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Abstract. Diffusive smoothing of signals on the water stable isotopes (18O and D) in ice sheets fundamentally limits the 

climatic information retrievable from these ice-core proxies. Past theories explained how, in polycrystalline ice below the firn, 10 

fast diffusion in the network of intergranular water veins “short-circuits” the slow diffusion within crystal grains to cause 

“excess diffusion”, enhancing the rate of signal smoothing above that implied by self-diffusion in ice monocrystals. But the 

controls of excess diffusion are far from fully understood. Here, modelling shows that water flow in the veins amplifies excess 

diffusion, by altering the three-dimensional field of isotope concentration and isotope transfer between veins and grains. The 

rate of signal smoothing depends not only on temperature, vein and grain sizes, and signal wavelength, but also on vein-water 15 

flow velocity, which can increase the rate by 1 to 2 orders of magnitude. This modulation can significantly impact signal 

smoothing at ice-core sites in Greenland and Antarctica, as shown by simulations for the GRIP and EPICA Dome C sites, 

which reveal sensitive modulation of their diffusion-length profiles when vein-flow velocities reach  101–102 m yr–1. 

Velocities of this magnitude also produce the levels of excess diffusion inferred by previous studies for the Holocene ice at 

GRIP and ice of Marine Isotope Stage 19 at EPICA Dome C. Thus, vein-flow mediated excess diffusion may help explain the 20 

mismatch between modelled and spectrally-derived diffusion lengths in other ice cores. We also show that excess diffusion 

biases the spectral estimation of diffusion lengths from isotopic signals (by making them dependent on signal wavelength) and 

the reconstruction of surface temperature from diffusion-length profiles (by increasing the ice contribution to diffusion length 

below the firn). Our findings caution against using the monocrystal isotopic diffusivity to represent the bulk-ice diffusivity. 

The need to predict the pattern of excess diffusion in ice cores calls for systematic study of isotope records for its occurrence 25 

and improved understanding of vein-scale hydrology in ice sheets.  
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1    Introduction 30 

The water stable isotope records (18O, D) from ice cores are key proxies for reconstructing palaeoclimatic temperature. 

Isotope diffusion, which occurs rapidly in firn (mainly by vapour diffusion in the pores) and slowly in ice below the firn 

transition, causes progressive smoothing that reduces the high-frequency content of these records, strongly attenuating the 

amplitude of short signals, and limiting the depth to which annual and seasonal information survives (Johnsen, 1977; Whillans 

and Grootes, 1985; Cuffey and Steig, 1998, Johnsen et al., 2000). In the ice cores from central Greenland, annual signals often 35 

persist for 104 years, to the early Holocene or the late-glacial part of the record (Johnsen, 1977; Johnsen et al., 1997; Johnsen 

et al., 2000), whereas in the ice cores from the East Antarctic plateau, they rarely penetrate through the firn into the ice, owing 

to low accumulation rates (causing short -cycles, which decay quickly) and substantial noise and intermittency on the signals 

during deposition (Laepple et al., 2018; Casado et al., 2020). 

Post-depositional diffusive smoothing limits the time resolution of real climate signals extractable from different depths 40 

of an ice-core isotope record. The smoothing rate needs to be known in several analyses: (i) studies that use “back-diffusion” 

or deconvolution (Johnsen 1977; Johnsen et al., 2000) to restore the original annual -cycles at the surface, for inferring detailed 

climatic variations (e.g., Küttel et al., 2012; Zheng et al., 2018) or aiding the identification of annual layers in ice-core dating 

(e.g., Hammer et al., 1978; Vinther et al., 2006); (ii) studies that use the diffusion length  estimated from the frequency 

spectrum of isotopic signals at different depths (including where annual cycles are no longer visible) to determine past changes 45 

in  at the firn transition, and hence reconstruct the surface temperature history by using the temperature dependence of firn 

isotope diffusion (e.g., Gkinis et al., 2014; Holme et al., 2018; Kahle et al., 2021); and (iii) studies that model the down-core 

profile of the diffusion length to assess the climatic variability on different time scales on a record (e.g., Jones et al., 2017; 

Gkinis et al., 2021; Grisart et al., 2022). The diffusion-length theory of Johnsen (1977), which tracks how evolves as a result 

of isotopic diffusion and vertical compression in the ice column, forms the basis of all these studies. 50 

Whereas the smoothing process in firn has been studied sufficiently to yield models for the temperature reconstructions 

(in (ii) above) and able to reproduce the observed signal decay in firn (e.g., Cuffey and Steig, 1998; Johnsen et al., 2000; Gkinis 

et al., 2021), the smoothing process in ice remains poorly understood. We extend its theoretical description in this paper. 

Diffusive smoothing in ice can strongly impact deep isotopic signals given their long residence time; also, the diffusion rate 

increases in the warmer ice towards the ice-sheet base. Thus, a key concern motivating our work is that an inaccurate model 55 

for the signal smoothing rate in ice can bias the aforementioned studies – notably studies of types (ii) and (iii) above, when 

applied to records far below the firn transition. This problem may extend to reconstructions that use the differential diffusion 

length between oxygen and deuterium as a temperature proxy (Simonsen et al., 2011; Holme et al., 2018).  

https://doi.org/10.5194/tc-2023-6
Preprint. Discussion started: 21 February 2023
c© Author(s) 2023. CC BY 4.0 License.



3 

 

From the decay of annual 18O cycles along the Holocene part of the GRIP ice core, Johnsen et al. (1997) inferred an 

isotopic diffusion rate about 10 times faster1 than the self-diffusion rate in ice monocrystals (Ramseier, 1967), measured at the 60 

temperature of the GRIP ice under analysis. They suggested the grain interfaces in polycrystalline ice as causing “excess 

diffusion” – an idea which prompted three mathematical models seeking to explain the phenomenon. Nye (1998) modelled the 

effect of water veins located at the triple junctions of grain boundaries (Nye, 1989; Mader, 1992a, b) and showed how rapid 

(liquid-phase) diffusion in the vein network “short-circuits” slow diffusion in the ice grains to enhance the signal-decay rate 

above that due to solid diffusion. For signals at the decimetre scale, and ice with a mean grain size of several millimetres, his 65 

model predicts an enhancement that matches the GRIP observations. Johnsen et al. (2000) considered more generally 

interstitial water at grain boundaries as well as in the veins and calculated how much these pathways raise the effective isotope 

diffusivity of the bulk ice. Their model couples the isotope concentrations in the solid and liquid in a less sophisticated way 

than Nye’s treatment, but accounts for the tortuosity of the veins, and they highlight the possibility for the acidity of the ice to 

affect the amount of interstitial water. Lastly, Rempel and Wettlaufer (2003), building upon Nye’s (1998) continuum 70 

description of the grain–vein system, showed that the perfect short-circuiting assumed in Nye’s model overestimates the level 

of excess diffusion: the enhancement is less than the value predicted by Nye as the liquid diffusivity is high but finite. Rempel 

and Wettlaufer (2003) clarified the two previous models as end-member approximations of the system; and like Nye’s result, 

their solution gives the enhancement as a function of signal wavelength. All three models – of Nye, Johnsen et al. and Rempel 

and Wettlaufer – predict a higher enhancement for thicker veins, because wider liquid pathways promote short-circuiting. 75 

