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Abstract. Automated sea ice charting from Synthetic Aperture Radar (SAR) has been researched for more than a decade and

still, we are not close to unlocking the full potential of automated solutions in terms of resolution and accuracy. The central

complications arise from ground truth data not being readily available in the polar regions. In this paper, we build a dataset from

20 near coincident X-Band SAR acquisitions and as many Airborne Laser Scanner (ALS) measurements from the Multidisci-

plinary drifting Observatory for the Study of Arctic Climate (MOSAiC), between October and May. This dataset is then used to5

assess the accuracy and robustness of five machine learning based approaches, by deriving classes from the freeboard, surface

roughness (standard deviation at 0.5m correlation length) and reflectance. It is shown that there is only a weak correlation of

the radar backscatter and the sea ice topography. Accuracies between 44% and 66% percent and robustnesses between 71% and

83% give a realistic insight into the performance of modern convolutional neural network architectures across a range of ice

conditions over 8 months. It also marks the first time algorithms are trained entirely with labels from coincident measurements,10

allowing for a probabilistic class retrieval. The results show that segmentation models able to learn from the class distribution

perform significantly better than pixel-wise classification approaches by nearly 20% accuracy on average.

1 Introduction

Sea ice classification from remote sensing and especially SAR instruments have been used for monitoring the Arctic sea ice

for multiple decades, with automation being proposed as early as the mid eighties by Fily and Rothrock (1986). However,15

even with the inception of advanced machine learning methods and modern data analysis, there does not yet exist a universally

reliable classifier to retrieve sea ice classes from radar imagery. The potential for such a classifier is obvious: Humans are not

able to match the speed and precision of an automated algorithm. Until now, however, this potential has yet to be fully unlocked;

Human-generated ice charts (for an overview regard the World Meteorologial Organizations overview by JCOMM (2017)) are

still dominant in operational usage, despite the considerable amount of research that has been focused on the subject. These20

products unfortunately can provide only coarse approximate labels of the sea ice. For cross-cutting research, a more detailed and
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Figure 1. Section of ALS measured freeboard over the MOSAiC floe on April 8, 2020. RV Polarstern can be seen in the center of the white

circle. Brighter values correspond to higher freeboard values whereas white areas indicate no data. The displayed freeboard range is 0 to 1.5

metres.

higher resolution of classification would be preferable and should be possible given the spatial resolution of the SAR sensors.

As a human analyst generating an ice chart has only limited time to annotate a SAR scene, such high-resolution labels are not

contained in the ice charts. Leads, for example, hot spots of ocean and atmosphere interaction and thus of particular interest for

the energy budgets, are generally not labelled in operational ice charting. At this point, with many different classifiers having25

been proposed and developed including domain knowledge based and centre-pixel as well as semantic segmentation models

(e.g. Kwok et al. (1992); Soh and Tsatsoulis (1999); Hara et al. (1995); Karvonen (2004); Ressel et al. (2015); Doulgeris (2015);

Johansson et al. (2020); Lohse et al. (2021)) one must ask the question why no meaningful direction has yet established itself

in the ongoing research. The answer to the question - aside from the complexity of the subject - is twofold. Firstly and most

important is the state of the data. Although we have a great wealth of satellite SAR acquisitions of the sea ice in diverse states30

and conditions, we lack the corresponding ground truth information. Secondly, the constantly varying and difficult-to-predict

drift and deformation of sea ice makes it nearly impossible to image the same area of sea ice over longer time series to evaluate

any proposed classifiers’ robustness. The latter is particularly true for high-resolution imagery. These two shortcomings open

the development of classifiers performing at or near the resolution of the SAR imagery to a plethora of different challenges

because we have almost no way to test, iterate and improve retrieval algorithms in a structured manner. This stifles the rate at35

which progress in the field can be made or even recognised.

On a mission to fill gaps in our knowledge about the Arctic sea ice and its climatology, the MOSAiC expedition launched in

the autumn of 2019 and the ship Polarstern spent a year adrift with the ice pack. Aboard, interdisciplinary teams of scientists

worked to collect as many data as possible, which will help to further our understanding of one of our earth’s most remote

regions. With the mission came the unique opportunity to collect exactly the type of ground truth over a long time period, that40
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is needed to test sea ice retrieval algorithms, with satellite-borne SAR data being acquired at the same time. An overview of

the snow and ice related activities is given in Nicolaus et al. (2022).

