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Abstract. Spatiotemporal snow depth (SD) mapping in the Indian Western Himalayan (WH) region is essential in many 

applications pertaining to hydrology, natural disaster management, climate, etc. In-situ techniques for SD measurement are 

not sufficient to represent the high spatiotemporal variability of SD in WH. Currently, low-frequency passive microwave 15 

(PMW) remote sensing-based algorithms are extensively used to monitor SD at regional and global scales.  

However, fewer PMW SD estimation studies are carried out for WH till date, which are mainly confined to small subregions 

of WH. In addition, the majority of the available PMW SD models for WH locations are developed using limited data and 

less parameters, therefore cannot be implemented for the entire region. Further, these models have not considered the 

auxiliary parameters such as location, topography, snow cover days (SCD) into consideration and have poor accuracy 20 

(particularly in deep snow), and coarse spatial resolution. 

Considering the high spatiotemporal variability of snow depth characteristics across WH region, region wise multifactor 

models are developed for the first time to estimate SD at high spatial resolution of 500 m x 500 m for three different WH 

zones i.e., Lower Himalayan Zone (LHZ), Middle Himalayan Zone (MHZ), and Upper Himalayan Zone (UHZ). 

Multifrequency brightness temperature (TB) observations from Advanced Microwave Scanning Radiometer 2 (AMSR2), 25 

SCDs data, terrain parameters (i.e., elevation, slope and ruggedness), geolocation for the winter period (October to March) 

during 2012-13 to 2016-17 are used for developing the SD models for dry snow conditions.  Different regression approaches 

(i.e., linear, logarithmic, reciprocal, and power) are used to develop snow depth models, which are evaluated further to find if 

any of these models can address the heterogeneous association between SD observations and PMW TB. From the results, it 

observed from the analysis that power regression SD model has improved accuracy in all WH zones with the less Root Mean 30 

Square Error (RMSE) in MHZ (i.e., 27.21 cm) compared to LHZ (32.87 cm) and UHZ (42.81 cm). Spatial distribution of 
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model derived SD is highly affected by SCDs, terrain parameters, geolocation parameters and have better SD estimates 

compared to regional and global products in all zones. Overall results indicate that the proposed multifactor SD models have 

achieved higher accuracy in deep snowpack (i.e., SD >25 cm) of WH compared to previously developed SD models. 

Introduction 35 

Snow is an essential land cover type and an important cryosphere component. The snow cover encompasses an aerial extent 

of approximately 45 x 106 km2 in the peak winter over the northern hemisphere (Estilow et al., 2015; Lemke et al., 2007). 

Among many cryosphere regions in the northern hemisphere, the Indian Western Himalayan (WH) is a unique snow-covered 

region with a complex topography and high spatiotemporal variability in snow depth (SD), and diverse land cover types 

(Singh et al., 2018; Das and Sarwade, 2008; Thakur et al., 2019; Sharma et al., 2014; Singh et al., 2016). WH comprises 40 

three mountain zones, e.g., Lower Himalayan Zone (LHZ), Middle Himalayan Zone (MHZ), and Upper Himalayan Zone 

(UHZ), and receives significant snowfall during winter (Dimri and Dash, 2012; Gurung et al., 2011; Kumar et al., 2019; 

Sharma and Ganju, 2000; Singh et al., 2016, 2014). The variation in snow volume and its melt rate affects the availability of 

fresh water for drinking, hydropower, irrigation facilities, and ecosystem conditions for millions of people residing in the 

foothills of WH zones (Singh et al., 2016; Thakur et al., 2019; Nüsser et al., 2019; Negi et al., 2020; Ahmad, 2020; Mukherji 45 

et al., 2019; Vishwakarma et al., 2022). Further, the variability in snow characteristics such as SD, density, volume, etc., and 

mountainous topography triggers frequent avalanches in the WH region, which have resulted in more than 1000 casualties as 

reported in different studies (Ganju et al., 2004; McClung, 2016; Gusain et al., 2016). Therefore, quantifying snow variables, 

especially SD, is an essential field of study in the WH. 

Traditionally SD information is acquired using in-situ measurements from snow stakes, snow poles, ground penetrating 50 

radar, automatic weather stations, etc. (Dong, 2018; Kinar and Pomeroy, 2015). In-situ methods provide accurate SD; 

however, these techniques have several drawbacks, such as limited spatial coverage, operational and maintenance constraints 

under harsh weather and complex terrain conditions, instrument calibration and malfunctioning issues, and high logistics and 

personnel requirements (Kinar and Pomeroy, 2015; Gusain et al., 2016). In WH, because of the rocky terrain and harsh 

climatic conditions, a sparse network of snow monitoring stations is available (Saraf et al., 1999; Singh et al., 2016; Gusain 55 

et al., 2016). Apart from this, the available SD observations from the in-situ network are spatially and temporally 

discontinuous and inadequate for demonstrating the snowpack at a regional scale, particularly in the high-altitude regions of 

WH. Space-borne passive microwave (PMW) remote sensing observations can partially compensate for these limitations and 

effectively monitor large areas with SD at a comparatively low cost under all weather and terrain conditions (Dietz et al., 

2012; Amlien, 2008; Bernier, 1987; Xiao et al., 2018). Sensitivity to snowpack characteristics, global coverage, daily 60 
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temporal resolution, and availability of extensive archive of historical data makes space-borne PMW remote sensing data 

extensively useful for the retrieval of SD (Dietz et al., 2012; Tedesco and Narvekar, 2010; Luojus et al., 2021; Chang et al., 

1987).  

The historical PMW data, ongoing and planned missions have paved the way for developing numerous SD inversion 

algorithms across the different cryosphere regions of the earth. Many studies for SD estimation have been carried out using 65 

multifrequency brightness temperature (TB) observations collected from PMW sensors onboard different satellites (Chang et 

al., 1987; Saraf et al., 1999; Xiao et al., 2018; Kelly et al., 2005; Takala et al., 2011; Dai et al., 2018; Jiang et al., 2014; 

Singh et al., 2012). The volumetric PMW scattering increases, whereas PMW TB decreases with an increase in SD. The 

PMW brightness temperature difference (BTD) of 18 and 36 GHz frequency increases with an increase in SD up to a 

specific thickness, then saturates depending on snowpack conditions (Rango et al., 1979; Chang et al., 1987; Tedesco and 70 

Narvekar, 2010). Hence, many studies of PMW SD inversion relied on empirical models derived using BTD between 18 and 

36 GHz frequency TB observations (Chang et al., 1987; Saraf et al., 1999; Foster et al., 1997; Kelly et al., 2005, 2003; Das 

and Sarwade, 2008). Many of the empirical models for SD are developed by generalizing the snowpack parameters such as 

snow density, grain size, etc. (Chang et al., 1987, 1997; Kelly et al., 2003). However, these parameters dynamically vary 

with space and time. As a result, the applicability of many empirical SD models (Chang et al., 1987; Foster et al., 1997; 75 

Aschbacher, 1989) outside their study region is not good, as evident from several studies (Dai et al., 2018; Wang et al., 2019, 

2020; Saraf et al., 1999; Xiao et al., 2018).  Further, many PMW studies have shown that the error in estimated SD using TB 

data varies with snow conditions (i.e., wetness, grain size, density), land cover, topography, ground SD, etc. (Dai et al., 

2018; Tedesco and Narvekar, 2010; Tedesco et al., 2010; Kelly et al., 2002; Yang et al., 2021; Wang et al., 2010; Ansari et 

al., 2019). Different combinations of multifrequency PMW TB observations, snow information (i.e., snow cover fraction, 80 

grain size, density), and auxiliary data such as topographical and landcover information are used in the PMW-based SD 

model development to account for these limitations (Dai et al., 2018; Wang et al., 2020, 2019). Many SD modeling 

approaches comprising static empirical linear (Chang et al., 1987; Saraf et al., 1999; Singh et al., 2012) and non-linear 

models (Wang et al., 2020, 2019), dynamic models (Tedesco et al., 2010; Grippa et al., 2004; Wei et al., 2021), snow 

emission models (Dai et al., 2018; Yang et al., 2021), machine learning algorithms (Xiao et al., 2018; Yang et al., 2020), 85 

assimilation schemes (Kwon et al., 2017; Graf et al., 2006), etc., are developed using PMW TB, and auxiliary datasets for 

different regions. 

Despite the significant progress in PMW-based SD estimation, very few studies have been carried out in the Indian WH 

using PMW data (Singh et al., 2012; Das and Sarwade, 2008; Saraf et al., 1999; Singh et al., 2015). WH being the tropical 

region, experiences significant changes in temperature leading to frequent melt-freeze snow events causing snow grain 90 

growth, which introduces errors in the estimation of PMW SD (Singh et al., 2015). Further, the limited availability of in-situ 
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SD observations, very high SD (i.e., > 1 m), and high spatiotemporal variability in snowpack characteristics pose numerous 

constraints for PMW SD estimation in WH. Consequently, no studies were reported for PMW SD estimation in WH till 

1999. For the first time, Saraf et al. (1999) estimated the average monthly SD using Scanning Multichannel Microwave 

Radiometer (SMMR) data onboard Nimbus-7 during 1979-1987 for the Sutlej valley region of Himalaya using the modified 95 

Chang’s model (Chang et al., 1992). However, the applicability of this model (Saraf et al., 1999; Chang et al., 1992) over the 

entire Himalaya cannot be justified as the model is developed using less amount of in-situ data (from 11 stations) where the 

stations are not distributed, and is not tested outside Sutlej basin. Singh and Mishra (2006) have proposed three empirical 

models using Advanced Scanning Microwave Radiometer for Earth (AMSR-E) data (horizontally polarized TB of 18.7 and 

36.5 GHz) for SD estimation in the Pir-Panjal, Greater Himalaya, and Karakoram ranges of WH, respectively. Following this 100 

study, Singh et al. (2007) used different empirical models for SD estimation using multifrequency Special Sensor 

Microwave/Imager (SSM/I) data (i.e., TB of 19, 22, 37, and 89 GHz during 1997-2002) over the Patseo region. However, 

these studies (Singh and Mishra, 2006; Singh et al., 2007; Saraf et al., 1999) have not provided any quantitative details about 

the accuracy of SD estimates and are not evaluated using independent SD observations.  Das and Sarwade (2008) used 18.7 

GHz and 36.5 GHz horizontally polarized data from AMSR-E and modified the coefficients of Chang et al. (1987)’s model 105 

to suit the Indian Himalaya. The modified model has shown a mean absolute error (MAE) of 20.34 cm in SD estimates but 

failed to estimate SD above 60 cm.  Singh et al. (2012) have developed multiple empirical SD models for three SD classes, 

i.e., 1 to 5 cm, 5 to 50 cm, and 50 to 200 cm in Pir-Panjal, Greater Himalaya, and Karakoram regions of WH using TB data 

of different frequencies from SSM/I. Their approach (Singh et al., 2012) has used the scattering index to estimate snow 

cover, and TB thresholds for identifying the SD class and estimation of SD. In another study, Singh et al. (2015) developed 110 

PMW SD models for the Dhundi and Patseo regions of Himalaya using data from ground-borne radiometers and in-situ 

observations. However, SD models are developed using observations collected from only two field surveys, evaluated using 

a single day observation of AMSR-E TB data, and not tested spatiotemporally. Recently, Singh et al. (2020) developed an 

empirical algorithm for the Patseo region of the MHZ using Advanced Microwave Scanning Radiometer 2 (AMSR2) 18.7 

GHz and 36.5 GHz TB (i.e., during 2012-2016) and in-situ observations. They observed that the estimated SD is very close 115 

to ground data with Root Mean Square Error (RMSE) of ~16 cm and MAE of ~13.9 cm. 

