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Abstract. Ice-penetrating radar (IPR) imaging is a valuable tool for observing the internal structure and bottom of ice sheets.

Subglacial water bodies, also known as subglacial lakes, generally appear as distinct, bright, flat, and continuous reflections in

IPR images. In this study, we collect and generate a dataset of one-dimensional reflector waveform features from IPR images of

:::
use

:::::::
available

::::
IPR

::::::
images

::
in the Gamburtsev Subglacial Mountains region in the CReSIS database, to investigate these features

::
to

::::::
extract

::::::::::::::
one-dimensional

:::::::
reflector

:::::::::
waveform

:::::::
features

:::
of

:::
the

::::::::::
ice-bedrock

::::::::
interface. We apply a deep learning method to5

reconstruct the reflector features, and subsequently downsample the features to a low-dimensional vector representation
::::::
reduce

::
the

:::::::::
dimension

:::
of

::
the

::::::::
reflector

:::::::
features. An unsupervised clustering method is then used to separate different types of reflector

features, including a reflector type corresponding to subglacial water bodies
::::
lakes. The derived clustering labels are used to

detect features of subglacial water bodies
::::
lakes

:
in IPR images. Using this method, we compare the new detections with the

known lakes inventory. The results indicate that this new method identified additional subglacial lakes that were not previously10

detected, and some previously known lakes are found to correspond to other reflector clusters. This method can offer automatic

detections of subglacial lakes and provide new insight for subglacial studies.

1 Introduction

Subglacial water exists

::::::::
Subglacial

::::::
water,

:::
i.e.,

:::::
water between bedrock and glacier or ice sheet

::
ice

:::::
sheet,

:
is formed through a complex interplay of fac-15

tors such as subglacial pressure, friction heat, geothermal flux, and surface water injection (Robin et al., 1970; Siegert, 2000; Pattyn, 2010)

::::::::::::::::::::::::::
(?Siegert, 2000; ?; Pattyn, 2010). Subglacial lakes play an important role in subglacial water networks, which can also impact

ice flow and dynamics (Kamb, 1987; Stearns et al., 2008; Siegfried et al., 2016)
::::::::::::::::::::::::::::::::::::::::::::::::
(Kamb, 1987; Stearns et al., 2008; Siegfried et al., 2016; ?)

. Investigation of water storage in subglacial lakes can provide insights into the history of former climate change and ice sheet

evolution (Dowdeswell and Siegert, 1999) and estimate the
::::::::
estimating

:::
the

:
contribution of ice sheet meltwater to sea level rise20

(King et al., 2020; Fettweis et al., 2013)
:::
and

:::
the

::::::
history

::
of

::::::
former

::::::
climate

::::::
change

::::
and

::
ice

:::::
sheet

::::::::
evolution

::::::::::::::::::::::::::
(Dowdeswell and Siegert, 1999)
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. In addition, the extreme conditions of low temperature and absent sunlight create unique subglacial lacustrine ecosystems

(Christner et al., 2014; Mikucki et al., 2016). Subglacial
::::::::
subglacial lake sediments may also contain information that records

the historical evolution of ice sheets (Smith et al., 2018).

The developed Ice-penetrating radar technology in recent years allows for the detection of the subsurface feature
:::
The

:::::::
extreme25

::::::::
conditions

::
of

::::
low

::::::::::
temperature

:::
and

:::::
absent

:::::::
sunlight

:::::
create

::::::
unique

:::::::::
subglacial

::::::::
lacustrine

:::::::::
ecosystems

::::::::::::::::::::::::::::::::::::
(Christner et al., 2014; Mikucki et al., 2016)

:
.

::::::::::::
Ice-Penetrating

:::::
Radio

::::::::
detection

:::
and

:::::::
ranging

:::::
(IPR)

:::
can

::
be

::::
used

::
to

:::::
detect

:::
the

:::::::::
subsurface

:::::::
features of ice sheets (Carter et al., 2007; Paden et al., 2010; Arnold et al., 2020)

. Subglacial water bodies can be identified in radar images due to their distinct, bright, flat, and specular reflection characteristics

(Oswald and Robin, 1973). Active seismic surveys are also utilized to investigate the
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(??Robin et al., 1970; Carter et al., 2007; Paden et al., 2010; Arnold et al., 2020)30

:
.
:::
The thickness of the subglacial water layer and sediment characteristics at the bottom of lakes (Paden et al., 2010; Arnold et al., 2020)

. Gravimetry and electromagnetic methods have also been employed to study subglacial lakes
:::
are

:::
also

::::::::::
investigated

:::::
with

:::::
active

::::::
seismic

:::::::
surveys

::::::::::::::::::::::::::::::::
(Paden et al., 2010; Arnold et al., 2020)

:::
and

::::::::::
gravimetry

:::
and

:::::::::::::
electromagnetic

::::::::
methods (Studinger et al., 2004;

Key and Siegfried, 2017). These observations have been used to construct the first Global Subglacial Lake Inventory (Living-

stone et al., 2022).35

::::::::
Subglacial

:::::
lakes

::::
can

::
be

::::::::
identified

:::
in

::::
radar

:::::::
images

:::
due

::
to
:::::

their
:::::::
distinct,

::::::
bright,

::::
flat,

:::
and

:::::::
specular

:::::::::
reflection

::::::::::::
characteristics

:::::::::::::::::::::
(Oswald and Robin, 1973)

:
. Because of the specific reflection characteristics of subglacial water bodies

::::
lakes

:
in IPR images

(Schroeder et al., 2013), the manual extraction of the visual features was initially applied (Siegert and Ridley, 1998; Gades

et al., 2000; Dowdeswell and Evans, 2004). With the increase in IPR data, semi-automatic methods based on ice-bottom

roughness features and reflected signal power have been developed to search for lake candidates (Carter et al., 2007; Bowling40

et al., 2019). Automatic methods based on experts’ experience and physical modeling (Lang et al., 2022; Hao et al., 2023), as

well as machine learning methods (Gifford and Agah, 2012; Ilisei et al., 2018) have also been proposed in subglacial water

body
:::
lake detection. These methods have shown that improved selection rules and thresholds can enhance detection accuracy

and efficiency. However, the new rules based on experience or physical model assumptions depend on subjective factors and

::::
these

::::::::
methods

::::
were

:::::
based

:::
on

::::::::::
assumptions

:::
of

:::::::
physical

::::::::
modeling

::
or

:::::::
learning

:::::
from

:::::::
previous

::::::::
detection

::::::::::
experience,

::::::
which may45

lead to potential deviations in the absence of a complete
::::::::
inaccurate

::::::::::
detections.

::
In

:::
the

:::
past

::::::::
decades,

:::
IPR

:::::::
surveys

::::
have

::::::::
collected

::::
large

:::::::
amounts

::
of
:::::

radar
:::::::
images,

:::::
which

::::::
enable

:::
the

:::::::
analysis

::
of

:::::
basal

::::
radar

::::::::::
reflectance

:::::::
features

::::
even

::
if

:::
the interpretation of basal

radar reflectance features
:
is

::::::
absent.

In recent years, Deep learning (DL)
:::
deep

:::::::
learning

:
has been applied as a powerful tool for automated layer features extraction

in radar
:
to
::::::
detect

:::::::
different

:::::::
features

::
in

::::
IPR

:
images, including bedrock interfaces (Xu et al., 2017; Rahnemoonfar et al., 2017;50

Dong et al., 2021; Liu-Schiaffini et al., 2022), internal ice layers (Yari et al., 2020; Varshney et al., 2020; Dong et al., 2021),

snow accumulation layers (Varshney et al., 2021) , and radar semantic segmentation (García et al., 2021; Ghosh and Bovolo, 2022)

. Additionally, DL-based methods are also developed for subglacial feature identification
:::
and

:::::::::
subglacial

::::::
waters(Gifford and

Agah, 2012; Ilisei and Bruzzone, 2015; Ilisei et al., 2018), which have improved the efficiency of IPR image interpretation.

These DL-based automated approaches have effectively expanded the data catalog and enabled further data applications in ice55
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sheet studies .
:::::::::
Moreover,

::::
deep

:::::::
learning

::::::
applied

::
to
::::
IPR

:::
has

::::
also

:::::::::
contributed

::
to

::::::::
estimates

::
of

:::
ice

::::::::
thickness (e.g., Tang et al., 2022;

Wang et al., 2023).

The Center for Remote Sensing and Integrated Systems (CReSIS,
:::::::::::::::::::::::::::::
https://data.cresis.ku.edu/#ACRDU) released an extensive

collection of historical radar images captured
:::::::
recorded

:
in the Antarctic and Greenland ice sheet (Arnold et al., 2020). These

datasets have driven various investigation of recent subglacial studies (e.g., Varshney et al., 2021; Zeising et al., 2022). By60

utilizing the precise label in the CReSIS dataset for reflectors from ice bottom, it is now feasible to construct a comprehensive

catalog of basal reflector characteristics, facilitating further analysis of reflector features.

In this study, we use IPR images from the CReSIS captured near
::
We

::::::
follow

:::
the

:::::
known

:::::
lakes

:::::::::
inventories

:::::::::::::::::::::::::::::::::::::::
(Wolovick et al., 2013; Livingstone et al., 2022)

::
to

:::::::::
investigate

::::::::
subglacial

:::::
lakes

::
in

:::
the

::::::::::
Gamburtsev

:::::::::
Subglacial

:::::::::
Mountains

::::::
region.

:::
We

:::::
select

:::
IPR

::::::
images

::
in

:::
the

::::::
region

::
of the Gam-

burtsev Subglacial Mountains to construct a waveform dataset of 1-D ice bottom reflector
::::
from

:::::::
CReSIS

::::::::
database.

::::
We

::::
crop65

::::
these

::::::
images

:::::::
around

:::
the

:::
ice

:::::::
bottom,

::
to

::::::
obtain

:
a
:::

set
:::

of
::::::::::::::
one-dimensional

:::::::::
waveforms

::::
that

:::::::
capture

:::
the

:::
ice

::::::
bottom

::::::::::
reflectance

characteristics. Using this dataset
:::
data, we train a Variational Auto-Encoder (VAE, Kingma and Welling, 2013) to reconstruct

the time-domain
:::::::::::::
one-dimensional

:
waveform features of basal reflectors. We then apply K-means clustering method

:::::::
methods

(MacQueen, 1967) in the VAE’s latent space to analyze similar reflection features and separate them into different clusters. We

notice
:::::::
identify a cluster of reconstructed reflectors with sharp, steep, and symmetric waveform characteristics corresponding70

to the features
::::::::
subglacial

:::::
lakes

:
observed in field radar images. Furthermore, we apply a conventional method based on the

linear relationship between depth and peak reflected power to filter the candidate subglacial water bodies
::::
lakes

:
from latent

space clustering. By using this workflow, we can obtain an automatic approach in subglacial water bodies
::::
lakes detection. To

validate the results, we compare the distributions of subglacial water bodies
::::
lakes by this method with the existing inventories.