Despite these models’ implication that recrystallisation and impurity processes in polycrystalline ice can alter the amount 

of excess diffusion to shape isotope records in complex ways, no diffusion-length based models or temperature reconstructions 

have yet incorporated their results into calculations, which typically assume the monocrystal diffusivity of Ramseier (1967) 

below the firn transition. Nor has there been progress in unravelling the controls and mechanisms of excess diffusion – by 

theory or experiment – for two decades. Yet, the potential occurrence of excess diffusion continues to concern ice-core studies. 80 

When analysing the WAIS Divide ice core, Jones et al. (2017) invoked excess diffusion as one of several explanations why 

diffusion lengths derived from D signals at ≈ 15–18 ka BP exceeded modelled diffusion lengths based on Ramseier’s 

diffusivity by up to 1.6 times. For the high-resolution D record of the EPICA Dome C core, Pol et al. (2010) regarded vein-

driven enhancement of isotopic diffusion to be the cause of strong smoothing and near absence of sub-millennial scale signals 

across Marine Isotope Stage 19 (MIS 19) – the oldest interglacial identified in that core, at 780 ka BP – where spectrally-85 

derived diffusion lengths (40 to 60 cm) are several times higher than predicted by monocrystal diffusivity. Excess diffusion 

is expected to impact the preservation of deep isotopic signals in the ice cores to be retrieved at Little Dome C, Antarctica, by 

 
1 Recounting the same analysis, Johnsen et al. (2000) later reported 30 times.  
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the European Beyond EPICA project and the Australian Million Year Ice Core project, which aim to obtain records reaching 

back  1–1.5 Ma and covering the Mid-Pleistocene Transition.  

Herein, we revisit Nye’s (1998) and Rempel and Wettlaufer’s (2003) formulation for vein-mediated excess diffusion, 90 

asking “what if the vein water isn’t stagnant, but percolates?” In our modelling in Sects. 2 and 3, we show that vein-water flow 

distorts the isotopic concentrations in ice grains and modifies their isotope exchange with the veins, so that excess diffusion 

acting on isotopic signals is always increased from the no-flow case. The mechanism causes signals to move relative to the ice 

also, although the age offset of displaced signals is much less than their absolute age. Depending on the water flow velocity, 

the decay-rate enhancement for decimetre-scale signals can vary by a factor of several to a few hundred – between Rempel 95 

and Wettlaufer’s and Nye’s predictions. This modulation highlights the vein hydrology of ice sheets as a major knowledge 

gap. In Sect. 4, we explore its impact on signal smoothing at ice-core sites by embedding it in diffusion-length simulations for 

the GRIP and EPICA ice cores. We show that excess diffusion can undermine diffusion-based temperature reconstructions 

and the spectral derivation of diffusion lengths from isotope records. We conclude with broader perspectives in Sect. 5. 

2    Mathematical model 100 

As in Nye’s (1998) and Rempel and Wettlaufer’s (2003) studies, our modelling in this section focusses on the interactions 

between crystals and veins at the grain scale, ignoring the effect of ice deformation on isotopic signals, and ignoring diffusion 

along grain boundaries. Vertical compression will be accounted for in Sect. 4. Background about the diffusion-length theory 

will be given there. 

First we extend their equations to incorporate vein-water flow. We adopt their idealised geometrical set up (Fig. 1), which 105 

represents ice crystal grains as a vertical annular cylinder, with outer radius b, and the water vein as a hole at its centre, with 

the vein wall located at the inner radius, r = a ( 10– 6 m); r is the radial coordinate. We distinguish the vein radius a from the 

radius of curvature of real (convex) vein walls (Nye, 1989; Mader, 1992a; Ng, 2021). In plan view, each cylinder is meant to 

approximate a unit cell of polycrystalline ice around a vein, so b is taken as the mean grain radius ( 10– 3 m). As the original 

studies assumed, the vein water is kept liquid by a high concentration of dissolved ionic impurities, which lowers the eutectic 110 

temperature; and horizontal (/near-horizontal) veins are disregarded as they cause no (/negligible) short-circuiting of depth-

varying isotope signals. With the z coordinate axis pointing down, and t denoting time, the concentrations of a trace isotope 

(18O or D) in the ice grains and in the vein water – Ns(r, z, t) and Nv(z, t), respectively – satisfy the conservation equations   

2
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Figure 1. Model geometry and symbols. Left: ice annular cylinder surrounding a vein. Colour image shows a radial cross-section of the 

isotopic deviation  in the ice, exemplifying the signals studied in Figs. 3 to 5. The pattern is distorted by the boundary condition at the vein 

wall due to isotope advection by vein-water flow. Right: depth profile of the mean isotopic signal. 

 120 

 

where Ds and Dv are molecular diffusivities in the solid (single crystal) and water. Following the original studies, Nv is assumed 

independent of r, and we specify ∂Ns/∂r = 0 at r = b as boundary condition. In Eq. (2), which couples Ns and Nv, the Ds term 

represents isotope transfer between ice and vein. The final term – our addition to the model – describes advection of Nv by 

vein water flowing at velocity w (positive downward). 125 

Equilibrium fractionation at the ice-water interface implies Nv/Nv0  = Ns|r = a/Ns0, where  ( 1) is the fractionation 

coefficient, and Nv0 and Ns0 (assumed constant) are the number densities of the major isotope (16O or H) in water and ice. 