Despite the development of various PMW SD models for Himalaya in the last two decades (1999 -2020), there are many 

constraints in the spatiotemporal estimation of SD for the WH region. Many of the previous studies for SD estimation in WH 

are carried out specifically for subregions of WH, such as the Sutlej basin, Dhundi, Patseo, etc. The PMW TB observations 

are affected by heterogeneity in snowpack properties, land cover, topography, etc. (Trujillo et al., 2007; Wang et al., 2010; 120 

Che et al., 2016; Derksen, 2008; Foster et al., 2005).  However, previous studies (Das and Sarwade, 2008; Saraf et al., 1999; 

Singh et al., 2012; Singh et al., 2020, 2007; Singh and Mishra, 2006) have not accounted for the aforementioned variables. 
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Further, the accuracy of SD retrievals from these models is also not evaluated with respect to the varying terrain and snow 

parameters. The accuracy of operational PMW SD products available in the WH region, i.e., AMSR2 SD, has not been 

evaluated. 125 

Additionally, the AMSR2 SD product and previous PMW SD models have course resolution and have limitations for their 

potential utility in various applications such as avalanche susceptibility, hydrological modeling, etc., especially at the 

regional scale. Considering these research gaps, in the current study, different linear and non-linear empirical models are 

developed to improve and estimate SD at high resolution, i.e., 500 m for different WH zones, using a multifactor approach. 

In this approach, multifrequency PMW observations from AMSR2 (during 2012-2019), terrain parameters, landcover 130 

parameters, and Moderate Resolution Imaging Spectroradiometer (MODIS) derived snow cover product are statically 

correlated with the ground SD observations for the development and evaluation of the SD models. The accuracy of PMW 

multifactor SD models’ estimates is compared with previous models and the AMSR2 SD product.  Further, in this study, the 

SD retrievals accuracy is also analyzed with respect to different auxiliary parameters. The present study has the following 

three objectives: 135 

1. Development of multifactor SD models to estimate SD at high resolution for different WH zones. 

2. Comparison and evaluation of proposed multifactor model, previous SD models and AMSR2 SD products in 

different WH zones. 

3. Analysis of multifactor SD retrievals accuracy with respect to selected auxiliary variables (i.e., elevation, slope, 

land cover types, and SCDs). 140 

Following this introduction section (section 1), the current article is organized as follows. The topographical and 

geographical description of the study area is described in section 2. The details of the in-situ observations network and 

various remote sensing datasets used for model development and evaluation are also given in the same section. Following 

that, the methodology used in developing the multifactor model is presented in section 3. Subsequently, section 4 describes 

the performance of different multifactor models developed for the three WH zones, a comparison of the different SD models, 145 

and results from the analysis of multifactor SD model retrievals with respect to auxiliary parameters. Discussion and 

summary are given in sections 5 and 6, respectively. 

2. Study area and Datasets 

The topographic and environmental conditions prevailing in WH are detailed in section 2.1. This study makes use of in-situ 

data from the snow monitoring network and various spaceborne data for the development of SD models for different WH 150 
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zones. These datasets along with their sources, are listed in Table 1 and briefly discussed in the following subsections from 

2.2 to 2.7. 

2.1 Study area 

Himalaya is the largest snow-covered territory outside the polar regions in the world (Gurung et al., 2011). The present study 

encompasses the entire WH, which is a significant portion of the Indian Himalaya, situated in the states of Jammu & 155 

Kashmir, Ladakh, and Himachal Pradesh (see Figure. 1). WH extends between longitudes from 73° 15' E to 79° 45' E, 

latitudes from 30° 00' N to 39° N and covers an area of 360,866 km2. WH is unique with its perennial snow-covered 

mountain peaks and seasonal snow-covered valleys. Approximately 65% of the terrain in WH is situated at an altitude of 

more than 3000 m above mean sea level (m.s.l.) and is underlain by extremely steep and rugged mountains. The high-

altitude terrain and mountain topography influence both winter precipitation (caused by western disturbances) and monsoon 160 

precipitation patterns (Dimri and Dash, 2012). Due to prevailing topographical and weather conditions in WH, forest cover is 

present only up to 3000 m (m.s.l.), and between 3000-4000 m (m.s.l.), thin vegetation consisting of shrubs and grass is 

present. Whereas above 4000 m (m.s.l.) altitude, vegetation is not present, and the landcover there is predominantly 

comprised of barren land with snow and ice. WH region generally receives snow from October to March; from April 

onwards, snow melt generates runoff contributing water to many rivers and streams within the region (Dimri and Dash, 165 

2012; Sharma et al., 2014). 

In this study, three WH zones i.e., LHZ, MHZ, and UHZ defined based on the historical local meteorological and avalanche 

occurrence data (Sharma and Ganju, 2000) are used for developing multifactor SD models. The geomorphic and climate 

characteristics of these zones are given in Table 2. The three zones differ in regional topographical and climatic conditions 

with varying elevations, temperatures, rainfall, snowfall, etc. The LHZ has a sub-tropical climate, and MHZ has a temperate 170 

climate, while the UHZ has polar climatic conditions with the presence of permanent snow. Further, these zones have 

different timing and intensity of precipitation. LHZ has comparatively warmer conditions, with mean monthly temperatures 

varying between (-3⁰ C to 18⁰ C) than MHZ (-10⁰ C to 14⁰ C) and UHZ (-25⁰ C to 0⁰ C). As the latitude increase, the amount 

of precipitation deceases in WH.  Negi et al. (2018) reported average winter precipitation (in terms of snow water 

equivalent) of ~ 804 mm, 549 mm, and 431 mm in the LHZ, MHZ, and UHZ, respectively, during 1991-2015. Further, the 175 

snowpack persistence varies based on the local weather conditions, which mainly alter with elevation across the three WH 

zones (Sharma et al., 2014). 
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2.2 Ground observatory stations data 

In WH, Defence Geoinformatics Research Establishment (DGRE) (formally known as Snow and Avalanche Research 

Establishment) operates and maintains a network of 43 observatory stations (see Figure. 1) which measures daily in-situ SD 180 

twice (i.e., forenoon and afternoon) along with other meteorological parameters such as temperature, rainfall, etc. Out of 

total 43 stations, 16 stations are located in the LHZ, 13 in the MHZ, and 14 in the UHZ of WH. In the LHZ, MHZ, and UHZ 

observatories, elevation varies between 1652 to 3785 m (m.s.l.), 2440 to 4950 m (m.s.l.), and 3960 to 5995 m (m.s.l.), 

respectively. In this study, in-situ data comprising station name, date, latitude, longitude, and SD for the 43 stations is 

obtained for the snow period from 2012-13 to 2018-19. The in-situ data is grouped according to the WH zones for the 185 

development of different multifactor SD models. The mean in-situ SD of stations varies between 11 to 256 cm in the LHZ, 

23 to 136 cm in the MHZ, and 52 to 356 cm in the UHZ during the study period. 

2.3 AMSR2 brightness temperatures data 

AMSR2 is a PMW sensor onboard the Japanese Aerospace Exploration Agency (JAXA)’s Global Change Observation 

Mission 1st - Water (GCOM-W1) SHIZUKU, launched in May 2012 (Imaoka et al., 2012). It is a follow-on instrument to 190 

AMSR and AMSR-E sensors, and records upwelling microwave emission from the earth's surface in 14 channels in the form 

of TB. AMSR2 TB observations are available in 7 frequencies (6.9, 7.3, 10.65, 18.7, 23.8, 36.5, and 89 GHz, hereafter 

referred to as 6, 7, 10, 18, 23 ,36 and 89 GHz) at two polarizations (horizontal and vertical) for ascending and descending 

orbit pass with a temporal resolution of 1 day. The multifrequency TB observations are re-gridded to 10 km spatial 

resolution (level-3 product) and are archived in the JAXA portal (https://gportal.jaxa.jp). In many locations of WH, the 195 

temperatures exceed 0⁰ C from April to September, leading to snow melt (Negi et al., 2018; Sharma et al., 2014). The 

resulting wet snow can lead to saturation of PMW TB (Dong et al., 2005; Stiles and Ulaby, 1980; Tedesco et al., 2014), 

affecting the accuracy of SD estimates from PMW SD models. Therefore, in this study, the level-3 TB of ascending and 

descending orbital pass from the AMSR2 sensor are obtained for the snow/winter period (October to March) from 2012 to 

2019 to develop the SD models. 200 

2.4 AMSR2 snow depth product 

In this study, the AMSR2 SD products have been downloaded from the website (https://gportal.jaxa.jp) during the snow 

season (October to March) from 2012 to 2019. The SD products corresponding to ascending (13:30 ± 15 min) and 

descending (01:30 ± 15 min) pass have been used for comparison with the multifactor model SD estimates. The standard 

AMSR2 SD algorithm primarily uses the daily 10, 18, 23, 36, and 89 GHz frequencies brightness temperature data and the 205 

https://gportal.jaxa.jp/
https://gportal.jaxa.jp/
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surface physical temperature (T) data. In the development of the AMSR2 SD algorithm (Kelly 2009), the following steps and 

conditions have been considered.  

Step 1- Isolate wet and dry snow/no-snow-covered regions: If dry snow is present in any region, it will satisfy the conditions 

(1) and (2) (move to step 2); otherwise, there is no snow-covered region, or only wet snow is present. 