This new
:::::::::
automated method can improve the efficiency and accuracy of the detection of subglacial water bodies and also75

provides a potential application to extract reflectors with similar waveform characteristics as water bodies
::::
lakes.

:::
By

:::::::::
collecting

:::
and

::::::::
verifying

:::
the

:::::::::
waveform

::::::::::::
characteristics

::
of

:::::::::
subglacial

:::::::::
reflectors,

:::
the

::::::::
accuracy

::
of

:::::::::
subglacial

:::::
lakes

:::
can

::::
also

:::
be

::::::::
improved.

Additionally, this approach can be extended to detect and label the other clusters of subglacial features, providing valuable

reference data for further studies of subglacial environments.

2 Data and Methods80

In this section, we will introduce the workflow of the ice bottom reflection feature clustering method, as shown in Figure 1,

which includes the extraction and sampling of ice bottom reflector features (Figure 1a), the feature reconstruction and latent

vector encoding reduction by
::
by

:::
the

:
variational auto-encoder (Figure 1b), the unsupervised clustering of ice bottom reflector

features (Figure 1c), and the implementation of labeling for subglacial water bodies
::::::::
subglacial

::::
lake

::::::::
detection

:
(Figure 1d).

2.1 Ice bottom reflectors85

We follow the known lakes inventories (Wolovick et al., 2013; Livingstone et al., 2022) to investigate subglacial water bodies

in the Gamburtsev Subglacial Mountains region. The utilized airborne radar images were collected during the December 2008-
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Figure 1. Workflow for subglacial water bodies
:::
lakes

:
detection: (a) Extract and sample the ice bottom reflector trace by trace in IPR images.

(b)
:::
The VAE reconstructs

::::::
encodes and encoding of

:::::::::
reconstructs the sampled ice bottom reflectorfeatures. (c) Supervised

::::::::::
Unsupervised

clustering on the encoded latent vectors. (d) Trace the ice bottom reflector corresponding to the subglacial water bodies
::::
lakes cluster.

January 2009 Antarctic’s Gamburtsev Province Project (AGAP)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(https://data.bas.ac.uk/full-record.php?id=GB/NERC/BAS/PDC/01544)

from the CReSIS database. According to the lakes inventory
::::::::::::::::::::::::::::::::::::::
(Wolovick et al., 2013; Livingstone et al., 2022), multiple known

subglacial lakes are located in this study area. We focus on the dataset from the southern camp of Dome A (AGAP-S), which90

comprises 2,715 IPR images with a central frequency of 150 Hz, a bandwidth of 10 MHz, and a transmitting power of 800

W (Wolovick et al., 2013). The radar image has
:::
We

:::
use

:::
the

::::
L1B

::::
data

:::::::
product

:::::::::::::::::
(CSAPR_standard),

:::::
which

::::::::
employs

:::::::
focused

:::::::
synthetic

:::::::
aperture

:::::
radar

:::::::::
processing

::
on

::::
each

:::::::
channel

:::
and

:::::::
motion

:::::::::::
compensation

::::::
during

::::
data

::::::::::::
pre-processing

:::::::::::::::::
(Arnold et al., 2020)

:
.
:::
The

:::::
radar

::::::
images

::::
have

:
an average spatial along-track trace spacing of 1.3

::
14

:
m and a time sample step of 10−7 s, equivalent

to a sample range of 8.4 m in ice. The radar images also contain the positions of ice bottom reflectors, which were extracted95

by hybrid manual-automatic method (Wolovick et al., 2013)
::
(?).

In this study, we perform a series of data processing steps to extract the ice bottom reflector signals from the radar images.

First, we transfer the echo power to decibel scale for each radar image by [X]db = 10 ∗ log10(X), where X is the pixel value

from the images. Second, we apply the reflector position markers
:::
use

::
the

::::
bed

::::
picks

:
in the dataset to truncate the 1-D data within

the ±200 sampling points near the
:::
bed

:
reflector position for every single trace along Z-axis

::::::
vertical

::::
trace. Third, we align the100
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1-D trace data by centering the traces according to their maximum value (peak echo) to correct minor position misfits of semi-

automatic reflector picking. This step ensures that the maximum value of bottom reflector signal features always resided at

the center of the 1-D trace data. Finally, we truncate ±64
::
To

::::::
reduce

:::
the

::::::::::
interference

::::
from

:::::
other

::::::::
englacial

:::::
radar

::::::
features

:::::
such

::
as

:::
the

::::::
internal

:::
ice

::::::
layers

:::
and

:::
the

:::::::
potential

::::::::
multiple

:::::::::
diffractions

:::::
from

:::::::
bedrock,

:::
we

:::::
apply

:::::::
constant

::::
time

::::::::
windows

:::
for

::::
each

:::::
trace

:::
near

:::
the

:::::
peak

:::::
signal

::::::
values.

::::
The

:::::
width

::
of

:::
the

::::
time

:::::::
window

::::::
should

:::::::
contain

:::
the

::::
main

::::
part

::
of

:::
the

:::::
signal

::::::::::
waveform.

:::
We

:::::::
truncate105

::::
−64

::
to

::::
+63

:
data sampling points around the peak signal centers, which maintain a fixed length of 128 for each ice-bottom

reflection signal. As the sampling rates of the radar images in this region are identical, the sample ranges of the ice bottom

reflector features are also consistent.

To enhance the reflector features and minimize the impact of sampling noise in radar images, a constant Gaussian filter

::::
with

:
a
::::::
kernel

:::::
sigma

:::::
value

::
of

:
4
:
is applied to all the extracted trace reflector data. Last, all

:::::::
dynamic

:::::
ranges

:::
of reflector features110

from different radar images are normalized
:::
into

:::
0-1

:
to reduce the influence of background echo power in the radar image and

accentuate the reflector features.
:::
The

::::::::::::
normalization

::
in

::::
each

:::::::
reflector

:::::::::
waveform

:::::::
reduces

::
the

::::::::::
complexity

::
of

::::
data

:::::::
samples,

::::::
which

:::
also

:::::::::
accelerates

:::
the

::::::::
following

:::::::
training

:::::::
process

:::
and

::::::
enables

:::
the

:::::::::
waveform

::::::::::::
downsampling

::
to

:
a
:::::
small

:::
2*1

::::::
vector. By following the

steps above, we collect and generated
::::::::
generated

:::
and

::::::::
collected an ice bottom reflector waveform feature dataset with 1488600

1-D Z-axis (A-Scope) radar echo traces.115

2.2 Variational Auto-Encoder

Variational Auto-Encoder (VAE) was first proposed by Kingma and Welling (2013) and designed for image and signal process-

ing. As an auto-encoder, VAE consists of an encoder and a decoder: the encoder reduces the data sizes and downsamples the

input data to vectors in latent space; the following decoder reconstructs the latent vectors to approach and match the raw input

data. After training, the encoded latent vectors can be considered dimension-reduced representations of the input data. And the120

reconstructed data from the decoder can trace and reveal the correlation between the sampled vectors in the continuous latent

space. VAE now has various applications in Earth science studies, such as geophysical inversion (Cheng and Jiang, 2020; Liu

et al., 2022; Lopez-Alvis et al., 2021), shale petroleum prediction (Li and Misra, 2017), engineering seismic analysis(Esfahani

et al., 2021) and seismic mechanism analysis (Li, 2022; Ma et al., 2022).

In this study, we employ VAE to reconstruct the
:::::
reduce

:::
the

:::::::::
dimension

::
of

:::
the reflector waveform features from the ice bottom.125

The VAE architecture is shown in Figure 2a, which consists of fully connected layers, including an input layer of 128 neurons,

an encoder and a decoder consisting of two hidden layers with 128 neurons, and an output layer with 128 neurons. To visually

present spatial distributions of
:::::::
perform

:
a
:::::::::::::::

two-dimensional
::::::::
clustering

::
in
:

the latent vectors, we design the bottleneck (latent

space) between the encoder and decoder to a small size of 2 * 1. The
:
1
::::::::
following

:::::::::
Li (2022).

::::
The

:::
2-D

:::::
latent

:::::
space

::
is

::::
also

:::::
easier

::::::::
presenting

:::
the

::::::
spatial

:::::::::::
distributions

::
of

:::
the

:::::
latent

:::::::
vectors.

:::
The

:
loss function used in VAE training follows Kingma and Welling130

(2013) and Li (2022):

Loss = MSE+KL (1)
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where the MSE
::::::::
represents

:::::
mean

::::::
squared

:::::
error,

:::::
which

:
measures the average difference between the predicted and actual values,

while the KL represents Kullback–Leibler divergence, which measures the dissimilarity between the probability distribution

of the Latent Space and a Gaussian distribution:135

MSE = ||X ′−X|| (2)

KL =−0.5 ·
n∑

i=1

(1+ log(σ2
i )−µ2

i −σ2
i ) (3)

where X and X ′ are raw input reflectors and VAE reconstructed reflectors respectively. The MSE in loss function is applied to

calculate reconstruction misfit and KL divergence for estimating and reducing the difference between the distribution and the140

normal distribution in latent space. N
::
n represents the dimension of the latent space Z, which was preset to 2 in this study, and

σ and µ are the variance and mean of the latent space respectively. The Adam Optimizer (Kingma and Ba, 2014) is employed

to accelerate the training process.

We use the randomly shuffled reflector datasets to train and validate VAE. 90% of the data are used for training VAE, while

the remaining 10% served as a validation set. The VAE is updated by a full training dataset during different epochs in training.145

Due to the similar reflector features
::::
after

::::::::::
single-trace

::::::::::::
normalizations

:
and large data amount applied in training, the training loss

rapidly decent
:::::::
descends

:
and no longer change after epoch 4, therefore we stop

::::::
changes

:::::
after

:::
the

:::
first

::::::
epoch,

::::
thus

:::
we

:::::::
stopped

::
the

:
training at epoch 10.

:
4
::::::
(Figure

::::
S1).

