:::::::
balance

::
in

:::
the

:::
sea

:::
ice

::::::::::::::
parameterisation

:::::::
scheme.

:::::::
Notably,

::
a515

::::::
similar

::::::
positive

:::
ice

::::::::
thickness

::::
ME

::::
over

::::
zone

::
C

::::
does

:::
not

::::::::
manifest

::
in

:
a
::::
cold

::::
bias

::
of

:::
the

:::
sea

:::
ice

::::::
surface

:::::::::::
temperature,

::::::::::
comparable

::
to

:::
the

:::
one

::::::::
observed

::
in

::::
zone

:::
A.

::::
This

::::::::::
discrepancy

::
is

::::::::
attributed

::
to

:::
the

:::::
lower

:::
on

:::::::
average

::::::::::
compactness

:::
of

:::
the

:::
sea

:::
ice

:::::
cover

::
in

:::
the

::::::
Barents

::::
Sea

:::
than

:::
in

:::::
Baffin

::::
Bay,

:::::
which

::::::
results

::
in

::
a

:::::
higher

::::::::::
contribution

:::
of

:::
the

:::::::
open-sea

::::
part

::
of

::::
grid

::::
cells

::
to

:::
the

::::::::
modelled

:::
sea

:::
ice

::::::
surface

::::::::::
temperature

::
in

::::
zone

::
C.

:

The thermodynamic sea ice model applied in CARRA is more advanced than a scheme with a prescribed and uniform520

ice thickness, such as that used in ERA5. To assess the improvement in the modelled ice thickness (if any) resulting from

applying a thermodynamic sea ice model in a reanalysis system we compare the ice thickness ME of the CARRA product to

the simulated ME of a CARRA system version
::::::::::
hypothetical

:::::::
version

::
of

:::
the

:::::::
CARRA

::::::
system

:
with a prescribed and uniform ice

thickness of 1.5 m. These additionally computed scores are presented in Fig. 8. The figure suggests that having a prescribed

ice thickness in the CARRA system would show reduced on average ME compared to the actual CARRA system for zones B525

and D but considerably increased ME for zones A and C. In general, when ice thickness is prescribed, annual series of the ME
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show a negative slope and the difference between the CARRA system (where ice thickness ME grows throughout the winter

season or remains relatively constant) and persistent 1.5 m ice is greatest in October and reduced by April. For example, for

zone D, having prescribed ice thickness would result in an October average ME of -0.05 m which is a considerably lower ME

than the value of -0.78 found in CARRA, however, by the end of the winter season in April, this difference in ME is greatly530

reduced and ME takes values of -1.05 m and -1.03 m, respectively. For zones A, B and C the ME difference between modelled

and persistent ice thickness evolves in a similar way. The reduced growth rate of the ME in CARRA compared to the persistent

ice thickness indicates the benefits of applying a thermodynamic sea ice model in the reanalysis system. However, the offset

errors found over zones B and D suggest potential advantages of constraining the ice thickness by means of observational data

sets.535

4.4 Snow depth

Similar
::::::::
Similarly

:
to the ice surface temperature and ice thickness

:
, we first assess the long term performance of the CARRA

system by studying the monthly anomalies of the snow depth in the reanalysis product. As can be seen from Fig. 10, snow

cover over sea ice shows a similar trend to that found for ice thickness towards more frequent negative anomalies over the last

decade compared to the first years
:::
half

:
of the anomaly series. However, compared to the ice thickness, snow depth anomalies540

are smaller, and anomaly trends are less pronounced. Specifically, for the western CARRA model domain, the product shows

a very weak negative trend of -0.09 cmy−1 (95% CI [-0.06; -0.12
::::
-0.13;

:::::
-0.06] cmy−1), and for the eastern model domain the

anomaly trend is stronger with a value of -0.28 cmy−1 (95% CI [-0.24; -0.34
::::
-0.33;

:::::
-0.24] cmy−1). The general trend towards

diminishing snow depth over the Arctic sea ice in both observations and modelling data sets is noted in multiple studies (see,

for example, Webster et al., 2014; Chen et al., 2021; Zhou et al., 2021). The more pronounced decrease in the snow depth for545

the eastern CARRA model domain is in line with the modelling results of Chen et al. (2021) and Zhou et al. (2021), which

show stronger negative trends in the snow depth series over the Barents Sea region.

When assessing the snow layer over sea ice in the CARRA system we use both satellite retrievals and direct observations

from OIB flights. However, since the satellite retrievals of snow depth over sea ice are highly uncertain we only use them

:::
use

::::
them

::::
only

:
for a general qualitative assessment because they cover a much larger area compared to OIB. Figure 11 shows550

the mean error of the modelled snow depth in CARRA compared to the satellite retrieval product and OIB data. For both

observation types CARRA shows a similar distribution of the modelling errors with generally overestimated snow depth within

the model domain on average. The largest errors are found in the Greenland Sea along the eastern coast of Greenland. For this

area OIB reports a snow depth of 0.24 m on average while the modelled snow depth in CARRA is 0.71 m on average. However,

it must be noted that most of the OIB data in that region originate from a very limited number of flight tracks, thus the drawn555

conclusions should be taken with care and not generalised. For the satellite snow retrieval product a similar pattern can be

traced in the Greenland Sea, which supports the aforementioned findings and suggests that snow depth is overestimated in

general in the CARRA product for this region. Over
::
the

::::::::
northern

:::
part

:::
of zone D, or in other words, in the part of the central

Arctic present in the CARRA domains, snow depth in CARRA is considerably lower than over the Greenland Sea and, when

compared to both OIB and the satellite product, shows close to zero and negative ME.
::::
Even

::::::
though

::::
this

:::
ME

::::
falls

::::::
below

:::
the560
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:::::::::
uncertainty

::::
level

::::::::
reported

::
by

:::
the

:::::::
satellite

:::::
snow

:::::
depth

:::::::
retrieval,

:::::::::
consistent

:::
ME

::::::
patters

::::::
found

::
in

:::
ME

:::::::::
computed

::::::
against

:::::::
satellite

:::
and

::::
OIB

::::::::
products

::::::
suggest

::::
the

:::::::
presence

:::
of

::::::::
boundary

::::::
effects

::::::::::
manifesting

::
in
:::::::

reduced
:::::

snow
::::::::::::

accumulation
:::::
along

:::
the

::::::::
northern

::::::::
boundary

::
of

:::
the

:::::::
western

:::::::
CARRA

::::::
model

:::::::
domain. A similar distribution of the modelling errors is observed when comparing