Ice and snow transects from Itkin et al. (2021) or drilling hold the most detailed information of the underlying ice. Unfortu-

nately, the spatial extents of these measurements are too sparse to be used for comparison with the satellite acquisitions. Aerial

measurements taken from helicopters, such as the Airborne Laser Scanner (ALS) data products by Hutter et al. (2022a, b) being45

used in this approach (Fig. 1) provide information about the height of the snow and/or ice surface above the local sea level, i.e.

freeboard, and surface reflectance at scales of kilometres to tens of kilometres. These data are therefore a prime candidate to

extract ground truth information for ice classification based on roughness and thickness. Because of the efforts made during the

MOSAiC expedition and the subsequent collocation for this work, the dataset used here is far larger than any previously used

data derived from measurements. However, it still suffers from a loss of generality from being constrained to certain region. It50

is none-the-less most likely the most complete (as in large) collocated dataset that we will be able to synthesise at least until

another expedition of the scope of MOSAiC comes along (which might not even happen before the first ice free summer in the

Arctic).

One prominent emerging method of segmenting image data are machine learning based approaches based on convolutional

neural networks, such as published in Simonyan and Zisserman (2015); He et al. (2015); Liu et al. (2022); Ronneberger et al.55

(2015); Zhou et al. (2018, 2019). Advancements in the field of machine vision are being made at a rapid pace, able to leverage

the improvements in chip design and the increasing amount of data that are being generated. The image-like properties of SAR

acquisitions mean that this knowledge is transferable to the ice classification domain (e.g. Boulze et al. (2020); Ullah et al.

(2021); Wang and Li (2021); Kortum et al. (2021, 2022)). Historically, this has been done with texture extraction and subsequent

dense neural networks as in Ressel et al. (2016); Singha et al. (2018); Murashkin et al. (2018), pixel-wise classification using60

image classifiers based on convolutional neural networks as by Boulze et al. (2020); Ullah et al. (2021) and segmentation

models that are able to segment an entire patch simultaneously as detailed in Wang and Li (2021). Previous studies have also

sought to use passive microwave data to derive labels Radhakrishnan et al. (2021), which consequently concentrate on much

larger scales.

In this study, we will use the unique opportunity provided by 20 instances of near-coincident (7 hours time difference on65

average) ALS and SAR data over a period of 8 months to compare a variety of machine learning-based classification approaches

in terms of classification accuracy and robustness on classes delineated directly from measurements. For the first time, we have

accurate, high resolution sea ice topography measurements of freeboard and surface reflectance with high spatial overlap and

low time differences between acquisitions to truly test the capability of retrieving freeboard and (above snow) surface roughness

based sea ice classes from SAR data. In contrast to existing ALS and SAR datasets, such as produced in Singha et al. (2018), the70

MOSAiC experiment provides the opportunity to monitor the same ice across a large temporal time span at high resolution. The

amount of colocations achieved here is significantly greater than in previous studies, which enables the training of deep learning

models requiring large datasets. Concretely, the questions we are trying to answer are: How do different CNN architectures

perform on labels derived from measurements (not human interpretation) and how does that influence future algorithm choices

if the aim is to produce classifications near the resolution and detail of the SAR measurements?75
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2 Methodology

2.1 The Data

The SAR component of the analysis is made up of TerraSAR-X X-band acquisitions in StripMap (SM) mode. The intensity

scenes are normalised to σ0 and calibration is performed as per the product specifications in Fritz et al. (2007). The resulting

scenes have a pixel spacing of 3.5 metres and a native radiometric resolution of 16 bit. Both HH and VV bands are acquired by80

the satellite simultaneously. This configuration of polarisations has been shown to yield valuable information for ice classifica-

tion in Ressel et al. (2016)Geldsetzer and Yackel (2009). As only 2 bands can be acquired simultaneously, the cross-pol band is

not present in the data. Each combination of two channels will have some shortcomings, however, so this needs to be accepted.

The footprint of a single scenes is typically around 50x15km. Other SAR data is not available at the resolution and frequency

to enable high spatial overlap with ALS measurements (in terms of number of pixels) at small enough time differences. At85

higher wavelengths, especially L-Band we would expect at a higher correlation between radar backscatter and ALS derived

surface roughness measured at spatial intervals of 0.5 metres. This would probably translate to higher classification accuracy

for deformed ice. In terms of generality of the derived results, the complexity of the spatial distribution of classes and hence

the core results derived in this study, we would expect to translate to coarser resolutions and other frequencies.

The ALS data from Hutter et al. (2022b, a) from 20 scenes (appendix A) between October 2019 and May 2020 are used90

to delineate sea ice classes. The data were acquired by flying a mow-the-lawn pattern over the ice near the MOSAiC central

observatory. The resulting ALS grid has a geospatial resolution of 0.5 metres. For midwinter flights in high latitudes of >85°N,

the post-processing of the helicopter INS/GPS data failed and ALS data processing was performed using a lower frequency

real-time navigation solution with metre-scale undulations in GPS altitude that propagated to the surface elevation retrieved

from the ALS. The undulations in the computed freeboard could be minimised using a correction calculated from swath-to-95

swath overlap. It should be noted that the local standard deviation of the freeboard is left intact by these processing artefacts

and can still be used to derive a parametrisation of the local surface roughness, where these undulations are present. An addi-

tional measurement aside from freeboard is the surface reflectance at the wavelength of the laser (1064 nm), which is useful to

identify regions of young ice that have not yet been covered by snow. For the acquisitions with unphysical undulations in the

freeboard measurement, freeboard was not used to delineate class labels. Instead, only classes which could be inferred from100

the surface roughness and reflectivity were used. The footprint of a single flight is typically around 5x10km.