:

To evaluate
:::::::
illustrate the VAE’s reconstruction performance, we randomly select different reflectors from the validation set

to demonstrate the reconstruction of ice bottom reflector features (Figure 2b, c). Subfigures in figure
:::::
Figure

:
2b show a group of150

symmetrical reflectors and their corresponding reconstruction. The reconstructed reflector features (orange waveforms) remain

the width and trend of raw input reflector features (blue waveforms). Due to the low-dimension bottleneck with 2*1 size applied

in the latent space, the high-frequency detailed features in reflectors feature are unattainable and thus discarded by VAE. Figure

2c demonstrated a group of asymmetric reflector features and the corresponding VAE reconstruction. The comparison between

inputs and reconstructions suggests that the asymmetric trends of the reflector feature are also successfully reconstructed, as155

well as the width waveform feature. In general, VAE can reconstruct the features of both symmetric and asymmetric ice bottom

reflectors. Furthermore, we select typical reflectors with large reconstruction errors to demonstrate the large misfit conditions

(Figure 2d). Notably, reflectors contained with high-frequency signals, multiple peaks, and severe oscillations are challenging

to be reconstructed
:::::::::
reconstruct, thus resulting in higher errors. These peculiar signal features deviate significantly from the

majority of reflector features in the training set, rendering the features difficult to encode and decode through latent vectors.160

The reconstructions of multiple peak features are usually simplified to broader reflection shapes, whose trends are approximate

to the smooth shape and average of the input features.

As shown in Figure 2a, the original 128-length reflector waveform features are transformed into a 2-length latent vector

between the encoder and decoder of the VAE. The features of ice bottom reflectors are derived by the encoder part of the VAE

to latent vectors consisting of two dimensionless scalars, Z1 and Z2, which can be regarded as vectors containing the original165
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Figure 2. Variational Auto-Encoder (VAE) and demonstrations of ice bottom reflector reconstruction. (a) VAE architecture, with both encoder

and decoder consisting of two fully connected layers with 128 neurons, and bottleneck 1× 2 latent space. (b-d) Demonstrations
::::::::
Illustration

of data reconstruction using VAE: input raw reflectors (blue waveforms) and VAE reconstructed reflectors (orange waveforms),
:::::
where

:::
the

:::::::
horizontal

::::
axis

:::::::::
corresponds

::
to

::::
time

:::
and

::
the

::::::
vertical

::::
axis

:::::::::
corresponds

::
to

::
the

:::::::::
normalized

:::::::
reflection

:::::
power

:::::::
(ranging

::::
from

:
0
::
to

::
1).

:::::::::
Reconstruct

::::
MSEs

:::
are

:::::
labeled

:::::
above

:::
the

::::::::
waveforms.

:
(b) Symmetrical reflector features. (c) Asymmetrical reflector features. (d) complex reflector features,

which result in higher reconstruction errorsby VAE.
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signal features. Therefore, the distance between vectors
::::
from

:::
two

:::::::
reflector

:::::::
samples

:
in the latent space can be considered as an

indicator of statistical feature similarity.

2.3 Clustering Analysis in Latent Space

After VAE training, we randomly select a subset with 2000 reflector samples from the intact dataset to validate the encoder
:::
for

::::::::
clustering. Because the selection is uniformly random, the reflector samples are from different radar images captured in dif-170

ferent regions, and thus the samples reveal different ice bottom conditions. The reflector samples are first encoded by VAE’s

encoder to 2-D vectors in latent space. Figure 3a shows the vector distributions of the samples in the latent space, in which

each scattered point corresponds to an encoded reflector sample. Due to the application of KL divergence in VAE’s loss

function, the vector distribution of these samples in the latent space composed of Z1 and Z2 is approximate to a 2-D Gaussian

distribution. According to the character of VAE Kingma and Welling (2013)
:::::::::::::::::::::::
(Kingma and Welling, 2013), the distance between175

encoded vectors in the latent space is equivalent to the difference between the input reflector samples. Thus, analyzing the latent

spatial relationships of the vectors in the latent space enables us to explore potential relationships between the corresponding

reflector features. By applying a clustering method in the sample-encoded vectors in latent space, we can furthermore separate

different types with similar
::
By

:::::::::
measuring

:::
the

::::::::
distances

:::::::
between

:::
the

::::::::
reflectors’

:::::
latent

:::::::
vectors,

:::
we

:::
can

:::::::
estimate

:::
the

:::::::::
difference

::
in

:::::::::
waveforms’

::::::::
features.

:::::::::::
Furthermore,

:::
the

::::::::::::
distance-based

:::::::::
clustering

::
in

:::::
latent

::::::
vectors

::::
can

::::::
classify

:::
the

:
ice bottom reflector

::::::
feature180

::::
with

::::::
similar features.

To improve the clustering efficiency, it is advisable to reduce the amount of data used. However, in order to ensure the accu-

racy of clustering, the selected samples should have sufficient data density and match the same distribution as the experimental

data. As illustrated in Figure 3a, using latent vectors from a randomly selected set of 2000 reflectors is sufficient for clustering.

Therefore, we apply these samples for the next clustering analysis. We employ the K-means clustering algorithm (MacQueen,185

1967), which based on the Euclidean distance estimation of the differences between data samples, as well as the characteristics

in VAE’s latent space. Initially,K clustering centers are randomly assigned in 2-D space. The distance of each sample vector to

the cluster center is computed, and the sample is assigned to the nearest cluster with the smallest distance. Then, all the cluster

centers are updated to the spatial center of all the samples belonging to the corresponding cluster. This assign-update process

is repeated until the cluster center becomes constant or the clustering result remains unchanged.190

The number of clusters (K) is a preset parameter in the K-means algorithm, which must balance the tradeoff between implied

feature classes and feature density in the data. On the one hand, K should be sufficiently large to distinguish between different

ice bottom conditions. On the other hand, K should not be so large as to create unnecessary subclasses. To obtain optimal

clustering results, we tested various preset
:::
first

:::::::
applied

:::
the

::::::
elbow

::::::
method

:::
to

::::::::
determine

:::
the

::::::::::
appropriate

:::::
value

:::
of

::
K

:::::::
(Figure

:::
S2).

:::::::::
However,

:::
the

:::::
elbow

:::::
curve

:::::
does

:::
not

:::::
show

::
a

::::
clear

::::::
cutoff

:::::
point,

:::::::
possibly

::::
due

::
to

:::
the

::::::::::
distribution

:::
of

::::::
vectors

::
in
::::

the
:::::
latent195

::::
space

:::::::
(Figure

:::
3a)

:::
not

:::::::::
displaying

::
a

::::::
distinct

:::::
trend

::
of

:::::::
multiple

:::::::
classes.

:::::::::
Therefore,

:::
we

:::::
tested

:::::::
various

::::::::
alternative

:
values of Kand

ultimately chose ,
::::
and

::::::::
ultimately

:::::::
selected

:
K = 15, which effectively

:
.
:::
The

:::::::::
clustering

::
in

:::::
latent

::::::
vectors separates the ice bottom

reflector features corresponding to different conditions
:::
with

::::::
similar

:::::::::
waveform

:::::::
features, as demonstrated by the different colors

of points in Figure 3a.
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b
Z2

Z1
−σZ2

a

+σZ2

+σZ1

−σZ1

Figure 3. (a) Latent space distribution of 2000 randomly selected encoded reflector features, with each point representing an encoded

reflector sample. The color of each point represents different clustering results (classes), and the black cross denotes the clustering center of

each class. The gray dashed rectangle indicates the range of 2 standard deviations (±σZ1 and ±σZ2 ) of the latent vectors. (b) Synthetic ice

bottom reflectors reconstructed by virtual vectors, where the virtual vectors’ range corresponds to the ranges of standard deviations (σZ1 and

σZ2 ). Different colors of
::::
divide

:
the waveform correspond

::::
latent

:::::
spaces

:::::::::::
corresponding to different classes

:::::
clusters, with

:
in

:::::
which the candidate

::::::::
waveforms

:::::::::
demonstrate

:::
the

:::::::
synthetic

:::::::
reflectors

::
in

::::::
different

:::::::
clusters.

:::
The

::::::::
Candidate cluster corresponding to subglacial water bodies

::::
lakes

::
is

shown in black color near the upper right corner.

To visualize and investigate the latent spatial relationship between the ice bottom reflector features
::::
trace

:::
the

::::::::::::
representative200

::::::::
waveform

:::::::
features

::
in

::::::::
different

:::::::
clusters

::
as

::::
well

::
as

::::
the

:::::::
different

:::::::
regions

::
in

:::::
latent

:::::
space, we apply a set of virtual vectors by

::
to

:::::::
generate

::::::::
synthetic

:::::::::
waveforms

:::
by

::::::
VAE’s

:::::::
decoder.

::::
The

::::::
virtual

::::::
vector

::
set

::
is
:::::::::

generated
:::
by a grid with the same step length

in the latent space. The synthetic ice bottom reflector feature of each vector can be obtained by inputting the vector into the

decoder ,
::::
then

:::
the

:::::::
decoder

::::::::
generates

:::
the

:::::::::
waveforms

::::::::::::
corresponding

::
to
:::
the

:::::::
inputted

:::::::
vectors. The 2-D range of the virtual vector

grid is assigned based on the standard deviation (σ) of Z1 and Z2, as shown in the gray dashed rectangle in Figure 3a. The205

grid is constructed by dividing
::::::
ranges

::
in Z1 and Z2 into 20 intervals each, ranging from −σ to +σ, with the same step size.

By applying the 20× 20 virtual grid to the
::
are

:::::
both

::::::
divided

::::
into

:::
10

:::::::
intervals

:::::
each.

::::
The

::::::::
synthetic

:::::::::
waveforms

::::
are

:::::
shown

:::
in

:::::
Figure

:::
3b,

::
as

::::
well

:::
as

:::
the

::::::::::::
corresponding

:::
area

:::
of

:::::::
clusters.

:::
The

:
VAE’s decoder

:::::::
learning

:::::
target

:::::::
involves

::::::::
waveform

:::::::::::::
reconstruction.

9



:::::::::::
Consequently, we can obtain the generated synthetic ice bottom reflectors for each vector in the grid, as shown in Figure

3b
:::::
equate

:::
the

::::::::
synthetic

:::::::::
waveforms

::::
with

:::
the

:::::
input

:::::::
reflector

:::::::::
waveforms

::::
that

:::
are

:::::::
encoded

::
as

:::::::
identical

:::::::
vectors

::
in

:::
the

:::::
latent

:::::
space.210

The encoder-decoder trained on a large amount of data can obtain the performance in mapping latent vectors to the reflector

features. Therefore, the ice bottom reflectors generated from virtual vectors also have similar features of symmetry, asymmetric

tilt, and different widths as shown in Figure 2. Furthermore, the K-means clustering derived from the selected samples

also classifies the virtual latent vectors , and the classification results of different virtual reflectors are shown in different

colors in Figure 3b. Within the same cluster in the latent space, the reflector features generated by virtual vectors exhibit215

similar waveform features. Overall, this method allows us to explore the implicit relationships between different reflector

features, providing valuable insights into the analysis of ice bottom conditions
:::::
These

::::::::
synthetic

:::::::::
waveforms

:::
can

:::::
serve

::
as

::
a

:::::
direct

:::::::
reference

:::
for

:::
the

::::::
initial

::::::
cluster

:::::::
selection

:::
of

::::
input

:::::::::
subglacial

:::::
water

:::::::::
reflections

:::::
using

:::::::::::
conventional

::::::::
waveform

::::::::
methods,

::::
such

:::
as

::::::::::::::
Hao et al. (2023).

