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Abstract. Automated sea ice charting from Synthetic Aperture Radar (SAR) has been researched for more than a decade and

still, we are not close to unlocking the full potential of automated solutions in terms of resolution and accuracy. The central

complications arise from ground truth data not being readily available in the polar regions. In this paper, we build a dataset from

20 near coincident X-Band SAR acquisitions and as many Airborne Laser Scanner (ALS) measurements from the Multidisci-

plinary drifting Observatory for the Study of Arctic Climate (MOSAiC), between October and May. This dataset is then used to5

assess the accuracy and robustness of five machine learning based approaches, by deriving classes from the freeboard, surface

roughness (standard deviation at 0.5m correlation length) and reflectance. It is shown that there is only a weak correlation of

the radar backscatter and the sea ice topography. Accuracies between 40% and 69% percent and robustnesses between 68%

and 85% give a realistic insight into modern classifiers’ performance across a range of ice conditions over 8 months. It also

marks the first time algorithms are trained entirely with labels from coincident measurements, allowing for a probabilistic class10

retrieval. The results show that segmentation models able to learn from the class distribution significantly perform pixel-wise

classification approaches.

1 Introduction

Sea ice classification from remote sensing and especially SAR instruments have been used for monitoring the Arctic sea ice

for multiple decades, with automation being proposed as early as the mid eighties by Fily and Rothrock (1986). However,15

even with the inception of advanced machine learning methods and modern data analysis, there does not yet exist a universally

reliable classifier to retrieve sea ice classes from radar imagery. The potential for such a classifier is obvious: Humans are

not able to match the speed and precision of an automated algorithm. Until now, however, this potential has yet to be fully

unlocked; Human-generated ice charts (for an overview regard the World Meteorologial Organizations overview by JCOMM

(2017)) are still dominant in operational usage, despite the considerable amount of research that has been focused on the20

subject. These products unfortunately can provide only coarse approximate labels of the sea ice. For cross-cutting research, a
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Figure 1. Section of ALS measured freeboard over the MOSAiC floe on April 8, 2020. RV Polarstern can be seen in the center of the red

circle. Brighter values correspond to higher freeboard values whereas white areas indicate no data. The displayed freeboard range is 0 to 1.5

metres.

more detailed and higher resolution of classification would be preferable and should be possible given the spatial resolution

of the SAR sensors. As a human analyst generating an ice chart has only limited time to annotate a SAR scene, such high-

resolution labels are not contained in the ice charts. Leads, for example, hot spots of ocean and atmosphere interaction and

thus of particular interest for the energy budgets, are generally not labelled in operational ice charting. At this point, with25

many different classifiers having been proposed and developed (e.g. Kwok et al. (1992); Soh and Tsatsoulis (1999); Hara et al.

(1995); Karvonen (2004); Ressel et al. (2015); Doulgeris (2015); Johansson et al. (2020); Lohse et al. (2021)) one must ask the

question why no meaningful direction has yet established itself in the ongoing research. The answer to the question - aside from

the complexity of the subject - is twofold. Firstly and most important is the state of the data. Although we have a great wealth of

satellite SAR acquisitions of the sea ice in diverse states and conditions, we lack the corresponding ground truth information.30

Secondly, the constantly varying and difficult-to-predict drift and deformation of sea ice makes it nearly impossible to image

the same area of sea ice over longer time series to evaluate any proposed classifiers’ robustness. The latter is particularly true

for high-resolution imagery. These two shortcomings open this topic up to a plethora of different challenges because we have

almost no way to test, iterate and improve sea ice retrieval algorithms in a structured manner. This stifles the rate at which

progress in the field can be made or even recognised.35

On a mission to fill gaps in our knowledge about the Arctic sea ice and its climatology, the MOSAiC expedition launched in

the autumn of 2019 and the ship Polarstern spent a year adrift with the ice pack. Aboard, interdisciplinary teams of scientists

worked to collect as many data as possible, which will help to further our understanding of one of our earth’s most remote

regions. With the mission came the unique opportunity to collect exactly the type of ground truth over a long time period, that

is needed to test sea ice retrieval algorithms, with satellite-borne SAR data being acquired at the same time. An overview of40

the snow and ice related activities is given in Nicolaus et al. (2022).
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Ice and snow transects from Itkin et al. (2021) or drilling hold the most detailed information of the underlying ice. Unfortu-

nately, the spatial extents of these measurements are too sparse to be used for comparison with the satellite acquisitions. Aerial

measurements taken from helicopters, such as the Airborne Laser Scanner (ALS) data products by Hutter et al. (2022a, b) being

used in this approach (Fig. 1) provide information about the height of the snow and/or ice surface above the local sea level, i.e.45

freeboard, and surface reflectance at scales of kilometres to tens of kilometres. These data are therefore a prime candidate to

extract ground truth information for ice classification based on roughness and thickness.