𝑇𝑏36𝐻 < 245𝐾 (1) 

𝑇𝑏36𝑉 < 255𝐾 (2) 

Step 2- Isolate moderate/deep and shallow snow-covered areas: If moderate/deep snow is present, it will satisfy the 210 

conditions (3) and (4) (move to step 4) (Derksen 2008); otherwise, shallow snow is present or no snow-covered area (move 

to step 3)  

 𝑻𝒃𝟏𝟎𝑯 − 𝑻𝒃𝟑𝟔𝑯 > 𝟎𝑲 (3) 

𝑻𝒃𝟏𝟎𝑽 − 𝑻𝒃𝟑𝟔𝑽 > 𝟎𝑲 (4) 

Step 3- Identify a shallow snow-covered area. If it satisfies conditions in (5), then shallow snow is present, and a flag of 5.0 

cm is set for the SD; otherwise, no snow is present 

𝑇𝑏89𝑉 < 255𝐾,  𝑇𝑏89𝐻 < 265𝐾, 𝑇𝑏23𝑉 > 𝑇𝑏89𝑉, 𝑇𝑏23𝐻 > 𝑇𝑏89𝐻  𝑎𝑛𝑑 𝑇 < 267𝐾 (5) 

Step 4: Estimation of moderate to deep SD using Equation (6)  215 

𝑺𝑫

= [
𝟏

𝒍𝒐𝒈𝟏𝟎(𝑻𝒃𝟑𝟔𝑽 − 𝑻𝒃𝟑𝟔𝑯)𝑿( 𝑻𝒃𝟏𝟎𝑽 − 𝑻𝒃𝟑𝟔𝑽)
]

+ [
𝟏

𝒍𝒐𝒈𝟏𝟎(𝑻𝒃𝟏𝟖𝑽 − 𝑻𝒃𝟏𝟖𝑯)𝑿( 𝑻𝒃𝟏𝟎𝑽 − 𝑻𝒃𝟏𝟖𝑽)
] 

(6) 

 

The developed SD algorithm was tested using World Meteorological Organization (WMO) collected SD measurements from 

242 and 254 sites around world during the 2002-2003 and 2003-2004 winter season, respectively. In this only non-mountain 

stations with at least 30 days of measured snow were used in the comparison. In the recent study conduct over the 

mountainous terrain of Northern Xinjiang Region, China by the Zhang et al. (2017) the AMSR2 SD products were compared 220 

with ground collected SD data. They observed RMSE of 18.5 cm (in AMSR2_A) and 23.4 cm (in AMSR2_D) up to 30 cm 

of ground SD. However, AMSR2 SD products have not been evaluated for Indian Western Himalayan regions till date. 

2.5 SRTM Digital elevation model  

Topography affects the rate of snow accumulation, ablation, and redistribution.  In the current study, Shuttle Radar 

Topography Mission (SRTM) digital elevation model (DEM) version 004 data at 90 m spatial resolution is used to account 225 

for the topographic effects in the SD model. SRTM DEM for the entire earth is generated using the interferometric synthetic 
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aperture radar method (Farr et al., 2007; Jarvis et al., 2008) and can be downloaded from the web portal 

(http:/srtm.csi.cgiar.org) in Geo-TIFF format. It has a minimum vertical accuracy of 16 m and RMSE of 9.73 m across the 

globe (Mukul et al., 2017). The SRTM DEM data is re-projected to the GCS-WGS-1984 coordinate reference system, then 

mosaiced, extracted, and resampled to 500 m spatial resolution. The elevation varies significantly across different WH 230 

ranges.  LHZ and MHZ have less elevated topography than UHZ (See Figure. 1). 

2.6 Daily MODIS cloud-free snow cover day products 

In WH, snow cover area (SCA)/snow cover pixels vary during different months of the year due to change in snowfall and 

snow ablation pattern. Least SCA has been observed during the month of August/September and maximum SCA was 

observed during the month of February/March. Snow cover duration (SCD) depicts the number of consecutive days snow 235 

cover is present for a given pixel. It provides information regarding the persistence of snowpack and is useful in improving 

PMW SD estimates (Singh et al., 2016; Wang et al., 2019; Dai et al., 2018).  In this study, daily could-free MODIS snow 

cover product (i.e., M*D10A1GL06) generated for high-mountain Asia (Muhammad and Thapa, 2020) at 500 m spatial 

resolution (https://doi.org/10.1594/PANGAEA.918198) has been used to generate SCD product. for the study area during the 

data period. Previously, Sharma et al. (2014) and Singh et al. (2018) have generated and evaluated the SCD maps for snow-240 

covered Indian WH. These studies (Sharma et al., 2014, Singh et al., 2018) revealed a higher average monthly SCD (>80%) 

in high-altitude regions. These studies' results further emphasize a strong longitudinal and altitudinal dependence on SCD, 

snow cover accumulation and ablation in WH. Therefore, SCD information can provide valuable insights to improve the SD 

model. Daily binary snow cover maps prepared from M*D10A1GL06 are used to identify the snow cover presence for a 

given pixel. These binary snow cover maps are used for computing the SCD information for each day from October 1st of 245 

each year to September 30th of the following year during the study period. In this study, SCD of the WH region is retrieved 

only during the study period i.e. from October to March for each year. 

2.7 MODIS land cover product 

The heterogeneity in landcover significantly impacts the amount of upwelling PMW radiation,  affecting the TB at different 

frequencies for a given pixel. The effect of different types of land cover in PMW SD retrievals has been investigated in many 250 

studies used (Friedl et al., 2002; Yu et al., 2012; Wang et al., 2016; Wang et al., 2019). In this study, MODIS Level 3 yearly 

land cover product (i.e., MCD12Q1) for the year 2019 is downloaded from https://www.ladsweb.modaps.eosdis.nasa.gov/ 

website at 500 m spatial resolution. MCD12Q1 product depicts land cover in 17 classes as per the International Geosphere-

Biosphere Program (IGBP) system. These 17 classes are further regrouped into four categories i.e., bare land, grass land, 

forest, and water, which account for ~55.9%, 27.4%, 16.3%, and 0.29% of the total WH area in 2019, respectively. The 255 

https://doi.org/10.1594/PANGAEA.918198
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reclassified landcover data has been used along with other datasets for the development of multifactor SD models for 

different WH regions. 

3.  Methodology 

Different steps followed for developing and validating of the multifactor SD model(s) are given in the following subsections 

from 3.1 to 3.5. The general outline of the methodology adopted is shown in Figure. 2. 260 

3.1 Data preprocessing 

Different remote sensing datasets comprising PMW TB (from AMSR2), SRTM DEM, MODIS landcover product and 

MODIS SCD are used in the current study. These products are natively present in different spatial resolutions and coordinate 

systems. Hence, all remote sensing datasets are processed using ArcGIS software to match the spatial extent, coordinate 

system, and spatial resolution. The brightness temperature and SD datasets downloaded from JAXA portal have northern 265 

hemisphere polar stereographic coordinate system and are present in the HDF5 format. These are reprojected to WGS 1984 

coordinate system and are converted to tiff format with help of format conversion tool developed by the JAXA. Following 

that ArcGIS software is used for resampling the BT imagery to 500 m. No additional processing is carried out in the current 

work as the brightness temperature dataset acquired from JAXA are level-3 product. The brightness temperature from each 

image for all stations is then retrieved programmatically using python. The extracted TB data is used for calculating the 270 

BTD. The BTD is calculated between lower and higher frequency TB observations for each day during the study period.  

Following the BTD calculation, the SRTM DEM product is re-projected, mosaiced, and resampled to 500 m spatial 

resolution. Different terrain parameters, such as slope, aspect, and surface roughness, are derived from the resampled DEM 

product. SCD product is already available in 500 m spatial resolution. Therefore, it is processed only to match the extent and 

coordinate reference system (i.e., GCS-WGS 1984) of other datasets. Following the resolution and coordinate system 275 

matching process, for all DGRE observatory locations, the data from remote sensing products (i.e., TB, elevation, slope, 

ruggedness, geographical locations and SCD) is extracted for the winter period from 2012-13 to 2018-19. It is known that 

the forest cover intercepts the upwelling radiation from the ground underneath the snowpack and causes uncertainty in the 

snow depth estimates of PMW SD models (Che et al., 2008). Therefore, the forest cover fraction has been calculated using 

MODIS land cover type product (i.e., MCD12Q1) for a 10 km point buffer around each observatory site. The retrieved 280 

values are used to minimize the forest cover impact by dividing the brightness temperature observations with the value of 

non-forest fraction (i.e., 1- forest fraction) for a given pixel as suggested by Foster et al., (1997). 
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In this study, the forenoon SD observations, descending pass AMSR2 TB data, terrain parameters (i.e., slope, aspect, 

ruggedness), geographical locations and SCD are paired based on date and station location. These data are then checked for 

discrepancies such as missing values, incorrect values, outliers, etc. There are no missing values for AMSR2 TB, SRTM 285 

elevation, SCD observations for the in-situ stations over WH region. However, samples containing any other discrepancies 

are removed. After data preprocessing, a total of ~13,242 samples, with each sample comprising geographical location, TB, 

terrain parameters, and SCD, are retained. Using these samples, the data for five years snow period, i.e., from 2012-13 to 

2016-17, is used to develop multifactor SD algorithms for different zones of WH. the remaining two years data of snow 

period, i.e., from 2017-18 to 2018-19, is used to compare and validate the multifactor SD model results. 290 

3.2 Identification of dry snow pixel 

Along with snow cover, frozen ground, rainfall, and cold desert conditions affect the upwelling microwave emission from 

the earth's surface and impact PMW TB recorded by spaceborne sensors (Ferraro et al., 1996; Grody and Basist, 1996). 

Further, wet snow pixels and surface water bodies cause PMW absorption and reduce volume scattering from snow grains 

(Stiles and Ulaby, 1980). Consequently, the inclusion of TB values from these pixels in the development and evaluation of 295 

the model results in large uncertainty in SD estimates (Tedesco et al., 2014; Dietz et al., 2012; Foster et al., 2005; Dong et 

al., 2005). Therefore, before developing SD algorithms, dry snow pixels must be segregated from other pixels. Grody and 

Basist (1996) have developed a decision tree to identify dry snow pixels from other scattering pixels using TB of different 

frequencies. Grody and Basist’s decision tree makes use of different filters (see Figure. 3) based on the values of TB 

observations to separate snow from non-snow pixels. This study uses multifrequency AMSR2 TB data with Grody’s 300 

decision tree to identify snow pixels. 

3.3 Selection of multifactor SD model parameters 

Many of the initial PMW SD models have relied on TB from 18 and 36 GHz channels for estimating SD (Chang et al., 1987; 

Saraf et al., 1999; Das and Sarwade, 2008; Kelly et al., 2003; Chang et al., 1997). However, these models have limitations in 

estimating shallow and deep snowpacks. The sensitivity of PMW TB to SD decreases once the SD reaches a threshold depth 305 

(Wang et al., 2019; Dai et al., 2018; Das and Sarwade, 2008; Kelly et al., 2003). TB of higher frequencies (i.e., 36 GHz, 89 

GHz) saturate before lower frequencies (i.e., 10 GHz, 18 GHz) as SD increases. The lower frequency (i.e., 10 GHz) has the 

potential to retrieve deep snow cover, while the higher frequency (i.e., 89 GHz) can provide shallow snow information(Kelly 

et al., 2003). Therefore, the inclusion of higher frequencies (i.e., 89 GHz) and lower frequencies (i.e., 10, 23 GHz) are 

investigated in many studies, which have resulted in improved SD estimates (Kelly et al., 2003; Wang et al., 2019; Xiao et 310 

al., 2020b; Wei et al., 2021). Hence, PMW TB of 10, 18, 23, 36, and 89 GHz are used in this study. Apart from single 
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channel SD, 40 combinations of TB, i.e., BTD of different frequencies and polarizations, are also considered. Terrain 

parameters (i.e., elevation, slope, aspect, surface roughness), location (latitude, longitude), landcover, and SCD also affect 

characteristics of snowpack and PMW TB (Saydi and Ding, 2020; Sharma et al., 2014; Wang et al., 2010; Ansari et al., 

2019). Thus, overall, 57 parameters (i.e., TB – 10, BTD – 40, terrain parameters – 4, location – 2, SCD – 1) are considered in 315 

the process of SD model development. However, of the 57 parameters, it is likely that some parameters are redundant and do 

not necessarily add any value to the model. For example, TB of 10H and 10V have a correlation of 0.9 and using both 

TB10H, and TB10V is not useful and can cause additional problems due to multicollinearity. Further, the use of a large 

number of independent variables leads to a curse of dimensionality, which poses challenges in model development by 

decreasing the model’s interpretability, increasing the computational time and resources, and often overfitting (Velliangiri et 320 

al., 2019; Obaid et al., 2019). These problems can be addressed by performing optimal parameter selection for model 

development (Chandrashekar and Sahin, 2014). Optimal parameter selection reduces the data dimensionality and eliminates 

irrelevant data from the original dataset. 