2.4 Feature Detection of Subglacial Water Bodies220

2.4
::::::::

Subglacial
:::::
Lake

:::::::::
Detection

We further investigate the distribution of different type’s ice bottom reflectors in the radar images and their corresponding

geometry features . We first note that a category of ice bottom reflectors synthesized by virtual vectors with symmetrical

shapes and sharp, fast attenuation (black waveform in Figure 3b, corresponding to black scatter plot in Figure 3a)is similar

to existing classic subglacial water body reflector features (e.g., Schroeder et al., 2013; Hills et al., 2020). Furthermore, we225

trace
::::::::
geometry

:::::::
features

::
of

::::::::
synthetic

:::::::::
waveforms

::
in

::::::::
different

:::::::
clusters.

:::
We

:::::::
initially

::::::
identify

::::
one

::
of

:::
the

:::::::
clusters

::::::::::::
corresponding

::
to

::::::::
subglacial

:::::
lakes

::::::::
(indicated

:::
by

:::::
black

::::::
clusters

::::
and

:::
the

:::::
region

::
in

:::
the

:::::
upper

:::::
right

:::::
corner

::
in

::::::
Figure

::::
3b).

:::
The

::::::::::
waveforms

:::::
within

::::
this

:::::
cluster

:::::::
display

::::::::::
symmetrical

::::::
shapes

:::
and

:::::
rapid

:::::
signal

::::::::::
attenuation

::::
near

:::
the

::::::::
waveform

:::::
peak,

::::::
similar

::
to

:::::::::
subglacial

::::
lake

:::::::::
reflections

::::::::
previously

::::::::
identified

::
in
::::::
studies

::::
such

:::
as

::::::::::::::::::::::::::::::::::::::::::::::::
Schroeder et al. (2013); Hills et al. (2020); Hao et al. (2023)

:
.
:::::::::::
Subsequently,

:::
we

::::
map the

distribution of these reflectors in radar images. The results show that these reflectors are continuously distributed in radar im-230

ages, and the reflectors ’ distribution generally have
:::::::
generally

::::::
display

:
flat, bright characteristics (Figure 4c). These continuous

features are similar to the visual criteria used by glaciologists to identify subglacial lakes (Wolovick et al., 2013; Schroeder

et al., 2013). Therefore, we further apply the results of the encoder-clustering as a candidate distribution of subglacial water

bodies
::::
lakes.

In further applications of observational data, it has been observed that the signal-to-noise ratio (SNR) of radar images from235

deep ice sheets is low due to the attenuation of radar signals. The interference of noise can occasionally cause odd clusters in

the detection of candidate subglacial water bodies
::::
lakes (e.g., Figure 4c). Occasionally, subglacial water bodies

::::
lakes

:
may be

mistakenly identified as appearing in non-water body
:::::::
non-lake areas. Additionally, the complex conditions of the ice bottom

can also cause interruptions in subglacial lake detection. To eliminate noise interference and extract continuous subglacial

lakes or water bodies
::::
lakes, we limit the minimum width of subglacial water bodies

::::
lakes

:
in observational detectionbased on240

experimental experience. Detected subglacial water bodies
:::::
lakes should contain a continuous ice bottom segmentation in sub-
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a

b

c

d

Figure 4. Example 1
::::
First

::::::
example of subglacial lake detection includes two larger and two smaller subglacial water bodies

::::
lakes. (a) IPR im-

age is shown with the blue dashed line indicating the positions of the ice bottom reflectors. (b) Separated, realigned, smoothed, denoised, and

normalized ice bottom reflector features, which are applied as inputs to the encoder. (c) Unsupervised
::::::
Results

::
of

::
the

::::::::::
unsupervised

:
clustering

results of the latent vectors obtained through encoding, where different colors correspond to classes in Figure 3. The black cluster corre-

sponds to the candidate subglacial water bodies
::::
lakes. (d) The subglacial water bodies

::::
lakes detection based on continuous reflector features,

where blue
::::
black

:
blocks represent the raw detected subglacial water bodies

::::
lakes, and the red

:::::
yellow blocks are occasional interruptions that

are filled by interpolation
:
,
:::
and

::::
white

:::::
blocks

:::::::::
correspond

::
to

::
the

:::::::
non-lake

::::::
clusters.

glacial water type with a width greater than 8 traces (corresponding to an average spatial distance of 10.4
:::
112 m). Meanwhile,

interruptions in continuous subglacial water bodies
::::
lakes, which are narrower than 8 traces, are considered noise interference

and will be interpolated and filled into nearby subglacial lakes. During interpolation, it is ensured that the interpolated non-
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subglacial water bodies
::::
lakes

:
in the continuous subglacial lakes are less than 25% to avoid interpolation artifacts due to specific245

noise
:::::::
mistaken

::::::::
detection

::::::
caused

:::
by

:::::::
abundant

:::::::::::
interpolation.

By applying

::
By

::::::::::::
implementing

:
a threshold on the minimum width of subglacial water bodies

::::
lakes, we obtain a list of candidate water

bodies
::::
lakes with larger widthsand reduce

:
,
:::::::::
effectively

::::::::::
minimizing noise interference. However, some candidate water bodies

still contain weak and blurry ice
:
of

:::::
these

:::::::::
candidates

::::
still

::::::
exhibit

:::::
weak

::::
and

::::::::
indistinct

:
bottom reflector features that cannot250

be confirmed as subglacial water bodies
:::::
could

:::
not

:::
be

::::::::::
conclusively

:::::::::
identified

::
as

:::::::::
subglacial

:::::
lakes. Therefore, we follow the

conventional subglacial lake detection method based on englacial signal attenuation of bed reflectors (Wolovick et al., 2013;

Hills et al., 2020). We apply a linear threshold filter
::
In

:::
this

::::::
study,

:::
we

:::::
apply

::
a

::::::::
simplified

::::::::
process,

:::::
using

:
a
::::::
linear

::::::::
threshold

based on the average peak reflector echo power in different depths to detect
:::::
reduce

:
the reflector power anomalies. To simplify

the process, we used the
::::::
Values

::
of peak echo power directly from each reflector from the radar images. We consider the

:::
and255

::::
depth

:::
are

:::::::
directly

::::::::
extracted

::::
from

:::::
radar

::::::
images

:::
for

::::
each

:::::::
reflector

:::::::
without

:::
ice

::::::
surface

:::::::::
correction,

::::::::::
simplifying

:::
the

:::::::::
approach.

:::
We

:::::::
calculate

:::
the

::::
best

:::::
linear

:::
fit

:::
and

::::::::
standard

::::::::
deviation

:::
on

:::
the 2-D distribution of ice thickness (depth) and peak echo power of

subglacial reflectors recorded in
:::::
bottom

::::::::
reflectors

:::::
from

:
the radar images (Figure 5)and calculated the best linear fit and the

standard deviation of the probability density. As the Z-axis (A-Scope) reflector features were considered in the previous steps,

we obtained the average peak echo power for each detected candidate water body. Additionally, due to more reflector features260

used in the detection, a lower
:
.
::::::::::
Considering

:::
the

::::::::
reflector

:::::::
features

::::::::
analyzed

::::::
during

:::
the

::::
VAE

::::
and

:::::::::
clustering

:::::
steps,

:::
and

:::::
with

:::::::::
uncorrected

:::
ice

:::::::::
thickness

:::::::
applied,

:
a
:::::
lower

:::::
linear

:
threshold in average echo power could be applied to detect more potential

subglacial water bodies. We applied the
:
(best fit +1σas the threshold in different ice thickness, which was lower than the

threshold used in the ,
:::::::::
compared

::
to

:::
the previous study (Wolovick et al., 2013), to further confirm the candidate subglacial water

bodies (
:
)
::
is

:::::::
applied

::
to

:::::::
preserve

::::::::
potential

::::::::
subglacial

::::::
lakes.

:::
The

:::::::::
confirmed

::::::::
reflectors

:::
are

::::::::::
represented

:
as black points in Figure265

5). The average echo power of the detected subglacial water bodies must be higher than the threshold. This step filters out the

unconfirmed candidate water bodies with weak and blurry reflector featuresand improves the accuracy of the detection
::::
lakes

::
in

::
the

:::::::
filtered

:::
list

::::::
should

::::::
surpass

:::
the

::::::::
threshold

::
at

:::
the

::::::::::::
corresponding

:::::::
average

:::::
depth.

::::::::::::
Consequently,

::::
this

::::
final

:::::::::
refinement

::::::::
excluded

::::::::
candidate

::::
lakes

:::::::::
exhibiting

:::::
weak

:::
and

::::::
blurred

:::::::
reflector

:::::::
features.

3 Reuslts
::::::
Results270

We apply the encode-cluster method to the IPR images in the AGAP-S database
::::::
dataset and trace the spatial distribution of

subglacial water bodies
::::
lakes

:
in the images. In this section, we first demonstrate subglacial water bodies detected in

::::
lakes

:::::::
detected

::
at different scales. Next, we compare the distribution of the detected subglacial water bodies

::::
lakes with known lake

inventories, and discuss the newly detected subglacial water bodies
::::
lakes, as well as the known subglacial lakes missed by our

method.275

3.1 Subglacial Water Bodies
:::::
Lakes in Different Scales
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Figure 5. Distribution of ice bottom reflection peak power and ice thickness. The background colormap represents the probability density

estimation (PDE.) of the data; orange dashed line represents the best linear fit; black and blue dashed lines
::
line

:
denote the +1σ and +2σ

cutoff thresholds, respectively
::::::

threshold. Gray dots represent reflector samples, while black dots represent the detected samples for subglacial

water bodies
::::
lakes.

The detection examples of subglacial water bodies shown in Figure 4 consist of a radar image with picked ice bottom reflector

positions (blue dashed line) applied for subglacial lake detection in the first row. The second row demonstrates the separated

ice bottom reflector features, which are peak aligned, denoised, and normalized, and input to the encoder of the VAE to obtain

latent vectors. The third row shows the classification results obtained through the clustering classifier after encoding, with280

different colors representing the classification of the ice bottom reflectors as shown in Figure 3. The fourth row illustrates the

distribution of subglacial water bodies detected through subglacial lake classification (black reflector classification in the third

row subfigure) and denoise interpolation, where blue represents the original detection of subglacial lakes, and red represents

the subglacial water bodies replenished through interpolation.