Following the procedure of Rempel and Wettlaufer (2003), we rewrite Nv in Eq. (2) in terms of Ns|r = a, assuming Nv0  Ns0, 

and express Ns as the isotopic deviation = (r, z, t) = Ns/Ns0 – 1, thus deriving            

2
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1
D r
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with the boundary conditions 
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The second boundary condition has been derived by eliminating the time derivatives between (1) and (2). The dimensionless 135 

parameter 
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quantifies the diffusivity contrast of water to ice. The diffusivities Ds and Dv vary strongly with temperature T, and typically 

 106 (Fig. 2). As detailed in Appendix A, we use Ramseier’s (1967) formula for Ds(T), and for Dv(T) we use an extension 

of Gillen et al.’s (1972) formula that is valid down to –60C.  140 

Equations (3) to (5) form a partial differential equation model for (r, z, t). Rempel and Wettlaufer (2003) assumed 1–2 

 –1 in Eq. (5), so their model is independent of the fractionation coefficient  and applies equally to 18O and D. This is a 

good approximation because (18O/16O)  1.0029 and (D/H)  1.021 (Lehman and Siegenthaler, 1991; O’Neill, 1968; 

Árnason, 1969). We make the same approximation in most of Sects. 3 and 4, but not in the present derivation, as we need a 

general model that observes the precise value of , for an analysis about dual-isotope thermometry at the end of Sect. 4.  145 

Equations (3) to (5) encapsulate the short-circuiting effect and differ from Rempel and Wettlaufer’s (2003) model by the 

w-term only. When studying the system without water flow (w = 0), these authors explained that Nye’s (1998) model corres-

ponds to the limit  → ∞, as it supposes liquid diffusion so fast that  along the vein is constant (i.e., perfect short-circuiting); 

on the other hand, the model of Johnsen et al. (2000) effectively assumes instantaneous radial diffusion in the grains, so that 

longitudinal diffusion along the vein and in the ice governs the smoothing of signals. Thus the Johnsen et al. model predicts 150 

an excess diffusion equal to Rempel and Wettlaufer’s prediction for slow-varying (long) signals, but is not strictly an approx-

imation of our model at a limit of a defined parameter here. We shall not compare its predictions against our results. 

When vein-water flow occurs (w ≠ 0), we expect advection of  at the vein boundary to perturb  in the ice (Fig. 1), 

causing the isotopic signals there to move also. To study how signals behave, we seek a separable solution of the form 

0 1 s( , , ) ( )exp( )zr z t F r D t ik z ,      (7) 155 

where  = R + iI is a decay-rate parameter for sinusoidal signals with the wavenumber kz (or wavelength  = 2/kz), and 0 

and 1 are arbitrary constants representing the background level and amplitude of signals. The amplitude of signals decays at 

the rate DsR, whereas their ‘baseline’ decay rate in ice without veins (due to solid diffusion alone) would be Dskz
2. Following 

Nye (1998) and Rempel and Wettlaufer (2003), we let 

2 2 2

R z r zk k fk ,        (8) 160 

in which the “enhancement factor” 
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Figure 2. Isotopic diffusivities and their temperature dependence. (a) Arrhenius plot of the self-diffusivity of water, Dv. Symbols plot values 165 

based on laboratory measurements. Blue curve: our composite exponential in Eq. (A1), fitted to the data of Xu et al. (2016) and used to 

calculate Dv in this paper. Red curve: quadratic fit by Rempel and Wettlaufer (2003) to the data of Gillen et al. (1972); the dashed portion 

evaluates their quadratic at T below –31 C, outside its region of applicability. (b) Self-diffusivity of monocrystalline ice Ds, calculated with 

Ramseier’s (1967) empirical formula in Eq. (A2). (c) The liquid-to-solid diffusivity contrast  (= Dv/Ds – 1). 

 170 
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measures how much faster signals decay in the presence of veins, or equivalently, how much the veins increase the effective 

diffusivity of the system above Ds. Owing to their short-circuiting effect, excess diffusion operates (f > 1) even when w = 0. 

Our main interest is how f varies with w. Note that f,  kr, R and I are functions of kz.  

Hitherto we seem to be mostly retracing the steps of Nye (1998) and Rempel and Wettlaufer (2003). But a key difference 175 

herein – and what distinguishes our findings – is that the decay-rate parameter and the amplitude function F in Eq. (7) are 

complex numbers when w ≠ 0, since the problem is then no longer symmetric in z. Particularly, a non-zeroI implies signal 

migration at the velocity v = IDs/kz, and we anticipate F(r) = FR(r) + iFI(r), with the signal phase given by (r) = tan– 1(FI/FR), 

varying with radius under the advection. Symmetry considerations for how the system behaves when the vein-water flow 

direction is reversed predict R (hence f) and I (hence v) to be even and odd functions of w, respectively. 180 

Now, substituting (7) into (3), (4) and (5) leads to the Bessel Equation 

2'
'' ( ) 0r I

F
F k i F

r
,        (10) 

with the boundary conditions 

'( ) 0F b ,         (11) 

2

s
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F a F a k F a

a D
.     (12) 185 

Suppose kr
2 + iI ≡ s2 = (sR + isI)2 such that 

kr
2 = sR

2 – sI
2    and    I = 2sRsI.        (13) 

Then, in terms of Bessel functions, the analytic solution of Eqs. (10) to (12) is 

1

0 0

1

( )
( ) ( ) ( )

( )

J sb
F r J sr Y sr

Y sb
        (14)  

(or any constant multiples), in which s at each wavenumber kz satisfies  190 

0 1 0 1

2 2
1 1 1 1s

( ) ( ) ( ) ( )2
0

( ) ( ) ( ) ( )
z z

J sa Y sb Y sa J sbs

J sa Y sb Y sa J sba s k ik w D
.    (15) 

These results are equivalent to those of Rempel and Wettlaufer (2003) when  = 1 and w = 0. When w ≠ 0, s is complex, and 
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the Bessel functions take complex values.2 For each wavelength  (or kz), we solve for s numerically by Newton’s Method, 

taking the left side of (15) as the function whose root is sought. We then compute kr, R, I, f and F(r) via (13), (8), (9) and 

(14). The numerical code of these solution steps is given at the online repository of the paper.  195 

Ice-core measurements of are often made on horizontal layers spanning multiple grains, so it is useful to consider the 

mean value of at each depth in the model (Fig. 1): 

2

2

1

0 2

1
( , ) 2  

2
         exp[ ] ( )  .

b

r aa

b

s z
a

z t r dr a
b

D t ik z rF r dr
b

     (16) 

This expression shows that the section-mean signal at each wavelength is itself sinusoidal, with the same decay rate, decay-

rate enhancement factor and migration velocity as for the component signals at different radii. The approximation (based on a 200 

≪ b) recognises a negligible contribution to the mean signal from the vein water.  

3    Results and analysis: excess diffusion at the grain scale 

We proceed to analyse computed results to understand the impact of vein-water flow on signal evolution. Notably, we show 

that advection perturbs  in such a way that amplifies the short-circuiting to accelerate signal smoothing, raising f above the 

enhancement factor of Rempel and Wettlaufer (2003). Through successive numerical experiments, we elucidate the mechanism 205 

and key controls on f. We explain relevant properties of the model along the way.  