One prominent emerging method of segmenting image data are machine learning based approaches based on convolutional

neural networs, such as published in Simonyan and Zisserman (2015); He et al. (2015); Liu et al. (2022); Ronneberger et al.

(2015); Zhou et al. (2018, 2019). Advancements in the field of machine vision are being made at a rapid pace, able to leverage50

the improvements in chip design and the increasing amount of data that are being generated. The image-like properties of SAR

acquisitions mean that this knowledge is transferable to the ice classification domain (e.g. Boulze et al. (2020); Ullah et al.

(2021); Wang and Li (2021); Kortum et al. (2021, 2022)). Historically, this has been done with texture extraction and subsequent

dense neural networks as in Ressel et al. (2016); Singha et al. (2018); Murashkin et al. (2018), pixel-wise classification using

image classifiers based on convolutional neural networks as by Boulze et al. (2020); Ullah et al. (2021) and segmentation55

models that are able to segment an entire patch simultaneously like in Wang and Li (2021). In this study, we will use the unique

opportunity provided by 20 instances of near-coincident ALS and SAR data over a period of 8 months to compare a variety

of machine learning-based classification approaches in terms of classification accuracy and robustness on classes delineated

directly from measurements. For the first time, we have accurate, high resolution sea ice topography measurements of freeboard

and surface reflectance with high spatial overlap and low time differences between acquisitions to truly test the capability of60

retrieving freeboard and (above snow) surface roughness based sea ice classes from SAR data.

2 Methodology

2.1 The Data

The SAR component of the analysis is made up of TerraSAR-X X-band acquisitions in StripMap (SM) mode. The resulting

scenes have a pixel spacing of 3.5 metres and a radiometric resolution of 16 bit. Both HH and VV bands are acquired by the65

satellite simultaneously. This configuration of polarisations has been shown to yield valuable information for ice classification

in Ressel et al. (2016)Geldsetzer and Yackel (2009).

The ALS data from Hutter et al. (2022b, a) from 20 scenes (appendix A) between October 2019 and May 2020 are used

to delineate sea ice classes. The data were acquired by flying a mow-the-lawn pattern over the ice. The resulting ALS grid

has a geospatial resolution of 0.5 metres. For midwinter flights in high latitudes of >85°N, the post-processing of the heli-70

copter INS/GPS data failed and ALS data processing was performed using a lower frequency real-time navigation solution

with metre-scale undulations in GPS altitude that propagated to the surface elevation retrieved from the ALS. The undulations

in the computed freeboard could be minimised using a correction calculated from swath-to-swath overlap. It should be noted

that the local standard deviation of the freeboard is left intact by these processing artefacts and can still be used to derive a
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parametrisation of the local surface roughness, where these undulations are present. An additional measurement aside from75

freeboard is the surface reflectance at the wavelength of the laser (1064 nm), which is useful to identify regions of young

ice that have not yet been covered by snow. For the acquisitions with unphysical undulations in the freeboard measurement,

freeboard was not used to delineate class labels. Instead, only classes which could be inferred from the surface roughness and

reflectivity were used.

80

Colocation: For each ALS grid, the first step for co-locating with SAR data is to find the SAR acquisition that is closest

to the ALS measurement time, whilst still having substantial spatial overlap. Then, by using the Polarstern ship to determine

a common coordinate system, the two measurements are fused by assigning each ALS data point to the closest TSX pixel

(see. Kortum et al. (2021); Hendricks (2019).) In the common coordinate system, this means that the two measurements are in

the same TerraSAR-X grid cell relative to the ship. Because of the difference in resolutions (0.5m ALS and 3.5m SAR), we85

obtain approximately 49 points of ALS measurements per SAR pixel. The freeboard and roughness are then computed as the

respective mean and standard deviation of these points. Using the Polarstern as an origin of the common coordinate system

is sensible, as we have accurate GPS positioning and heading to account for ice drift and rotation. The matching of the two

products using this method was accurate to a couple of metres. To further improve the accuracy of colocation, a final translation

and rotation was then determined manually. Afterwards, the features overlapped perfectly at (TerraSAR-X) pixel resolution.90

The accuracy of co-location is made possible by more than daily TerraSAR-X SAR acquisitions of the MOSAiC floe, which

helps keep the time differences between satellite and helicopter measurements small.