CARRA against OIB around the Svalbard archipelago where the reanalysis product shows clear underestimation of the snow

depth. This behaviour can be partially attributed to the misrepresentation errors of the sea ice cover in CARRA combined with565

the crude initialisation procedure for the newly ice-covered grid cells which always start from the snow-free state. However,

in reality, sea ice is a drift medium and areas within and close to the marginal ice zone may contain ice floes that originate

from the remote parts of the Arctic ocean and have accumulated snow cover throughout their drift. The OIB data set does

not provide snow depths over zones A (Baffin Bay) and C (Barents and Kara seas), although comparisons against the satellite

retrieval product suggest that CARRA has lower snow depth modelling errors for these regions compared to the Greenland570

Sea.
::::::::::::
Overestimated

::::
snow

:::::
depth

::
in

::::::::
CARRA

::::
over

:::::
zones

::
B

:::
and

::
D

:::::::::::
compensates

::
to

::::
some

::::::
extent

:::
the

:::::::
negative

::::
bias

:::::
found

::
in

:::
the

:::
ice

:::::::
thickness

::::
and

::::::
results

::
in

::
a

:::
net

:::::::
decrease

:::
of

:::
the

::::
heat

::::::
transfer

::::::::
between

:::::
ocean

::::
and

:::
the

:::::
model

:::::::::::
atmosphere,

:::
and

:::::
lower

:::
ice

:::::::
surface

::::::::::
temperature,

::
in

:::::::
CARRA

:::::::::
compared

::
to

::::::
ERA5.

Estimated PDFs of the snow depth in the observational products and in the reanalysis data set provided in Fig. 12 complement

the findings made from assessing modelling errors. Although the differences in the PDFs computed from the satellite product575

and OIB data suggest that the satellite product underestimates the snow depth, as can be seen from the figure, thicker snow

layers occur more often in the CARRA data than in both the satellite product and OIB observations. Modelled snow cover in

CARRA has a median depth which grows throughout the winter from 0.28 m in January to 0.33 m in February and finally

reaches a value of 0.37 m by March. In contrast, the satellite product reports much thinner snow cover on average with a median

snow depth close to 0.13 m for all three months (see Fig. 12a). The PDFs of the corrected snow depth in CARRA show less580

frequent occurrence of extreme snow depths (both low and high) which indicates that the processing algorithm applied in the

satellite product of Lee et al. (2021) underrepresents cases of thick snow cover within the CARRA model domains. Along the

OIB tracks, median values of the snow depth in CARRA and OIB observations are 0.42 m and 0.27 m, respectively. Notably,

the CARRA snow depth PDF in Fig. 12b shows a peak at zero snow depth not present in the OIB data, which suggests that

there are instances of ice cover in CARRA misrepresenting the state of the actual ice cover near the ice edge, which is again585

attributed mainly to the effects of the applied initialisation procedure for the newly ice-covered grid cells.

4.5 Additional validation against in situ observations from buoys

So far in the present study we have used remote sensing data from satellite- and airborne instruments for assessing the perfor-

mance of the CARRA system in reproducing the evolution of sea ice cover. Although providing valuable information about

the sea ice state on large scales, these products rely on multiple assumptions and tend to have their own biases and limitations.590

Therefore we additionally assess the CARRA product using observations reported by a set of ice mass balance buoys.

Figure 13 summarises the intercomparisons between the CARRA and ERA5 reanalysis products, and ice mass balance buoy

data. As can be seen from Fig. 13a, for most of the IMB trajectories CARRA report ice thickness close to or below the observed

values, although there is a singe case where ice thickness is considerably overestimated in CARRA, being 0.35 m thicker, on
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average, than the reported ice thickness. ERA5, which has ice cover of uniform thickness, while having smaller median ME595

compared to CARRA (-0.08 m and -0.20 m, respectively) shows larger spread of the modelling errors throughout the set of

selected buoys. Specifically, in CARRA, ME values for individual buoys range from -0.67 m to 0.35 m, and in ERA5 they are

within the interval from -0.78 m to 0.61 m. Such a discrepancy in the performance of the two reanalysis products suggests that

the thermodynamic sea ice scheme applied in CARRA, while having obvious deficiencies, is more suitable for representing

the evolution of a drifting ice floe. The standard deviation of errors in the modelled ice thickness in CARRA is higher of that600

in ERA5, which is in line with the increased complexity of the sea ice model in the regional reanalysis system (in ERA5 ice

thickness is prescribed and constant, thus computed ESTDs simply represent variability within the observational series).

The snow depth over sea ice in CARRA, when compared to buoy data, also shows similar variability between individual

buoys, although the median value of the per-buoy ME is positive and has a value of 0.10 m, while errors from individual buoys

range from -0.34 m to 0.34 m. This result is in line with the findings of earlier intercomparisons against the satellite snow605

depth product and OIB observations where CARRA shows consistent overestimation of the snow depth in the area. However,

there is a substantial number of buoys (5 of 21 in total) that report a considerable underestimation of snow depth in CARRA,

with along-track ME below -0.10 m. For four of these five buoys, underrepresented ice cover in CARRA can be partially

attributed to the offset error, as these buoys report a snow layer that is considerably thicker than in CARRA already at the

beginning of the buoy’s trajectory section within the CARRA model domains (this initial offset error takes values from 0.14 to610

0.79 m). The last buoy in this group enters the western CARRA domain during the melting season 2012 and shows much faster

snow accumulation compared to the reanalysis product during the following autumn months.
::::
This

::::::::::
discrepancy

::
in

:::::
snow

:::::
depth

:::::::
between

::::
buoy

::::
data

::::
and

:::::::
CARRA

::
is
::::::::
attributed

:::
to

::::::::
boundary

::::::
effects

::
in

:::
the

:::::::
regional

:::::::::
reanalysis

::::::
system,

::::::
which

:::
has

::
a

::::::::::
pronounced

:::::
lateral

::::
spin

::
up

:::::
zone

::
for

:::::::::::
precipitation

::::
(see

::::::::
Appendix

::
B

:::
for

::::::::
additional

:::::::
details).