Our experiments here explore signal wavelengths  in the range 0.001–0.15 m and vein-flow velocities w up to 102 m 

yr– 1, for T = –32 C or –52 C. These temperatures resemble those measured in the upper ice column at ice-core sites in central 

Greenland and central Antarctica, respectively (e.g., Fig. 8). The higher temperature is close to 241 K, which Rempel and 

Wettlaufer (2003) chose based on the GRIP site conditions for their calculations. The qualitative dependence of f on the vein 210 

and grain radii found by these authors (f increases with a and decreases with b) is unchanged in our model, and is not the focus 

of our study, so we assume constant radii a = 1 μm and b = 1 mm in the experiments. We assume  ≡ 1, the approximation 

used by Rempel and Wettlaufer (2003), so the results are applicable for either 18O or D. 

 
2 One hopes to express the solution of Eq. (10) in terms of real transcendental functions, as in the case kr > 0, I ≡ 0 (which gives 

Bessel functions with real arguments) or the case kr ≡ 0, I < 0 (which gives Kelvin functions); see Abramowitz and Stegun (1972). 

For kr and I both non-zero, however, we have not found such functions in the literature and need to evaluate the Bessel functions in 

Eqs. (14) and (15) for complex arguments. This is done straightforwardly in MATLAB. 
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Our range for w is informed by the theoretical estimates of Nye and Frank (1973) for glaciostatically-driven water flow 

through a vein network, listed in their Table 2. We bear in mind that their highest vein-flow velocity (900 m yr– 1) assumes a 215 

high liquid fraction or porosity ( 10–3) that is probably uncommon for polar ice, so we explore up to values of w an order of 

magnitude smaller. In the Discussion we comment more on the lack of observations of vein-water flow. 

It is noteworthy that Rempel and Wettlaufer (2003) ignored isotope advection by vein-water flow on the basis that the 

Peclet number Pe = w / Dvkz is small for the signal wavelengths of interest ( dm or less for annual layers). Pe measures the 

ratio of the advection (fourth) term to the diffusion (third) term in Eq. (5). It is indeed small in our experiments. But as will be 220 

seen shortly, although the -field is modified only slightly when w ≠ 0, this change can increase f significantly. 

Figure 3 shows the computed pattern of in the ice annulus, in three experiments with w = 0, 5 and 50 m yr– 1, at  = 2 

cm and T = –32C. All three signals decay with time; those in Fig. 3b and 3c migrate downward at constant velocity. We focus 

on examining the spatial part of the solution in Eq. (7) – the colour maps plot Re[F(r)exp(ikzz)] (or |F(r)|cos(kzz + (r)) where  

 225 

 

Figure 3. Patterns of calculated with Eqs. (7) to (15) for  = 0.02 m, T = –32 C, and w equal to: (a) 0, (b) 5, and (c) 50 m yr– 1. The 

enhancement factors in these experiments are f = 2.11, 3.24 and 4.26, respectively. Each colour map samples a radial cross-section of the 

three-dimensional ice annulus in Fig. 1 and is shown with a horizontal exaggeration of 50. Dashed boxes expand on the details near r = 0. 

The vein boundary lies at r = a = 1 μm. The panel under each map plots the real and imaginary parts of the amplitude function F(r). The 230 

panel left of each map plots the -variations at the vein (red) and in the farthest part of the grain interior (r = b, black). 
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 is the signal phase defined earlier) without the time element. When plotting each pattern, we scale its amplitude such that 

|F(b)| = 1. This choice facilitates comparison of the -variations along the vein with those at r = b. 

Nye’s short-circuiting occurs when w = 0 (Fig. 3a), as expected. As we move from the grain interior towards the vein, 

the sinusoidal signals decrease in amplitude sharply following F(r), very close to the vein (dashed box, Fig. 3a). Consequently, 235 

isotopes diffuse from the grain interior towards the vein along the peak ridges of the signal, and in the opposite direction along 

troughs. This pattern of transverse isotopic exchange between vein and ice is driven by fast diffusion along the vein smoothing 

the signal there and is what causes the entire signal to decay faster than the baseline decay rate, Dskz
2 (as governed only by 

isotope diffusion vertically between the ridges and troughs). The enhancement factor in this experiment is f = 2.18, as calculated 

by Rempel and Wettlaufer (2003). 240 

When we switch on vein-water flow (Figs. 3b, c), f is amplified by a novel effect. Advection shifts the vein signal down 

relative to the interior, inducing a sheared pattern of -variations in a thin layer next to the vein boundary, of negative phase 

(FI < 0). At w = 5 m yr– 1 (Fig. 3b), the sinusoidal variations in the layer have a ‘tail-like’ appearance in colour. Because their 

phase shift increases towards the vein, there are high lateral gradients in at the vein end of the signal peaks and troughs, and 

they drive a stronger diffusive isotopic exchange between vein and ice (than in the no-flow case) which accelerates the signal 245 

decay: f = 3.29 in this case. The profile of FR(r) and signal amplitude at r = a are correspondingly reduced.  

When w is raised to 50 m yr–1 (Fig. 3c), the shear layer becomes ‘sheet-like’. Strong advection causes  outside the vein 

to interact with  in the vein much higher up, and the coupling of this with diffusion in the ice diminishes the isotopic variations 

along and immediately outside the vein to near zero. One can think of the pattern in the layer now as due to the tails of high 

(/low)  extending far down to cover the next trough (/ridge), with  averaging out sideways by diffusion. Compared to the last 250 

experiment, the FR-profile is drawn down even more, the transverse isotopic exchange still stronger. The enhancement f = 4.26 

is nearly maximised, as the signal pattern is close to what it would be at the w → ∞ limit, with no variations along the vein, as 

in the Nye model (we confirmed this in experiments that took w above 50 m yr– 1).  

The last finding implies that at any signal wavelength, the high flow limit (w → ∞) yields the same enhancement as the 

Nye model limit ( → ∞). This equivalence arises because in Eq. (5) w → ∞ drives ∂/∂z|r = a to zero, whereas  → ∞ drives 255 

∂2/∂z2|r = a to zero, and both yield the constant vein boundary condition ≡ 0 to precondition the same isotopic pattern. It 

follows that f at high flow in our model asymptotically reaches Nye’s enhancement factor, and since f is minimum at w = 0 

(and equal to Rempel and Wettlaufer’s enhancement factor), f must take an intermediate value in 0 < w < ∞. 
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 260 

Figure 4. Patterns of computed for  = 0.08 m, T = –32 C, and w equal to (a) 0, (b) 5, and (c) 50 m yr– 1. The enhancement factors in these 

experiments are f = 2.63, 9.01 and 50.2, respectively. The figure has a similar layout as Fig. 3. Inset in (a) expands on the variations of FR. 