Colocation: For each ALS grid, the first step for co-locating with SAR data is to find the SAR acquisition that is closest

to the ALS measurement time, whilst still having substantial spatial overlap. Then, by using the Polarstern ship to determine

a common coordinate system, the two measurements are fused by assigning each ALS data point to the closest SAR pixel105

(see. Kortum et al. (2021); Hendricks (2019).) In the common coordinate system, this means that the two measurements are in

the same TerraSAR-X grid cell relative to the ship. Because of the difference in resolutions (0.5m ALS and 3.5m SAR), we

obtain approximately 49 points of ALS measurements per SAR pixel. The freeboard and roughness are then computed as the

respective mean and standard deviation of these points. Investigation showed that the median and mean of the local distribu-
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tions where on average within less than a percent of the span of the distribution. This lends confidence, that the distribution is110

roughly symmetrical and thus the mean and standard deviation describe the statistical nature adequately. Using the Polarstern

as an origin of the common coordinate system is sensible, as we have accurate GPS positioning and heading to account for ice

drift and rotation. The matching of the two products using this method was accurate to a couple of metres. To further improve

the accuracy of colocation, a final translation and rotation was then determined manually. Afterwards, the features overlapped

perfectly at (TerraSAR-X) pixel resolution. The accuracy of co-location is made possible by more than daily TerraSAR-X SAR115

acquisitions of the MOSAiC floe, which helps keep the time differences between satellite and helicopter measurements small.

Determining labels: We have categorised the measured sea ice into three classes. A label is given for each SAR pixel,

for which ALS information is available. For ease of reference, we are giving them names which are easier to contextualise.

However, the exact definitions of the classes is given here. They are fully given by the ALS measurement. The three classes120

are: Open water and young ice (OW/YI), level first-year ice (LFYI) and deformed first-year and multiyear ice (DFYI/MYI).

These classes we define as follows (see Fig. 2 for a visual aid):

– OW/YI: Ice whose reflectance (range corrected target echo amplitude) is significantly lower than that of the surrounding

snow covered ice. Typically values around -7dB were used as a threshold value and adjusted manually if needed. Note,

that finer separation here is not possible from the data alone, but from reports of scientists on the expedition we know125

that most ice in this class will have already formed a thin ice layer and entirely open water was very rare during the flights.

– LFYI: Snow-covered ice with a surface roughness (standard deviation of freeboard measurements at scales of the ALS

grid (0.5m) calculated over one SAR pixel (3.5× 3.5 m2)) of less than 1 centimetre or a freeboard value lower than the

higher inflection point in the freeboard distribution (typically around 40 centimetres).130

– DFYI/MYI: Snow covered ice with a surface roughness of more than 10 centimetres or a freeboard greater than the

higher inflection point in the freeboard distribution.

As detailed above, ice types are identified by thresholds in the reflectance, surface roughness or freeboard. The thresholds for

the roughness and freeboard are indicated in the histograms in Fig. 2 by the different background colors. We can infer the135

probabilities of lying above or below a threshold for every pixel by assuming a Gaussian distribution of ALS freeboard and

reflection measurements at each SAR pixel. From the 49 ALS measurements mapped to one SAR pixel, we compute the mean

and standard deviation of the freeboard and can then compute the probabilities of lying below or above the globally defined

freeboard thresholds by using the error function. Explicitly, we integrate the area under the curve of the estimated Gaussian

probability density function, above and below the threshold. An example is shown in Fig. 3. Thus we obtain ’soft labels’ which140

give the probabilities of belonging to a certain class, rather than discrete classes. Assuming a Gaussian distribution allows us

to also infer uncertainties of the surface roughness. One could have classified each of the 49 ALS measurements mapped to
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Figure 2. Derived labels from the ALS acquisition on the April 8, 2020 overlayed on the HH channel of the near-coincident SAR measure-

ment (left) and estimated probability density functions from the distributions of freeboard and surface roughness (in this case this is the local

standard deviation of the freeboard) (right). Yellow indicates ice with a higher freeboard than the high inflection point of the distribution.

