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Abstract. Ice sheet models are often initialized with data
assimilation of present-day conditions, in which unknown
model parameters are estimated using the inverse method.
While assimilation of snapshot observations has been widely
used for regional- and large-scale ice sheet simulations,
data assimilation based on time-dependent data has recently
started to emerge to constrain model parameters while cap-
turing the transient evolution of the system. However, this
method has been applied only to a few glaciers with fixed
ice front positions, using spatially and temporally limited ob-
servations, and has not been applied to marine-terminating
glaciers of the Greenland Ice Sheet that have been retreat-
ing over the last 30 years. In this study, we assimilate time
series of surface velocity into a model of Kjer Glacier in
West Greenland to better capture the observed acceleration
over the past 3 decades. We compare snapshot and transient
inverse methods and investigate the impact of initialization
procedures on the parameters inferred, as well as model pro-
jections. We find that transient-calibrated simulations better
capture past trends and better reproduce changes after the
calibration period, even when a short period of observations
is used. The results show the feasibility and clear benefits of
a time-dependent data assimilation for initializing ice sheet
models. This approach is now possible with the development
of longer observational records, though it remains computa-
tionally challenging.

1 Introduction

Mass loss from polar ice sheets has been contributing
~0.7mmyr~! to global sea-level rise over the past 30 years,
and this trend is expected to continue over the next cen-
tury and beyond (e.g., Mouginot et al., 2019; Rignot et al.,
2019; Shepherd et al., 2018; IPCC, 2019). To estimate the
future contribution of ice sheets to sea-level rise, accurate
ice sheet mass loss projections should be carried out using
physics-based numerical models validated against observa-
tional data. A lot of progress has been made in ice sheet
modeling over the past decades (e.g., Goelzer et al., 2017;
Pattyn, 2017) to better capture the present-day state of the
ice sheets (Goelzer et al., 2018; Seroussi et al., 2019) and
project their future changes. The recent results from the Ice
Sheet Model Intercomparison Project for CMIP6 (ISMIP6,
Nowicki et al., 2016; Seroussi et al., 2020; Goelzer et al.,
2020) demonstrate such improvements but also highlight that
many ice sheet model simulations do not capture the mass
loss of the Greenland and Antarctic ice sheets observed over
the past 30 years (Aschwanden et al., 2021). Although the
ISMIP6 experiments provide improved understanding of ice
sheet model variability and the different sources of uncer-
tainty, the models’ ability to estimate the current state and
recent changes of these ice sheets needs to be improved to
increase our confidence in the accuracy of these models and
to provide more reliable projections.



Typically, model representation of the present-day state
of ice sheets and estimation of unknown model parame-
ters have been accomplished using either paleo-climate re-
constructions or data assimilation. Paleo-climate reconstruc-
tions (e.g., Pollard and DeConto, 2009; Aschwanden et al.,
2016) simulate the evolution of ice sheets over long peri-
ods, for example, since the last glacier maximum, but of-
ten fail at accurately capturing their present-day configura-
tion (Goelzer et al., 2017). Data assimilation (e.g., MacAyeal,
1992; Morlighem et al., 2010), on the other hand, gener-
ally consists of time-independent inversions (‘“‘snapshot in-
version”) of model parameters at a given time, without in-
cluding changes in ice dynamics and ice geometry. It cap-
tures the state of an ice sheet at the time of the “snapshot” but
does not necessarily reproduce observed temporal trends. In
snapshot inversions, a cost function that measures the differ-
ence between observed and simulated values is minimized,
based on an “adjoint method”, which consists of deriving the
gradient of the cost function with respect to the unknown,
spatially variable parameter. Once the gradient is computed,
a standard gradient descend method can be used to minimize
the cost function (e.g., MacAyeal, 1993b). While mathemat-
ically and computationally challenging, a lot of progress has
been made in understanding basal friction and ice shelf rhe-
ology using this method (e.g., Larour et al., 2005; Khazendar
et al., 2007; Joughin et al., 2009). Snapshot inversions can
reproduce a given state of the ice sheet at a single point in
time (Morlighem et al., 2013; Gillet-Chaulet et al., 2012),
but they can also carry artificial drifts from the initial state
of the model, displaying nonphysical artifacts in transient
simulations rather than actual trends (Seroussi et al., 2011;
Goldberg et al., 2015). To overcome this limitation, model-
ers have mostly relied on short relaxations (typically a few
years), but the required data and periods over which these
relaxations should be performed are not clear. Furthermore,
relaxing models over a few years or decades can introduce
a large deviation from the current ice sheet state (Gillet-
Chaulet et al., 2012; Lee et al., 2015).

Alternatively, data assimilation based on automatic differ-
entiation (AD) started to be developed for ice sheet modeling
over the past decade to constrain ice flow models over a given
period of time using a larger number of observations (Gold-
berg and Heimbach, 2013; Larour et al., 2014). This method
makes it possible to not only estimate the state of the ice at
a given point in time, but also to better capture its evolution
during the assimilation period by including time-dependent
data (Goldberg et al., 2015). AD provides the tools to auto-
matically generate the source code that computes the deriva-
tives of any cost function with respect to any spatially and/or
temporally variable model input from a code that solves the
direct problem. This allows building time-dependent cost
functions and inversion of unknown parameters of transient
simulations. This method has been widely applied to ocean
and atmospheric circulation models for over 20 years (e.g.,
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Wunsch, 2006; Heimbach and Bugnion, 2009), but it is only
starting to emerge in ice sheet modeling.