 

This study considers data from the snow period between 2012-13 to 2016-17 of the entire WH for optimal parameter 325 

selection. To select the necessary parameters for the SD model, all 57 parameters are used independently with in-situ SD to 

develop single-parameter linear regression models.  While developing these models, evaluation is carried out using the 

leave-one-outcross-validation (LOOCV) method (Webb et al., 2011) for screening necessary parameters. The LOOCV 

method is widely used by various researchers (Gusain et al., 2016; Joshi et al., 2017; Wang et al., 2019) to conduct the 

validation of models and assess the model's accuracy. In LOOCV, the observational dataset is used to create n - number of 330 

regression models (n is no of samples). In each of the n-models, a different testing sample is selected, and other observation 

samples are used to develop the regression model. The overall performance of the model is calculated by combining all 

predictions (for the omitted samples) from the n-models. The accuracy of the models is calculated using the correlation 

coefficient (R) and RMSE. The results of LOOCV from the models developed with all 57 parameters (See section 4.2) are 

analyzed to select the most valuable features for SD model development. 335 

3.4 Development of SD models 

This study implements four different regression models (i.e., linear, logarithmic, power, and reciprocal) to develop SD 

models. Different WH zones, i.e., LHZ, MHZ, and UHZ, have different topographic, environmental, and snowfall 

conditions. Hence, in this study, SD models are developed separately for each WH zone. Data from 2012-13 to 2016-17 is 

used for the development of the different SD models. Further, out of 57 parameters, 13 parameters are selected from the 340 

results of the LOOCV evaluation. These 13 parameters have a good correlation with in-situ SD and are used in developing 
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the multifactor SD models using four types of regression. The general form of the four types of regression models is given in 

equations (7)-(10). 

𝑦 = 𝛼1𝑥1 + 𝛼2𝑥2 + ⋯ + 𝛼𝑖𝑥𝑖 + c  (7) 

𝑦 = 𝛼1𝐼𝑛𝑥1 + 𝛼2𝐼𝑛𝑥2 + ⋯ + 𝛼𝑖𝐼𝑛𝑥𝑖 + 𝑐  (8) 

𝑦 = c𝑥1
𝛼1𝑥2

𝛼2
…………….

𝑥𝑖
𝛼𝑖   (9) 

𝑦 = 𝛼1

1

𝑥1
+ 𝛼2

1

𝑥2
+ ⋯ + 𝛼𝑖

1

𝑥𝑖
+ 𝑐 

 (10) 

where, y is the ground observed SD values; 𝑥1, 𝑥2, ......., and 𝑥 i are the screened parameters; 𝛼1, 𝛼2, …, and 𝛼𝑖  are the 

regression coefficients of the multiparameter models; and c is the offset constant, and i represents the number of parameters. 345 

3.5 Validation of SD model(s) 

The multifactor SD models for different WH zones are validated using temporally independent in-situ SD observations 

during 2017-18 and 2018-19. The accuracy of SD models’ estimates is evaluated using standard regression metrics, i.e., R, 

and RMSE. Additionally, the efficacy of the proposed multifactor SD models is analyzed by comparing the accuracy of the 

multifactor model with regional (Das and Sarwade, 2008; Singh et al., 2020) and heritage SD model (Chang et al., 1987) for 350 

different ranges of WH. Chang et al. (1987), Das and Sarwade (2008), and Singh et al. (2020) SD models are given in 

Equations (11), (12), and (13), respectively. 

The comparison is carried out by estimating SD from all these stated models using the validation data present between the 

2017-18 to 2018-19.  

 355 

SD Chang et al. (1987) = 1.59 *(TB18H – TB36H) (11) 

SD Das et al. (2008) = 3.16 *(TB18H – TB36H) + 24.25 (12) 

SD Singh et al. (2020) = -7.58 *(TB18V – TB36V) + 233.71 (13) 

 

Where, TB denotes the brightness temperature values, 18, and 36 indicate the frequency of TB in GHz, V and H are the 

vertical and horizontal polarization, respectively.  

 Apart from the aforementioned comparative analysis, a random sample image from the study area for a single day 

(February 3rd , 2019) is taken. Then, the estimated SD over the selected area using the multifactor SD model(s) is spatially 360 

compared with AMSR2 operational products (See section 4.5). This spatial comparison helps in understanding how the 
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developed multifactor SD model(s) differs from the AMSR2 operational SD products in representing SD information over 

WH. The magnitude of in-situ SD, terrain parameters, and SCD can significantly affect the accuracy of the PMW SD model 

in the study region. Therefore, the accuracy of operational AMSR2 SD products and multifactor SD models with respect to 

varying ground SD, topographic elevation, and SCD is determined in different WH zones (see Section 4.6.). 365 

4. Results and analysis 

The insights from the analysis of in-situ SD observations in WH zones are reported in section 4.1. Following that, the results 

from the LOOCV evaluation of multiple parameters are given in section 4.2. The outcomes from the accuracy assessment 

and comparison of different PMW SD estimates are described in sections 4.3 and 4.4, respectively. The spatial comparison 

of the high-resolution SD map from the multifactor model and AMSR2 products is shown in section 4.5. In section 4.6, the 370 

analysis of multifactor SD model performance with respect to different parameters is detailed. 

4.1 Spatial analysis of the in-situ SD observations in WH ranges 

The mean of in-situ SD at each of the 43 DGRE stations is estimated for the winter period (October to March) during 2012-

13 to 2018-19 (See Figure. 4). The results indicate that during the data period, the mean SD values varied between ~11 cm 

(elevation: 1664 m) to ~256 cm (elevation: 3160 m) in LHZ, ~21 cm (elevation: 3250 m) to ~136 cm (elevation: 4950m) in 375 

MHZ, and ~49 cm (elevation: 3250 m) to ~365 cm (elevation: 5995 m) in the UHZ. The analysis also demonstrates that out 

of 43 manual stations, four stations have a mean SD between 11 to 50 cm, 18 stations have a mean SD between 50 to 100 

cm, seven stations have a mean SD between 100 to 150 cm, five stations have mean SD between 150 to 200 cm, and 

remaining four have mean SD > 200 cm during the data period. Further, it is observed that out of nine stations that have a 

mean SD greater than 150 cm, five are present in the UHZ. 380 

The overall analysis of in-situ SD measurements indicates the mean and standard deviation ( ± )  are observed as ~121.5 

cm ± 122.5 cm in the LHZ, ~85.9 cm ± 83.5 cm in the MHZ, and 176.6 cm ± 208.9 cm in UHZ, respectively. A higher mean 

SD is observed in the UHZ compared to the other two ranges. 95% of overall SD values in the LHZ are below 350 cm, with 

the remaining 5% having SD between 350 cm and 650 cm. However, in the MHZ and UHZ, 95% of total SD observations 

are below 200 cm and 500 cm, respectively, with the remaining 5% ranging between 200 cm to 500 cm and 500 cm to 2030 385 

cm. 
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4.2 SD parameters screening and evaluation over WH 

The expressions for linear regression models developed with each parameter and regression metrics, i.e., RMSE, and R 

results obtained from LOOCV analysis, are shown in Table 3. In terms of geographical location, latitude has a higher 

correlation (i.e., 0.24) and lower RMSE (97.96 cm) than longitude. Among the terrain parameters, SCD has the highest R 390 

(i.e., 0.45) and the lowest RMSE (i.e., 90.27 cm), and is followed by elevation (R = 0.30 and RMSE = 96.12), slope (R =0.26 

and RMSE = 97.59), and ruggedness (R =0.25 and RMSE = 97.85), making it highly important for the development of 

multifactor SD models. The SD models built with TB observations from descending orbital passes have a relatively higher 

correlation and lesser RMSE than those from ascending pass TB data when analyzed with in-situ SD. This is mainly because 

descending orbital passes occur in the morning time with no melting of snow; however, ascending orbital passes occur in the 395 

afternoon time with substantial melting of snow in the study area. Therefore, only descending pass TB observations are used 

in the study. 

 Apart from the single channel PMW TB, 40 different combinations of descending pass orbital BTD are tested using 

linear regression (in the LOOCV approach). The selected and rejected BTD parameters with their RMSE, and R with the in-

situ SD are shown in Table 4. The selected parameters have the lowest RMSE, highest correlation and pass the F-test at a 400 

significance level of 0.001. It is observed that descending pass BTD models exhibit higher correlation and accuracy metrics 

compared to single-channel descending pass models. From the overall results (R, RMSE), descending pass BTD parameter-

based SD models have higher R (0.24 to 0.39) and lesser RMSE (91.63 to 93.92 cm) compared to single channel TB-based 

SD models, which have R (0.07 to 0.35) and RMSE (93.44 to 100.54 cm). Therefore, different BTD data from descending 

pass (See Table 4) are selected instead of single channel TB to develop multifactor SD models. Along with the eight 405 

descending BTD parameters (BTD of 10H18H, 10H23H, 18H89V, 36H89V, 36V89V, 23H89V, 10V89V, 10V23H, where 

10, 18, 23, 36 and 89 represent the frequency in GHz, and H, V represent horizontal and vertical polarization respectively), 

three terrain parameters (elevation, slope, ruggedness), latitude, and SCD are used to develop multifactor PMW SD models 

for the three WH ranges. 

4.3 Evaluation and comparison of different multifactor SD models in WH zones 410 

The details of the developed models are given in Table 5. The results from the regression analysis indicate multifactor SD 

models developed with a power regression approach have a better fit with the in-situ data and outperformed other regression 

models with R (RMSE in cm) values i.e., 0.62 (49.17), 0.78 (37.72), 0.76 (55.12) in LHZ, MHZ, and UHZ, respectively. 

 The developed multifactor models in each WH zones are evaluated (with R and RMSE metrics) using temporally 

independent data from 2017-18 to 2018-19.  Comparison of the four types of multifactor regression models in the LHZ, 415 

MHZ, and UHZ is carried out with the help of the Taylor diagram (See Figure. 5). The R, RMSE (in cm) metrics of power, 
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linear, logarithmic, and reciprocal models in different WH zones are given in Figure 5 and Table 6. The results from the 

comparison indicate that in all WH zones, the multifactor SD model developed using power regression has exhibited higher 

accuracy, i.e., better correlation and lesser RMSE compared to the models built using linear, logarithmic, and reciprocal 

regression approaches. Therefore, in each WH zone, the multifactor SD model from power regression is used to estimate 420 

PMW SD at 500 m spatial resolution. 