:

In the presence of offset errors, correlation can be used as an additional indicator of the level of agreement between the ob-615

servational and modelled values. However, for the discussed set of ice mass balance buoys, computed values of the correlation

coefficient show considerable variation ranging from strong correlation to strong anticorrelation for both snow depth and ice

thickness (see Table S5 for the actual values). Such a discrepancy between the modelled and observed parameters can be partly

attributed to boundary effects near the edge of model domain and to the crude procedure of the initialisation of new ice.

Ice and snow temperature series reported by buoys are a valuable source of in situ observations, which can be used to assess620

the performance of a reanalysis system, especially for the parameters that are not available from the satellite products, such as

the snow-ice interface temperature. Figure 13d shows estimated PDFs of the modelling errors of the ice surface temperature

in ERA5 and CARRA reanalysis products, as well as the PDF of the snow-ice interface temperature errors in CARRA. As

can be seen from the figure, CARRA shows a lower probability of positive errors in the modelled ice surface temperature

than ERA5 and a higher probability of the modelled ice surface being colder than reported by buoys. Additionally, the mode625

of the CARRA ice surface temperature error PDF is -0.19 ◦C, which is closer to zero than in ERA5, where the mode has a

value of 0.62 ◦C. These error distributions support the conclusions drawn from comparing the reanalysis products against the

MODIS ice surface temperature product. Similar to those results, CARRA, when compared to buoys, tends to show lower than

ERA5 surface temperatures with ice surface temperature MEs of 0.04 ◦C and 1.48 ◦C, respectively. Unlike the ice surface
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temperature, the snow-ice interface temperature, when modelled by the CARRA system, shows a notable warm bias with the630

error PDF having a mode of 0.77 ◦C. The positive bias in the snow-ice interface temperature found in the CARRA data (ME

is 0.61 ◦C) is attributed to the commonly occurring overestimation of the snow depth found when comparing CARRA against

satellite and OIB snow depth, which is also identifiable when comparing reanalysis data against IMBs (see Fig. 13a). In such

cases, the insulating effect of the snow layer is too strong, which leads to a higher snow-ice interface temperature, especially

if the ice thickness is also underestimated. When assessing the modelled and observed temperature series for individual buoys,635

CARRA shows consistently high correlation with the buoy data for both surface and snow-ice interface temperatures. For

surface temperature, the correlation coefficient ranges from 80% to 97%, while for the snow-ice interface temperature the

correlation is slightly lower on average with the lowest value of 63% (see Table S5).

Since the main purpose of the sea ice parameterisation scheme in the CARRA system is representing the heat exchange

between the ice and the model atmosphere, we additionally assess the heat fluxes throughout the snow and ice layers as they640

govern the heat transport from the ocean to the atmosphere. Figures 13b and 13c show the temperature gradient within the

ice and snow layers, respectively, as reported by the CARRA product compared against the values computed from the buoy

data. The figures show good agreement between the modelled and observed gradient in most cases, although CARRA tends

to underestimate the highest values of the ice temperature gradient compared to buoy data, which can be attributed to the

warm bias of the snow-ice interface temperature. One notable exception is a single CRREL buoy deployed in 2010 for which645

CARRA reports much higher temperature gradients within the ice layer than observed as the buoy drifts within the CARRA

model domains. For this buoy, CARRA shows a considerable underestimation of the ice thickness at the point where the buoy

entered the model domain. This initial error of 0.75 m in the modelled ice thickness resulted in an overestimated temperature

gradient in the ice layer with a maximum value of 0.19 ◦C cm−1 compared to 0.06 ◦C cm−1 as computed from buoy data.

Snow temperature gradients, as shown in Fig. 13c, exhibit similar features to the ice temperature gradient in the CARRA650

data, although the snow temperature gradients have more spread in the computed values due to higher variability of the snow

layer (primarily in terms of surface temperature) compared to the ice layer. Similarly to the ice temperature gradients, Fig. 13c

suggests some underestimation of the gradient in CARRA for the strongest gradients (with a value over 0.50 ◦C cm−1 when

computed from the buoy data). Additionally, CARRA seldomly shows negative values of the snow temperature gradient (or

cases when snow ice interface is colder than the snow surface). However, some of the negative temperature gradients in the655

buoy data may arise from the buoys reporting positive snow surface temperatures during the melting season, thus these results

should be taken with care.

5 Conclusions

Numerous research and engineering studies benefit from using atmospheric reanalysis products, which are sometimes treated

as providing information about the true atmospheric state. However, since atmospheric reanalyses are generated by employing660

NWP systems, they are not devoid of modelling errors and biases. Moreover, a reanalysis product is produced by the same

unmodified version of an NWP system that quickly becomes outdated after a few years of production. All of these factors
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necessitate the production of new reanalysis products that incorporate the latest developments in NWP and reflect the advances

in high performance computing.

The Copernicus Arctic Regional Reanalysis (CARRA) is a novel regional atmospheric reanalysis product that focuses on the665

Canadian and European Arctic. This product has a considerably higher spatial resolution compared to the global ERA5 product

(2.5 km versus 30 km) and is based on a non-hydrostatic regional NWP system, HARMONIE-AROME. CARRA covers the

time period from 1990 to present (2023 at the moment of publication) and represents a region defined by two overlapping

model domains. Compared to ERA5, CARRA uses a more advanced sea ice parameterisation scheme, which includes explicit

representation of thermodynamic ice growth and evolution of the snow cover.670

In the present study we assessed the sea ice surface temperature, surface albedo, ice thickness and snow depth fields provided

by the CARRA product and validated them against an extensive set of remote-sensing and in situ observations, with focus on

the recent decades. Additional comparisons against a selected set of IMBs complement and support initial validation against

the satellite products. Sea ice extent in CARRA was not discussed in the present study since the CARRA system uses satellite-

based sea ice concentration products, which are well-covered by earlier studies (Lavergne et al., 2019), to define ice-covered675

regions.