Figure 4 shows two large subglacial lake distributions and two smaller subglacial water bodies
::::
lakes

:
located at the bottom285

of subglacial valleys. The two larger lakes on the right display high return
::::
echo

:
power as well as continuous and flat reflection
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features, which are relatively easy to detect visually. In contrast, the two smaller subglacial water bodies
::::
lakes

:
on the left

are easily overlooked due to their relatively narrow widths containing insufficient continuous and flat reflection features. This

example demonstrates the detection of two different types of subglacial lakes of varying widths from within a radar image. Due

to the similarities in
:::
The geothermal and subglacial environments in adjacent areas

:::::
should

::
be

::::::
similar

:::
in

:::
the

::::
same

:::::
radar

::::::
image,290

:::::
which

::::
was

::::::::::
continuously

::::::::
recorded

::
in

:::::::
adjacent

::::::
areas.

::::::::
Therefore, the detection of the two smaller subglacial water bodies

::::
lakes

can be considered reliable based on the reflector encodes and the following clustering results. In addition to the examples shown

in Figure 4, we provide further examples of subglacial water bodies
:::::
lakes detection in Figures 6 and 7, where the workflows

and sequences applied are identical to those shown in Figure 4.

Figure 6 shows the detection of a relatively small subglacial water body
:::
lake, which is located at the concave bottom of a295

subglacial valley. Despite its short length, this water body
:::
lake

:
displays a flat and continuous reflection interface, with strong

return
::::
echo

:
power and rapid attenuation characteristics, making it visually similar to the larger lakes in Figure 4 and Figure 7.

The continuous reflection features of this type of smaller subglacial water bodies
::::
lakes are narrower and less prominent, which

makes them easily overlooked in visual detection in previous studies. However, the encode-cluster method based on reflector

features from single trace can individually extract and classify each reflector sample, which enhances the detection sensitivity300

of this type of smaller subglacial water bodies.

Figure 7 presents a special example of a large continuous subglacial lake (
:
at about 40 km wide on the right

:::::
along

::
the

:::::::
transect)

shown in a radar image. This subglacial lake has high returned power and flat reflection features that are visually easy to be

detected. This subglacial lake has a visually obvious flat reflection feature with a high return power. However, only part of

the lake is detected by the encode-cluster method based on reflector features, and discontinuities are found within the lake305

(Figure 7d). Upon inspecting the radar image (Figure 7a), we observe that the left part of this subglacial lake (indicated by the

white arrow in Figure 7c) displays different reflector features from the detected part of the lake. These inconsistent features

visually have relatively thick and uniform reflection layer-liked features near the ice bottom interface, resembling frozen-on

ice as described by Bell et al. (2011). Additionally, another discontinuity interrupts the detected subglacial lake distribution in

the center, which also implies thick reflection layer features. Moreover, in other areas of the radar image, there are also other310

continuous clusters of subglacial reflector features (as the yellow arrow indicates in Figure 7c). By tracing these clusters, we

note that these different classes of reflectors correspond to distinct uniform reflection layers with varying thicknesses. Due to

the similar features of ice bottom reflections, we suggest that these continuous spatial distributions may relate to the ice flow

dynamics and different stages of frozen-on ice (Bell et al., 2011).

3.2 Spatial Distribution of Detected Subglacial Lake
:::::
Lakes315

We compile and integrate the identified subglacial lakes and water bodies
::::
lakes

:
from the AGAP-S IPR images, and locate

each detection within the spatial sampling range of each radar image provided by the database. Figure 8 presents the spatial

distribution of subglacial water bodies
::::
lakes detected in the Gamburtsev Subglacial Mountains region, where the blue points

represent subglacial water bodies
::::
lakes that have been confirmed by applying an average

:::
the peak reflection power filter to

subglacial water body
:::
lake

:
candidates detected by the encode-cluster method (

::::
light

:
cyan points in Figure 8). Overall, the320
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subglacial water bodies
::::
lakes

:
are distributed in clusters with continuous spatial relevance, but some are also sparsely detected.

:::::
spatial

:::::::::
continuity

:::::
(e.g.,

:::
the

:::::::
regional

::::::
cluster

::::
near

:::
L1

::::
and

::
L3

::::::
area),

:::
but

:::::
some

:::::::
isolated

::::
lakes

:::
are

::::
also

::::::::
detected,

::::
such

:::
as

:::
the

:::
L2

a

b

c

d

Figure 6. Example 2
:::::
Second

:::::::
example of subglacial lake detection, which contains a relatively narrow subglacial water body

:::
lake. (a) Input

radar image, where blue dashed line indicating the positions of the ice bottom reflectors. (b) Separated, realigned, smoothed, denoised, and

normalized ice bottom reflector features, which are used as inputs to the encoder. (c) Unsupervised
:::::
Results

::
of

:::
the

::::::::::
unsupervised

:
clustering

results of the latent vectors obtained through encoding, where different colors correspond to classes in Figure 3. The black cluster corresponds

to the candidate subglacial water bodies
::::
lakes.(d) The subglacial water body

:::
lakes

:
detection based on continuous reflector features(blue block)

:
,

::::
where

:::::
black

:::::
blocks

:::::::
represent

::
the

::::
raw

::::::
detected

::::::::
subglacial

::::
lakes,

:::
the

:::::
yellow

:::::
blocks

:::
are

::::::::
occasional

::::::::::
interruptions

:::
that

::
are

::::
filled

:::
by

::::::::::
interpolation,

:::
and

::::
white

:::::
blocks

:::::::::
correspond

:
to
:::

the
:::::::
non-lake

::::::
clusters.
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Figure 7. Example 3
::::
Third

::::::
example

:
of subglacial lake detection, which contains a subglacial water body

:::
lake. (a) Input radar image, where

blue dashed line indicating the positions of the ice bottom reflectors. (b) Separated, realigned, smoothed, denoised, and normalized ice bottom

reflector features, which are used as inputs to the encoder. (c) Unsupervised
:::::
Results

::
of

:::
the

::::::::::
unsupervised clustering results of the latent vectors

obtained through encoding, where different colors correspond to classes in Figure 3. The black cluster corresponds to the candidate subglacial

water bodies
::::
lakes. (d) The subglacial water body

::::
lakes detection based on continuous reflector features, where blue

:::
black

:
blocks represent

the raw detected subglacial water bodies
::::
lakes, and the red

:::::
yellow

:
blocks are occasional interruptions

:::
that

:::
are filled by interpolation

:
,
:::
and

::::
white

:::::
blocks

:::::::::
correspond

::
to

::
the

:::::::
non-lake

::::::
clusters. Yellow arrow indicates another continus

::::::::
continuous

:
subglacial reflector class distribution,

which may correspond to other symbolic subglacial conditions. White arrow indicates possible subglacial frozen-on ice condition.
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:::::
survey

::::
line.

::::::::
Densely

:::::::::
distributed

:::::::::
subglacial

:::::
lakes

::
in

:::::::
specific

::::::
regions

:::
are

:::::::
usually

::::::::
identified

::
in
:::::

radar
:::::::
images

::
by

:::::
their

:::::::
obvious

:::::::::
reflections,

::
as

::::::::
illustrated

::
in
::::::
Figure

:
4
::::
and

::
6.

::
In

::::
these

::::::
cases,

::::
most

::::::::
detections

:::
are

::::::::
validated

:::::::
through

::::
peak

:::::
power

::::::::
filtering.

::::::::
However,

:::::
certain

:::::::::
candidates

:::
in

::::::
densely

:::::::::
distributed

:::::::
regions

::::::
exhibit

:::::
lower

::::
peak

:::::::
reflector

:::::
echo

:::::
power

::::
than

:::
the

:::::::::
established

::::::::::
thresholds.

::::
This325

::::::::::
discrepancy

:
is
::::::::
primarily

:::::::::
attributed

::
to

:::
the

:::::::::
ambiguous

:::
and

:::::
weak

::::::::::
reflections,

::::
often

:::::::::
associated

::::
with

::::::::::::
long-distance

:::
flat

:::
ice

::::::
bottom

::::::
shapes.

:::
An

:::::::
example

::
of

:::::
such

:::::::::
candidates

:::
can

::
be

::::::::
observed

::
in

:::
the

:::::::
densely

:::::::::
distributed

::::
light

::::
cyan

::::::
points

::::
near

:::
the

::::::::
lower-left

::::::
corner

::
in

:::::
Figure

::
8.

:

In addition to the subglacial lakes detected in this study, we compare the
::::::::
subglacial

:::::
lakes

:::::::
detected

::
in
::::

this
:::::
study

:::
to

:::
the

previously identified subglacial lake distributions, as shown by the red and yellow points in Figure 8, which correspond to330

the inventories of Wolovick et al. (2013) and Livingstone et al. (2022), respectively. The two larger subglacial lakes (shown

in Figure 4 and 7) correspond to the known subglacial lakes listed in the inventories (labeled as L1 and L3 in Figure 8). In

contrast, the narrow subglacial water body
:::
lake shown in Figure 6 is not previously included in the inventories (labeled as L2

in Figure 8), which is newly detected. Overall, the subglacial lake distribution detected in this study roughly overlaps with

the known inventory, but there are also some mismatches, such as the lines labeled E1-E5 and N1-N4 in Figure 8. To further335

investigate the reasons for these discrepancies, we select the corresponding radar image segments from labeled regions and

plot the segments in Figure 9 and 10, respectively.

Figure 9 displays segments of radar images from the N1-N4 subregions, revealing multiple new subglacial water bodies

::::
lakes

:
detected by the new method (indicated as blue lines below in Figures

:
in

::::::
Figure

:
9). Figure 9a illustrates two detected

subglacial water bodies
::::
lakes, one on the left (marked as orange line below) that was already included in previous subglacial340

lake inventories, and one on the right that is newly detected by the new method. The ice bottom reflectors of both subglacial

water bodies
::::
lakes have a similar visual appearance, with sharp and narrow reflectors in the Z-axis. However, the water body

:::
lake

:
on the right has a narrower width, which could make it easier to overlook visually, potentially causing it to be neglected

in previous studies.

The radar segment displayed in Figure 9b is from the N2 subregion near -83°S, 70°E in Figure 8, where a group of continuous345

subglacial water bodies
::::
lakes

:
has been detected and recorded in the known inventory .