 
 

 265 

Figure 5. Patterns of computed for T = –52 C, at (a)  = 0.02 m, w = 0.5 m yr– 1, (b)  = 0.02 m, w = 5 m yr– 1, (c)  = 0.08 m, w = 0.5 m 

yr– 1, and (d)  = 0.08 m, w = 5 m yr– 1. The enhancement factors are f = 3.68, 4.27, 14.7 and 51.9, respectively. 
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Next we consider wavelength control. At fixed w, longer signals experience a higher decay-rate enhancement (but 

remember their baseline decay rate is lower). Figure 4 demonstrates this with a modified set of experiments, for  = 8 cm, at 

the same temperature and flow velocities as before. The shear-layer mechanism again operates when w > 0. The tails lengthen 270 

as w is increased, although the pattern is still in the ‘tail regime’ at 50 m yr–1; at this longer wavelength, a higher w is needed 

to shift the variations far enough for transition to the ‘sheet regime’. In all three cases, f is higher (respectively ≈ 1.3, 3 and 12 

times greater) than before. The reason lies in the relative contribution of (i) vertical diffusion between signal ridges and troughs 

and (ii) lateral diffusive exchange between vein and ice, in driving the signal decay. For signals that are short compared to the 

grain radius ( ≪ b), vertical diffusion dominates over lateral exchange, so vein-water flow increases f minimally via the shear-275 

layer mechanism. For long signals ( ≫ b), the lateral exchange is more significant, so the shear-layer mechanism amplifies f 

more strongly. Note that all three FR-profiles in Fig. 4 curve down less than those in Fig. 3, but the attendant reduced lateral 

exchange rates are still higher than the vertical diffusion rates, which are 16 times less at  = 8 cm than at  = 2 cm. Rempel 

and Wettlaufer (2003) made similar arguments to explain the wavelength control on f in the system without vein flow. Here 

we have added the shear-layer mechanism to the considerations. 280 

Results for colder ice (T = –52 C, Fig. 5) predict higher enhancements at the same values of  and w, and shear-layer 

transitions at lower vein-flow velocities. For both the 2 cm and 8 cm signals, the tail-to-sheet transition is now largely complete 

when w reaches 5 m yr–1 (Fig. 5; cf. Figs. 3 and 4). These changes are not due mainly to the change in diffusivity contrast (= 

Dv/Ds – 1), but rather to the reduced Ds at low temperature (Fig. 2), which raises the importance of vein-flow assisted lateral 

isotope exchange compared to vertical diffusion in the grains in smoothing the signal. We study the temperature control more 285 

below, where it will be seen that the dominance of these factors Ds and  reverses at low vein-flow velocities. 

The mechanism detailed here – initiation of the shear layer by vein-water flow, its progression through the tail and sheet 

regimes as the magnitude of w is increased, and how the layer isotopic gradients amplify the short-circuiting to accelerate 

signal decay – is universal across our experiments. To help readers visualise the evolution, we show in Movies S1 and S2 

continuous versions of Figs. 3 and 4, with w changing in small steps, covering upward as well as downward water flow.  290 

Having explored the spatial interactions behind the decay-rate enhancement amplification, we report the influences of 

wavelength and vein-flow velocity more comprehensively by computing curves of f() at fixed w (Fig. 6) and surfaces of f 

over the –w parameter space (Fig. 7). We do this for T = –32 C and T = –52 C, plotting log10f and the signal migration 

velocity v also. Figures 6 and 7 confirm that f increases monotonically with  and w, and, at each, f increases from Rempel 

and Wettlaufer’s f value at w = 0 towards a maximum (Nye’s enhancement factor) as w → ∞. Importantly, while for centi- 295 
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Figure 6. Computed curves of signal decay-rate enhancement factor f, log10f and signal migration velocity v versus signal wavelength , at 

(a–c) T = –32 C and (d–f) T = –52 C, for different vein-flow velocities w (labels by the curves, in m yr– 1). The lowest curves in f and log10f 

portray Rempel and Wettlaufer’s (2003) enhancement factor. The highest curves approach Nye’s (1998) enhancement factor. 

 300 

 

metre to decimetre-scale signals f is a few times without vein-water flow, it increases to  101–102 with vein-water flow. The 

increase is steepest at w  10 to 20 m yr–1 at –32 C and w  1 m yr–1 at –52 C. Accordingly, for the upper parts of ice 

cores from central Greenland, West Antarctica and coastal Antarctica, where T ≈ –20 C to –30 C is common, the extra 

enhancement above Rempel and Wettlaufer’s f is limited until w exceeds a few metres per year (Fig. 6a–b). For the upper parts 305 

of ice cores in central East Antarctica, such as at the EPICA Dome C, Dome Fuji and Vostok ice-core sites, where T ≈ –50 C, 

the extra enhancement is already significant at w  0.5 m yr–1 (Fig. 6d–e). Results computed using the fractionation coefficients 

for oxygen and deuterium instead of  = 1 (Figs. S1 and S2) differ minimally from those in Figs. 6 and 7.  

The surfaces of f at the two temperatures have similar shape but different scales in w (Fig. 7). The surface for –52 C is 

in fact almost exactly a compressed version in the w-direction of the surface for –32 C. Movie S3 illustrates this 310 

“compressional scaling” as T varies from –20 C to –60 C. The surface always approaches the same profile f() as w → ∞ 

(also see Figs. 6a, d) to yield Nye’s enhancement factor, which does not depend on temperature, because Dv and Ds do not  
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Figure 7. Computed signal decay-rate enhancement factor f, log10f and signal migration velocity v over the –w parameter space at: (a–c) –

32 C and (d–f) –52 C. White dashed curves delineate f() at w = 0, which is the enhancement factor in Rempel and Wettlaufer’s (2003) 315 

model. Circles locate the experiments of Figs. 3, 4 and 5. The curves in Fig. 6 are transects of these surfaces at fixed w.  

 

enter the model to influence  when w → ∞ or  → ∞ (Eqs. (3) to (5)) (remember the baseline decay rate does increase with 

T via Ds). However, the surface evolves not merely by compressional scaling. A subtle change also occurs in the valley near 

w ≈ 0: there, f at –32 C exceeds f at –52 C slightly (the lowest curves in Figs. 6b and 6e). Consequently, as T is reduced, the 320 

surface contracts towards w = 0, causing f to rise at moderate to large values of w (yielding the earlier result that f decreases 

with temperature) but to drop near w ≈ 0 (this is too small to be visible in Movie S3).  

These temperature controls can be explained by a model scaling analysis. As detailed in Appendix B, with constant vein 

and grain radii (a and b fixed), three dimensionless parameters govern the signal pattern in the ice annulus and the associated 

signal decay rate: (i) the ratio of the signal wavelength to the grain radius, /b; (ii) the ratio of isotope advection by vein-water 325 

flow to isotope diffusion in the ice, wb/Ds; and (iii) the diffusivity contrast . (The Peclet number considered by Rempel and 

Wettlaufer (2003) is a combination of these parameters.) It follows that the enhancement factor f has the functional form f(/b, 
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wb/Ds, ), whose shape is portrayed by the surfaces in Fig. 7. The influences of  and w in the first two arguments of this 

function were explored in earlier experiments. A temperature change affects f via both its second and third arguments, because 

Ds and  vary with T (Fig. 2). The compressional scaling stems from the second argument, wb/Ds. In contrast, the influence 330 

on f by the third argument  (over its range of interest,  106) is weak, and prevails only when f is small – near w ≈ 0. There, 

f decreases when T is reduced from –32 C to –52 C, because a decrease in  (Fig. 2c) weakens the short-circuiting.  