Magenta is ice with a lower free board than that. Red are areas with higher surface roughness than 10 cm. Blue areas are ice with surface

roughness of less than 1 cm. Cyan areas have reflectivity indicating no snow cover (less than -7dB Echo Amplitude). For this study, yellow

and red, as well as magenta and blue classes are combined. The grey background of the surface roughness distribution denotes the region

that was not used to identify ice classes, as there was considerable mixing in this parameter region. At the bottom approximate probability

density functions (PDFs) for the sigma nought backscatter of each class across the different polarization configurations are shown. Note that

no two classes can be reliably separated using backscatter alone. All of the pdfs have been smoothed with Gaussian kernel smoothing.

one SAR pixel and then used the relative occurrences as probabilities. However, this simplification to a Gaussian distribution

leads to an inaccuracy of the probabilities (derived from freeboard) of only ≈ 0.16% on average, but significantly increased

computational efficiency.145
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Figure 3. Soft labels are derived for one SAR pixel by assuming a Gaussian distribution (colored) of the 49 ALS observations (grey his-

togram) inside of it and then integrating the area under the pdf curve above and below the threshold. In the given example the probabilities

are close to 50%.

The derived labels from each scene are split into three mutually exclusive connected subsets. By connected we mean, that

in all but edge cases pixels are neighbouring ones from the same subset. The training set is made up of 80% of labels whilst

the test and validation sets consists of 10% each. The validation data is used only to decide when to stop training. All subsets

(test, training, validation) contain data from every scene. Imbalances of the classes were handled by balancing the dataset for

pixel-wise classifiers and weighting the classes inversely to their frequency for the segmentation approaches, where an entire150

patch is segmented at once. Thus the training of the networks is set up so that performing equally well for each class yields the

lowest loss. As the classes are not balanced in the labels, better performance would certainly be achieved on the training data

set without balancing the classes, but it would hinder the generalisation of the classifier and make the results more difficult

to interpret. As generalisation to a larger space of ice conditions is a property we would like to be reflected in the results as

directly as possible, balancing was undertaken here.155

In Figure 4 the correlation between backscatter and surface topography measurements is shown. It becomes evident imme-

diately, that the backscatter characteristics are only very weakly correlated with the topography and thus separation using the

backscatter alone would surely be futile. This is further underlined by looking at the backscatter distributions of the delin-

eated classes from the flight on April 8th (fig. 2, bottom), where the correlations are relatively average in regards to all other

flights. Here it is again obvious that the backscatter characteristics are only somewhat valuable for class separation. Thus the160

information needed to classify accurately must in large part be derived from contextual data.
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Figure 4. Evolution of correlations between freeboard [fb] or surface roughness [rg] and HH SAR backscatter [σ0]over time. Bottom plot

shows correllations plotted against incidence angle. Note that the surface roughness is measured at the snow atmosphere interface and at

correlation lenghts of 0.5 metres, whilst the SAR sensor is most sensitive to the ice snow interface and roughness at correlation lengths at the

wavelength of the sensor, which is only 3.1 centimetres. The same analysis with VV channels gives very similar results.
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2.2 Robustness

To test the robustness of each classifier, we will follow the same steps outlined in Kortum et al. (2022). In brief: Using the

Polarstern as an origin, a 3km x 3km region around the ship is used as the robustness test set. This area has been identified in

162 TerraSAR-X (TSX) SM scenes from different days. The robustness is then defined as the probability of each pixel being165

classified the same as in the previous and subsequent acquisitions (time between acquisitions is typically one day). Taking into

account that the surface conditions are changing over time and that Polarstern was not perfectly stationary, this approximation

of the robustness will serve only as a lower bound of the actual robustness of the classifier. In summary we are operating under

the assumption that in a time period of two days, the percentage of ice that has changed class (e.g. through deformation) is

significantly smaller than the percentage of ice that has remained in the same class. Note that this test is only sensible for the170

two solid ice classes and not for the OW/YI class, which is too dynamic on a daily timescale to be analysed in this manner. The

robustness is first computed for the two classes and their average is used as an indicator for the network’s robustness.

2.3 The Network Architectures

In this paper, we will compare five different architectures: two established image classifiers in the VGG16 developed by

Simonyan and Zisserman (2015) (ice classification in e.g. Khaleghian et al. (2021b)) and the ConvNext network proposed175

by Liu et al. (2022) (an improvement over ResNet, used for SAR sea ice classification in e.g. Song et al. (2021)), a custom

CNN (cCNN) pixel-wise classifier by Kortum et al. (2022) specifically designed for ice classification and two established

segmentation models in the Unet by Ronneberger et al. (2015) (SAR sea ice classification in e.g. Nagi et al. (2021); Ren et al.

(2022)) and Unet++ proposed in Zhou et al. (2018, 2019) (used in e.g. Murashkin and Frost (2021)). These first three (VGG16,

ConvNext, cCNN) and last two (Unet, Unet++) models have one fundamental difference: Classification approaches (VGG16180

etc.) are given a patch and are then asked to predict the class of the centre of the image. Segmentation approaches (Unet etc.)

are tasked to produce a label for every pixel in the patch at the same time.The exact specifications of all the models can be

found in the appendix. A short overview over the core features of the models is given here.