Determining labels: We have categorised the measured sea ice into three classes. A label is given for each SAR pixel,

for which ALS information is available. For ease of reference, we are giving them names in accordance with conventions,95

which are easier to contextualise. However, the exact definitions of the classes is given here. They are fully given by the ALS

measurement. The three classes are: Open water and young ice (OW/YI), level first-year ice (LFYI) and deformed first-year

and multiyear ice (DFYI/MYI). These classes we define as follows (see Fig. 2 for a visual aid):

– OW/YI: Ice whose reflectance (range corrected target echo amplitude) is significantly lower than that of the surrounding

snow covered ice. Typically values around -7dB were used as a threshold value and adjusted manually if needed. Note,100

that finer separation here is not possible from the data alone, but from reports of scientists on the expedition we know

that most ice in this class will have already formed a thin ice layer and entirely open water was very rare during the flights.

– LFYI: Snow-covered ice with a surface roughness (standard deviation of freeboard measurements at scales of the ALS

grid (0.5m) calculated over one TSX pixel (3.5m2)) of less than 1 centimetre or a freeboard value lower than the higher105

inflection point in the freeboard distribution (typically around 40 centimetres).
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Figure 2. Derived labels from the ALS acquisition on the April 8, 2020 overlayed on the HH channel of the near-coincident SAR measure-

ment (left) and estimated probability density functions from the distributions of freeboard and surface roughness (in this case this is the local

standard deviation of the freeboard) (right). Yellow indicates ice with a higher freeboard than the high inflection point of the distribution.

Magenta is ice with a lower free board than that. Red are areas with higher surface roughness than 10 cm. Blue areas are ice with surface

roughness of less than 1 cm. Cyan areas have reflectivity indicating no snow cover (less than -7dB Echo Amplitude). For this study, yellow

and red, as well as magenta and blue classes are combined. The grey background of the surface roughness distribution denotes the region

that was not used to identify ice classes, as there was considerable mixing in this parameter region.

– DFYI/MYI: Snow covered ice with a surface roughness of more than 10 centimetres or a freeboard greater than the

higher inflection point in the freeboard distribution.

Because these labels are entirely defined by measurements of the ice surface (Fig. 2), we can also infer the probabilities of110

belonging to each class, by assuming a gaussian distribution of ALS freeboard and reflection measurements at each TSX pixel.

From the 49 ALS measurements, we compute the mean and standard deviation of the freeboard and can then compute the

probabilities of lying below or above any freeboard thresholds by using the error function. Explicitly, we integrate the area

under the curve of the gaussian distribution, above and below the threshold. Thus we obtain labels which give the probabilities

of belonging to a certain class, rather than discrete classes. Assuming a gaussian distribution allows us to also infer uncertainties115

of the surface roughness.

The derived labels from each scene are split into two mutually exclusive connected subsets. By connected we mean, that in

all but edge cases pixels are neighbouring ones from the same subset. The training set is made up of 75% of labels whilst the test

set consists of 20%. The remaining 5% of the data is used as a validation set. The validation data is used only to decide when
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Figure 3. Evolution of correlations between freeboard or surface roughness and SAR backscatter over time. Note that the surface roughness

is measured at the snow atmosphere interface and at correlation lenghts of 0.5 metres, whilst the SAR sensor is most sensitive to the ice snow

interface and roughness at correlation lengths at the wavelength of the sensor, which is only 3.1 centimetres.

Figure 4. Approximate probability density functions for the sigma nought backscatter of each class across the different polarization config-

urations, for one flight on the 8th of April. Note that no two classes can be reliably separated using backscatter alone. Colours are as defined

as in Fig. 2
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to stop training. All subsets (test, training, validation) contain data from every scene. Imbalances of the classes were handled120

by balancing the dataset for pixel-wise classifiers and weighting the classes inversely to their frequency for the segmentation

approaches, where an entire patch is segmented at once. Thus the training of the networks is set up so that performing equally

well for each class yields the lowest loss.