Larour et al. (2014) and Goldberg et al. (2015) introduced
the transient data assimilation approach based on AD to in-
vert for poorly constrained variables in ice sheet models.
Larour et al. (2014) inferred surface mass balance (SMB)
and basal friction of the Northeast Greenland Ice Stream
(NEGIS) using surface altimetry data, while Goldberg et al.
(2015) calibrated the friction coefficient, boundary stresses,
and boundary volume flux based on assimilation of time-
varying elevation and velocity of Pope, Smith, and Kohler
glaciers in West Antarctica. Although both studies showed
promising results in inferring forcings and boundary condi-
tions that yielded the best fit to certain observations, they did
not evaluate the models’ ability to predict future changes of
glaciers. More recently, Goldberg and Holland (2022) used a
transient inversion and initialized a coupled ice-sheet—ocean
model fitting to velocities and thinning trends and estimated
the relative importance of initialization for future projec-
tions. Those studies, however, used a relatively short period
of about 10 years of observed data with limited spatial cover-
age, therefore limiting their model domains. In another study,
Goldberg et al. (2019) used AD to investigate the impact
of spatial patterns of ice shelf melt on Smith Glacier in the
Amundsen Sea sector. Morlighem et al. (2021) expanded on
this study by generating sensitivity maps of the ice volume
above flotation to changes in external forcings and boundary
conditions for glaciers in the Amundsen Sea sector. Those
studies help determine where changes in different factors
would have the largest effect on the mass balance of glaciers
and provide guidance on the areas where future geophysical
fieldwork should be focused.

The wealth of newly available observations and longer
observational periods (Fahnestock et al., 2016; Mouginot
et al., 2017; Gardner et al., 2019) now allow for expansion
upon previous studies, offering better assessment of tran-
sient inversion procedures and guidance on model initial-
ization. Here we present the results of inversions that make
use of a time series of observations on Kjer Glacier, West
Greenland (Fig. 1). We choose this glacier as the target re-
gion for our experiments due to data availability and its re-
cent evolution. The bed topography is relatively well con-
strained in this region (Morlighem et al., 2017a), and ice
front positions and velocity data are available for this glacier
from 1985 (Gardner et al., 2019; Wood et al., 2021). Af-
ter a period of relative stability in the 1980s, Kjer Glacier
has been continuously retreating from 1995 and has experi-
enced ~ 6km of retreat while more than tripling in veloc-
ity over the past decade (Wood et al., 2021). These changes
present a well-constrained scenario for investigating the im-
pact of data availability on reproducing recent changes of
marine-terminating outlet glaciers. To our knowledge, tran-
sient inversions based on AD have not been applied to
marine-terminating glaciers of Greenland that require mov-
ing boundary capabilities in the ice flow model. The purpose
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of this study is to estimate and assess the ability of the ice
model initialization process based on the transient inversion
to better capture observed changes in a real glacier case, as
well as to investigate the impact of initialization procedures
and observational data on future projections.

We first describe the observations and the model setup
used in the study, along with detailed information on cost
functions and the inverse method (Sect. 2). We then present
a suite of experiments that investigate the impact of observa-
tional data and parameter choices in the initialization proce-
dure on the model’s ability to reproduce these observations
and short-term projections (Sect. 3). We continue with the
discussion (Sect. 4) and conclusions (Sect. 5) on the implica-
tions of our method towards hindcasts and projections of ice
sheet evolution.

2 Data and model
2.1 Observations

Our model domain covers the catchment basin of Kjer
Glacier. The main branch of Kjer Glacier retreated con-
tinuously from 1985 to 2007 (Wood et al., 2021) with a
fairly slow and regular increase in velocity during that pe-
riod (Gardner et al., 2019). After 2007, the retreat acceler-
ated and the velocity of the centerline increased by more than
3 times. In response to this acceleration, the glacier thinned
~50m over an 11-year period. To initialize the model of
Kjer Glacier in 2007, we use surface and bed elevation from
BedMachine v3 (Morlighem et al., 2017a). For models that
start in different years, we use surface elevation data interpo-
lated from various datasets including an aerial photography
digital elevation model (Korsgaard et al., 2016) and eleva-
tion change derived from satellite radar altimetry (Sgrensen
et al., 2018). We use the geothermal heat flux from Greve
(2019) and surface temperature from RACMO2.3p2 (Nogl
et al., 2018) to calculate the steady-state glacier temperature
used for the initial state in our experiments. We then force the
model using the surface mass balance from RACMO2.3p2
(Noél et al., 2018) and observed ice front positions (Wood
et al., 2021). In experiments where calving is simulated in-
stead of being prescribed (described below), undercutting
rates derived from thermal forcing are from Wood et al.
(2021).