The oldest of the models, the VGG16 was originally developed for image classification. It uses convolutions of filter size

three and maxpooling layers to reduce the spatial dimensions. Finally the model architecture is completed with fully connected185

layers. The core idea is to extract increasingly complex features in the convolutional blocks and only to keep the most prominent

once in the maxpool operations. Finally this generates a feature vector of complex spatial features, which is used by the fully

connected layers to infer a class.

The ConvNext model is an implementation of some core advantages that self-attention based transformer models have

brought to the image classification domain in a convolutional framework. The model uses skip connections which were made190

a staple in large networks by the ResNet architecture and convolutional blocks using large filters, an inverted bottleneck and

depth-wise convolutions inspired by transformer models. It is a more modern design achieving significantly higher scores on

image classification tasks, yet is not designed for centre-pixel classification as is typical in sea ice retrieval applications.
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The custom CNN model uses multiple zoom levels as inputs and is constrained with few number of parameters and fewer

layers than the other model. The central design philosophy here is to avoid overfitting through model constraint. This model195

architecture was optimised with performance on coarser human annotations in mind.

The Unet model follows a similar approach to the VGG16 in the initial (encoding) stage of the network, where features are

disseminated by convolutional layers. However, in the second part of the model these features are upsamled again to create a

two dimensional semantic segmentation map. The core advantage over centre-pixel classifiers lies in the fact that inter-label

dependencies and relations can be learned and exploited by the architecture.200

The Unet++ keeps the encoding-decoding framework of the original Unet but adds more intermediate layers at various scales

and fuses the features from multiple scales to make a more informed prediction. We chose to average over the features of the

multiple output layers in the deep supervision part of the model.

It is important to note that as little as possible was changed about the architectures themselves to keep true to the models that

were proposed in the original publications - otherwise the results would be harder to interpret with the efforts and successes of205

optimisation techniques being an unknown factor.

2.4 Training

During training, the networks are tasked with minimising the categorical crossentropy between the output and the label dis-

tributions. This allows us to fit the probabilities of each class occurring at each pixel, which we can infer from the ALS

measurements. Minimising the cross-entropy gives the same result as minimising the Kullback-Leibler Divergence (KLD). As210

this serves as a benchmark and comparison of these models concerning their applicability for sea ice retrieval, no further op-

timisations have taken place. For each of the model architectures, ten separate instances are from scratch. Training is stopped

using a spatially independent validation set (10% of data), after the model hasn’t improved since the last 100,000 training

samples. Testing is done on another spatially non-overlapping 10% of data, the remaining (disjoint) 80% of data are used for

training (see figure 5) for details. Training multiple instances allows some additional insight into the variabilities. The ingested215

SAR data are pre-processed by converting each band to sigma nought and then applying a logarithm. The incidence angle is

provided in a third channel. The adam optimizer proposed by Kingma and Ba (2017) is used to train the models, with the

learning rate set to 10−4. The size of each patch to be classified is chosen to be 256x256 pixels, except for the cCNN which

receives input patches at various scales (a 5x5, a 16x16 and a 64x64 pixel patch).

3 Results220

The performance of different network architectures can be seen in table 1. They paint a clear picture of segmentation mod-

els’ (Unet, Unet++) improvement over centre-pixel classification approaches. Of the pixel-wise classification approaches, the

custom CNN classifier performed best on unseen test data, yet it was still significantly inferior to the segmentation models.

We speculate that part of the reason for this is the high spatial resolution of the labels, as we get a label for every pixel from

most of the ALS measurements. The pixel-wise classifiers cannot make use of any relationships between or spatial properties225
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Figure 5. Split of training, test and validation data demonstrated on a helicopter product from the 23rd of April. The left hand side shows the

different criteria (as in figure 2) and the right hand side shows the derived training data with splits indicated by the dotted lines. The same

procedure was carried out for all 20 flights.

of labels, like shape, sparsity and correlations. This seems to be detrimental to their performance. Except for the cCNN which

was designed to avoid overfitting, the other centre-pixel classifiers show a large discrepancy between training and test scores,

whilst the semantic segmentations models have generalised much more effectively.