::::::
(Figure

:::::
8N2).

::::::::
However,

:::::
there

::
is

:::
no

:::::::
previous

::::::::
detection

::
in

:::
this

:::::
radar

::::::
image

::::
from

:::
the

::::::
known

:::::::::
inventory. The new method detects subglacial lakes in about 7 km in

Figure 9b, while .
::
It

::
is

:::::
worth

::::::
noting

:::
that

:
multiple reflectors with thick layer features (marked by red arrows) display in the 16

and 29 km simultaneously. Considering the dense distribution of subglacial water bodies
::::
lakes nearby, these thicker reflection

features are possibly formed by frozen-on ice due to ice flow
:::
that

::::::::::
complicates

:::
the

::::::
shape

::
of

:::
the

:::::::::
near-basal

:::::::::
reflection

::::
trace.350

Figures 9c and d show several smaller subglacial water bodies
::::
lakes, which are similar to the narrow subglacial water body

::::
lake

shown in example 2 in Figure 6. These small water bodies
::::
lakes may have originated from local melting or subglacial rivers,

corresponding to the sparse but regionally dense distribution of subglacial water bodies in
::::
lakes

::::
near

:
the L2, N3 and N4 regions

in Figure 8.

Figure 10 presents subglacial lakes previously identified in the inventories, but which are not accurately detected by the355

encode-cluster method and return
::::
echo power filtering. The orange arrows in Figure 10 indicate the locations of previously

identified subglacial lakes. In Figure 10a, although there are multiple candidate water bodies
::::
lakes in the E1 subregion from the
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E1

E2

E3

N1

N2

N3 N4

L1

L3

L2

Detected Lakes (Post-Processed)

Livingstone et al., (2022)

Wolovick et al., (2013)

VAE-Clustering Candidate Lakes

E5

E4

(non-echo power filtering)

Figure 8. Distribution of airborne radar observation lines and detected subglacial water bodies
:::

lakes
:
in the Gamburtsev Subglacial Mountains

region. Blue points indicate the distribution of subglacial water bodies
:::
lakes

:
detected in this study. Cyan

::::
Light

::::
cyan points mark

::
all the water

body
:::
lake

:
candidates from the encode-cluster

::::::::
VAE-cluster

:
method

::::
before

::::
echo

:::::
power

:::::::
fitlering. Red and yellow points mark the subglacial

lake distribution from the subglacial lake inventory from Wolovick et al. (2013) and Livingstone et al. (2022), respectively. Text labels and

:::
with

::::
gray arrows indicate the positions

:::::
position

:
and directions of selected airborne radar observation

::::
survey

:
lines

:::::
(shown

::
in

::::
black

::::::
arrows),

with
::::
where

:::
L1,

:::
L2,

:::
and

::
L3

::::::::
correspond

::
to

:::
the

:::::::
detection

::::::
example

:
survey lines of Figures

:::::
(Figure

:
4, 6 and 7 labeled as L1), L2

::::
N1-4

:::::::::
corresponds

:
to
:::
the

:::::
newly

::::::
detected

::::
lakes

::
in
:::::
Figure

::
9, and L3, respectively

::::
E1-5

:::::::::
corresponds

::
to

:::
the

:::::::
mismatch

::::
lakes

::::
with

::
the

::::::
known

:::::::
inventory

::
in

:::::
Figure

::
10.

The inset map shows the location of the study area.

encode-clustering in the radar segment, the average peak power is insufficient to confirm the subglacial lake in each water body

:::
lake

:
candidate. The ice bottom reflectors of this radar segment differ visually

:::
are

::::::
visually

::::::::
different from other known subglacial

lake features (e.g., Figures 4, 7 and 9). In Figure 10b, the ice bottom reflectors near known subglacial lakes are classified as360
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a

b

c d

N1

N2

N3 N4

Figure 9. Newly detected subglacial lakes and water bodies
::::
lakes

:
in the Gamburtsev Subglacial Mountains region, with text labels corre-

sponding to the location distribution in Figure 8. Scatter points in different colors mark the encoded classes of the ice bottom reflectors, and

the blue and orange lines indicate the detected range of subglacial water bodies
::::
lakes

:
or lakes. (a) IPR image of the N1 region, containing

a known subglacial lake (orange line on the left) and a newly detected subglacial lake (right). (b) Radar image segment of the N2 region,

containing a newly labeled subglacial lake area; the two relatively flat ice bottom reflection segments indicated by red arrows may record the

frozen-on ice. (c-d) Newly detected regional subglacial water bodies
::::
lakes with smaller sizes, from radar image segments from the N3 and

N4 regions, respectively.

corresponding to other reflector classes instead of water body
:::
lake reflectors. By inspecting the radar image, these reflectors

display a thick layer near the ice bottom reflections, which are similar to reflections in Figure 7c. We consider
:::::::::
hypothesize

:
that

the subglacial lake in this segment may correspond to
::
be

::::::::
associated

:::::
with a frozen-on ice condition. ,

::::::::::::
distinguishing

::
it
:::::
from

::
the

:::::
thick

::::::
bottom

:::::::::
reflectors

:::::::
observed

:::
in

::::::
Figure

:::
9b.

::
In

:::
the

:::::
latent

:::::
space

:::::::
(Figure

::::
3b),

:::
the

:::::::
clusters

::
in

:::
9b

:::::::
(purple)

:::
and

::::::
Figure

:::
7c

:::::::
(yellow)

:::
are

:::::::
adjacent.

::::
This

:::::::::
adjacency

:::::::
suggests

:::
the

:::::::
presence

:::
of

:::::::
multiple

::::::
clusters

:::::::::
potentially

::::::::::::
corresponding

::
to
:::::::
distinct

::::::
phases

::
of365

::::::::
frozen-on

:::
ice.

:
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a

b

c

dd e

E2

E3

E4 E5

E1

Figure 10. IPR image segments from the Gamburtsev Subglacial Mountains area, which mismatch with the identified lake inventory

(Wolovick et al., 2013; Livingstone et al., 2022). The text labels correspond to the locations marked in Figure 8, and orange arrows mark the

locations of the identified subglacial lakes from the inventories.

Similarly, the reflectors from previously identified subglacial lakes in the E4 and E5 subregions in Figures 10d and e are

also classified as other ice bottom reflection classes by the encode-cluster method. By observing the radar image segments

corresponding to these two subregions, the ice bottom reflectors that corresponded to previously identified subglacial lakes
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also display thicker layer reflections, which do not match other subglacial lake features from other regions. The undetected370

subglacial water body
:::
lake

:
in Figure 10c, near 25 km, is similar to Figure 10a, where the average return

::::
echo

:
power is insuffi-

cient to confirm the subglacial lakes. Besides, the encoded classes of ice bottom reflectors near the white arrow change to other

classes, indicating that the potential lakes here may consist of more complex bottom conditions.

Overall, the new method in this study can capture more candidate subglacial water bodies
::::
lakes with similar reflector features

to the previous lake inventories. Compared to the previously identified lake inventories, most of the newly detected subglacial375

lakes or water bodies
::::
lakes in this study are smaller subglacial water bodies

::::
lakes, which are more easily overlooked visually

and possibly difficult to be extracted
:::::::
possibly

::::::::::
overlooked

::
in

::::::
manual

::::::
visual

:::::::::
inspections

::::
and

:::::
easily

::::::::::
submerged by multi-trace

detection methods. The undetected subglacial lakes compared with known inventories may be caused by the complex basal

conditionsformed by ice flow, which results in thicker reflection features in radar images. These thicker reflectors may also

correspond to other subglacial conditions, which still need further investigation by drilling or modeling
::::::::
averaging

::
in

::::::::
detection380

::::::::
windows.

::::
This

:::::::::
automated

:::::::
method

:::
can

::::::::
promote

:::::::
updating

::::
the

::::::
known

::::
lake

::::::::
inventory

::::
with

:::::::
further

:::::::::::
investigation.

::::::::
Besides,

:::
the

:::::::
reflector

::::::::
waveform

:::::::
analysis

::::
can

::::::
provide

:::::::::
additional

::::::::
candidate

:::::::
clusters

::
of

::::::
similar

:::::::::
subglacial

:::::::::
conditions.

:::::::
Further

::::::::::::
investigations,

::::::::
including

::::::
drilling

:::
or

:::::::::
modeling,

:::
are

::::::::
essential

::
to

::::::::
elucidate

:::
the

::::::::::
connection

:::::::
between

:::::::::
reflection

:::::::::
waveforms

::::
and

:::::::
distinct

:::::
basal

:::::::::
conditions.

::::
This

:::::::::
exploration

::::
may

:::::::::
potentially

:::::::
interpret

:::
the

::::::::::::
miss-detecting

:::::::::
subglacial

::::
lakes

:::::
(e.g.,

:::::
Figure

:::
10)

::
in

::::::
known

:::::::::
inventories.

4 Discussion385

The subglacial analysis method proposed in this study is based on the shape of the ice bottom reflector features, which enables

::
the

:
full exploitation of all the reflection

:::
ice

::::::
bottom

::::
echo

::::::::
waveform

:
information contained in the IPR observation data, providing

a novel observational perspective for the study of the ice bottom beyond reflection power intensity and roughness. Moreover,

::
By

:::::::
contrast

:::::
with

:::::::::::
conventional

:::::::::
supervised

:::::::
learning

::::::::
methods,

::::
this

:::::
study

:::::::
acquires

:::
no

:::::::
manual

::::::
labels,

:::::::
thereby

::::::::::
minimizing

:::
the

:::::::
potential

:::
for

:::::::
artificial

:::::
misfit

::::
from

:::::::
training

::::::
labels,

:::
and

::::::::
allowing

:::
for

::
the

::::::::::
application

::
of

:::
this

::::::::
approach

::
in

:::::::::
surveying

::::
other

::::::::
potential390

::::::::
subglacial

:::::::::
conditions.

:

::
In the distance between vectors in the latent space can serve as astatistical similarity indicator for reflector features. The

unsupervised clustering analysis applied
::::::::
clustering

::::::
(Figure

::::
3a),

::::
since

:::::
there

:
is
:::
no

::::::
distinct

::::::::
inflection

:::::
point

:
in
:::
the

::::::
elbow

:::::::::::
curves(Figure

:::
S2),

::
it

:
is
:::::::::
necessary

::
to

::::::
specify

:::
the

::::
value

::
of

::
K

:::
for

::::::::
clustering

::::
the

:::::::
reflector

:::::::
samples.

::::
The

:::::::
selection

::
of

:::
the

::
K

:::::
value

::
in

:::::::
K-means

:::::::
directly

::::::
impacts

:::
the

::::
area

::
of

:::::
each

::::::
cluster

::
in

:::
the

:::::
latent

:::::
space.