We use two observational datasets for the cost functions
defined in Sect. 2.4: ice velocities and ice front positions.
Surface velocities are from the ITS_LIVE project (Gardner
et al., 2019); the annual mean surface velocities between
1985 and 2018 are derived from Landsat imagery. Spatial
coverage varies each year but is nearly complete for the years
following the launch of Landsat 8 in 2013. The annual ice
front positions from Wood et al. (2021) are used to either
force the ice front positions or to measure the misfit of mod-
eled and observed ice front positions in the cost function.

2.2 Model setup

We use the Ice-sheet and Sea-level System Model (ISSM,
Larour et al., 2012) to simulate the evolution of Kjer Glacier
based on the shelfy-stream approximation (SSA, MacAyeal,
1989), a simplification of the Stokes equations describing the
stress balance of an ice sheet, which greatly reduces com-
putational expense while being valid for fast-flowing areas,
such as outlet glaciers of Greenland. We use the SSA due
to the high memory requirement of the CoDiPack library
(Sagebaum et al., 2019) used in ISSM for AD computation
(Morlighem et al., 2021). The mesh resolution of our domain
varies from 500 m near the coast to 20 km inland, resulting in
~ 8000 elements.

The basal shear stress, 1, is described by a modified reg-
ularized Coulomb friction law, as it has been shown to better
reproduce observed acceleration of glaciers, including Kjer
Glacier, compared to other friction laws (Joughin et al., 2019;
Choi et al., 2022). The equation describing the regularized
Coulomb friction law is

1
|| Ly

h=CN—2" 2
(Jup| +kN™)m

6]

where C is a friction parameter that we invert for in this
study, N the effective pressure, up the ice basal velocity,
and m the velocity exponent that is set to 3 in this study.
We assume that N is equal to the ice pressure above hy-
drostatic equilibrium and define k such that kN™ is equal
to 300 myr~!, corresponding to a velocity threshold used to
mark the transition between Weertman and Coulomb friction
regimes (Joughin et al., 2019).

The ice viscosity is defined using Glen’s law (Glen, 1955):
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where B is the ice viscosity parameter, &, the effective strain
rate, and n Glen’s law exponent set equal to 3.

To simulate the evolution of calving fronts, we use the von
Mises tensile stress calving law (Morlighem et al., 2016) to
calculate the calving rate at each time step (Choi et al., 2018).
The calving rate, c, is assumed to be proportional to the ten-
sile von Mises stress, o, which accounts only for the tensile
component of the stress in the horizontal plane,

o
c=|v] , 3)
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where oyax 18 a stress threshold that is calibrated to fit ob-
servations and Ee is the effective tensile strain rate as de-
scribed in previous studies (Morlighem et al., 2016; Choi
et al., 2018).
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Figure 1. (a) Surface velocity and ice front position (black line) of Kjer Glacier, northwest Greenland, in 2007 (Gardner et al., 2019). The
white line shows the centerline of Kjer Glacier, and colored triangles denote the locations of points used for velocity comparison in Figs. 3,
5, and 7. (b) Bedrock topography (Morlighem et al., 2019) of the same region with observed ice front positions (Wood et al., 2021) from
1985 to 2018. The black line shows the ice front position in 2007. The inset shows the location of Kjer Glacier.

2.3 Inverse method

We use the term “snapshot inversion” to refer to the inverse
method using a single-time observation and “transient in-
version” when using observational data at multiple times in
a time-evolving simulation. To invert for unknown parame-
ters (e.g., friction coefficient and ice viscosity parameter) in
the model, we minimize cost functions that capture the mis-
fit between modeled and observed fields by computing the
gradient of the cost function with respect to corresponding
control parameters and applying a gradient descent method
(Morlighem et al., 2010). For the snapshot inversions, the
gradient is calculated analytically and used in the adjoint
method. This approach has been widely applied in glaciol-
ogy as the stress balance equations of ice flow are considered
self-adjoint when the dependence of ice viscosity on strain
rates is ignored (e.g., Morlighem et al., 2013). For the tran-
sient inversions, however, gradients cannot be calculated ana-
lytically; they require a time-dependent adjoint model, which
can be done with AD (Griewank and Walther, 2008). ISSM
uses the overloaded operator framework of the CoDiPack li-
brary (Sagebaum et al., 2019), in which the operations are
recorded in memory and a single reverse sweep is performed
with the chain rule to compute the gradient of the cost func-
tion with respect to poorly constrained model inputs.

Here, using a transient inversion, we invert for the friction
coefficient and ice viscosity parameter over the entire model
domain, similar to what is commonly done in ice sheet mod-
eling (MacAyeal, 1993a; Rommelaere and MacAyeal, 1997).
These two quantities are spatially variable and are either as-
sumed to be constant in time or temporally variable depend-
ing on the experiment as described below. We also infer the
calving parameter o,k for experiments simulating evolving
calving front positions: this parameter is spatially uniform
for each basin and assumed to be constant in time. This ap-
proach allows us to better understand the physical processes
(e.g., changes in friction coefficient or viscosity parameter)
involved in reproducing the state of the ice stream at a given

time and the time-evolving state that accounts for the tran-
sient nature of observations.