A more detailed analysis of the output of different models (Fig. 6) shows, how the VGG16 and ConvNext models struggle to

relate all the information of the patch to only the classification of the central pixel, leading to a diffuse-looking classified scene.230

This seems most pronounced for the ConvNext model. A possible reason for this are the larger convolutional kernels (7x7 in

contrast to 3x3) used in the architecture. (A retraining with a kernel size of 3x3 confirmed this increased the average accuracy

by around 5%). The cCNN seems to struggle with using contextual data to separate rough ice and young ice. In general, the

predicted probabilities at each pixel are higher in the non-dominant class, leading to a seemingly different colour palette in this
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Figure 6. Comparison of classifications from different models, randomly selected from the ten instances trained. Colours are the same as the

classes discussed above, but the intensity is given by the predicted probabilities, so mixed colours can occur. This can be seen most easily in

the cCNN classification (c). The scene was acquired over the Polarstern (center of the images) on January 14th. The false colour composition

consists of HH, VV and HH/VV channels, normalised with a tanh function. The area shown is a 6 by 6 kilometre square.
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Model train acc. [%] test acc [%] train KLD test KLD rb. [%]

VGG16 57.80 ± 7.07 44.00 ± 1.79 0.6468 ± 0.0873 0.838 ± 0.0416 80.31 ± 5.59

ConvNext 56.63 ± 5.21 44.72 ± 1.47 0.704 ± 0.0742 0.8784 ± 0.0368 81.45 ± 5.6

cCNN 47.14 ± 1.92 47.65 ± 1.85 0.7635 ± 0.0188 0.7724 ± 0.0269 71.12 ± 15.85

Unet 67.84 ± 2.39 65.18 ± 1.08 0.5769 ± 0.0307 0.6057 ± 0.0316 83.12 ± 1.96

Unet++ 66.06 ± 1.6 66.22 ± 1.3 0.6104 ± 0.0201 0.6374 ± 0.022 82.82 ± 1.33
Table 1. Network performances on the independent test set after training. For brevity, we shortened accuracy to ’acc’ and robustness to ’rb’.

The means and standard deviations are computed from the 10 models in the population for every architecture. Best-in-category results on

independent test sets are highlighted in bold font. Ten instances were trained for every model. The Unet and Unet++ architectures show

significantly better performance than the other models tested.

visualisation. The Unet and Unet++ classifications are largely similar. Some difficulty in the separation of deformed and young235

ice signatures persists as can be seen in the mixing of yellow and cyan areas.

It is also worth pointing out that the very same cCNN and a VGG16 performed at accuracies around 85-95% on manual labels

in Kortum et al. (2022), illustrating the difference between training and testing on quantitatively measured labels in contrast to

human-generated annotations. In Ren et al. (2022), the Unet is reported to perform sea ice and open water separation on manual

labels at 93-95 % accuracy. Wang and Li (2021) report accuracies of 96 % for the same task, using ice charts as training data240

and test data and 94% accuraciy when comparing to an operational sea ice cover product (Interactive Multisensor Snow and

Ice Mapping System, IMS). Murashkin et al. (2018) show classification accuracies of the Unet++ around 96% on manuallly

labelled training and test data across 6 classes

Whilst the mean KLD’s are in accordance with the accuracies, the spread (std) of the KLD’s across the model populations

seems to be very similar across all models and there is no clear gap between segmentation and classification approaches.245

Overall, we cannot say that one model converges more reliably than another - as would be suggested by the accuracies alone.

It is also apparent, that the cCNN does not perform well in the robustness scores on this dataset. This model is considerably

smaller than the others (in terms of parameter count) and was heavily optimised using a different dataset, which seems to have

come at a cost of flexibilty/generality of the architecture. The spread of robustnesses of the segmentation models seems to be

considerably smaller that those of the generative models - additionally indicating these approaches are more reliable for ice250

classification from SAR.

The classifications (e.g. in Fig. 7) show a very plausible set of results, that align with the observations of members on

board the expedition. The fine labels at high resolution seem to have transcended into a similarly detailed classification map.

The examples in Fig 8 also illustrate a general increase of deformation in the first year ice: The magenta FYI area close to

Polarstern, marked by a black square in figure 7, is getting progressively more deformed as time progresses (detail in Fig. 8).255

The areas most prone to error seem to be the OW/YI classifications. This is to be expected as they are naturally the most sparse

in the training data set. Additionally, they are very dynamic, which leads to extremely diverse backscatter properties that can

be exhibited, in turn making them more difficult to classify.
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Figure 7. Collection of classified subscenes (Unet, pixel spacing = 3.5m) including the MOSAiC floe, after a storm (a), in calm conditions

with some shearing indications (b) and with some breakup of the ice cover visible (c). The Polarstern location is indicated by the black circle.

The DFYI/MYI class probability is displayed in yellow, the LFYI probability in magenta and the OW/YI probability is cyan. The black

square marks the area shown at full resolution below (Fig. 8)

We also observe decreasing correlation of backscatter and surface topography variables from the onset of the expedition until

early April - particularly during January and February (4), where the MOSAiC expedition was met by numerous storms. Some260

of the decorrelation can be accounted for because of snow accumulation and redistribution, but it is difficult to quantify this

phenomenon. However, the incidence angle of the scenes also changes and the increase of incidence angle beyond 45 degrees

is shown to lead to a continuous decrease in correlation between ice surface characteristics and SAR backscatter.