::
A
:::::::

smaller
::
K

::::::::::
corresponds

::
to

::::::
larger

::::::
clusters

::
in
:::::

latent
::::::

space,
:::::
while

::
a

:::::
larger395

:
K
::::::
allows

:::
for

:::::
more

::::::
precise

:::::::
isolation

::
of

::::::::
different

::::::::
reflection

:::::
types.

::::::::::::
Consequently,

:::::::
different

::
K

:::::
values

:::::::
directly

::::::
impact

:::
the

::::::::
detection

::
of

::::::::
subglacial

::::::
lakes.

::
To

:::::::
identify

:::
an

::::::::::
appropriate

::
K

:::::
value,

:::
we

:::::::::
conducted

:::::::
multiple

:::::::::::
experiments

::::
with

:::::::
different

::
K
::::::

values
:::::::
(Figure

::
S3

::::
and

:::
S4)

:::
and

:::::::::
ultimately

:::::::
selected

:::::
K=15

::
in

:::
the

::::
final

:::::::::
detection.

::::::
Figure

::
11

::::::::
illustrates

:::
the

::::::::
detected

::::::::
subglacial

::::
lake

:::::::::::
distributions

:::::
under

:::::::
different

::
K

::::::
values.

::::::
Figure

:::
11a

:::::::
exhibits

:::
the

:::::::::
boundaries

:::::::
between

::::
lake

::::
and

:::::::
non-lake

:::::::
clusters

::
in

:::
the

:::::
latent

:::::
space.

::::
The

:::::
black

:::::
points

::
in

::::::
Figure

:::
11a

::::::::
represent

::::::
vectors

::::
from

:::::::
detected

:::::
lakes

::
in

:::
this

::::::::::::
study.Notably,

:::::
some

:::::
points

:::
fall

:::::::
outside

:::
the

::::::::
boundary

::
of

:::::
K=15400

:::::
(white

::::::
dashed

::::::
curve)

:::
due

::
to

:::::::::::::::
complementation

::::::
through

::::::::::::
interpolations.

:::::
When

::::::::::
considering

::
K

::::::
values

:::::::
between

:::::
14-16

:::
(as

::::::::
indicated

::
by

::::
red,

::::
blue,

::::
and

:::::
white

::::::
dashed

:::::::
curves),

:::
the

:::::::
clustered

:::::
areas

::::::::::::
corresponding

::
to

:::::
lakes

::::::
exhibit

::::::::
relatively

:::::
stable

:::
and

::::::
lower

:::::
misfit

::
to
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::
the

:::::::
vectors

::::
from

:::
the

::::
final

::::
lake

:::
list.

::::::
Figure

::::
11b

::::::::
showcases

:::
the

:::::::::
subglacial

::::
lake

::::::::
detections

::
in
::
a
:::::::
regional

::::
area

::::
from

::::::::
AGAP-S

:::::
(from

::
the

:::::
black

::::
box

::
in

::::::
Figure

:::
8).

:::::::::
Compared

::::
with

:::
the

::::::
known

::::
lake

::::::::
inventory

:::::
(gray

::::::
points),

:::::::
smaller

::
K

:::::
values

::::
lead

:::
to

::::
more

:::::::::
erroneous

::::::::
detections

:::::
(e.g.,

::::::
sparse

::::::
yellow

:::::
points

:::::
when

::::::
K=8),

:::::
while

:::::
larger

::
K
::::::

values
:::::
might

:::::
miss

:::::
more

:::::
lakes.

:::::
When

::::::
K=15,

:::
the

::::::::
detected405

:::
lake

::::::::::
distribution

:::::
aligns

::::
well

:::::
with

:::
the

::::::
known

:::
lake

:::::::::
inventory.

:::::::
Figures

:::
11c

:::
and

::::
11e

::::::::::
demonstrate

:::::::::
subglacial

::::
lake

:::::::::
detections

::::
with

:::::::
different

::
K

:::::
values

::
in
:::::
same

:::::
radar

::::::
images.

:::::::
Similar

::
to

:::
the

:::::
spatial

::::::::::
distribution

::
in

::::::
Figure

::::
11b,

::::::
smaller

::
K

::::::
values

::::
could

:::::
result

::
in
:::::
false

:::::::::
detections,

::::
such

::
as

:::
the

::::::::
mistaken

::::::::
detection

::::::::
indicated

:::
by

:::
the

::::::
yellow

::::
line

::::
near

:::
30

:::
km

::
in

::::::
Figure

::::
11e

:::::
(when

::::::
K=8).

::::::::::
Conversely,

:::::
larger

::
K

:::::
values

:::::
limit

:::
the

::::::::
detection

:::::
range

::
of

::::::::
subglacial

:::::
lakes

::::
and

::::::::
introduce

:::::::::
unexpected

:::::::::::::
discontinuities.

:::::::
Overall,

:::
the

:::::::::
subglacial

:::
lake

:::::
range

:::::::
detected

::::
with

:::::
K=15

:::::::::
correlates

::::
with

:::::
visual

:::::::::::
observations.

:::
We

::::::
further

::::::::
expanded

:::
the

::::::
dataset

::
by

:::::::::::
incorporating

:::::
more

::::
data410

:::
(5%

:::
of

:::
the

:::::::::
waveforms

::::
from

:::
the

:::::::
dataset)

::::
into

::::::::
clustering

:::
and

::::
then

::::::
traced

:::
the

::::::::
subglacial

::::
lake

:::::::::
detections.

::::
The

::::::
results

:::::
(black

:::::
lines

::
in

:::::
Figure

::::
11c,

::
e)

:::::::
showed

::::::::
negligible

::::::::::
differences

::::::::
compared

::
to

:::
the

:::::::::
detections

::::
from

:::
the

::::::
smaller

::::::
dataset

:::::::::
clustering

:::::
(white

::::::
lines).

:::
The

:::::::::::
unsupervised

::::::::
clustering

:
in the latent vectors relies on the implied feature difference of the reflection waveform, effectively

excluding subjective and external factors in finding potential classifications of subglacial conditions, and reducing the
::::::
feature

::::::::
difference

::
in

::::::::
reflection

::::::::::
waveforms,

::::::::
allowing

:::::::
analysis

::
of

:::::::::
reflectors

::::::
without

:::::::
precise

::::::::::::
interpretations

::
of

:::::
basal

:::::
radar

::::::::::
reflectances415

:::
and

:::::::
reducing

:
dependence on model assumptions. By contrast, this study does not use manual labels, thereby minimizing the

potential for artificial misfit in the detection of subglacial water bodies and allowing for the application of this approach in

surveying other subglacial conditions.
::::::::
However,

::::::::
subjective

::::::::
elements

::::::
persist,

:::::
such

::
as

:::
the

::::::::::
experiential

::::::::
selection

::
of

:::
the

::
K

:::::
value

:::
and

:::
the

::::::::::
lattice-liked

::::::::::
boundaries

::::::::
observed

::
in

::::::
Figure

:::
11.

:::::::
Within

:::
the

:::::
latent

::::::
space,

:::
the

:::::::::
difference

::
in

:::::::
reflector

::::::::
features

:::
can

:::
be

::::::::
measured

:::::
based

::
on

:::
the

:::::::
distance

::
of

::::::::::::
corresponding

::::::
vectors

:::::
from

:::
the

::::::::
reflectors.

::::::
Hence,

:::::
latent

:::::
space

:::::::
distance

:::::
serves

::
as

::
a
::::::::
statistical420

::::::::
similarity

:::::::
indicator

:::
for

::::::::
reflector

:::::::
features.

::::::
Using

:::
the

:::::
newly

::::::::
compiled

:::::::::
subglacial

::::
lake

:::
list,

:::
we

::::
can

::::
trace

:::::::
vectors

::::::::::::
corresponding

::
to

:::
lake

::::::::
reflectors

::::::
within

:::
the

:::::
newly

::::::::
detected

:::
lake

::::::
ranges

::::::::
(depicted

::
as

:::::
black

::::::
points

::
in

:::::
Figure

:::::
11a).

:::::
These

:::::::
vectors

::::::::
contribute

::
to

::
a

:::::
robust

::::::
dataset,

:::::::::::
establishing

:
a
::::::
capable

:::::::
centroid

:::
of

:::
lake

:::::::
vectors

::
in

:::
the

::::
latent

::::::
space,

:::::::
denoted

::
by

:::
the

:::::
white

:::::
cross

::
in

:::::
Figure

::::
11a.

::::
The

:::::::
disparity

:::::::
between

:::
the

::::
lake

:::::::
centroid

:::
and

:::::
each

:::::::
reflector

:::
can

::
be

:::::::::
quantified

:::::
using

:::::
latent

:::::
space

:::::::
distance,

::::::
serving

:::
as

::
an

:::::
index

:::
for

:::
the

::::::::
reflector’s

::::::::
similarity

::
to

:::
the

::::
lake

::::
echo

:::::::
feature.425

:::::
Figure

::::
11d

:::
and

:::
11f

::::::::::
demonstrate

:::::
latent

:::::
space

:::::::
distances

::::::
(LSD)

::::
from

:::
the

::::
lake

:::::::
centroid,

:::::
where

:::
the

::::::
y-axes

:::
are

:::::::
reversed.

:::::::::
Reflectors,

:::::
which

:::
are

::::::
similar

::
to

:::
lake

::::::::
features,

::::::
exhibit

:::::::::
continuous

:::
and

:::
flat

:::::
peaks

:::::
(close

::
to

:::
0),

::::
while

:::::
other

::::::::
reflectors

::::::
display

:::::
larger

::::::::::
differences.

:::::
Some

:::::::
regional

:::::::
reflectors

::::
also

:::::
show

::::
brief

::::
high

::::::::
similarity

:::::
(e.g.,

:::::::
∼ 4.5km

::
in
::::::
Figure

::::
11f),

::::::::
possibly

:::::::::::
corresponding

::
to
:::::::
smaller

:::::
water

:::::
bodies

::
or

:::::
water

:::::::
tunnels,

:::::::::
overlooked

:::
by

:::
the

::::::::
minimum

::::
lake

:::::
width

::::::::
threshold.

::::
For

:::::
future

::::::::
studies,

::::
with

:::
the

:::::::
detection

:::
of

::::
more

:::::
lakes

::::
from

:::::::
different

:::::::
regions,

:
a
:::::
more

::::::
precise

:::::::
centroid

::
of

::::
lake

::::::
vectors

::::
can

::
be

::::::::::
established.