4.4 Comparative analysis of multifactor and other SD models in different zones of WH 

In order to compare the performance of different SD models in WH, the SD values are estimated using different models with 

the help of PMW and other auxiliary data during the study period (i.e., 2017-18 to 2018-19). Different models used in the 

comparative analysis are the multifactor SD model(s) from this study, regional SD models of WH (i.e., Das et al. (2008), 425 

Singh et al. (2020)), and the heritage SD model given by Chang et al. (1987). The estimated SD from each model is 

compared with in-situ SD observations with in the respective WH zones to understand the accuracy of SD retrievals. Singh 

et al. (2020) model is proposed only for the MHZ. Therefore, it is not used for SD estimation in LHZ, and UHZ while doing 

comparative analysis. 

In the LHZ of WH, both Chang’s model and Das’s model have poor correlation with in-situ SD and have shown RMSE (R) 430 

of 39.51 (-0.16), and 49.66 (-0.14) (See Figure. 6). Whereas the proposed multifactor SD model has shown a good 

correlation with RMSE (R) of 32.87 (0.75). In the MHZ, Chang et al. (1987), Das et al. (2008), and Singh et al. (2020) have 

exhibited poor correlation with in-situ SD with R-values of 0.22, 0.21, and -0.22, respectively. Whereas, the proposed 

multifactor SD model has shown a good correlation with in-situ SD with an R-value of 0.65 (see Figure. 6). The RMSE is 

observed to be 36.32, 49.82, and 119.79 cm for Chang et al. (1987) model, Das et al. (2008) model, and Singh et al. (2020) 435 

model respectively. The proposed multifactor SD model has shown good accuracy with a lesser RMSE of 27.21 cm 

compared to other SD models. The SD model proposed by Singh et al. (2020) for the MHZ is developed using data from a 

single observatory location. Hence, the Singh et al. (2020) model cannot represent the spatial variability of SD and shows 

significant errors with higher bias.  

Similar to the results observed in LHZ and MHZ, the Chang et al. (1987) model and Das et al. (2008) model have shown a 440 

poor correlation in the UHZ with R-values of 0.18 and 0.19, respectively.  In comparison, the multifactor SD model has 

shown a good correlation with an R-value of 0.67 (See Figure. 6). The RMSE values are observed to be 60.95cm, 51.74 cm, 

and 42.81 cm for Chang et al. (1987) model, Das et al. (2008) model, and proposed multifactor SD model in the UHZ. 

Overall results from the comparative analysis indicate that in each WH zone, the multifactor SD model has higher accuracy 

with good correlation (i.e., R) and lesser errors when compared with other models. Further, the developed model has 445 

exhibited better accuracy metrics in the MHZ compared to other WH zones. The mean SD observed during the study period 
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(i.e., 2017-18 to 2018-19) in Pir-Panjal and UHZ are higher than the mean SD of the MHZ. Further, the LHZ has a forest 

canopy which can affect the PMW TB observations. Whereas, in the MHZ, most of the region is devoid of forest vegetation 

except for some patchy grass vegetation.  Hence it is expected to observe an increased error for SD models in LHZ and UHZ 

as compared to the MHZ. 450 

4.5 Spatial comparison of SD from multifactor model and operational AMSR2 SD products: A case study 

The spatial comparison of SD maps from AMSR2 SD products and the multifactor SD model is performed to understand the 

improvement of the AMSR2 multifactor SD model over the operational AMSR2 SD products in the WH region. For this 

purpose, the SD maps of operational AMSR2 SD products and multifactor SD model for WH zones for February 3rd, 2019 

are considered (See Figure. 7). The SD spatial map at 500 m resolution for the WH zones is generated using multifactor SD 455 

model (See Figure. 7d). The AMSR2 ascending SD product, i.e., AMSR2_A (See Figure. 7b) and descending SD product, 

i.e., AMSR2_D (See Figure. 7c) of the same region for the given day at 10 km resolution are also prepared. 

According to MODIS-derived SCA at 500 m resolution (See Figure. 7a) and DGRE observatories in-situ SD information, 

snow cover with varying thickness on 3rd February 2019 in WH zones. However, in both the AMSR2 SD products, i.e., 

AMSR2_A and AMSR2_D, the majority of pixels have zero SD value, resulting in the underestimation of SD information 460 

by AMSR2 products. The maximum SD values observed in different products are as follows: AMSR2 ascending SD, 58 cm; 

AMSR2 descending SD, 78 cm; Multifactor SD model, 476 cm; The multifactor SD model shows high heterogeneity in SD 

across the selected region in WH zones as compared to AMSR2 SD products. Further, the multifactor SD model offers good 

detail  about snow cover and provides SD data in the region at a high resolution of 500 m. 

4.6 Comparison of performance of Multifactor SD product, with operational AMSR2 SD product 465 

Though higher mean SD regions (i.e., LHZ, UHZ) have a higher error than lesser mean SD regions (i.e., MHZ), it is 

important to assess how the SD products accuracy varies with changes in in-situ SD. Hence, section 4.6.1 analyzes the 

operational AMSR2 SD products and AMSR2 multifactor model performances in different SD classes. Further, it is also 

essential to understand how the model’s accuracy is affected with respect to different auxiliary parameters, i.e., 

topographical and landcover parameters. Therefore, the model accuracy is evaluated with respect to different topographical 470 

and land cover parameters, and the results are presented in section 4.6.2. 

4.6.1 Analysis of operational AMSR2 SD products and multifactor SD model in different SD classes 

In each WH zone, the AMSR2 SD products and multifactor SD model estimates are grouped into five SD classes, i.e., 0-25 

cm, 25-50 cm, 50-75 cm, 75-100 cm, and >100 cm based on in-situ SD observations during 2017 -18 to 2018 -19. Along 
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with the multifactor SD, the operational AMSR2 SD product (i.e., from both ascending and descending pass data) is also 475 

analyzed in the SD classes by comparing with in-situ SD observations. RMSE of each SD class is calculated to evaluate the 

accuracy of SD estimates. Other models (i.e., Chang et al., (1987), Das et al. (2008), and Singh et al. (2020)) were not 

considered in this analysis as they were not operational SD models. The effect of variation in ground SD on the accuracy of 

the AMSR2 multifactor SD model and AMSR2 SD products is shown in Table 7.  

The results indicate that the magnitude of RMSE error of AMSR2 SD products and multifactor SD model increased with an 480 

increase in SD. When in-situ SD < 25 cm, AMSR2 SD products have shown relatively lesser error in all three zones 

compared to the developed multifactor SD model. However, the observed error in this class (i.e., 0-25 cm) is still large and 

varies between 11 – 15 cm in the AMSR2 SD product and 14 – 27 cm in the multifactor SD model across the three zones. 

Whereas for classes with in-situ SD > 25 cm, the proposed multifactor SD model has low RMSE than both AMSR2 products 

in all the zones of WH. This analysis clearly shows that for shallow snow regions in WH, operational AMSR2 products can 485 

be used. However, the AMSR2 SD products show a large error for deep and moderate snow regions. In the WH region, out 

of 43 stations, only four stations have a mean SD < 25 cm, and for the remaining stations, the mean in-situ SD was more 

than 25 cm during the study period. Hence AMSR2 SD products are less useful for spatial monitoring of SD in WH. Though 

the developed AMSR2 multifactor model has shown higher error when in-situ SD < 25 cm, it is more useful for the WH 

region as the RMSE error is lesser when SD > 25cm. 490 

Overall, the multifactor SD model in MHZ has a low RMSE compared to the LHZ and UHZ in all SD classes. This could be 

due to prevailing dry snow conditions, lesser mean SD, and the absence of forest in this range, which can favour the PMW 

SD algorithms to retrieve better SD estimates from PMW TB. Whereas higher temperatures, moist snow conditions, forest 

vegetation in LHZ, and deep snow conditions in both LHZ and UHZ can deter the accuracy of the AMSR2 multifactor SD 

model in these regions by affecting the TB observations. 495 

4.6.2 Multifactor model performance analysis with respect to auxiliary parameters 

Among all the factors considered in the AMSR2 multifactor SD model development, elevation and SCD have good 

heterogeneity across the stations in each WH zone. The other terrain factors, such as slope, landcover have not much 

variation and are similar for many of the stations with in a WH zone (See Figure. 8.). Though a large variation in landcover 

is observed across the entire WH region, in the LHZ majority of stations are surrounded by forest cover. Whereas in the 500 

MHZ, stations are mainly over grassland and barren land. The UHZ is devoid of vegetation, and all stations are present over 

barren land and glaciers. Thus, the variation of landcover with in a range is not significant. Therefore, in this section, only 

the effect of varying elevation and SCD on the accuracy of SD from the AMSR2 multifactor SD model and operational 

AMS2 SD products is evaluated. 
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Slope and SCD are divided into different classes considering the overall variation in the WH region. Within these classes, 505 

the SD retrievals from the AMSR2 products and multifactor model are compared with in-situ SD measurements during the 

winter period between 2017-18 to 2018-19. The accuracy of model estimates in each class is evaluated by calculating RMSE 

(See Table 8). The RMSE error associated with each station for different factors (i.e., elevation, slope, SCD, and landcover) 

is depicted in Figure. 8. The results indicate that in LHZ and UHZ, with an increase in elevation, RMSE increased for both 

AMSR2 products and the multifactor model. Whereas in the MHZ, there is no specific trend in the variation of accuracy with 510 

respect to elevation. The RMSE error (in cm) variation across all elevation classes for the multifactor SD model, AMSR2 

ascending SD, and AMSR2 descending products in different WH regions is as follows: LHZ, 21.38 – 47.27 cm, 23.05 – 

113.21 cm, and 18.44 – 93.72 cm; MHZ, 17.82 – 54.79 cm, 39.10 – 107.72 cm, and 37.98 – 103.38 cm; UHZ, 11.73 – 

126.13 cm, 17.71 to 188.67 cm, and 19.50 – 182.12 cm. Though overall RMSE variation is high across the different 

elevation classes, both AMSR2 SD products have similar RMSE errors for any given elevation class within each WH zone. 515 

However, the multifactor SD model has lower RMSE than both AMSR2 SD products for elevation classes across the three 

WH zones. Other than elevation, the amount of snowfall and snow conditions vary widely with SCD across the different WH 

zones. This can lead to varying accuracy trends in SD retrievals for a given factor in different WH zones. 