The sea ice cover in CARRA adequately represents general multiyear trends towards thinner and warmer ice cover, con-

nected to the ongoing climate change in the Arctic. Comparisons against the satellite-based and in situ sea ice observations

show generally improved representation of sea ice in CARRA (using ERA5 as a baseline), although this improvement is not

universal. The main difference between the sea ice schemes in ERA5 and CARRA is the presence of an explicitly resolved snow680

layer, which allows for much lower ice surface temperature in the CARRA system, therefore reducing the warm ice surface

temperature bias found in ERA5. However, for the area covering Baffin Bay and the Davis Strait the verification scores suggest

that a warm winter-time bias of ERA5 is replaced with a cold bias in CARRA
:
,
:::::
which

::
is

:::::
linked

::
to

::::::::::::
overestimated

:::::
snow

::::
depth

::::
and

::
ice

::::::::
thickness

::
in
:::::
these

:::::::
regions.

::::
This

:::::::
reduced

::
in

:::::::
general

:::::::::
winter-time

:::::::
surface

::::::::::
temperature

::
in

:::::::
CARRA

::::
can

:::::::::
potentially

::::::
benefit

:::
the

::::::::
modelling

::::::
system

::
in

:::::::::::
representing

:::::
stable

::::::::
boundary

::::::
layers,

::
as

::::::::
suggested

:::
by

:::::::::::::::::
Arduini et al. (2022).

:::
An

::::::::
extensive

:::::::::
validation

::
of

:::
the685

::::::::
boundary

::::
layer

::
in

:::::::
CARRA

::
is
:::
out

::
of

:::::
scope

:::
of

:::
the

::::::
present

:::::
paper,

::::
thus

:::
we

::::
leave

:::
the

::::::::::
assessment

::
of

:::
the

::::::::::
atmospheric

::::::::
variables

::::
over

::
the

:::::::
sea-ice

::::::
covered

:::::
areas

::
in
::::::::
CARRA

::
to

:::::
future

:::::::
studies. For sea ice albedo, the CARRA product does not show improvement

compared to ERA5, which uses observation-based albedo estimates over sea ice, and displays considerable overestimation of

the spring-time surface albedo, when compared to the CLARA-A2 satellite product. This result
::::::::
highlights

:::
the

:::::::::
limitations

::
of

:::
the

:::::::::::
unconstrained

::::::
albedo

::::::::::::::
parameterisation

:::::::
scheme

::::
used

::::
over

:::::::::::
snow-covered

::::
sea

::
ice

::::
grid

::::
cells

:::
in

:::::::
CARRA

:::
and

:
suggests that future690

applications could benefit from a more detailed representation of the sea ice albedo in the sea ice model of Batrak et al. (2018),

or from constraining model albedo against an observational product. The general limitation of the sea ice scheme applied in

CARRA, namely the absence of ice dynamics and external constraints, strongly manifests itself in the verification scores for

ice thickness and snow depth. Even though, unlike ERA5, CARRA has spatially non-uniform ice thickness, it can not accu-

rately resolve thick multiyear ice in the central Arctic leading to a negative ice thickness bias.
::::::::
However,

:::
this

:::::::::::::
underestimated

:::
ice695

:::::::
thickness

::
is
:::::::::::
compensated

::
by

::::::::::::
overestimated

:::::
snow

::::
depth

::::::
which

:::::
results

::
in

::
a

::
net

::::::::
decrease

::
of

:::
the

::
ice

:::::::
surface

:::::::::
temperature

::
in
::::::::
CARRA

::::::::
compared

::
to

::::::
ERA5,

:::::
even

::::::
though

:::
the

:::::
warm

::::
bias

::
is

:::
not

::::::::::
completely

:::::::::
eliminated.

:
Additionally, due to a simplified initialisation
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procedure for new ice, thin first-year ice is thicker in CARRA than suggested by the reference satellite-based product.
::::::
Finally,

:::::::
applying

:::
an

::::::::::::
unconstrained

:::
sea

:::
ice

::::::::::::::
parameterisation

:::::::
scheme

::
in

:::
the

:::::::::
reanalysis

::::::
system

:::::::::
employing

:::::::
several

::::::
parallel

::::::::::
production

::::::
streams

::::::
results

::
in

::::::::::::
discontinuities

::
in
:::

the
:::::

final
:::::::
product,

:::::
which

:::
are

:::
the

:::::
most

::::::::::
pronounced

::
in

:::
the

:::
ice

::::::::
thickness

::::
over

::::::::
multiyear

::::
ice.700

:::::::
Presence

::
of

:::::
such

::::::
features

::::::::
strongly

:::::::
suggests

:::::::
benefits

::
of

::::::::::
constraining

:::
sea

:::
ice

::::
state

:::
by

:::::::::::
observational

::::::::
products

::
in

::::
next

:::::::::
generation

::::::::
reanalysis

:::::::
projects.

:
Snow cover over sea ice in CARRA exhibits similar features, such a

::::
traits

::::::
related

::
to

:::
the

::::::::::::::
one-dimensional

:::::
nature

::
of

:::
the

::::
sea

:::
ice

::::::::::::::
parameterisation

::::::
scheme

:::
of

::::::::
CARRA,

::::
such

:::
as extensive snow accumulation along the eastern coast of

Greenland where missing ice transport can not aid at removing snow-covered ice.
::::::::
Moreover,

:::::
snow

:
is
:::::::

directly
:::::::
affected

:::
by

:::
the

::::::::
boundary

::::::
effects,

::::
such

:::
as

:::::
lateral

::::
spin

:::
up

::
of

::::::
model

:::::::::::
precipitation,

::::::
caused

:::
by

:::
the

::::::
limited

::::
area

:::
of

:::
the

:::::::
CARRA

::::::
model

::::::::
domains.705

Thus, prognostic snow cover over sea ice and ice thickness fields computed by the thermodynamic sea ice model of the CARRA

system, which are available within the reanalysis product and showing a reasonable annual cycle, should be used with great

care.