2.4 Cost function

We use several cost functions to quantify the misfit between
model and observations. For snapshot inversions, we define
a cost function that measures the misfit between observed
(vobs) and modeled velocity (v) for a given time as

2
1 1 (ol
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where ¢ is a minimum velocity to avoid singularities and
I's is the ice surface. The first term is the mean square er-
ror, the second term quantifies the difference between the
observed and modeled velocity on a logarithmic scale, and
the last two terms are regularizing terms that penalize large
gradients in the inferred parameter to avoid overfitting. y;
(where i = 1...4) represents weight parameters calibrated by
L-curve analyses (Hansen, 2001), as described in Appendix
A.

For transient inversions, we define a cost function that
quantifies the spatiotemporal misfit between the model and
observations. The cost function includes time series of sur-
face velocities as

1
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where f; represents the years for which we have partial or
complete velocity coverage. We use this cost function to si-
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multaneously invert for the friction coefficient (C) and ice
viscosity parameter (B) that best fit the observations.

Additionally, we define a cost function that measures the
misfit between the observed and modeled ice front positions,
represented by the level-set field (/) in ISSM (Bondzio et al.,
2016) as

1
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t T

where ys is the weight parameter. We use this cost function
to invert for the stress threshold (oyax) in the calving law.

3 Experiments and results

Here we present a series of experiments to assess the model
initialization capabilities using transient inversion and the
role of the initialization procedure and observational data
(Table 1). We first compare initialization methods, namely
snapshot and transient inversions, and their ability to accu-
rately predict the acceleration and mass loss of Kjer Glacier.
Next, we explore the impact of the length of the initializa-
tion period and the time dependence of control parameters on
model initialization and projection results. For model initial-
ization and projection, we force the position of the ice front
with observations to reduce the impact of errors introduced
by the calving law in the modeled ice front positions. Finally,
we investigate the possibility of expanding our initialization
capabilities to include the stress threshold of the calving law
as an additional control parameter by simulating the front mi-
gration in the model. Experiment details are summarized in
Table 1.

3.1 Comparison of snapshot and transient inversions

We first compare the models’ predictive skills for simulations
initialized with snapshot and transient inversions. Projections
start in 2007, the year in which the Greenland Ice Mapping
Project (GIMP, Howat et al., 2014) provides a complete spa-
tial mapping of surface elevation. We initialize two simula-
tions using either snapshot inversion in 2007 (experiment SI)
or transient inversion over the 1985-2007 period (experiment
TD).

For the snapshot inversion, we invert for the friction coeffi-
cient (C in Eq. 1) and the ice viscosity parameter (B in Eq. 2)
using the cost function Js (Eq. 5) with 2007 velocities. We
use an initial value of B estimated from the modeled tem-
perature, using the temperature-dependent relationship table
from Cuffey and Paterson (2010). Ice temperature is calcu-
lated based on the enthalpy formulation (Aschwanden et al.,
2012; Seroussi et al., 2013), using geothermal heat flux from
Greve (2019) and surface temperature from RACMO2 (Noél
et al., 2018). After the snapshot inversion, B decreases by up
to 10 % along the margins compared to the value estimated

with the thermal model, while limited changes are found in
other areas (not shown here).

For the transient inversion, starting with the inferred
friction coefficient from the snapshot inversion and the
temperature-based viscosity parameter as initial values, we
simultaneously optimize the friction coefficient and viscos-
ity parameter by minimizing the cost function J;; (Eq. 6).
We use the observed velocities from 1985 to 2007 in this
cost function, forcing the model with surface mass balance
and observed ice front positions for the same period. For this
experiment, time-independent control parameters are used in
the optimization.

Once these inversions are performed, we run the models
from 2007 to 2018 (i.e., beyond the hindcast period used to
constrain the models), forcing them with surface mass bal-
ance from RACMO2.3p2 (Noél et al., 2018) and observed
ice front positions (Wood et al., 2021). This approach limits
uncertainties introduced by the calving parameterization and
eliminates the need to reconcile surface mass balance with
the mass loss estimated by the calving law. As a result, we
can focus on the role of initial conditions inferred from the
inverse methods.

Both snapshot and transient inversions capture the ob-
served 2007 velocity with good accuracy (Fig. 2). The root
mean square error (RMSE) with observed velocities of 2007
for the catchment basin is 51 myr_l for the SI, which is
slightly lower than the RMSE from the TI (57 myr—'). The
misfit to observed velocity is concentrated near the ice front
and along the shear margins of both branches of Kjer Glacier.
The transient inversion reduces this misfit along the shear
margins, although the overall misfit for the northern branches
increases.

Figure 3 shows that the observed annual velocity of Kjer
Glacier more than triples from 2007 to 2018 along the ice
stream. This observed acceleration is not well captured by the
SI (Fig. 3a): the modeled velocities are consistently slower
than the observed velocities, with a range of 86 %—103 %
of observed velocities in 2007 decreasing to 73 %-77 % in
2016, indicating a failure to capture the observed accelera-
tion. TT shows a better agreement with observed changes in
velocity (Fig. 3b): the modeled-to-observed-velocity ratio in
2007 is 105 %—-113 %, and it is between 92 % and 105 % in
2016.