In Figure 3 the correlation between backscatter and surface topography measurements is shown. It becomes evident im-

mediately, that the backscatter characteristics alone are only very weakly correlated with the backscatter and thus separation125

using the backscatter alone would surely be futile. This is further underlined by looking at the backscatter distributions of

the delineated classes from the flight on april 8th (fig. 4), where the correlations are relatively average in regards to all other

flights. Here it is again obvious that the backscatter characteristics are not very valuable for class separation. Thus most of the

information needed to classify accurately must come from contextual data.

2.2 Robustness130

To test the robustness of each classifier, we will follow the same steps outlined in Kortum et al. (2022). In brief: Using the

Polarstern as an origin, a 3km x 3km region around the ship is used as the robustness test set. This area has been identified in

162 TerraSAR-X SM scenes from different days. The robustness is then defined as the probability of each pixel being classified

the same as in the previous and subsequent acquisitions (time between acquisitions is typically one day). Taking into account

that the surface conditions are changing over time and that Polarstern was not perfectly stationary, this approximation of the135

robustness will serve only as a lower bound of the actual robustness of the classifier. In summary we are operating under

the assumption that in a time period of two days, the percentage of ice that has changed class (e.g. through deformation) is

significantly smaller than the percentage of ice that has remained in the same class. Note that this test is only sensible for the

two solid ice classes and not for the OW/YI class, which is too dynamic on a daily timescale to be analysed in this manner. The

robustness is first computed for the two classes and their average is used as an indicator for the network’s robustness.140

2.3 The Network Architectures

In this paper, we will compare five different architectures: two established image classifiers in the VGG16 developed by

Simonyan and Zisserman (2015) (ice classification in e.g. Khaleghian et al. (2021b)) and the ConvNext network proposed

by Liu et al. (2022) (an improvement over ResNet, used for SAR sea ice classification in e.g. Song et al. (2021)), a custom

CNN (cCNN) pixel-wise classifier by Kortum et al. (2022) specifically designed for ice classification and two established145

segmentation models in the Unet by Ronneberger et al. (2015) (SAR sea ice classification in e.g. Nagi et al. (2021); Ren et al.

(2022)) and Unet++ proposed in Zhou et al. (2018, 2019) (used in e.g. Murashkin and Frost (2021)). These first three (VGG16,

ConvNext, cCNN) and last two (Unet, Unet++) models have one fundamental difference: Classification approaches (VGG16

etc.) are given a patch and are then asked to predict the class of the centre of the image. Segmentation approaches (Unet etc.)

are tasked to produce a label for every pixel in the patch at the same time. For the Unet++ we chose to average over the features150

of the multiple output layers in the deep supervision part of the model. The exact specifications of all the models can be found

in the appendix.
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Model Mean acc. [%] Std. of acc. [%] Mean KLD Std. of KLD Mean rb. [%] Std. of rb. [%]

VGG16 40.52 7.83 0.8493 0.0458 79.95 5.82

ConvNext 45.12 3.17 0.872 0.0363 81.16 4.84

cCNN 47.89 3.74 0.7886 0.0240 68.52 18.81

Unet 68.07 1.74 0.6032 0.0406 84.42 1.78

Unet++ 67.92 2.13 0.6249 0.0597 82.06 1.36
Table 1. Network performances on the independent test set after training. For brevity, we shortened accuracy to acc, standard deviation

to std and robustness to rb. The means and standard deviations are computed from the 10 models in the population for every architecture.

Best-in-category results are highlighted in bold font. Ten instances were trained for every model. The Unet and Unet++ architectures show

significantly better performance than the rest.

2.4 Training

During training, the networks are tasked with minimising the Kullback Leibler Divergence (KLD) between the output and the

label distributions. This allows us to fit the probabilities of each class occurring at each pixel, which we can infer from the155

ALS measurements. As this serves as a benchmark and comparison of these models concerning their applicability for sea ice

retrieval, no further optimisations have taken place. For each of the model architectures, ten separate instances are trained.

Training is stopped using the small independent validation set (5% of data). The model population allows some additional

insight into the reliability of each architecture. The ingested SAR data are pre-processed by converting each band to sigma

nought and then applying a logarithm. The incidence angle is provided in a third channel. The size of each patch to be classified160

is chosen to be 256x256 pixels, except for the cCNN which receives input patches at various scales (a 5x5, a 16x16 and a 64x64

pixel patch).