An additional intercomparison performed against ice mass balance buoys shows good agreement between the modelled in

CARRA and observed temperatures, although the snow-ice interface temperature in CARRA shows
::
has

:
a consistent warm710

bias, with a mode comparable to the that of the ice surface temperature bias found in ERA5. Due to the location of the CARRA

model domains most of the buoys enter them at the final stage of the drift. As a consequence, ice thickness and snow depth

over sea ice show less agreement to observational series and instances of considerable offset errors were noted.

Sea ice cover in CARRA reflects current approaches applied in operational short-range applications utilising the HARMONIE-

AROME NWP system. The shortcomings and limitations of representing sea ice with non-constrained one-dimensional sea715

ice parameterisation schemes, found in the present study, suggest that future generation Arctic reanalysis projects can strongly

benefit from applying more advanced approaches. For example, having a reanalysis system based on a fully-coupled NWP

system would open a possibility of representing sea ice cover as a drift medium with a much higher level of detail. However,

practical considerations might not allow applying a fully coupled atmospheric model with a strongly coupled data assimilation

system in a reanalysis project due to great computational and development costs of such a solution. Thus, constraining the state720

of a simplified sea ice model by means of external data sets or data assimilation (see, e.g., Batrak, 2021; Scott et al., 2014) may

be still a viable approach to representing sea ice state in future atmospheric reanalyses.

Data availability. The CARRA and ERA5 reanalysis products are available through the Copernicus Climate Data Store portal (https://cds.

climate.copernicus.eu/). The Level-2 sea ice surface temperature products from the MODIS instrument (MOD29 and MYD29) are available

from the National Snow and Ice Data Center (https://nsidc.org/). The combined CryoSat-2 and SMOS weekly ice thickness product is725

available from the Alfred Wegener Institute (https://awi.de/). Monthly snow depth retrievals of Lee et al. (2021) are publicly available from the

authors of the original publication (https://doi.org/10.5281/zenodo.5081765). The Observation Ice Bridge snow depths data are available from

the National Snow and Ice Data Center (https://doi.org/10.5067/G519SHCKWQV6 and https://doi.org/10.5067/GRIXZ91DE0L9). CRREL

ice mass balance buoy data are available from the CRREL-Dartmouth Mass Balance Buoy Program portal (https://imb-crrel-dartmouth.org).

Data from the SIMBA buoys deployed during the N-ICE2015 campaign are available from the Norwegian Polar Institute (https://doi.org/10.730

21334/npolar.2015.6ed9a8ca). Data access links for the MOSAiC SIMBA buoys,
::

as
::::
well

::
as

::
for

:::
the

::::::
SIMBA

:::::
buoys

:::::
FMI02

:::
and

::::::::
FMI0606, are
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provided in Table S6
::
and

:::::
Table

:::
S7,

:::::::::
respectively. The CLARA-A2 albedo product is available from the EUMETSAT dissemination portal

(http://doi.org/10.5676/EUM_SAF_CM/CLARA_AVHRR/V002_01).

Appendix A:
::::::
Impact

::
of

:::
the

:::::::
parallel

::::::::::
production

:::::::
streams

:::
on

:::
the

:::::::::
evolution

::
of

:::
the

:::
sea

:::
ice

::::::::
variables

:::::::::
Operational

:::::::::
production

:::
of

::
the

::::::::
historical

::::::
period

::
of

:::
the

:::::::
CARRA

::::::::
reanalysis

::::
was

::::::::
performed

:::
by

:::::
means

::
of

:::::::
running

::::::
several

:::::::::
production735

::::::
streams

::
in

:::::::
parallel.

:::
An

::::::::
overview

::
of

:::::
these

:::::::::
production

::::::
streams

::
is

::::::::
provided

::
in

:::::
Table

:::
A1.

::::
The

:::::::
CARRA

:::::::::
modelling

::::::
system

::::
does

:::
not

::::::
employ

:::
any

::::::
special

::::::::
measures

::
to
::::::
ensure

:::
the

::::::::
seamless

::::::::
transition

::
of

:::
the

:::
sea

:::
ice

::::
state

:::::
across

:::
the

::::::::::
production

:::::::
streams,

:::::
which

::::::
results

::
in

::::::::
noticeable

:::::::::::::
discontinuities.

:::::
These

::::::::::::
discrepancies

:::
are

::::
most

:::::::::
noticeable

::
in

::::::
slowly

:::::::
evolving

::::::::
variables

::::
with

::::
long

:::::::
memory,

:::::
such

::
as

::
ice

::::::::
thickness

::
in

::::
grid

::::
cells

::::
with

::::::::
perennial

::
ice

::::::
cover.

::::::::
Variables

:::
with

::
a
::::::::::
pronounced

:::::
annual

::::::::
evolution

:::::
cycle,

:::
for

:::::::
example

:::::
snow

:::::
depth

::
or

::
ice

::::::::
thickness

:::
of

:::::::
seasonal

:::
ice

:::::
cover,

:::::
show

:::
less

::::::::::
discrepancy

::::::
across

::
the

::::::::::
production

::::::
streams

:::::::
because

::::
they

::::
have

::::::
limited

::::::::
memory,740

:::
and

:
a
::::
one

::::
year

::::::
spin-up

::::::
period

:::::
results

::
in

:::
an

:::::::
adequate

:::::
initial

:::::
state.

:::::::::
Therefore,

::
in

:::::::
practice,

:::
ice

::::::::
thickness

::
is

:::
the

::::
only

::::::
sea-ice

::::::
related

::::::
variable

::::::
which

::::::
require

::::::
special

::::::::::::
considerations

:::::
when

:::::::
includes

::::
data

:::::
from

::::::
several

:::::::::
production

:::::::
streams.

:::
As

:::
we

::::::
already

::::::::::
mentioned,

::
for

:::
the

::::::::
seasonal

:::
ice

::::
cover

::::::::::::
discrepancies

:::
are

:::::
small

:::
and

:::
do

:::
not

::::
have

::::::::
long-term

::::::::::::
consequences

:::::
since

:::
the

::
ice

:::::
state

::
in

:::
the

::::::
system

::
is

::::::::
discarded

::::
when

::
a
::::
grid

:::
cell

:::::::
becomes

:::::::
ice-free.