The modeled changes in grounded ice mass during
the 2007-2018 period are compared against the estimated
changes in mass for Kjer Glacier from Mouginot et al. (2019)
(Fig. 4). The snapshot-calibrated simulation underestimates
the observed mass loss over the past 11 years, likely due to
the underestimation of the ice velocity. The model loses only
34 Gt of ice, while the observed mass loss from 2007 to 2018
is 51 & 3.6 Gt. When the model is transiently calibrated with
velocity data from 1985 to 2007, the changes in ice mass
are well captured and remain within the error margin of ob-
servation during this period. After 2007, the modeled mass
loss remains in good agreement with observed mass loss, al-
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Table 1. List of experiments, control variables, observations, and calibration periods. Controls that vary in time are shown as functions of ¢
(e.g., C is a static friction coefficient, whereas C (¢) is temporally variable).

Experiment name

Control variables

Cost function  Calibration period

SI (snapshot inversion) C, B Ts 2007
TI (transient inversion) C, B T 1985-2007
TI_PD1 C,B T 1992-2007
TI_PD2 C,B N 1997-2007
TI_PD3 C,B N 2002-2007
TI_PD4 C,B T 20102013
TI_CTR1 C,B T 1985-2018
TI_CTR2 C(t), B N 1985-2018
TI_CTR3 C, B(t) N 1985-2018
TI_CTR4 C(t), B(t) T 1985-2018
TI_Calving Omax ) 1985-2018
“[(@ = [(b) _mc°
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Figure 2. Difference between observed and modeled velocities (observation minus model) in 2007. (a) Snapshot inversion (SI) and (b)
transient inversion (TI) calibrated with velocity data. Observed velocities are from Gardner et al. (2019)

though it is no longer within the error margin of observation
during 2013-2015.

3.2 Impact of the observational period used in the
transient inversion

Despite the significant increase in the amount of remote
sensing observations over the past decade, there still remain
large spatial and temporal gaps over the Greenland Ice Sheet
(Gardner et al., 2019), especially prior to the launch of Land-
sat 8 in 2013. For glaciers with shorter observational records
or when computational resources are limited to run AD over
long periods, the calibration period needed to initialize sim-
ulations should be investigated to determine the benefits of
the transient inversion approach. Using a relatively complete
record of observations since 1985 for Kjer Glacier, we inves-
tigate the impact of the observational period used in the tran-
sient inversion on near-future projections. We compare the
previous initialization, performed using 23 annual maps of
surface velocity observations from 1985 to 2007, with tran-
sient inversions using the same velocity datasets but over re-
duced periods — (1) 1992-2007 (TI_PD1), (2) 1997-2007
(TI_PD2), and (3) 2002-2007 (TI_PD3), respectively — to
calibrate our control parameters. After the inversions, we

run three additional simulations from 2007 to 2018 using
the same external forcings (SMB and ice fronts) used in SI
and TI and evaluate their performance in terms of match-
ing observations after 2007 (i.e., observations that were not
“seen” by the model during the calibration period). In addi-
tion, we initialize the model using velocities from 2010 to
2013 (TI_PD4) to explore the impact of including more vari-
ability in the observations during the calibration period.
Figure 5 shows the modeled velocities with different cali-
bration periods for transient inversions. The modeled veloci-
ties from 2007 to 2018 are in better agreement with observa-
tions for the three transient-calibrated simulations calibrated
before 2007 (TI_PD1-TI_PD3), relative to the snapshot-
calibration run (SI). The ratios of modeled to observed ve-
locities in 2016 are similar between the three simulations,
ranging between 89 % and 105 %. When only 5 years of ob-
servations are used in the cost function, the model overes-
timates the acceleration closest to the calving front (red in
Fig. 5c), where ice velocities are sensitive to the calving front
retreat for 2007-2010. This overestimated acceleration leads
to a larger mass loss in the future simulation than in the oth-
ers cases (Fig. 6). However, the modeled mass losses for all
three simulations are still better captured, compared to the
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Figure 3. Comparison of observed (dots with error bars, Gardner et al. (2019)) and modeled (solid and dashed lines) velocities for experiments
with (a) snapshot inversion (SI) and (b) transient inversion (TI) using a time series of velocity. Colors correspond to the triangle locations
shown in Fig. 1. The ice front retreated inland of the red and yellow observation locations in 2010 and 2016, respectively. The gray box

indicates the period of model calibration for TI.
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Figure 4. Observed and modeled mass change of Kjer Glacier relative to 2007. The black line with a gray error envelope shows the observed
mass changes and their uncertainties. The blue and red lines show modeled mass changes from SI and TI, respectively. The gray box shows

the period of model calibration for TI.

snapshot-calibration run, regardless of the observational pe-
riod used for the cost function. When using only 3 years of
observations during the rapid acceleration of 2010-2013 for
the transient inversion (TI_PD4), the model still effectively
captures the acceleration after the inversion period but dis-
plays more variability and increased acceleration.