It should also be noted that the use of one-hot encoded labels leads to a decrease of 8% accuracy in comparison to

smooth/probabilistic labels for the Unet architecture.265

4 Discussion

The top models in our investigation perform at around 68% accuracy on the test data set (Tab. 1). The segmentation models

predictions are approximately 20% more accurate than the classification models. The only concrete difference between these

models is that the segmentation approaches can learn from the distribution of labels, which appears to be highly important

to generalise to unknown regions. The centre-pixel classifiers show a much larger difference between test and training sets.270

Even the highest accuracies measured here are considerably lower than what many author’s report for algorithms trained with

human-made labels. To understand these discrepancies, we will discuss the main differences between these measured labels

and human annotation.

The measured labels used in this study have some underlying difficulties, because we do not know the snow depth and

density, we do not know how strong the correlation of freeboard and ice-thickness is and cannot eliminate this error. Also the275
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Figure 8. Full resolution excerpt from the scenes show in Fig. 7. The classified images reflect the increased deformation of the first year ice

area over time accurately, as the DFYI occurence rises. The DFYI fraction is computed inside of the black border. In the first scene some

misclassification of the open lead (cyan) as older, deformed ice (yellow) is seen (outside of the area we are computing the DFYI fraction in)

- this is a common issue in SAR sea ice retrieval as the backscatter can become very similar, as also reported by e.g. Guo et al. (2023).

reflectance used to disseminate young ice and open water is based purely on the coverage of the surface being snow free and

thus not directly correlated with ice age: if thin ice has formed the atmospheric conditions will dictate whether or not snow

has gathered on top or if the bare ice is visible to the sensor. Thus the quality of labels could still be improved on, if more

information were available.

To assess the impact of the individual thresholds (e.g. the location of the inflection point in the freeboard distribution) we280

also evaluated the top-performing Unet architecture on the same dataset, but excluding points near the thresholds. To do this

we did not consider labels, where the certainty of the most probable class was lower than 90%. For example regions with local

standard deviation of approximately 3cm, that means that points within 6cm of the thresholds are not considered and the exact

value of the thresholds have little bearing on the data considered. In case of the test dataset, these data points account for 24.1%

of all data. Under these circumstances, the average accuracy of the unet model is 72.5% which is an increase of only 4.18%285

although 24.1% of the least certain labels where removed. Thus we can conclude that the exact location of the thresholds had

only marginal impact on model performance, lending increased confidence that the model performances are representative of

performance evaluated against ground truth.

When comparing the data presented here with human annotations/ice charts, one must mention the resolution. In our case,

every individual pixel gets its own class and there is no semantic grouping of pixels into the same class based on proximity or290

likeness. This is a stark contrast to ice charts, where the labels are made up of only few polygons per scene. Even when not

training from such ice charts, humans generating training data for algorithms at high resolution generally limit themselves to

areas which they can confidently identify. Not much can be said about the correctness of these labels per se, but one should
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keep in mind that in these instances, the accuracy achieved by the classifier is constrained to those easy-to-identify regions and

are therefore not representative of the classifier’s performance on the whole. Because of the size of SAR acquistions obtaining295

labels at pixel resolution from human annotation is not feasible. The great advantage that labels from measurements have is

that they are truly indicative of performance on the entire scope of ice conditions in the scene (every pixel is labelled, thus there

is no selection bias). Only by holding the testing of our high resolution retrieval algorithms to this standard can we show with

certainty when an improved method of classification is developed, but of course to do so we are lacking available data sets.

This study had only a small effective study region and a large temporal span to test the diverse conditions. Overall the300

constancy of the ice in the scenes should only improve the classifiers’ performances. Unfortunately the 20 helicopter flights are

not quite enough to make meaningful statements about temporal changes in performance, as the differences in performance will

be outweighed by the local conditions in the scene. Additionally seasons in the data where one would expect the classification to

be most difficult (freeze-up and pre early melt onset) are only very sparsely represented in the data. This means the contributions

of the data sparsity, seasonality and spatial variability cannot be meaningfully separated.305

In the summer season the ice surface is dominated by wet snow, bare ice and melt ponds and more open water is found

between floes. The spatial distribution of classes is very distinctive between the surface types, so one can expect the main result

of the difference between centre-pixel classifiers and segmentation models to persist.

In most data-driven approaches to classification, the performance of the classifier is limited by the quality of the labels.

Therefore, one should be careful when using manually labelled data, such as ice charts, as ground truth. These practices are310

common in the current research - as not many other sources of labels are available. However, the potential is much greater than

that. The great challenge of course remains, that high-resolution measurements are very sparse.