Turning to the migration velocity v (Fig. 6c, f; Fig. 7c, f), the model predicts signals to move in the direction of vein-

water flow, at speeds that reach a maximum at intermediate w, and are higher for long signals and at high temperature, of up 

to  1 cm kyr–1. Most speeds on the parameter space are much lower. Hence signal migration is slow, in the sense that long 335 

(at least millennial) timescales are needed to displace centimetre and decimetre-scale annual signals against the ice and other 

ice-core proxies by a wavelength or more. The relative inaccuracy caused by this on the age scales determined by the counting 

of -cycles on isotope records is negligible. Compressional scaling applies also to v (Fig. 7, Movie S3), which has the form 

(Ds/b)g(/b, wb/Ds, ) where the function g differs from f (Appendix B). The prefactor Ds/b explains why migration slows as 

temperature is reduced. 340 

In their calculations, Rempel and Wettlaufer (2003) and Johnsen et al. (2000) accounted for the misorientation of veins 

from the vertical in the three-dimensional vein network, by reducing Dv by a bulk tortuosity factor f = 3. Doing this in our 

experiments would lower  by ≈ 3 times and alter their results numerically, but not change our qualitative findings. 

4    Implications for diffusion-length studies 

To explore how much excess diffusion modulated by vein-water flow impacts signal smoothing down the ice column, we 345 

simulate diffusion-length profiles for ice-core sites in Greenland and Antarctica, in a forward model testing w. We compare 

the results against profiles modelled without excess diffusion, and query whether they match the level of excess diffusion 

inferred from isotope records. We also consider the impact on diffusion-length-based temperature reconstructions.  

We use the well-established theory of Johnsen (1977) for these calculations, treating what happens below the firn only. 

In a moving coordinate system where z measures depth below a material horizon in the ice as it descends towards the bed, 350 

isotopic signals evolve according to 

2

2
( ) ( )zD t t z

t zz
,       (17) 

where t is the age of the horizon, z (< 0) is the local vertical strain rate, and is the section-mean signal in Eq. (16). Since  
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the enhancement factor f applies to this signal (Sect. 2), the bulk-ice isotopic diffusivity in (17) is given by 

D(t) = Ds(T)f(, w) ,        (18)  355 

where the dependence on age arises through T,  and other controls of f that vary as the signal descends (, potentially also w, 

a and b). We model a steady-state ice column with fixed temperature and ice velocity profiles. Given the ice thickness, the 

surface accumulation rate and strain-rate profile, the age–depth scale is determined, and signals with the wavelength 0 at the 

firn transitionshorten to the wavelength  = 0S(t)/S(t0) at age t, where 
0

( ) exp ( ) d
t

zS t  ≤ 1 is the thinning function, 

and t0 is the firn transition age. The normalisation of S by S(t0), absent in studies that track signals from the ice-sheet surface, 360 

accounts for the minor thinning that has taken place by t = t0. 

According to Johnsen’s (1977) solution of Eq. (17), one can track the amplitudes of different harmonics (Fourier 

components) of the signal separately3, by using the diffusion length , which measures the root mean square distance travelled 

by diffusing isotopes. Specifically, the squared diffusion length 2 obeys the differential equation  

2
2d

2 ( ) 2 ( )
d

z t D t
t

,        (19) 365 

and each harmonic attenuates by the ratio R = exp(–2π22/2) as  and  evolve down-column. It follows that a harmonic is 

attenuated strongly when its wavelength shortens to less than  (e.g., Gkinis et al., 2021). In our simulations, we specify an 

initial value  = firn at the firn transition – taken from studies of firn isotope diffusion – to circumvent the need to model firn 

processes. The ratio tracking signal amplitude in the ice is then 

2 2 2 2 2

firn 0exp 2 ( / / )iR .      (20) 370 

Following Gkinis et al. (2014), we decompose 2 into a part due to isotopic diffusion in ice, ice
2, and another part 

inherited from firn isotopic diffusion that thins under the compression; thus, 

2

2 2 2

ice firn

0

( )
( ) ( )

( )

S t
t t

S t
.        (21) 

 
3 This is because their wavelengths follow different histories of shortening. To see this, notice Eq. (17) has the characteristic velocity 

dz/dt = z z , which motivates a change of the depth variable to Z = z/S(t). Changing the time variable also via τ = ∫ D(t)/S(t)
2
 dt

t

0
 

converts (17) to the classic diffusion equation ∂/∂τ = ∂2/∂Z2, whose Fourier components evolve independently. 
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Substituting for 2 in (19), using (18) for D, yields 

2

2ice

ice

d
2 2 ( , )

d
z sD f w

t
,         (22) 375 

with ice = 0 at t = t0. This equation is straightforward to solve analytically by an integrating factor (Gkinis et al., 2014) or 

numerically by the finite-difference method (as done in our simulations below).  

In reconstructions of firn temperature (e.g., Gkinis et al., 2014; Holme et al., 2018), Eq. (21) is rearranged as 

2 2

2 obs ice

firn 2

0[ / ( )]S S t
 ,        (23) 

to allow firn at a given age to be found from (i) the thinning S, (ii) the modelled value of ice (from (22)) and (iii) the diffusion 380 

length obs estimated from isotopic signals in the ice core – at the same age. Firn isotope diffusion modelling is then used to 

invert firn for temperature. The estimation of obs involves fitting P0(k) = P0R2 = P0exp(–k22) (k = 1/ is the wavenumber) to 

the power spectral density (PSD) graph of the measured signals, assuming a white-noise input signal at the surface, i.e., 

constant P0; see Kahle et al. (2018) for different approaches to this estimation. 

Eq. (22) reveals a notable consequence of excess diffusion (f > 1) for the diffusion-length estimation. Besides raising ice 385 

(thus ) to accelerate signal decay, excess diffusion makes ice wavelength dependent: this does not arise if the bulk ice has 

Ramseier’s diffusivity (f ≡ 1), as assumed in most past studies. With excess diffusion, ice varies with  and the initial wave-

length 0, so the harmonic components have different diffusion-length histories. Their spectral power now decays as exp(–

k22), where  decreases with k (rather than being constant), as f increases with  (Sect. 3). Since f = 1 at zero  only (Figs. 6 

and 7),  exceeds the -value for monocrystalline ice at all k < ∞. Fitting of the resulting non-parabolic PSD thus overestimates 390 

obs, in the context of firn-temperature reconstructions assuming Ramseier’s diffusivity for the ice in (22) and (23). 