::::
For

:::
the

:::
grid

::::
cells

::::
with

:::::::::
multiyear

::
ice

:::::
cover

:::
the

::::::::::::
across-stream

::::::::::::
discontinuities

::
in

:::
the

:::::::
CARRA

:::::
model

:::
ice

::::::::
thickness

:::
are

::::::::::
summarised

::
in

::::
Fig.

:::
A1.

::::
The

:::::
figure

::::::::
suggests

:::
that

:::
on

::::::
average

:::
the

:::::::
median

::::::::::
discrepancy

:
is
::::::
below745

:::
0.3 m

:::
for

::
all

:::::::::
production

:::::::
streams

:::::
except

:::
S1

::
in

::::
both

::::::::
CARRA

:::::
model

::::::::
domains.

::
At

:::
the

::::
start

::
of

:::
the

::::::
stream

:::
S1,

:::::::
median

::::::::::
discrepancy

::
in

:::
the

:::::::
perennial

:::
ice

::::::::
thickness

:::::
field,

:::::
when

::::::::
compared

::
to

:::
the

:::::
same

::::
field

::
at

:::
the

:::
end

::
of

:::
the

::::::::
previous

:::::::::
production

::::::
stream,

:::::::
reaches

:::
the

:::::
values

::
of

::::
0.83

:
m

:::
and

::::
0.64

:
m

:::
for

:::
the

:::::::
western

:::
and

:::
the

::::::
eastern

::::::::
CARRA

::::::
model

:::::::
domain,

::::::::::
respectively.

::::
Due

:::
to

:::::::
presence

::
of

:::::
such

::::::::::::
discontinuities,

:::
ice

::::::::
thickness

::
of

::::::::
perennial

:::
ice

::
in

:::
the

:::::::
CARRA

:::::::
product

::::::
should

::
be

::::
used

::::
with

::::::
utmost

:::::
care.

Appendix B:
::::::::
Boundary

::::::
effects

::
in

::::
the

:::::::
CARRA

::::::::
product750

:::::::
CARRA,

:::
as

:
a
:::::::
regional

::::::::
reanalysis

:::::::
product

::
is

:::::
based

::
on

::
a

::::::
limited

::::
area

:::::
NWP

::::::
system,

::::::::
therefore

:
it
:::::
relies

:::
on

:::::
ERA5

::::
data

:::
for

:::::::
defining

::
the

:::::
state

::
of

:::
the

::::::::::
atmospheric

:::::::
variables

:::
on

:::
the

:::::
lateral

::::::::
boundary

::
of

:::
the

:::
two

::::::
model

::::::::
domains.

::::::::
However,

:::::::::
differences

::
in

:::::
model

:::::::
physics

:::
and

::::::
spatial

::::::::
resolution

::
of

:::
the

:::::::
CARRA

::::
and

:::::
ERA5

:::::::
systems

:::::
result

::
in

:
a
::::::::
presence

::
of

:
a
::::::
lateral

:::::::::
adaptation

::
or

::::
spin

::
up

:::
zone

::
in
::::::::
CARRA

:::::
fields.

:::::
More

::::::::::
specifically,

:::
the

:::::::
nesting

:::::::
strategy

:::::::
applied

::
in

:::
the

::::::::
CARRA

::::::
system

::::
does

::::
not

:::::
utilise

::::::
model

:::::
level

:::::
cloud

:::::
water

::::
and

:::::::::::
hydrometeors

::::
from

:::
the

::::
host

::::::
model,

:::::::
leading

::
to

:
a
::::::::::
pronounced

::::::
lateral

:::
spin

:::
up

::
of

:::
the

:::::
cloud

:::::
cover

::
in

:::::
cases

::
of

::::::
inflow.

:::::::::::
Additionally,755

::::
there

::
is

::
an

:::::
eight

::::
grid

::::::::
cell-wide

::::::::
boundary

::::::::
relaxation

:::::
zone

:::
for

::::::::
transition

:::::::
between

:::
the

::::::::::::::
lower-resolution

::::::::::
atmospheric

::::
state

:::
of

:::
the

:::::
lateral

::::::::::
boundaries

:::
and

:::
the

:::::::::::::::
higher-resolution

::::
state

:::
of

:::
the

::::::::
CARRA

:::::
model

:::::::::::
atmosphere,

:::::
where

:::::::::
boundary

::::::
effects

:::
are

:::
the

:::::
most

::::::::::
pronounced.

:::
All

:::::
these

::::::
effects,

:::::::::
especially

:::
the

:::::
cloud

::::
spin

:::
up,

::::::
impact

:::
the

::::::
model

::::
state

:::
of

:::
sea

:::
ice

:::::
cover

::
in

:::
the

:::::::
vicinity

::
of

::::::
model

::::::
domain

::::::
edges.

::::::::
Amongst

:::
the

::::::
sea-ice

::::::
related

::::::::
variables

::::::
present

::
in

:::
the

::::::::
CARRA

:::::::
product,

:::::
snow

:::::
depth

:
is
::::

one
::
of

:::
the

:::::
most

:::::::
affected

::
by

:::
the

::::::::
boundary

::::::
effects

::::
since

:::::
snow

::::
over

:::
sea

:::
ice

::
is

:::::::
directly

::::::::::
accumulated

:::::
from

:::::
model

:::::::::::
precipitation

::
in

:::
the

:::::::
CARRA

:::::::
system.

::::
Due760

::
to

::::::
reduced

::::::::
snowfall

:::::::
amounts

::::
near

:::
the

:::::
model

:::::::
domain

:::::
edge,

::::
snow

:::::
depth

::::
over

:::
sea

:::
ice

::
is

:::::::::::::
underestimated.

::::::
Figure

:::
B1

::::::::
illustrates

:::
the

:::::
impact

:::
of

::::::::
boundary

::::::
effects

::
on

:::::
snow

:::::
depth

::::
over

:::
sea

:::
ice

::
in
:::
the

::::::::
CARRA

:::::::
product

::
by

:::::::::
comparing

:::
the

::::::
model

:::::
snow

:::::
fields

::::
over

:::
the
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:::::
region

::
of

:::::::::::
geographical

:::::::
overlap

::
of

:::
the

::::::::
CARRA

:::::
model

::::::::
domains.