:::::::::
Moreover,

::
an

:::::
ample

:::::::
sample

:::
size

::::
will

::::
yield

::
a430

::::
more

:::::::
credible

::::
lake

::::::::
boundary

::
in

:::::
latent

:::::
space

:::
and

::
a

::::::
reliable

::::::::
threshold

:::
for

:::
the

::::::::
similarity

:::::
index

:::::
based

::
on

:::::
latent

:::::
space

::::::::
distance.

:::::
Given

:::
the

:::::::
potential

::::::::
flattening

::::::
effect

::
on

:::
the

::::::
vector

:::::::::
distribution

:::
in

:::
the

:::::
latent

:::::
space

::
by

:::
the

:::::::::
variational

:::::::
module

::
in

::::
VAE

:::::::
(Figure

:::
3a),

:::
we

:::::::
conduct

:
a
::::::::::
comparative

:::::::
analysis

:::::
using

::
an

:::::::::::
auto-encoder

::::::
lacking

:::
the

:::::::::
variational

:::::::
module

::::::
(Figure

::::
S5).

:::
We

:::::::
compute

:::
the

::::
2-D

:::::::::
probability

::::::
density

:::
for

::::
both

:::::::::::
distributions.

:::
In

:::::::
contrast

::
to

:::
the

::::
VAE

::::::::::
distribution

:::::::
(Figure

:::::
S5a),

:::
the

::::::::::
distribution

::::::
derived

:::::
from

:::
the

::::::::::
auto-encoder

:::::::
without

:::
the

:::::::::
variational

::::::
module

:::::::
(Figure

::::
S5b)

:::::::
displays

:
a
:::::
more

:::::::
uniform

::::
trend

::::
and

::::
lacks

::::::::::
discernible

:::::
cluster

::::::::
patterns.435

::::::::
Compared

::::
with

:::
the

::::::::::::
auto-encoder

::::::
without

:::
the

:::::::::
variational

:::::::
module,

:::::
VAE

:::::::
provides

::
a

:::::::::
continuous

:::::
latent

:::::
space

:::
(?),

::::::::::
facilitating

:::
the

:::::
direct

::::::
tracing

::
of

:::::::::
waveforms

::::
from

::::::::
different

::::::
clusters

:::::::
through

::::::::
synthetic

:::::::::
waveforms

::::::::
generated

:::::
from

:::
the

:::::
latent

:::::
space

::::::
(Figure

::::
3b).
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Figure 11.
::::::::
Differences

::
in

:::
lake

::::::::
detections

:::::
under

::::::
different

::
K

:::::
values.

::
(a)

:::::::
Sectional

:::::
latent

:::::
space.

:::::
Curves

::
in

::::::
different

:::::
colors

::::::
indicate

::
the

:::::::::
boundaries

::::::
between

:::
the

:::
lake

:::
and

:::::::
non-lake

::::::
clusters

::::
when

:::::::
different

:::::::
K-values

::
are

::::::
applied

::
in

:::
the

::::::::
clustering,

:::
with

::::::
yellow

::
for

::::
K=8,

::::::
orange

::
for

:::::
K=11,

:::
red

:::
for

:::::
K=14,

::::
white

::::::
dashed

:::
line

:::
for

:::::
K=15,

::::
blue

:::
for

::::
K=16

::::::
(partial

:::::::::
overlapping

::::
with

:::
the

:::::
white

:::::
dashed

:::::
line),

::::
cyan

::
for

::::::
K=20,

:::
and

::::
pink

:::
for

:::::
K=30.

::::
Black

:::::
points

:::::
denote

:::
the

:::::::
reflector

:::::
vectors

:::::
from

::::::
detected

::::
lakes

::
in
:::
this

:::::
study,

:::
and

:::
the

:::::
white

::::
cross

::::::
denotes

:::
the

::::::
centroid

::
of

::
all

::::
lake

::::::
vectors.

:::
(b)

::::::
Regional

::::::
spatial

:::::::::
distributions

::
of

:::::::
detected

:::::::
subglacial

::::
lakes

::
in
:::
the

::::
map.

:::
The

::::
map

:::
area

::
is

:::::::
truncated

::::
from

:::
the

::::
black

:::
box

::
in

:::::
Figure

::
8,
:::::
where

::::
gray

::::
points

::::::::
represent

::
the

::::::
known

:::
lake

::::::::
inventory

::::::::::::::::::
(Livingstone et al., 2022)

:
,
:::
and

::::
black

::::
lines

:::::::
indicate

::
the

:::::::
detected

:::::
ranges

::
of

::::::::
subglacial

::::
lakes

:::::
when

:::::
K=15.

::::::
Stacked

:::::
points

::
in

:::::
various

:::::
colors

:::::::
represent

:::
the

:::::::
detected

:::
lake

::::::::::
distributions

::::
under

:::::::
different

::
K

:::::
values,

:::::::::::
corresponding

::
to

:::::
Figure

:::
(a).

::::
(c,e)

::::::::
Difference

::
of

::::::::
subglacial

:::
lake

::::::::
detection

::::
under

:::::::
different

:::::::
K-values

::
in
:::::

radar
:::::
image

::::::
samples

::::
from

::::::
Figure

:
4
:::
and

::::::
Figure

::
9a,

::::::
where

::::::::
differently

:::::
colored

::::
lines

:::::::
represent

:::
the

:::::::
detected

:::
lake

::::::
ranges

::::
under

:::::::
different

::
K

:::::
values.

:::::
Black

::::
lines

:::::
denote

:::
the

:::::::
detection

:::::
ranges

:::::
when

:::::
K=15,

::::
with

:::
5%

::
of

::
the

::::::
dataset

:::::
applied

::
in

::::::::
clustering.

::::
(d,f)

:::::
Latent

::::
space

:::::::
distances

:::::
(LSD)

:::::::
between

:::::
bottom

:::::::
reflector

:::::
vectors

::
to

:::
the

::::::
centroid

::
of

::::::
detected

::::
lake

::::::
vectors,

:::::
derived

::::
from

:::::
Figure

:::
(c)

:::
and

::
(e)

::::::::::
respectively.

In this study, the latest subglacial water bodies
:::
final

:::::::::
subglacial

:::::
lakes are obtained using radar echo power filtering, which is

based on the linear relationship between reflection power and ice thickness (depth of ice bottom). However, this simple linear

threshold filtering potentially excludes subglacial water bodies
::::
lakes

:
with weaker echo power. To improve the detection of440

weaker subglacial lake signals, more precise filtering strategies that take into account the roughness and slope of the ice bottom

may be beneficial.
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Although the encode-cluster method provides an abstract classification for ice bottom reflections, the physical properties

of the ice bottom reflection and the corresponding cluster still require further interpretation. The VAE encoder maps high-

dimensional reflections to a vector that map to the reflector waveform feature. In the future, physical modeling and in-situ445

drilling may provide more direct relationships between the latent vectors and subglacial conditions, thereby enhancing the

understanding of this subglacial lake detection method.

In addition to subglacial water bodies, other clusters of ice bottom reflections also exhibit some consistent patterns, as

illustrated in Figures 7, 9b, and 10b. These resemblances may originate from similar subglacial conditions, particularly the

thick layer-like reflections that could correspond to different stages of frozen-on ice. The encode-cluster method is capable of450

isolating these reflection clusters, offering potential data
:::::::
reference

:
for studying glacier dynamics. Geostatistical modeling based

on subglacial topography (MacKie et al., 2020) may provide additional references for the reflector clusters in corresponding

subglacial conditions. In addition
::::::::::
Furthermore, the novel interpretation of latent clustering may enhance the

:::::::
encoding

::::
and

::::::::
clustering

:::::
could

:::::::
enhance

:
conventional geostatistical analysis

::
by

:::::::
directly

:::::::
utilizing

:::
the

::::::::
encoded

::
or

::::::::
clustered

::::::
results

::
as

::::
input

:::
or

:::::::
reducing

:::::
input

:::
data

::::::::::
dimensions.455

The detection method used in this study is based on deep learning, allowing for the automated analysis
::
an

:::::::::
automated

::::::
analysis

:::
of data. Deep learning extractors, such as EisNet (Dong et al., 2021), developed in recent years can efficiently pick

up the bed interface in radar images. By combining these two types of DL
::::
deep

:::::::
learning

:
methods, an automatic method can

be implemented to first extract the positions of the ice bottom and then analyze the features of the bottom reflector, which

can further update the subglacial lake inventory by applying this combined DL
::::
deep

:::::::
learning

:
method in the available IPR460

database. The data used in this study is mainly focused on the Gamburtsev Subglacial Mountains and can be extended to other

database’s radar image analyses covering,
::::
e.g., the Arctic, Antarctic, and Qinghai-Tibet Plateau. It is also

:::
As

::::
such,

:::
has

:
potential

applications for analyzing and tracing spatiotemporal changes in global subglacial water bodies
::::
lakes

:
and other ice bottom

reflection features. Furthermore, this method based on
:::::
vertical

:::::
radar

:::::::::
waveform

:::
also

:::::::
enables

:::
the

:::::::::
single-trace

:::::::::
waveform

:::::::
analysis

::::
from

:::::::
A-scope radar signal analysis can also provide classifications for single-track radar data, and can be independently applied465

to this type of radar data such as A-Scope observations
::::::::
especially

:::
for

::::
early

:::::::::::::
observations(?). The VAE-cluster method trained

on Earth data also provides a
:::
can

::::
also

::::::
provide

::
a
:::::::
potential

:
reference for analyzing ice bottom reflection in Marssatellite radar

observations
::::
from

:::::
Mars’

::::::::
southern

::
ice

::::::
cap(?)

::
by

:::
the

:::::::::
spacecraft

::::
radar

::::::::::::
measurements

:::::
such

::
as

:::::::
SHallow

::::::
RADar

:::::::::::::
(SHARAD, ?)

:::
and

::::
Mars

:::::::::
Advanced

:::::
Radar

:::
for

:::::::::
Subsurface

::::
and

:::::::::
Ionosphere

::::::::
Sounding

:::::::::::
(MARSIS, ?).

5 Conclusions470

We constructed a dataset of ice bottom reflection signals based on IPR data from the Gamburtsev Subglacial Mountains re-

gion in the CReSIS database. Using the VAE, we encoded and reconstructed the reflection signal features in the dataset. By

applying K-means clustering to the encoded features, we separated the reflector features corresponding to subglacial lakes. By

considering the relationship between the peak reflection power and ice thickness, we filtered subglacial lake candidates in this

region. Compared with existing inventories, our method can effectively detect features of subglacial water bodies
::::
lakes

:
and475
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extract more smaller subglacial lakes. This method has potential applications in expanding the subglacial lake inventory and

interpreting other subglacial conditions.
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