More precisely, our model implies that fitting exp(–k22) to the PSD decay of the signal to find  is no longer appropriate 

when excess diffusion operates; strictly speaking, the fit should be made with exp[–k2(ice
2 + (firnS/S(t0))2)] to find firn, with 

ice (solution of (22)) varying with k and w. We demonstrate the wavelength dependence of ice in simulations below. The 

dependence does not arise in the firn, because firn is not a function of , according to models of firn isotope diffusion (Whillans 395 

and Grootes, 1985; Johnsen et al., 2000, Gkinis et al., 2014, Gkinis et al., 2021). Note that when the diffusion length  develops 

wavelength dependence, it refers to the root mean square displacement of isotopes only if the signal (at a given depth) has a 

single wavelength, not if it is composed of multiple harmonics.  
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We proceed to examine diffusion-length profiles computed for ice-column conditions based on the GRIP site in 

Greenland and the EPICA Dome C site in Antarctica (Fig. 8); for these sites we specify firn = 8 cm and 7 cm, respectively 400 

(e.g. figure S2 of Gkinis et al. (2014)). Most of our model runs assume a = 1 μm and b = 2 mm, although some prescribe a 

variable grain-radius profile from measurements (Fig. 8d, h). We set  ≡ 1 again, and 65 m as the firn transition depth. The 

age–depth scales yield t0 = 286.3 a for GRIP and 2872.9 a for EPICA. At the firn transition, the wavelength of annual signals 

is given approximately by the ice-equivalent surface accumulation rate: 0.23 m yr–1 at GRIP and 0.023 m yr–1 at EPICA.  

Figure 9a–d presents -profiles simulated at GRIP for the annual signal (0 = 0.23 m yr–1), alongside profiles of the 405 

enhancement f, ice diffusion length ice, and the ratio Ri tracking signal amplitude. At each depth,  increases with w via its  

 

    

Figure 8. Depth profiles of glaciological variables used in our diffusion-length modelling for the (a–d) GRIP and (e–h) EPICA Dome C ice-

core sites. (a, e) Age–depth scale. (b, f) Strain rate
z
and the associated thinning function S. (c, g) Ice temperature. (d, h) Grain-radius data 410 

(circles) and spline curves used in our modelling. Ice flow at the GRIP site assumes the Dansgaard–Johnsen model with ice thickness H = 

3029 m, kink height at 1000 m and surface accumulation rate as = 0.23 m yr–1 ice equivalent. Ice flow at the EPICA site assumes the ice 

submergence velocity wi = mb + (as – mb)(h/H)1.7, where H = 3275 m, as = 0.023 m yr–1 ice equivalent, h is height above the bed, and mb = 

0.0008 m yr–1 is the basal melt rate. See Ng (2021) for additional details about these profiles.  

 415 
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modulation on ice. Whereas excess diffusion with w = 0 (no vein-water flow) raises  and ice slightly above their values 

based on Ramseier’s diffusivity (f = 1), w from several to tens of metres per year increases and modulates ice significantly, 

with a strong impact on signal decay, down to ≈ 2300 m depth. From about half way down the column, the amount of excess 

diffusion diminishes rapidly with depth (f → 1) due to severe shortening of the signal and increasing temperature (Sect. 3). 

The  and ice profiles converge on the profiles for f = 1 near the base of the column because of this, and because the firn part 420 

of  is vanishing, and because the long time spent by deep ice at similar strain rate and temperature allows the effects of 

isotopic diffusion and vertical compression to balance, with ice equilibrating to (–Ds(T)/ z )1/2 in Eq. (22).  

 

          

Figure 9. Computed depth profiles for the GRIP core site of (a, e) the enhancement factor f (representing excess diffusion above the mono-425 

crystal diffusivity), (b, f) diffusion length , (c, g) ice diffusion length ice, and (d, h) signal amplitude ratio Ri. Number by each curve 

indicates the vein-water flow velocity w in m yr–1. In (a) to (d), all model runs study the annual signal (0 = 0.23 m yr–1), assuming the grain 

radius b = 2 mm; dashed curves show results based on Ramseier’s (1967) monocrystal diffusivity, i.e., f = 1; the dotted curve in (b) shows 

the thinned firn diffusion length. In (e) to (h), blue curves report results based on the variable grain-radius profile in Fig. 8d; red curves report 

results computed for signals with 0 a hundred times longer; grey curves show selected results from (a) to (d) for comparison.  430 
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The model run for w = 20 m yr–1 in Fig. 9a–d mimics the diffusivity enhancement f  10–30 found for annual signals in 

the GRIP Holocene ice by Johnsen et al. (1997) and Johnsen et al. (2000), predicting also the reduced excess diffusion in 

deeper ice (> 1600 m) dating to the Younger Dryas and the last glacial alluded in those studies. Although blockage of veins 

by the high dust content in stadial/glacial ice might explain this reduction (Johnsen et al., 1997; Johnsen et al., 2000), our 

model predicts a strong dependence of f on the shortening signal wavelength when w > 0 (Fig. 6a, b) that provides an 435 

explanation. These considerations are unchanged if the run uses variable grain radius (Fig. 9e–h, blue curves for 20 m yr–1). In 

contrast, the large enhancement f  10–30 cannot be reproduced with w = 0 (Rempel and Wettlaufer’s (2003) model) with 

constant or variable b (Fig. 9e–h), not unless very large vein radii of  20 to 200 μm are assumed.  

The wavelength dependence of  and ice is apparent from two runs that study a signal with an initial wavelength 100 

times longer than the annual signal (red curves in Fig. 9e–h; cf. grey curves). The dependence strengthens with w; we analyse 440 

its depth variations later. Even with strong excess diffusion (when w = 20 m yr–1), the long signal survives much deeper than 

the annual signal (to ≈ 2800 m; Fig. 9h) because its baseline decay rate is 104 times lower.  

Turning to the EPICA site, our interest is drawn to long signals, because annual signals are too short to survive isotopic 

diffusion in the firn (e.g., for  = 0.023 m, the firn attenuation is R = exp(–2π2firn
2/2)  10–80). Figure 10a–c presents model 

runs for a millennial-scale signal with 0 = 23 m yr–1. They show a similar modulation of the f and -profiles by w as seen in 445 

the GRIP runs; however, colder ice in the top half of the EPICA column than at GRIP (Fig. 8g, c) means that these profiles 

are more sensitive to w (Sect. 3). The modulation at EPICA extends to nearer the base of the ice column because the lower 

strain rate (which shortens signals more slowly and slows the equilibration in (22)) causes  to approach the f = 1 curve slowly. 