:::::
Based

:::
on

::::
this

:::::
figure,

:::::
when

:::::::::
extracting

:::
sea

:::
ice

::::::::
variables

::
in

:::
the

:::::
region

::
of

:::::::::::
geographical

:::::::
overlap

:::
we

::::::::::
recommend

::::::::::
considering

:::::::
selecting

::
a
:::::::
CARRA

::::::
model

::::::
domain

::::
less

:::::::
affected

:::
by

:::
the

::::::::
boundary

:::::
effects

::::::
based

::
on

:::
the

::::::
region

:::
of

:::::::
interest.

:::::::
Outside

:::
the

::::::
region

::
of

:::::::::::
geographical

:::::::
overlap

:::
we

::::::::
anticipate

:::
the

::::::::
presence

::
of

:::::::::
boundary765

:::::
effects

::
of

::
a
::::::
similar

:::::
scale,

:::::::
however

:::
the

:::::
actual

::::
size

::
of

:::
the

:::::::
affected

:::::
areas

:::
can

:::
not

::
be

::::::::::
determined

:::
due

::
to
::::
lack

::
of
::::::::
reference

:::::
data.

:::
Ice

:::::::
thickness

:::
in

:::
the

:::::::
presence

::
of

::::::::
boundary

::::::
effects

::
is
::::::::::::
overestimated

:::::::::
(compared

::
to

::::
grid

::::
cells

:::
not

::::::::
impacted

:::
by

::::::::
boundary

::::::
effects)

::::
due

::
to

:::
the

:::::::
reduced

::::::::
thickness

::
of

:::
the

:::::::::
insulating

::::
snow

:::::
layer.

:
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Figure 1. Overview of the CARRA model domains and locations of the areas of interest discussed in the present study. Also on the figure,

drift trajectories of individual ice mass balance buoys (IMB) are shown (position of the IMB deployed on the land fast ice is marked with

a dot). Marked on the map: 1 – Baffin Island; 2 – Baffin Bay; 3 – Davis Strait; 4 – Greenland; 5 – North Atlantic Ocean adjacent to the

Greenland coast; 6 – Greenland Sea; 7 – Fram Strait; 8 – Svalbard archipelago; 9 – Barents Sea; 10 – Kara Sea
:
;
::
11

:
–
:::::
White

:::
Sea. Inset: tracks

of the Operation Ice Bridge flights.
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Figure 2. Monthly ice surface temperature anomalies in the CARRA product and fitted ice temperature anomaly trend. Multiyear monthly

means computed over the time period from 2000 to 2020 are used as reference data. (a) Western CARRA model domain; (b) eastern CARRA

model domain. Also on the panels, the 95% confidence interval of the CARRA anomaly trend, and the anomaly trend of the MODIS ice

surface temperature product are shown.
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Figure 3. Estimated monthly quantiles of the ice surface temperature, q ∈ [0.01;0.99], in atmospheric reanalysis products compared against

the MODIS product over the eastern
::::::
western CARRA domain. Quantiles are computed for the period from 2000 to 2020. Diagonals represent

reference 1:1 match lines between observational and reanalyis
:::::::
reanalysis quantiles. Numerical values of the computed quantiles can be found

in Table S2
::
S1.
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Figure 4. Same as Fig. 4
:
3 but for the western

:::::
eastern

:
CARRA domain. Numerical values of the computed quantiles can be found in

Table S1
::
S2.
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Figure 5. Average annual cycle of the mean error (ME) of sea ice surface temperature in CARRA and ERA5 computed over the period from

2000 to 2020 for the four areas of interest. On the panels, centre lines show the median ME value, shading bands show the corresponding

interquartile ranges, and spikes show the q ∈ [0.05;0.95] quantile range. Values are obtained by aggregating four-week series of mean error

computed against the MODIS product for each individual year in the reanalysis data sets. Numerical monthly values of the computed scores

can be found in Table S3.
:::
Also

::
in

:::
the

:::::
figure,

::::::
monthly

::::::
median

:::
sea

::
ice

::::
area

::
in

:::::::
CARRA,

:::::::
computed

::::
over

::
the

:::::
same

:::
time

::::::
period,

:
is
:::::::
outlined.
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Figure 6. Monthly mean errors of the modelled surface albedo over sea-ice covered regions in CARRA and ERA5, computed against the

CLARA-A2 SAL product over the time period from 2000 to 2015. Note that in September the observational product has considerably reduced

coverage in the northern-most parts of the CARRA model domains due to challenging light conditions. Areas with missing SAL data are

marked with hatches.
:::
Also

::
in

:::
the

:::::
figure,

::::::
median

::::::::
2000–2015

::::
snow

:::::
extent

::
by

:::
the

:::
end

::
of

::::::
August

::
in

::::::
CARRA

::
is

:::::::
outlined.
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Figure 7. Monthly ice thickness anomalies in the CARRA product and fitted ice thickness anomaly trend. Multiyear monthly means for the

time period from 2000 to 2020 are used as a reference when computing anomalies. (a) Western CARRA model domain; (b) eastern CARRA

model domain. Also on the panels, the 95% confidence interval of the CARRA anomaly trend is shown, and separate productions streams

S1–S5 of the CARRA system and the back extension stream BE
:::::
streams

::::::
BE1–3 are marked.
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Figure 8. Average annual cycle of the mean error (ME) of sea ice thickness in CARRA over the period from 2010 to 2020 for the four areas

of interest. On the panels, centre lines show the median ME value, shading bands show the corresponding interquartile ranges, and spikes

show the q ∈ [0.05;0.95] quantile range. Series of mean error are computed against the combined CryoSat-2 SMOS ice thickness product.

Also on
::
in the figure, ice thickness errors obtained using constant and uniform ice thickness of 1.5 m as in the ERA5 product are shown.

Numerical monthly values of the computed scores can be found in Table S4.
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Figure 9. Mean error (ME) and standard deviation of errors (ESTD) of sea ice thickness in the CARRA product computed against the

combined CryoSat-2 SMOS satellite ice thickness product.
::
(a)

::::
Mean

:::::
error;

::
(b)

:::::::
standard

:::::::
deviation

::
of

:::::
errors.