3.3 Time-dependent control parameters

Our transient inversion framework allows for the estimation
of control parameters that vary not only in space, but also in
time (Larour et al., 2014; Goldberg et al., 2015). In all pre-
vious calibration experiments, the control parameters were
held constant in time. We now investigate the impact of using
time-dependent control parameters. To do this, we run three
additional simulations with temporally varying control pa-
rameters: (1) the viscosity parameter is time-invariant while
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the friction coefficient evolves every year (TI_CTR2); (2) the
friction parameter is assumed time-invariant, but the viscos-
ity parameter B is allowed to vary every year (TI_CTR3);
and (3) both parameters are allowed to vary every year
(TI_CTR4). Time-dependent parameters have constant val-
ues during each year (i.e., they are allowed to change at the
beginning of each year). For these simulations, we use all
available annual velocity observations, from 1985 to 2018, to
investigate the time dependence of control parameters during
both the stable and acceleration periods of Kjer Glacier.

Since the models in these simulations are calibrated with
observed velocities from 1985 to 2018, the modeled veloc-
ities during this period are all in a good agreement with
observations (Fig. 7). To compare results between different
simulations in more detail, we calculate the RMSE with ob-
served annual velocities (Fig. 8). Although the RMSE values
in 2017 and 2018 are relatively higher than other years in all
simulations, those values significantly decrease when both
parameters are allowed to vary in time. For other years, re-
ductions in RMSE are relatively small compared to the one
for the 2018 RMSE value.

We compare the inverted viscosity parameter fields be-
tween simulations. Figure 9a shows the depth-averaged vis-
cosity parameter calculated from the thermal model, which
was used as the initial value of B for snapshot and tran-
sient inversions. We display changes in viscosity parameter
at the end of each experiment, in 2018, compared to the initial
viscosity parameter. The initial viscosity parameter indicates
softer ice in the shear margins compared to the center of the
ice stream. In the transient inversion-based simulations, the
viscosity parameter in the shear margins decreases by up to
45 % to match observed accelerations (Fig. 9b—d). The de-
crease in viscosity parameter also occurs upstream, but the
reduction is relatively small. The spatial patterns of the re-
duction in the viscosity parameter are similar between tran-
sient inversions, regardless of the time dependency of param-
eter, indicating a similar impact of changes in rheology on ice
velocity.

The initial basal stress in 1985 and changes in basal
stress during the calibration period are shown in Figure 10.
The spatial patterns of initial basal stress for TI_CTRI1
and TI_CTR3 are smoother than those for TI_CTR2 and
TI_CTR4. When both control parameters are static in time
(TI_CTRI1), the basal stress starts to decrease near the mar-
gin and keeps decreasing along ~ 15 km of the ice stream by
up to 50 % until 2018. This pattern of changes in basal stress
is similar to the result with the static friction coefficient and
the varying viscosity parameter (Fig. 10) and is caused by
changes in the effective pressure and ice velocity that im-
pact the basal stress (see Eq. 1). For simulations with a tran-
sient friction coefficient, however, the basal stress field shows
extremely large and unrealistic changes of more than 100 %
over periods of just a few years during the calibration period,
suggesting that it is overfitting the observations.

3.4 Optimization of the calving law parameter

Calving is a critical process that controls the dynamics
of marine-terminating glaciers (e.g., Rignot et al., 2013;
Bondzio et al., 2017; Benn et al., 2007). In ice sheet mod-
els, calving is generally represented by a calving law that
includes one or more parameters that need to be calibrated
(Choi et al., 2018). Calibrating these parameters is essential,
not only to reproduce observed changes of glaciers, but also
to project future ice sheet changes with moving boundaries.
We investigate here whether the stress parameter (omax) in a
von Mises stress calving law (Morlighem et al., 2016) can be
inferred from the observations as part of the model initial-
ization framework. Instead of forcing the ice front position
to follow observed terminus migration, we now let a calv-
ing law determine a calving rate that dynamically changes
the model boundary. To run this experiment, we use here
the model calibrated with the static friction coefficient and
viscosity parameter from 1985 to 2018, and we use the cost
function J;»> (Eq. 7) to calibrate the spatially and temporally
constant stress parameter, omax, for 1985-2018. All other pa-
rameters remain unchanged during the inversion.

Observations show that the main branch of Kjer Glacier
retreated continuously from 1985 to 2007 and slowed down
at the location of a small ridge in the underlying bedrock. Af-
ter 2007, it retreated past the ridge and continued retreating
again until 2018. The northern branch of Kjer Glacier was
stable at the ridge until 2016, but the two branches merged
into a single ice front around 2017 when the main branch
retreated towards the northern branch. The calibrated model
reproduces the observed retreat of the main branch relatively
well (Fig. 11), although it could not reproduce the retreat of
the smaller northern branch, similar to the recent modeling
study of Choi et al. (2021). The calibrated value of the stress
threshold for the main branch, oymax = 320 kPa, is similar to
the value opax = 306 kPa, determined with manual calibra-
tion for the 2007-2018 period in Choi et al. (2021).