3 Results

The performance of different network architectures can be seen in table 1. They paint a clear picture of segmentation models’

(Unet, Unet++) improvement over pixel-wise classification approaches. Of the pixel-wise classification approaches, the custom165

CNN classifier performed best, yet it was still significantly inferior to the segmentation models. We speculate that part of the

reason for this is the high spatial resolution of the labels, as we get a label for every pixel from most of the ALS measurements.

The pixel-wise classifiers cannot make use of any relationships between or spatial properties of labels, like shape, sparsity and

correlations. This seems to be detrimental to their performance.

A more detailed analysis of the output of different models (Fig. 5) shows, how the VGG16 and ConvNext models struggle170

to relate all the information of the patch to only the classification of the central pixel, leading to a diffuse-looking classified

scene. This seems most pronounced for the ConvNext model. A possible reason for this are the larger convolutional kernels
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Figure 5. Comparison of classifications from different models, randomly selected from the ten instances trained. Colours are the same as the

classes discussed above, but the intensity is given by the predicted probabilities, so mixed colours can occur. This can be seen most easily in

the cCNN classification (c). The scene was acquired over the Polarstern (center of the images) on January 14th. The false colour composition

consists of HH, VV and HH/VV channels, normalised with a tanh function. The area shown is a 6 by 6 kilometre square.
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(7x7 in contrast to 3x3) used in the architecture. The cCNN seems to struggle with using contextual data to separate rough ice

and young ice. In general, the predicted probabilities at each pixel are higher in the non-dominant class, leading to a seemingly

different colour palette in this visualisation. The Unet and Unet++ classifications are largely similar. Some difficulty in the175

separation of deformed and young ice signatures persists as can be seen in the mixing of yellow and cyan areas.

It is also worth pointing out that the very same cCNN and a VGG16 performed at accuracies around 85-95% on manual

labels in Kortum et al. (2022), illustrating the difference between training and testing on quantitatively measured labels in

contrast to human-generated annotations.

Whilst the mean KLD’s are in accordance with the accuracies, the spread (std) of the KLD’s across the model populations180

seems to be very similar across all models and there is no clear gap between segmentation and classification approaches.

Overall, we cannot say that one model converges more reliably than another - as would be suggested by the accuracies alone.

It is also apparent, that the cCNN does not perform well in the robustness scores on this dataset. This model is considerably

smaller than the others (in terms of parameter count) and was heavily optimised using a different dataset, which seems to have

come at a cost of flexibilty/generality of the architecture. The spread of robustnesses of the segmentation models seems to be185

considerably smaller that those of the generative models - additionally indicating these approaches are more reliable for ice

classification from SAR.

The classifications (e.g. in Fig. 6) show a very plausible set of results, that align with the observations of members on

board the expedition. The fine labels at high resolution seem to have transcended into a similarly detailed classification map.

The examples in Fig 7 also illustrate a general increase of deformation in the first year ice: The magenta FYI area close to190

Polarstern, marked by a black square in figure 6, is getting progressively more deformed as time progresses (detail in Fig. 7).

The areas most prone to error seem to be the OW/YI classifications. This is to be expected as they are naturally the most sparse

in the training data set. Additionally, they are very dynamic, which leads to extremely diverse backscatter properties that can

be exhibited, in turn making them more difficult to classify.

We also observe decreasing correlation of backscatter and surface topography variables from the onset of the expedition195

until early April - particularly during January and February (3), where the MOSAiC expedition was met by numerous storms.

Some of the decorrelation can be accounted for because of snow accumulation and redistribution, but it is difficult to quantify

this phenomenon. However, since this trend is broken in April it seems that whatever drove this decorrelation is revertable and

therefore changes in the snow are a more plausible explanation than ice deformation.

4 Discussion200

The top models in our investigation perform at around 68% accuracy on the test data set (Tab. 1). The segmentation models

predictions are approximately 20% more accurate than the classification models. The only concrete difference between these

models is that the segmentation approaches can learn from the distribution of labels, which appears to be highly important.

Even the highest accuracies measured here are considerably lower than what many author’s report for algorithms trained with

10

https://doi.org/10.5194/tc-2023-72
Preprint. Discussion started: 3 July 2023
c© Author(s) 2023. CC BY 4.0 License.