::::
Also

::
on

:::
(a),

:::
the

::::
areas

:::::
where

:::
ME

:
is
:::::
below

:::
the

:::::
median

:::::::::
uncertainty

::::::
reported

:::
by

::
the

::::::
product

:::
are

::::::
marked

:::
with

:::::::
hatches.39
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Figure 10. Monthly snow depth anomalies in the CARRA product and fitted snow depth anomaly trend. Multiyear monthly means for the

time period from 2000 to 2020 are used as a reference when computing anomalies. (a) Western CARRA model domain; (b) eastern CARRA

model domain. Also on the panels, the 95% confidence interval of the CARRA anomaly trend is shown.
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Figure 11. Mean error (ME) of snow depth over sea ice in the CARRA product computed against the satellite ice thickness retrieval product

and Operation IceBridge flight campaign data. (a) January-March ME computed against the satellite product over the time period from 2003

to 2020; (b) March-April computed against the Operation IceBridge data over the time period from 2009 to 2019 and presented on a 50 km

grid.
:::
Also

::
on

:::
(a),

:::
the

::::
areas

:::::
where

:::
ME

::
is

:::::
below

::
the

::::::
median

:::::::::
uncertainty

::::::
reported

::
by

:::
the

::::::
product

::
are

::::::
marked

::::
with

::::::
hatches.
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Figure 12. Estimated probability density functions (PDF) of snow depth in the CARRA product and in the observational products. (a)

monthly PDFs of snow depth in CARRA and in the satellite snow depth retrieval; (b) PDFs of snow depth in CARRA and in the Operation

IceBridge flight campaign data. Also on (a), the PDFs of corrected snow depth in CARRA are shown with dotted lines.
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Figure 13. Representation of sea ice in the CARRA and ERA5 reanalysis products as compared against buoy observations. (a) Box plots of

the per-buoy mean error (ME) and standard deviation of errors (ESTD) of snow depth and ice thickness,
::::
with

:::::::
whiskers

:::::::::
representing

:::
the

:::
full

::::
range

::
of

::::::::
computed

:::::
values; (b) temperature gradient within the ice layer computed from buoy data and computed from the CARRA product;

(c) temperature gradient within the snow layer computed from buoy data and computed from the CARRA product; (d) estimated probability

density functions of ice surface temperature error and snow-ice interface temperature error in CARRA, and ice surface temperature error in

ERA5. Also on (d), major modes of the modelling errors in CARRA and ERA5 are marked with vertical bars of corresponding colours.
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Table A1.
:::::
Parallel

:::::::::
production

:::::
streams

::
in
:::
the

:::::::
CARRA

:::::::
reanalysis

::::::
project,

::::::
without

:::::
taking

:::
into

::::::
account

::::::
spin-up

::::::
periods.

CARRA West CARRA East

:::
Start

:::
End

:::
Start

:::
End

:::
BE1

: ::::::::
1990.09.01

: ::::::::
1992.08.31

: ::::::::
1990.09.01

: ::::::::
1992.08.31

:

:::
BE2

: ::::::::
1992.09.01

: ::::::::
1994.08.31

: ::::::::
1992.09.01

: ::::::::
1994.08.31

:

:::
BE3

: ::::::::
1994.09.01

: ::::::::
1997.06.30

: ::::::::
1994.09.01

: ::::::::
1997.06.30

:

::
S1

: ::::::::
1997.07.01

: ::::::::
2002.08.31

: ::::::::
1997.07.01

: ::::::::
2006.08.31

:

::::
S1W

::::::::
2002.09.01

: ::::::::
2006.08.31

:

::
S2

: ::::::::
2006.09.01

: ::::::::
2010.08.31

: ::::::::
2006.09.01

: ::::::::
2014.08.31

:

::::
S2W

::::::::
2010.09.01

: ::::::::
2014.08.31

:

::
S3

: ::::::::
2014.09.01

: ::
TU

: ::::::::
2014.09.01

: ::
TU

:

All dates are in the Y.M.D format; TU – production stream is continued to produce near

real time updates of the reanalysis product.
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Figure A1.
:::::::::::
Discontinuities

::
in

::
the

:::::::
CARRA

:::
ice

:::::::
thickness

::::
field

::
at

:::
the

:::
start

::
of
:::::::::

production
::::::
streams,

::::::::
computed

::
as

::
an

:::::::
absolute

::::
value

::
of

:::
the

:::
ice

:::::::
thickness

:::::::
difference

:::::::
between

:::
the

:::
last

::::::
analysis

::
of

:::
the

:::::
ending

:::::
stream

:::
and

:::
the

:::
first

:::::::
analysis

::
of

::
the

::::::
starting

::::::
stream,

:::
for

:::
grid

::::
cells

::::
with

:::::::
perennial

::
ice

:::::
cover.

::
(a)

::
–

::::::
western

::::::
CARRA

:::::
model

::::::
domain;

:::
(b)

:
–
::::::
eastern

::::::
CARRA

:::::
model

:::::::
domain.

:::::::
Whiskers

:::::::
represent

:::
the

::
full

:::::
range

::
of

:::::::
computed

::::::
values.
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Figure B1.
::::
Mean

::::::::
difference

::::
(MD)

::
of

::::
snow

:::::
depth

::
in

:::
two

:::::::
CARRA

:::::
model

::::::
domains

::::::
within

::
the

:::::
region

::
of
::::::::::
geographical

:::::::
overlap,

::
as

::
of

:
1
:::::
April,

:::::::
computed

::::
over

:
a
:::::
period

:::::
from

::::
1990

::
to

::::
2021.

:::::::
Positive

:::::
values

::::
mean

::::
that

::::
snow

::
in

:::
the

::::::
western

:::::::
CARRA

:::::
model

::::::
domain

::
is

:::::
thicker

::::
than

::
in

:::
the

:::::
eastern

:::::
model

::::::
domain,

:::
and

::::
vice

:::::
versa.

:::
Grid

::::
cells

::::
with

:::
MD

:::::
falling

:::::
within

:::
the

:::::::::
interquartile

:::::
range

:
of
:::::

snow
::::
depth

:::::::::
differences

::
are

::::::
masked

:::
out.
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