The SD generally increases with an increase in SCD, affecting the PMW SD retrieval from different models. In WH, across 

all regions, the RMSE values of the AMSR2 ascending and AMSR2 descending SD products, and the multifactor SD model 520 

increased with an increase in SCD. However, the RMSE of the multifactor SD model is significantly low compared to the 

AMSR2 SD products in all SCD classes in each WH zone. The SCD variation at the end of the snow year (September 30th, 

2013), along with RMSE errors of different stations calculated for the time period i.e., 2017-18 to 2018-19, is represented in 

Figure. 8(d). The RMSE variation associated with SCD classes for the multifactor SD model, AMSR2 ascending product, 

and AMSR2 descending product in different WH ranges are as follows: LHZ, 25.18 – 61.80 cm, 47.32 – 158.11 cm, and 525 

45.47 – 140.59 cm; MHZ, 19.71 – 70.92 cm, 33.53 – 140.03 cm, and 31.61 – 137.66 cm; UHZ, 83.40 – 122.22 cm, 97.63 – 

205.89 cm, and 92.54 – 204.15 cm. 

5. Discussion 

The Indian WH has the highest elevation mountain peaks in Asia that segregate the plane regions of the Indian subcontinent 

from the Tibetan Plateau with a mean elevation of ~3116 m (m.s.l.). The discussion about the performance of SD models and 530 

factors affecting the multifactor SD model is given in the following sections, 5.1 and 5.2, respectively. 
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5.1 SD models’ performance 

Four multifactor SD models are developed for each WH zone using different regression approaches (i.e., linear, logarithmic, 

reciprocal, and power). These models are compared with regional SD models, Chang’s SD model, and operational AMSR2 

SD products. The overall analysis of the results indicates that the power regression-based multifactor SD model has higher 535 

accuracy compared to other multifactor SD models, regional approaches, Chang’s model, and AMSR2 SD products in all 

WH regions. However, AMSR2 SD products have shown comparable to better accuracy (i.e., similar to the multifactor SD 

model) under shallow snow conditions (SD < 25 cm). Nevertheless, once SD exceeds 25 cm, the performance of AMSR2 SD 

products declined considerably (See Table 8). Further, AMSR2 SD products have a large amount of missing data over the 

WH region, rendering its poor utility for various regional applications. The regression modelling approach attempts to find a 540 

better fit by optimizing the loss function i.e., mean error. Over WH region, majority of the observations have SD > 25 cm. 

Therefore, understandably the model estimates are better in higher SD regions as compared to shallow SD regions. 

The proposed model has an overall positive bias with overestimated SD values for lesser SD, and underestimation in the case 

of higher SD observations. The bias for LHZ, MHZ and UHZ for the proposed model is 4.5 cm, 2 cm and 6.3 cm 

respectively. Whereas the bias for legacy model, and other regional model is considerably higher with significant 545 

overestimates in the lower depth values and underestimates in higher depth regions. Further, it must be emphasized that these 

models have very poor correlation with the in-situ snow depth and the SD estimates mainly confined in a range irrespective 

of the magnitude of the ground snow depth observation values. 

In general, with an increase in SD, the accuracy of multifactor models declined in all WH zones. However, the accuracy of 

developed multifactor SD models is distinct for a given SD class in different WH zones. This is because the spatial 550 

distribution of snowfall and snow characteristics (i.e., SD, snow wetness, density, etc.) are not uniform at different 

geographic locations of observatories distributed across the three WH zones. The SD model developed in the MHZ has 

shown better accuracy metrics than those developed for LHZ and UHZ. 

The topographical parameters in WH play a vital role in affecting the local climate as well as snow distribution. The inherent 

weakness of PMW TB in capturing deeper snowpack thickness is overcome to certain extent by considering SCD into model 555 

development. Thus, the overall improved performance of multifactor model over the previously developed other models and 

AMSR2 product can be attributed to the consideration of topographical parameters and SCD into the model development. 

Further, combination of multiple lower and higher frequency TB is considered into the model for capturing both deeper and 

shallower snowpack thickness. Different factors affecting the performance of the multifactor SD model are discussed in the 

following section, 5.2. 560 
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5.2 Factors affecting the performance of multifactor SD model 

A total of 57 parameters comprising multifrequency PMW TB, BTD, terrain parameters, and SCD are screened using 

LOOCV to determine the suitable factors to develop the PMW multifactor SD model. Finally, the SD algorithm is developed 

only using the selected parameters, i.e., geographical location parameters (latitude), terrain parameters (elevation, slope, and 

ruggedness), SCD and BTDs (36H89V, 36V89V, 10V23H, 23H89V, 10V18V, 10H23H, 10H18H, 18H89V). In the present 565 

study, different combinations of frequencies in vertical and horizontal polarization have been used to estimate shallow to 

deep snow across different zones of WH. Only descending pass PMW observations are employed in this study to avoid the 

problems pertaining to wet snow, which is more prominent during the ascending pass. Among the different factors (i.e., 

other than PMW data) evaluated using LOOCV, SCD has shown a relatively strong correlation (i.e., R = 0.45) with in-situ 

SD observations. Higher SCD generally indicates longer snow persistence which leads to an increase in snow accumulation, 570 

whereas lesser SCD indicates the absence/melt of snow which leads to lesser SD.  

Apart from SCD, terrain parameters, i.e., elevation, slope have an impact on the spatial distribution of SD within an area 

(Saydi and Ding, 2020; Trujillo et al., 2007; Sharma et al., 2014) and have shown a moderately better correlation with in-situ 

SD with R of 0.30, 0.26 respectively (See Table 3). Further, the topographic conditions can affect the reallocation of PMW 

radiation due to variations in the direction of polarization and local incidence angles (You et al., 2011), altering the TB 575 

values.  The higher elevation regions (i.e., UHZ) of WH experience cold conditions, which aids snow in accumulating. 

Therefore, the snowfall is preserved for most of the winter in higher mountain areas of MHZ and UHZ, leading to higher SD 

in these regions. The accuracy of PMW SD models varies with the magnitude of in-situ SD, as evident from the current 

study, as well as from many previous studies (Xiao et al., 2020b, a; Dai et al., 2018). However, there are many other factors 

(such as land cover, snow wetness, grain size, etc.) that can affect the accuracy of SD retrievals (Dong et al., 2005; Foster et 580 

al., 2005; Tedesco et al., 2010; Kurvonen and Hallikainen, 1997; Ansari et al., 2019). Notably, the land cover and snow 

conditions alter considerably from one range to another in WH. Therefore, for any given parameter (such as SCD, elevation, 

slope, etc.), the accuracy trend of multifactor SD model estimates is not uniform when compared between different zones.  

The LHZ has forest vegetation, higher temperature, and higher mean SD (compared to Greater Himalaya). These conditions 

decline the accuracy of the SD estimates from the PMW multifactor SD model compared to the estimates observed in MHZ. 585 

Whereas, in MHZ, the absence of forest cover, relatively less mean SD (compared to both LHZ, and UHZ), stable snow 

conditions pose relatively better conditions for SD estimation using PMW data. Therefore, compared to other ranges, the 

multifactor SD model has shown improved accuracy in MHZ. Whereas, in the UHZ, higher SD is present due to which 

PMW signal saturates; hence larger errors in SD are observed for the multifactor SD model in this region. Thus location (i.e., 

latitude), land cover, elevation, SCD, and magnitude of in-situ SD play a vital role in the accuracy of multifactor model SD 590 

estimates in the WH region. 
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The developed model has shown improved performance as compared to other tested approaches in the WH region. However, 

the transferability of the multifactor model to the other regions specifically mountainous regions is uncertain. This is due to 

the fact that the relationship of SD with topographical conditions and SCD can potentially change in the other regions. The 

proposed multifactor model coefficients attempt to improve SD estimates as per prevailing snow conditions in WH. 595 

Understanding the influence of topographical conditions, and snow persistency, and snow pack dynamics is essential for 

using the model outside the WH. 

7. Summary and Conclusions 

 The contrasting climate and snow conditions prevailing in WH zones present new challenges in accurate SD retrievals using 

PMW remote sensing. The limited access to in-situ SD data, rugged topography, and inclement weather resulted in fewer SD 600 

studies over the WH region. In the mountainous region, the topography parameters, i.e., elevation and slope, affect the snow 

precipitation and its persistence.  

In this study, different regression approaches (i.e., linear, logarithmic, reciprocal, and power) are used for developing the 

multifactor SD models using multifrequency AMSR2 TB observations and auxiliary parameters (such as terrain (elevation, 

slope), location, SCD, etc.,) to estimate SD at 500 m spatial resolution in each WH zone. The overall results indicate that 605 

power regression performed better than other tested approaches in all zones. Further, the results of the multifactor model 

from power regression are evaluated by comparing the SD estimates with ground SD, other SD products, and PMW models. 

The results indicate that under deep snow (>25 cm) conditions, the developed multifactor model has shown higher accuracy 

than AMSR2 operational SD product and other SD models. However, the accuracy of SD from the multifactor model is 

affected by variations in auxiliary parameters such as SCD, elevation, etc. With an increase in SCD, the SD increased in each 610 

WH zone. Additionally, the RMSE error associated with SD is also increased alongside SCD and SD in each WH zone. The 

MHZ has stable snow conditions with relatively less thick snowpack. Therefore, the multifactor SD model in this region has 

shown improved accuracy for a given SD class compared to other WH zones. Overall, the proposed multifactor SD models 

for WH zones have demonstrated substantial improvement in estimating SD compared to the operational AMSR2 SD 

product, heritage SD model, i.e., Chang’s model, and previous models developed within WH zones.  615 

Though the multifactor SD model has outperformed other models and products, there is still scope for improving PMW SD 

estimates in WH. The multifactor model is applicable only to dry snow conditions. However, in WH even during the peak 

winter substantial area is covered by wet snow. This constrains the utility of multifactor model for these regions. The 

developed model(s) has shown poor performance compared to AMSR2 products when SD <25 cm. This can be possibly 

attributed to wet snow conditions prevailing in the early winter, i.e., when SD will be shallow. Further, the inclusion of 620 
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snowpack characteristics such as snow grain size, wetness, and density data during the model development can improve the 

accuracy of SD estimates. The available in-situ SD observations are very limited considering the high spatiotemporal 

variability of SD in this region. Therefore, there is an immediate need to expand the in-situ network of monitoring stations, 

and field-based studies to determine the first-hand knowledge of snowpack information in the WH region. The brightness 

temperature datasets used in this work are resampled to 500 m. Instead of resampling, downscaling the TB can be tested for 625 

further improvement of model. It is also worthwhile to investigate how downscaling the TB to different resolutions will 

impact the model performance. Recently, different machine learning models are extensively used for modelling SD in many 

studies (Tedesco et al., 2004, Liang et al 2016, Tanniru and Ramsankaran, 2023). The potential of such machine learning 

approaches can be investigated for improving the SD estimation. 
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Figure. 1. (a) Elevation variability of WH zones (i.e., LHZ: Lower Himalayan Zone; MHZ: Middle Himalayan Zone; UHZ: Upper 

Himalayan Zone) and DGRE observatories distribution (Note: J&K is Jammu & Kashmir, HP is Himachal Pradesh) 865 

https://doi.org/10.1038/srep41672
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Figure. 2. Flowchart representing the methodology  
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Figure. 3. Identification of pure snow pixel from AMSR2 TB using the decision tree 

 870 



34 

 

 

 

 

 

Figure. 4. Spatial distribution of mean SD in WH zones along DGRE stations during 2012-19 (October to March months) (Note: 

J&K is Jammu & Kashmir, HP is Himachal Pradesh) 
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Figure. 5. Taylor diagram for the evaluation of multifactor SD models during 2017-2019 for (a) the LHZ, (b) the MHZ, and (c) the 875 
UHZ. 
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Figure. 6. Comparison of model-estimated and filed-observed SD values in the LHZ (Pir-Panjal), MHZ (Greater Himalayan) and 

UHZ (Karakoram) during 2012-2019 (October to March). 