Figure 6. Collection of classified subscenes (Unet, pixel spacing = 3.5m) including the MOSAiC floe, after a storm (a), in calm conditions

with some shearing indications (b) and with some breakup of the ice cover visible (c). The Polarstern location is indicated by the black circle.

The DFYI/MYI class probability is displayed in yellow, the LFYI probability in magenta and the OW/YI probability is cyan. The black

square marks the area shown at full resolution below (Fig. 7)

Figure 7. Full resolution excerpt from the scenes show in Fig. 6. The classified images reflect the increased deformation of the first year ice

area over time accurately, as the DFYI occurence rises. The DFYI fraction is computed inside of the black border. In the first scene some

misclassification of the open lead (cyan) as older, deformed ice (yellow) is seen (outside of the area we are computing the DFYI fraction in)

- this is a common issue in SAR sea ice retrieval as the backscatter can become very similar.
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human-made labels. To understand these discrepancies, we will discuss the main differences between these measured labels205

and human annotation.

The measured labels used in this study have some underlying difficulties, because we do not know the snow depth and

density, we do not know how strong the correlation of freeboard and ice-thickness is and cannot eliminate this error. Also the

reflectance used to disseminate young ice and open water is based purely on the coverage of the surface being snow free and

thus not directly correlated with ice age: if thin ice has formed the atmospheric conditions will dictate whether or not snow210

has gathered on top or if the bare ice is visible to the sensor. Thus the quality of labels could still be improved on, if more

information were available.

To assess the impact of the individual thresholds (e.g. the location of the inflection point in the freeboard distribution) we

also evaluated the top-performing unet architecture on the same dataset, but excluding points near the thresholds. To to this we

did not consider labels, where the certainty of the most probable class was lower than 90%. For example regions with local215

standard deviation of approximately 3cm, that means that points within 6cm of the thresholds are not considered and the exact

value of the thresholds have little bearing on the data considered. In case of the test dataset, these data points account for 24.1%

of all data. Under these circumstances, the average accuracy of the unet model is 72.5% which is an increase of only 4.18%

although 24.1% of the least certain labels where removed. Thus we can conclude that the exact location of the thresholds had

only marginal impact on model performance, lending increased confidence that the model performances are representative of220

performance evaluated against ground truth.

For comparison with human annotation/ ice chart we must mention the resolution. In our case, every individual pixel gets

its own class and there is no semantic grouping of pixels into the same class based on proximity or likeness. This is a stark

contrast to ice charts, where the labels are made up of only few polygons per scene. Even when not training from such ice

charts, humans generating training data for algorithms at high resolution generally limit themselves to areas which they can225

confidently identify. Not much can be said about the correctness of these labels per se, but one should keep in mind that in

these instances, the accuracy achieved by the classifier is constrained to those easy-to-identify regions and are therefore not

representative of the classifier’s performance on the whole. Because of the size of SAR acquistions obtaining labels at pixel

resolution from human annotation is not feasible. The great advantage that labels from measurements have is that they are truly

indicative of performance on the entire scope of ice conditions in the scene (every pixel is labelled, thus there is no selection230

bias). Only by holding the testing of our high resolution retrieval algorithms to this standard can we show with certainty when

an improved method of classification is developed, but of course to do so we are lacking available data sets.

In most data-driven approaches to classification, the performance of the classifier is limited by the quality of the labels.

Therefore, one should be careful when using manually labelled data, such as ice charts, as ground truth. These practices are

common in the current research - as not many other sources of labels are available. However, the potential is much greater than235

that. The great challenge of course remains, that high-resolution measurements are very sparse.

Because the MOSAiC mission provided us with an unmatched opportunity for training and testing algorithms with measured

labels over a long time period, this study has made obvious that there is considerable room for improvement even with modern

deep learning algorithms. It needs to be mentioned, that due to the spatial constraint to the area near the MOSAiC floe, the
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training dataset does not capture the full extent of possible winter ice conditions in the Arctic, thus we cannot expect the240

classifier to perform equally well on a pan-Arctic scale. Instances of OW/YI are very sparse and their entire span of possible

conditions and consequent radar response is not covered well by data. Since a better in-situ dataset is probably not going to

emerge in the near future, it is clear that measured labels alone are not enough to train a stable algorithm that can deal with the

full span of ice conditions. It seems that to achieve this, one would need to leverage a great number of scenes without labels.