4 Discussion

In this study, we explore the benefits of transient inversions
to initialize ice flow simulations as well as the impact of the
observation period used and choices made for control param-
eters. The snapshot inversion reproduces the observed 2007
velocity slightly more accurately than the transient inversion
because the snapshot inversion optimizes the model to the
2007 velocity only, while the transient inversion calibrates
the model to observational data over multiple years. Our re-
sults show that the model calibrated with the transient in-
version better reproduces the time-varying behavior of the
glacier during the initialization, which improves confidence
in the model’s ability to provide realistic near-future projec-
tions, although the calibration error and its influence on the
model projections still need to be quantified. Future research
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Figure 7. Same as Fig. 3 but with transient inversions from 1985 to 2018 calibrating time-variant parameters: (a) static friction coefficient
and viscosity parameter (TI_CTRI1), (b) transient friction coefficient and static viscosity parameter (TI_CTR?2), (c) static friction coefficient
and transient viscosity parameter (TI_CTR3), and (d) transient friction coefficient and viscosity parameter (TI_CTR4).

should focus on quantifying calibration uncertainties in in-
versions by sampling the entire variability within the param-
eter space and evaluating the impact of parameter uncertainty
propagation on projections.

To validate our approach and determine its potential ap-
plicability to other glaciers, we conducted additional sim-
ulations for Sverdrup Glacier, which is located near Kjer
Glacier but has exhibited a different behavior over the past
30 years. Unlike Kjer Glacier, Sverdrup Glacier was stable
until 2000 and has since experienced a relatively steady ac-
celeration for about 20 years (Fig. 12). When the model is
calibrated using the snapshot inversion, the observed accel-
eration of Sverdrup Glacier’s centerline from 2007 to 2018

is overestimated, with modeled velocities being over 20 %
faster than the observations beginning in 2011 (red and yel-
low in Fig. 12a). However, the transient-calibrated simula-
tion, which used velocities from 1985 to 2007, better repli-
cates the observed changes after 2007, with the modeled
velocities remaining within 10 % of the observed velocities
until 2016. While this simulation also overestimates the ve-
locities for 2017-2018, other factors (e.g., ice front retreat)
may have contributed to changes in velocity beyond friction
and rheology. Overall, these results for Sverdrup Glacier are
consistent with those for Kjer Glacier, demonstrating that
the transient-calibrated simulations better reproduce obser-
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vations and provide more confidence in near-future projec-
tions than the snapshot-calibrated simulations.

Our TI_PD experiments show that all projections based
on the transient inversion provide an improved agreement
with observations relative to those based on a snapshot in-
version, even when the calibration period is only a few years.
Although there were limited changes in velocity during the

short calibration period, the model initialized with transient
calibration can still capture a significant acceleration after the
calibration period. These results demonstrate that the simu-
lations based on the transient inversion can enhance our con-
fidence in near-future projections, even with a limited period
of observations and when these observations include limited
variability to properly calibrate the model. With the con-
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Figure 11. (a) Modeled ice front positions simulated from transient inversion for the calving law parameter (TI_Calving). (b) Observed ice

front positions (Wood et al., 2021) from 1985 to 2018.

tinuous extension of observational records capturing recent
changes in glaciers, the method presented here can be applied
broadly to other glaciers to provide more reliable near-future
projections.

AD is a lot more memory intensive than solving for the
adjoint state explicitly or forward runs, which may limit the
application of this approach to regional simulations or ice-
sheet-wide-scale models with very coarse mesh resolution

(Morlighem et al., 2021). We additionally set up one sim-
ple experiment to investigate the scalability of the framework
and the possibility to infer parameters on a coarse mesh and
use them on a finer mesh. We interpolate the control param-
eter fields (i.e., C and B) optimized with the transient in-
version of our model (TI) above to a new finer-resolution
mesh domain (100 m—5km, ~ 36000 elements) and assess
the new model performance to project future changes of the



Y. Choi et al.: Kjer Glacier time-dependent data assimilation 13

(a)
4000 -
——3km from the 1985 ice front
———5km from the 1985 ice front
E‘ 3000 - 10km from the 1985 ice front
E ——15km from the 1985 ice front
= 2000 ~————20km from the 1985 ice front
(]
>
1000 -
o J
(b)
4000 -
— 3000 -
2
S
= 2000 l
¢ 1
E3
1000 - j{
0 T O 5 O T A Y I I A Y B
1985 1990 1995 2 2005 2010 2015

year

Figure 12. Same as Fig. 3 but for Sverdrup Glacier. The inset shows the location of Sverdrup Glacier and the gray box the period used for

the transient inversion.

glacier (Fig. 13). The results show that the observed accel-
eration (94 %-105 % modeled-to-observed-velocity ratio in
2007) and mass loss from 2007 to 2018 (42 Gt) are better
captured in the higher-resolution model with parameters in-
terpolated from the coarse-resolution transient inversion than
in the simulation based on the snapshot inversion (SI). These
results suggest that the optimized parameters based on the
coarse-resolution transient inversion could remain somewhat
robust in a finer-resolution model, which is consistent with
results from Barnes et al. (2021). Additional work on scal-
ability of the framework should be conducted along with
improvement of memory capability and code efficiency to
be able to generalize AD to ice-sheet-wide simulations, but
these results suggest a possible avenue to use AD in larger
domains.