 

 885 

 



37 

 

 

 

 

 
 
Figure. 7: Spatial map of SD variation on 3rd Feb 2019. (a) MODIS SCA, (b) AMSR2_A SD product map at 10 km, (c) AMSR2_D 

SD product map at 10 km, and (d) multifactor models SD map at 500 m. 890 
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Figure. 8. Spatial distribution of RMSE of multifactor SD model for varying (a) elevation, (b) slope, (c) land cover types, and (d) 

SCDs along the 43 ground stations 
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Table 1. Sources of in-situ, remote sensing datasets and their application in the present study 

 Data Source  Role/Applications  

In-situ snow depth data  DGRE Data Centre, Chandigarh, India Development and validation 

of multifactor SD models 

AMSR-2  

Brightness temperature  

Snow depth product 

http://gportal.jaxa.jp/ (last accessed on: 

26/11/2023) 

   

 

 

 

Development, validation, 

and comparison   of 

multifactor SD models  

MODIS Land cover data 

(MCD12Q1) 

 

https://lpdaac.usgs.gov/products/mcd12q1v006/ 

(last accessed on 26/11/2023) 

  

 

Development of SD models 

Daily MODIS cloud-

free snow cover product  

https://doi.org/10.1594/PANGAEA.918198 

(last accessed on 26/11/2023) 

Development of models and 

model performance analysis 

Digital Elevation Model http://srtm.csi.cgiar.org  Development and model 

performance analysis 
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http://gportal.jaxa.jp/
https://lpdaac.usgs.gov/products/mcd12q1v006/
https://doi.org/10.1594/PANGAEA.918198
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Table 2. Geomorphic characteristics of the WH zones 

Characteristics/Ranges  Lower Himalaya   Middle Himalaya  Upper Himalaya 

Area (km2) 41,107 73,951 38,441 

Elevation 1500-4800 1500 -5700 1800-8100 

Climate Type  Sub-tropical Temperate Polar 

Winter snow fall 

(from -to) 

High  

(Dec-Mar) 

Moderate  

(Oct-Apr) 

Scanty 

 (Entire year) 

Frequency of high-

intensity snowfall events 
Occasional Frequent Occasional 

Vegetation cover 

presence 

Forest: < 3000 m (m.s.l.) 

Grass: 3000 - 4000 m 

(m.s.l.) 

Grass: <3000 m (m.s.l) ---- 

Snowpack persistence 

up to  
Early spring Spring Summer 
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Table 3. Results of LOOCV evaluation for SD models developed using single parameters 905 

Parameters 
Independent 

Variable (x) 
Linear Regression Model 

RMSE 

(cm)  
R 

Geographical location 

Latitude y = 32x – 1046.81 97.96 0.24 

Longitude y = 21x – 1573.72 99.30 0.17 

Terrain 

Elevation y = 0.029x – 45.81 96.12 0.30 

Aspect y = - 0.16x + 109.58 99.75 0.14 

Slope y = - 3.42x + 119.67 97.59 0.26 

Ruggedness y = - 0.31x + 128.15 97.85 0.25 

Cloud-free snow 

product 
SCD y = 1.14x – 19.58 90.27 0.45 

Brightness 

temperature 

(Ascending data) 

10H y = - 4.5x + 1210.78 106.28 0.34 

10V y = -5.77x + 1553.53 105.58 0.36 

18H y = - 3.9x + 1047.89 104.59 0.39 

18V y = - 4.8x + 1293.91 103.74 0.40 

23H y = - 3.59x + 963.28 105.22 0.37 

23V y = - 4.13x + 1109.64 104.65 0.38 

36H y = - 2.1x + 587.17 108.81 0.28 

36V y = - 2.22x + 620.55 109.08 0.27 

89H y = - 0.24 + 161.87 113.29 0.03 

89V y = - 0.08x – 90.99 113.35 0.01 

Brightness 

temperature 

(Descending data) 

10H y = - 3.2x + 858.65 94.28 0.35 

10V y = - 4.01x + 1071.98 93.96 0.36 

18H y = - 2.76x + 741.75 93.96 0.36 

18V y = - 3.4x + 910.08 93.44 0.38 

23H y = - 2.67x + 706.15 94.05 0.36 

23V y = - 3.05x + 811.49 93.74 0.37 

36H y = - 1.78x + 480.19 96.38 0.29 

36V y = - 1.9x + 522.28 96.42 0.29 

89H y = - 0.58x + 207.88 100.29 0.10 

89V y = - 0.45 + 181.84 100.54 0.07 

y = SD (cm)  
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Table 4. BTD SD model (with descending observations) relation with SD and evaluation using LOOCV method  

 Sr. 

No. 

Independent 

Variable (x) 

Linear Regression Model RMSE 

(in cm) 

R 
S

el
ec

te
d

 p
ar

am
et

er
s 1 BTD (36H-89V) y = - 2.24x + 107.05 91.63 0.39 

2 BTD (36V-89V) y = - 2.16x + 81 92.24 0.37 

3 BTD (10V-23H) y = 4.12x + 31.05 92.45 0.35 

4 BTD (23H-89V) y = - 1.78x + 122.17 92.46 0.36 

5 BTD (10V-18V) y = 7.43x + 52 92.58 0.25 

6 BTD (10H-23H) y = 4.12x + 56 93.78 0.20 

7 BTD (10H-18H) y = 5.66x + 58 93.47 0.21 

8 BTD (18H-89V) y = - 1.61x + 122.34 93.92 0.24 

R
ej

ec
te

d
 p

ar
am

et
er

s 

9 BTD (10H-36H) y = 0.85x + 70.11 102.20 0.17 

10 BTD (10H-89H) y = -0.91x + 114.15 102.16 0.18 

11 BTD (10H-18V) y = 2.84x + 89.85 102.20 0.17 

12 BTD (10H-23V) y = 3.29x + 78.28 102.15 0.18 

13 BTD (10H-36V) y = 0.55x + 77.67 102.21 0.16 

14 BTD (10H-89V) y = -1.15x + 177.36 102.14 0.19 

15 BTD (10V-18H) y = 5.10x + 30.11 102.04 0.20 

16 BTD (10V-36H) y = 1.21x + 56.24 102.17 0.18 

17 BTD (10V-89H) y = -0.66x + 110.16 102.19 0.17 

18 BTD (10V-23V) y = 4.93x + 44.79 102.03 0.20 

19 BTD (10V-36V) y = 1.08x + 63.64 102.18 0.17 

20 BTD (10V-89V) y = -0.92x + 116.53 102.17 0.18 

21 BTD (18H-23H) y = 3.18x + 77.95 102.19 0.17 

22 BTD (18H-36H) y = 0.18x + 83 102.23 0.16 

23 BTD (18H-89H) y = -1.4x + 122.75 102.09 0.20 

24 BTD (18H-23V) y = -3.92x + 75.13 102.26 0.17 

25 BTD (18H-36V) y = -0.51x + 90.15 102.24 0.16 

26 BTD (18V-23H) y = 6.1x + 32.36 102.08 0.20 

27 BTD (18V-36H) y = 0.86x + 68.45 102.21 0.17 

28 BTD (18V-89H) y = -1.14x + 122.94 102.13 0.19 

29 BTD (18V-23V) y = 6.35x + 61.65 102.13 0.18 

30 BTD (18V-36V) y = 0.43x + 78.64 102.22 0.16 

31 BTD (18V-89V) y = -1.4x + 126.53 102.10 0.20 

32 BTD (23H-36H) y = -0.09x + 86.33 102.23 0.16 

33 BTD (23H-89H) y = -1.57x + 123.73 102.06 0.20 

34 BTD (23H-36V) y = -1.16x + 93.49 102.23 0.17 

35 BTD (23V-36H) y = 0.68x + 74.51 102.22 0.16 

36 BTD (23V-89H) y = -1.36x + 125.26 102.09 0.20 

37 BTD (23V-36V) y = -0.07x + 86.26 102.23 0.16 

38 BTD (23V-89V) y = -1.62x + 126.92 102.06 0.20 

39 BTD (36H-89H) y = -2.10x + 113.67 102.01 0.20 

40 BTD (36V-89H) y = -1.91x + 118.52 102.03 0.19 

Note: y = SD (cm) 
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Table 5. Multifactor SD model regression coefficient for WH zones during 2012-2017 (October to March) 

WH 

zones 

Model 

type 
Models 

R 

(RMSE) 

L
o

w
er

 H
im

a
la

y
a

n
 Z

o
n

e
 

L
in

ear 

𝑦 = −51.16 − 0.09𝑥1 + 0.08𝑥2 + 0.94𝑥3 − 0.24𝑥4 + 1.15𝑥5 − 0.37𝑥6 + 5.21𝑥7

− 1.6𝑥8 − 0.40𝑥9 + 1.14𝑥10 + 0.001𝑥11 − 0.45𝑥12 − 4.07𝑥13 

0.59 

(64.14) 

L
o

g
arith

m
ic 

𝑦 = −528.08 − 733.37ln (𝑥1) + 678.83ln (𝑥2) + 8.80ln (𝑥3) − 230.65ln (𝑥4)

+ 84.84ln (𝑥5) + 19.32ln (𝑥6) − 0.82ln (𝑥7) + 30.21ln (𝑥8)

+ 22.66ln (𝑥9) − 11.51ln (𝑥10) − 132.43ln (𝑥11)

+ 12.23ln (𝑥12) − 38.37ln (𝑥13) 

0.45 

(81.12) 

P
o

w
er 

𝑦 = 4.49 ∗

10−26𝑥1
10.12𝑥2

4.93𝑥3
1.28𝑥4

−2.29𝑥5
0.59𝑥6

−0.25𝑥7
0.56𝑥8

−2.79𝑥9
0.04𝑥10

0.22𝑥11
1.70𝑥12

0.001𝑥13
−0.68  

 

0.62 

(49.17) 

R
ecip

ro
cal 

𝑦 = 487.86 − 5073.85/𝑥1 − 835884.29/𝑥2 − 619.77/𝑥3 + 45566.55/𝑥4

− 226.44/𝑥5 + 1.04/𝑥6 + 2/𝑥7 + 24.12/𝑥8 + 0.19/𝑥9

− 1.13/𝑥10 + 69.02/𝑥11 − 0.37𝑥12 − 75.87/𝑥13 

0.49 

(78.11) 