Semi-supervised and self-supervised approaches come to mind. Some first examples of their development exist for optical data245

by HAN et al. (2019), ice and open water discrimination from SAR in Li et al. (2015); Khaleghian et al. (2021a) and for sea

ice classes from SAR in Imber (2022).

5 Conclusions

The MOSAiC expedition enabled the generation of a large dataset (ca. 20 million data points) of SAR acquisitions and appro-

priate labels delineated from in-situ laser scanning measurements. It has become clear that both the freeboard and the above250

snow surface roughness (at correlation lengths of 50 cm) are only weakly correlated with X-Band SAR backscatter, with aver-

age R2 values of 0.124 and 0.043 respectively. We have shown that deep-learning segmentation approaches such as the Unet

can approximate these labels from the SAR measurement at accuracies around 68%. We thus measured the performance of

modern network architectures on a representative set of labels for the first time. From the performances of the different models,

we can conclude that the segmentation approaches advantage of having access to the distribution of labels is crucial (20%255

accuracy) to the performance. It is notable that these label distributions at the scale of the measurement resolution are not

contained in ice charts or human annotations, which suggests that classifying accurately at the resolution of the measurement

when trained on human-annotated labels is improbable. As a more comprehensive dataset than created here is unlikely to be

acquired in the near future, newly developed classifiers aiming at classification at the resolution of the sensor will need to find

some way to gain access to the spatial ice type distributions to be successful.260
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Appendix A: List of Helicopter Flights

1 20191020_01_PS122-1_2-167

2 20191119_01_PS122-1_8-23

3 20191130_01_PS122-1_9-98

4 20191224_01_PS122-2_17-98

5 20191225_01_PS122-2_17-99

6 20191228_01_PS122-2_17-101

7 20200107_01_PS122-2_19-44

8 20200108_01_PS122-2_19-46

9 20200108_03_PS122-2_19-52

10 20200116_01_PS122-2_20-52

11 20200121_01_PS122-2_21-41

12 20200123_02_PS122-2_21-78

13 20200128_01_PS122-2_22-16

14 20200204_01_PS122-2_23-14

15 20200212_01_PS122-2_24-31

16 20200217_02_PS122-2_25-8

17 20200227_01_PS122-3_29-49

18 20200318_01_PS122-3_32-42

19 20200408_01_PS122-3_35-49

20 20200423_01_PS122-3_37-63

Table A1. List of the 20 helicopter flights used in this research. Data is published in Hutter et al. (2022a).

Appendix B: Network Architectures

We briefly present the network architectures used in this investigation. We make use of the following conventions to keep the

figures concise. FCX is short for a fully connected layer with X neurons. ConvX x Y denotes a 2D convolutional layer with

filter sizes X and number of filters Y. Unless otherwise specified the convolutional layers have stride 1. If a layer has multiple265

inputs, they are concatenated before being parsed to the layer.
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Table B1. VGG16 architecture as used in the paper. Published in Simonyan and Zisserman (2015). The ReLU activation is used throughout

the network. The padding is set to ’same’.

Table B2. The Unet architecture as used in this paper and published in Ronneberger et al. (2015). The ReLU activation is used throughout

the network and the padding is set to ’same’ where applicable.
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Table B3. The ConvNext-T architecture used in this paper. Developed in Liu et al. (2022).
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Table B4. The custom CNN architecture from Kortum et al. (2022) used in this paper. The inputs at different scales are flattened and

concatenated before being output to the fully connected layers. Leaky ReLU is used for activation and padding is set to ’valid’. The 16x16

pixel input is downscaled from the original scene by factor 5 and the 64x64 pixel input is a square cutout that is rescaled so that the width of

the entire scene is 64 pixels. The 1D input contains the relative coordinates of the pixel in the 64x64 pixel input.

Table B5. Unet++ architecture used in this paper, published in Zhou et al. (2018, 2019). Note that the left column is identical to the downwards

convolution side of the regular Unet and the lowest rows from left to right form the upwards side of the Unet. The Unet++ then uses extra

layers in between to extend the architecture. All layers within a cell are considered to be a block, so they are all executed before parsing the

output to the next block. All layers marked ’Softmax’ are averaged before the final linear layer and the softmax are applied. ReLU is used as

the activation function throughout and the padding is set to ’same’.
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