Because the MOSAiC mission provided us with an unmatched opportunity for training and testing algorithms with measured

labels over a long time period, this study has made obvious that there is considerable room for improvement even with modern

deep learning algorithms. It needs to be mentioned, that due to the spatial constraint to the area near the MOSAiC floe, the315

training dataset does not capture the full extent of possible winter ice conditions in the Arctic, thus we cannot expect the

classifier to perform equally well on a pan-Arctic scale. Instances of OW/YI are very sparse and their entire span of possible

conditions and consequent radar response is not covered well by data. Since a better in-situ dataset is probably not going to

emerge in the near future, it is clear that measured labels alone are not enough to train a stable algorithm that can deal with the

full span of ice conditions. It seems that to achieve this, one would need to leverage a great number of scenes without labels.320

Semi-supervised and self-supervised approaches come to mind. Some first examples of their development exist for optical data

by HAN et al. (2019), ice and open water discrimination from SAR in Li et al. (2015); Khaleghian et al. (2021a) and for sea

ice classes from SAR in Imber (2022).

5 Conclusions

The MOSAiC expedition enabled the generation of a large dataset (ca. 20 million data points) of SAR acquisitions and appro-325

priate labels delineated from in-situ laser scanning measurements. It has become clear that both the freeboard and the above
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snow surface roughness (at correlation lengths of 50 cm) are only weakly correlated with X-Band SAR backscatter, with aver-

age R2 values of 0.124 and 0.043 respectively. We have shown that deep-learning segmentation approaches such as the Unet

can approximate these labels from the SAR measurement at accuracies around 68%. We thus measured the performance of

modern network architectures on a representative set of labels for the first time and it is much more difficult to classify at this330

high detail than at coarser label resolution (e.g ice charts). From the performances of the different models, we can conclude that

the semantic segmentation approaches advantage of being able to make use of the spatial relationship of predictions is crucial

(20% accuracy) to the generalising to unseen regions. It is notable that these label distributions at the scale of the measurement

resolution are not contained in ice charts or human annotations, which suggests that classifying accurately at the resolution of

the SAR measurement when trained on human-annotated labels is improbable. As a more comprehensive dataset than created335

here is unlikely to be acquired in the near future, newly developed classifiers aiming at classification at the resolution of the

sensor will need to find some way to gain access to the spatial ice type distributions to be successful.

Appendix A: List of Helicopter Flights

1 20191020_01_PS122-1_2-167

2 20191119_01_PS122-1_8-23

3 20191130_01_PS122-1_9-98

4 20191224_01_PS122-2_17-98

5 20191225_01_PS122-2_17-99

6 20191228_01_PS122-2_17-101

7 20200107_01_PS122-2_19-44

8 20200108_01_PS122-2_19-46

9 20200108_03_PS122-2_19-52

10 20200116_01_PS122-2_20-52

11 20200121_01_PS122-2_21-41

12 20200123_02_PS122-2_21-78

13 20200128_01_PS122-2_22-16

14 20200204_01_PS122-2_23-14

15 20200212_01_PS122-2_24-31

16 20200217_02_PS122-2_25-8

17 20200227_01_PS122-3_29-49

18 20200318_01_PS122-3_32-42

19 20200408_01_PS122-3_35-49

20 20200423_01_PS122-3_37-63

Table A1. List of the 20 helicopter flights used in this research. Data is published in Hutter et al. (2022a).

Appendix B: Network Architectures

We briefly present the network architectures used in this investigation. We make use of the following conventions to keep the340

figures concise. FCX is short for a fully connected layer with X neurons. ConvX x Y denotes a 2D convolutional layer with

filter sizes X and number of filters Y. Unless otherwise specified the convolutional layers have stride 1. If a layer has multiple

inputs, they are concatenated before being parsed to the layer.
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Table B1. VGG16 architecture as used in the paper. Published in Simonyan and Zisserman (2015). The ReLU activation is used throughout

the network. The padding is set to ’same’.

Table B2. The Unet architecture as used in this paper and published in Ronneberger et al. (2015). The ReLU activation is used throughout

the network and the padding is set to ’same’ where applicable.
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Table B3. The ConvNext-T architecture used in this paper. Developed in Liu et al. (2022).
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Table B4. The custom CNN architecture from Kortum et al. (2022) used in this paper. The inputs at different scales are flattened and

concatenated before being output to the fully connected layers. Leaky ReLU is used for activation and padding is set to ’valid’. The 16x16

pixel input is downscaled from the original scene by factor 5 and the 64x64 pixel input is a square cutout that is rescaled so that the width of

the entire scene is 64 pixels. The 1D input contains the relative coordinates of the pixel in the 64x64 pixel input.

Table B5. Unet++ architecture used in this paper, published in Zhou et al. (2018, 2019). Note that the left column is identical to the downwards

convolution side of the regular Unet and the lowest rows from left to right form the upwards side of the Unet. The Unet++ then uses extra

layers in between to extend the architecture. All layers within a cell are considered to be a block, so they are all executed before parsing the

output to the next block. All layers marked ’Softmax’ are averaged before the final linear layer and the softmax are applied. ReLU is used as

the activation function throughout and the padding is set to ’same’.
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