M
id

d
le H

im
a

la
y

a
n

 Z
o

n
e
 

L
in

ear 

𝑦 = 1285.89 − 34.66𝑥1 + 0.001𝑥2 + 1.57𝑥3 − 0.05𝑥4 + 1.50𝑥5 − 4.10𝑥6

+ 7.73𝑥7 − 1.77𝑥8 + 2.90𝑥9 − 1.39𝑥10 + 0.001𝑥11 + 4.70𝑥12

− 8.84𝑥13 

0.69 

(42.04) 

L
o

g
arith

m
ic 

𝑦 = 2281.76 − 1364.46ln (𝑥1) + 0.24ln (𝑥2) + 27.81ln (𝑥3) − 35.38ln (𝑥4) +

120.18ln (𝑥5) + 4.53ln (𝑥6) + 23.03ln (𝑥7) − 49.38ln (𝑥8) + 15.60ln (𝑥9) +

26.05ln (𝑥10) − 83.25ln (𝑥11) + 28.42ln (𝑥12) − 124.63ln (𝑥13) 

0.62 

(51.11) 

P
o

w
er 

𝑦      

= 3.7

∗ 1013𝑥1
−7.72𝑥2

0.03𝑥3
0.03𝑥4

0.07𝑥5
1.09𝑥6

−0.11𝑥7
0.57𝑥8

−0.01𝑥9
0.05𝑥10

−0.12𝑥11
−0.73𝑥12

0.19𝑥13
−1.51 

 

0.78 

(37.72) 
R

ecip
ro

cal 

𝑦 = −26.58 + 4283.25/𝑥1 − 2060.51/𝑥2 + 20.08/𝑥3 − 6150.16/𝑥4

− 268.45/𝑥5 − 0.04/𝑥6 − 0.35/𝑥7 + 23.07/𝑥8 − 0.19/𝑥9

− 0.03/𝑥10 + 2.63/𝑥11 − 0.16/𝑥12 + 5.72/𝑥13 

0.66 

(45.72) 
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Table 5 (Continued) 

WH 

zones 

Model 

type 
Models 

R 

(RMSE) 

U
p
p
er H

im
alay

an
 Z

o
n
e 

L
in

ear 

𝑦 = −3754.98 + 99.59𝑥1 + 0.07𝑥2 − 1.25𝑥3 + 0.06𝑥4 + 1.23𝑥5 + 10.46𝑥6

+ 0.001𝑥7 + 4.90𝑥8 − 17.63𝑥9 + 19.77𝑥10 − 6.58𝑥11

+ 6.06𝑥12 − 16.11𝑥13 

0.74 

(58.07) 

L
o
g
arith

m
ic 

𝑦 = −8280.01 + 4430.22ln (𝑥1) + 378.71ln (𝑥2) − 102.97ln (𝑥3)

+ 68.20ln (𝑥4) + 116.51ln (𝑥5) + 31.14ln (𝑥6) − 6.29ln (𝑥7)

− 60.95ln (𝑥8) − 16.924ln (𝑥9) + 42.65ln (𝑥10)

− 9.88ln (𝑥11) + 15.42ln (𝑥12) − 74.45ln (𝑥13) 

0.68 

(69.08) 

P
o
w

er 

𝑦      

= 6.4

∗ 10−53𝑥1
26.26𝑥2

2.91𝑥3
−0.20𝑥4

0.62𝑥5
0.64𝑥6

0.11𝑥7
−0.18𝑥8

−0.31𝑥9
−0.13𝑥10

0.23𝑥11
0.10𝑥12

0.001𝑥13
0.44 

 

0.76 

(55.12) 

R
ecip

ro
cal 

𝑦 = 5308.54 − 170987.89/𝑥1 − 1378163.61/𝑥2 + 121.52/𝑥3 − 5412.19/𝑥4

− 197.55/𝑥5 + 0.08/𝑥6 + 0.51/𝑥7 − 0.45/𝑥8 − 0.60/𝑥9

+ 1.15/𝑥10 − 0.26/𝑥11 − 0.09/𝑥12 − 63.24/𝑥13 

0.33 

(59.61) 

 

Note: In Table 5,  x1to x5  are latitude, elevation, slope, ruggedness, and SCD, respectively;  x6 to x13  are the BTD of 

10H18H, 10H23H, 18H89V, 36H89V, 36V89V, 23H89V, 10V89V, 10V23H, respectively; V is the vertical polarization, 915 

and H is the horizontal polarization; and 10, 18, 23, 36 and 89 is the frequency in GHz of the corresponding BT channels 
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Table 6. Comparative analysis of multifactor SD models during 2017-2019 for WH zones  

 

 Western Himalayan Zones 

 Lower Himalayan Middle Himalayan Upper Himalayan 

Models R RMSE (in 

cm) 

R RMSE (in 

cm) 

R RMSE (in 

cm) 

Power 0.65 22.7 0.76 19.2 0.89 22.6 

Linear 0.64 29 0.68 22.8 0.75 33.5 

Logarithmic 0.38 52 0.14 41 0.73 36.9 

Reciprocal 0.09 121.3 0.47 26.7 0.61 43.2 

  920 
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Table 7. RMSE of operational AMSR2 SD products and the proposed multifactor SD model across different WH zones in different 

in-situ SD classes  

WH zones 

 

Model 

 

Snow depth class (in cm) 

0-25 25-50 50-75 75-100 >100 

 Lower Himalayan 

Zone 

AMSR2_A 14.60 38.88 62.31 88.63 159.16 

AMSR2_D 14.35 35.68 58.65 85.75 152.84 

Multifactor 

SD model 
27.64 21.62 37.27 40.48 63.73 

 Middle Himalayan 

Zone 

AMSR2_A 13.67 35.97 61.39 86.34 200.25 

AMSR2_D 18.00 33.45 58.59 82.77 193.76 

Multifactor 

SD model 
20.99 20.29 27.84 41.95 81.04 

 Upper Himalayan 

Zone 

AMSR2_A 13.23 38.13 61.58 87.84 375.61 

AMSR2_D 14.34 36.93 60.19 86.69 372.67 

Multifactor 

SD model 
37.12 41.54 38.62 40.12 161.01 
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Table 8. RMSE (cm) variation of AMSR2 SD products, and multifactor SD model for different elevation, and SCD classes across 925 
three WH zones (for snow period during 2017-18 to 2018-19) 

Parameter Elevation (in m) SCDs (in Days) 

Parameter 

range 

2
0

0
0
-

2
5

0
0
 

2
5

0
0
-

3
0

0
0
 

3
0

0
0
-

3
5

0
0
 

3
5

0
0
-

4
0

0
0
 

4
0

0
0
-

4
5

0
0
 

4
5

0
0
-

5
0

0
0
 

>
5

0
0

0
 

0
 -

 3
0
 

3
0

 -
 6

0
 

6
0

 -
 9

0
 

>
 9

0
 

L
o
w

er
 H

im
a
la

y
a
n

 Z
o
n

e 

M
ea

n
 

in
-

si
tu

 S
D

 

1
8
.4

4
 

6
3
.0

9
 

9
3
.7

2
 

- - - - 3
7
.3

2
 

8
4
.3

3
 

9
6
.9

5
 

1
4
0
.3

8
 

A
M

S
R

2
 

_
A

 

2
3
.0

5
 

7
6
.9

7
 

1
1
3
.2

1
 

- - - - 4
7
.3

2
 

1
0
1
.5

9
 

1
1
4
.2

3
 

1
5
8
.1

1
 

A
M

S
R

2
_

D
 

2
6
.5

1
 

7
8
.4

3
 

1
0
7
.9

9
 

- - - - 4
5
.4

7
 

9
5
.7

1
 

1
1
1
.6

2
 

1
4
0
.5

9
 

M
u
lt

if
ac

t

o
r 

m
o
d
el

 

2
1
.3

8
 

4
1
.1

3
 

4
7
.2

7
 

- - - - 2
5
.1

8
 

4
2
.1

2
 

5
4
.2

2
 

6
1
.8

 

M
id

d
le

 H
im

a
la

y
a

n
 Z

o
n

e 

In
 

si
tu

 

S
D

 

8
0
.5

3
 

5
9
.9

6
 

3
1
.8

 

6
9
.4

2
 

8
3
.0

2
 

8
0
.6

7
 

6
6
.4

9
 

2
2
.4

9
 

5
3
.3

9
 

8
3
.9

6
 

1
2
7
.9

 

A
M

S
R

2
_

A
 

8
5

.0
4
 

8
6

.8
4
 

3
9

.1
 

9
8

.5
3
 

1
0

7
.0

1
 

1
0

7
.7

2
 

8
4

.7
2
 

3
3

.5
3
 

6
6

.7
3
 

9
9

.1
2
 

1
4

0
.0

3
 

A
M

S
R

2
_

D
 

7
9

.6
9
 

8
8

.1
3
 

3
7

.9
8
 

8
8

.3
2
 

1
0

3
.3

8
 

1
0

1
.8

6
 

8
2

.4
8
 

3
1

.6
1
 

6
5

.0
6
 

9
8

.2
5
 

1
3

7
.6

6
 

M
u
lt

if
ac

t

o
r 

m
o
d
el

 

5
4
.7

9
 

4
5
.4

6
 

1
7
.8

2
 

3
2
.5

4
 

5
4
.6

7
 

5
2
.4

1
 

3
7
.4

8
 

1
9
.7

1
 

3
5
.6

7
 

4
9
.6

3
 

7
0
.9

2
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Table 8 (continued) 

Parameter Elevation (in m) SCDs (in Days) 

Parameter 

range 
2
0

0
0
-

2
5

0
0
 

2
5

0
0
-

3
0

0
0
 

3
0

0
0
-

3
5

0
0
 

3
5

0
0
-

4
0

0
0
 

4
0

0
0
-

4
5

0
0
 

4
5

0
0
-

5
0

0
0
 

>
5

0
0

0
 

0
 -

 3
0
 

3
0

 -
 6

0
 

6
0

 -
 9

0
 

>
 9

0
 

U
p

p
er

 H
im

a
la

y
a
n

 Z
o
n

e 

In
 s

it
u
 

S
D

 

- - - 1
5
.3

8
 

6
7
.8

 

8
0
.3

3
 

1
3
0
.9

4
 

5
2
.7

9
 

7
8
.2

 

1
0
8
.2

4
 

1
6
7
.8

6
 

A
M

S
R

2
_

A
 

- - - 1
7
.7

1
 

7
7
.6

 

1
0
4
.9

7
 

1
8
8
.6

7
 

9
7
.6

3
 

1
3
0
.2

 

1
5
7
.3

9
 

2
0
5
.8

9
 

A
M

S
R

2
_

D
 

- - - 1
9
.5

 

6
9
.3

8
 

1
0
4
.4

2
 

1
8
2
.1

2
 

9
2
.5

4
 

1
2
3
.5

1
 

1
5
8
.4

6
 

2
0
4
.1

5
 

M
u
lt

if
ac

t

o
r 

m
o
d
el

 

- - - 1
1
.7

3
 

3
4
.2

2
 

5
5
.4

5
 

1
2
6
.1

3
 

8
3
.4

 

8
9
.9

 

1
0
8
.7

1
 

1
2
2
.2

2
 

 930 