While transient inversions can potentially constrain time-
varying, poorly known control parameters, a clear justifica-
tion with physical constraints is needed. In this study, we al-
lowed each parameter to vary every year arbitrarily. Our re-
sults from TI_CTR experiments show that allowing for time-
varying control parameters only provides a small improve-
ment of fit and causes the model to overfit the observations,
which is consistent with results from Goldberg et al. (2015).
This is a recurring problem in inverse modeling: a larger con-
trol space will lead to a better fit to the observations but at
the expense of potentially unrealistic changes in control pa-
rameters. To avoid overfitting, more observations and phys-
ical interpretations are needed to better constrain temporal
changes of these parameters. Additionally, further research
is needed to identify the criteria to distinguish overfitting
from observation-based uncertainties, although our model fit
mostly falls within the range of the observation error.

In previous studies (e.g., Morlighem et al., 2016; Choi
et al., 2018; Yu et al., 2019; Choi et al., 2021), calving laws
have been calibrated by running transient simulations mul-
tiple times, manually adjusting the calving parameter and
comparing to observed changes in ice front positions. In the
framework presented in this study, however, optimizing the
calving parameter can be done more efficiently, as the in-
version automatically iterates to find the best fit to obser-
vations. For the TI_Calving experiment, we invert for the
calving parameter after optimizing other control parameters,
the friction coefficient and rheology parameter, rather than
inverting for three control parameters simultaneously. We
ran additional simulations (not shown here) to investigate
the possibility for the simultaneous inversion for three con-
trol parameters using the sum of transient cost functions,
T3 (v(t)) = Jr1(v(t))+Tr2(v(t)). The calibrated parameters
depend strongly on choices of weights for each misfit term
(e.g., Y1, y2 and y3), which leads to several solutions for
control parameters. Further research is required to better
constrain these control parameters and investigate the best
method to simultaneously infer a large number of parame-
ters, as is done, e.g., for ocean state estimates (Forget et al.,
2015).

5 Conclusions

In this study, we compare model initializations performed us-
ing snapshot and transient inversions to reproduce the recent
changes of Kjer Glacier, West Greenland. We assess the im-
pact of several cases for model initialization and future pro-
jections by conducting a suite of experiments using observa-
tional data from 1985 to 2018. These experiments show that
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Figure 13. Comparison of model results with observations for the finer-resolution mesh domain of Kjer Glacier. (a) Comparison of observed
(dots with error bars) and modeled (lines) velocities for the experiment utilizing control parameters from TI interpolated to the finer-resolution
mesh. (b) Observed (black) and modeled (red) mass changes relative to 2007 for the same experiment. The blue line shows modeled mass

change from SI shown in Fig. 4.

simulations based on transient inversions better capture the
current trend of changes in glaciers and performed better for
near-future projections, even when a short period of obser-
vations is used to constrain the simulation. Unlike the snap-
shot inversion that optimizes the model to a single moment in
time, the transient inversion optimizes the model to fit mul-
tiple years of data, requiring the model to capture temporal
variability in glacier flow. In the case of Kjer Glacier, this is
achieved by softening the ice near the shear margins. This
softening of the ice allows the model to better capture the
glacier acceleration that occurs after the calibration period.
Although large spatial and temporal variability in control pa-
rameters could improve the model fit to observations, it is es-
sential to provide clear physical justification for temporally
variable parameters to avoid overfitting. Additional experi-
ments show that we can expand our initialization capabili-
ties to infer calving parameters or use data assimilation on a
coarse model and interpolate results onto a higher-resolution
model. The methodology of transient inversion introduced in
this study — which has not previously been applied to Green-
land tidewater glaciers — could be applied to other regions of
Greenland and to the ice-sheet-wide-scale model, which will
take advantage of the wealth of remote sensing data that is
currently available and will be available in the future.

Appendix A: Regularization of inversion

We choose the regularization parameters in the inversion
based on L-curve analysis (Hansen, 2001). For the snapshot

inversion, we first plot the L curve without the B regulariza-
tion term and choose the parameter for C (y3 in Eq. 5). Once
the optimal value for y3 is selected, we plot the L curve with
the fixed y3 and choose the regularization parameter for B
(y4 in Eq. 5). The L curves used to choose the parameters are
shown in Fig. Al.
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Code and data availability. The ISSM is open source and is
available at http://issm.jpl.nasa.gov (last access: 20 April 2023).
The ISSM version for this study is 4.23, corresponding to the
public SVN repository tag number 27919. The source code for this
version is also available at https://doi.org/10.5281/zenod0.8436924
(ISSM Team, 2023). Data for the main paper results and fig-
ures are available at https://doi.org/10.5281/zenodo.8436908
(Choi et al., 2023). BedMachine Greenland is freely avail-
able at the National Snow and Ice Data Center (NSIDC)
(https://doi.org/10.5067/2CIX82HUVS88Y, Morlighem et al.,
2017a, b). Geothermal heat flux data are available at
https://doi.org/10.17592/001.2018022701 (Greve, 2018). RACMO
SMB information can be accessed at https://www.projects.science.
uu.nl/iceclimate/models/racmo-archive.php (last access: ). Ice
fronts data are available at https://doi.org/10.7280/D1667W (Wood
et al., 2020). Annual ice velocity data and mass balance data are
available at https://its-live.jpl.nasa.gov (Gardner et al., 2019) and
https://doi.org/10.1073/pnas.1904242116 (Mouginot et al., 2019),
respectively.
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