The millennial signal survives into the deepest ice if w ≲ 30 m yr–1 (Fig. 10c). 

What conditions at EPICA can produce the long diffusion lengths   40 to 60 cm inferred for ice at the depth of MIS 450 

19 ( 3170 m), and thus strong suppression of millennial signals and near-complete absence of sub-millennial signals there? 

Pol et al. (2010) surmised excess diffusion as necessary. Like the -profile they simulated, our result for f = 1 yields only  ≈ 

16 cm at that depth (Fig. 10b). The runs with excess diffusion at constant b show that w ≈ 80 to 150 m yr–1 generates enough 

excess diffusion, but the corresponding -profiles bulge at ≈ 1000 m to attenuate the millennial signal strongly mid-column 

(Fig. 10b, c). Other ways of achieving   40 to 60 cm in the deepest ice, with small or no bulge in  that allows a sizeable 455 

signal to survive past ≈ 2500 m depth, but not to ≈ 3100 m, are shown in Fig. 10d–h. They assume w-profiles ramping up 

towards the bed – linearly, parabolically, or linearly/nonlinearly near the base – that all require w ≳ 150 m yr–1 in deep ice. If  
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Figure 10. Computed depth profiles for the EPICA Dome C core site of (a, e) enhancement factor f, (b, f) diffusion length , and (c, g) signal 460 

amplitude ratio Ri. All model runs investigate a millennial-scale signal with 0 = 23 m yr–1 (1000 × surface accumulation rate). In (a) to (c), 

each run assumes b = 2 mm and constant vein-water flow velocity w (value beside each curve, m yr–1). Curves labelled f = 1 show results 

based on Ramseier’s diffusivity. Panels (e) to (g) report five model runs able to yield  of 0.4–0.6 m near the base, assuming the variable w-

profiles in panel (d). Three runs assume b = 2 mm, and two runs assume the variable grain-radius profile in Fig. 8h.  

 465 

 

we further consider that Pol et al. (2011) estimated the diffusion length   8 cm for ice at MIS 11 (395 to 426.7 ka, 2699 

to 2799 m) in the EPICA core, then the deep nonlinear w-profile (red) best mimics the observations. In any case, excess 

diffusion unassisted by high vein-water flow at depth cannot explain them. The limited excess diffusion at w = 0, which hardly 

alters the signal evolution predicted by Ramseier’s diffusivity (Fig. 10), is far from sufficient. 470 

In summary, for both the GRIP and EPICA cores, vein-flow modulation with suitable choices of w can reproduce the 

levels of excess diffusion inferred from their isotope records. Nye’s model (which is approached at high w in Figs. 9 and 10, 

as w → ∞ regains his model; Sect. 3) and Rempel and Wettlaufer’s model (w = 0) overpredict and underpredict those levels, 

respectively, in simulations using grain sizes similar to those measured. The reason Rempel and Wettlaufer’s model revises 

down Nye’s enhancement factor f was explained in Sects. 2 and 3. Accounting for vein tortuosity (by lowering Dv) weakens 475 

the short-circuiting and reduces f further and does not alter these findings. 
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Figure 11. Wavelength dependence of diffusion length  (colour, contours in m yr–1) at the GRIP site for three parameter settings: (a) w = 5 

m yr–1, b = 2 mm, (b) w = 20 m yr–1, b = 2 mm, and (c) w = 20 m yr–1 with the grain-radius profile in Fig. 8d. In each panel, the maps plot  480 

versus depth against the initial wavelength of the signal 0, its initial wavenumber k0, and its wavenumber k at depth. White dashed lines on 

the map at far right locate the transects of Fig. 12b. 

 

                                    

Figure 12. (a) Diffusion length  as a function of signal wavenumber k, computed at six depths in the GRIP ice column (numbers in colour) 485 

in the model runs in Fig. 11c, assuming w = 20 m yr–1 and the variable grain-radius profile. (b) Synthetic power spectral density (PSD) 

decays based on the curves in (a), colour-coded as there. Each signal with wavenumber k has k/2 cycles per metre, so the horizontal axes 

in (a) and (b) are equivalent. 
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And what of the implications for firn temperature reconstructions? Excess diffusion can bias them in two ways, which 

we discuss using the GRIP runs as an example. First, it introduces uncertainty and bias to obs found by PSD fitting. Figure 11 490 

maps the computed diffusion length versus depth for signals of different initial wavelength 0 (think of the left-most plot of 

each panel as showing multiple -profiles in a stack); in the same way, it maps against their initial wavenumber k0 = 1/0 

and their wavenumber at depth after accounting for thinning, k = k0S(t0)/S. Whether the simulations use a constant or variable 

grain radius,  develops a pronounced wavelength dependence at w = 20 m yr–1 (the velocity yielding the level of excess 

diffusion in GRIP Holocene ice) at most depths, except near the surface and base (Fig. 11b, c). As anticipated, increases 495 

with 0 and decreases with k monotonically. Its variations(> 15 % below 700 m; Fig. 12a) mean that the PSD decays [∝ exp(–

k22(k))] are not parabolic in k as they might seem (Fig. 12b). Consequently, obs found by fitting exp(–k2obs
2) to the decays 

will be misestimated, and, as explained earlier, biased too high for existing firn-temperature reconstructions (by an amount 

dependent on the fitting method).  

This issue will arise wherever excess diffusion occurs, and in deeper ice below any section with excess diffusion. It will 500 

affect reconstructions using the difference between the diffusion lengths of oxygen and deuterium (Simonsen et al., 2011; 

Holme et al., 2018) as well as those using the diffusion length of a single isotope. It can be diagnosed by a statistically-

significant negative trend in log(PSD)/k2 over k, although real PSD data contain noise and artefacts related to the ice-core 

isotopic measurements (e.g., Kahle et al., 2018) that may complicate such a test.  

Second, excess diffusion affects the calculation of firn in Eq. (23) – via the magnitude of ice. Temperature reconstructions 505 

based on diffusion length (Gkinis et al., 2014; Holme et al., 2018; Gkinis et al., 2021; Kahle et al., 2021) typically use 

Ramseier’s diffusivity to find ice (i.e., Eq. (22) with f = 1), which is justified for ice cores where excess diffusion does not 

operate. But where it does operate, ice is underestimated, and firn and the reconstructed firn temperature are overestimated; 

accounting for excess diffusion would yield a lower temperature. Put another way, a high obs at a given depth may result from 

a large (thinned) firn contribution from high surface/firn temperature in the past, or from excess diffusion that raised ice, or 510 

from both. Robust inversion for firn must therefore ascertain the amount of excess diffusion. 

The impact on firn in single-isotope reconstructions can be gauged using the GRIP runs. Figs. 9c and 9g show that the 

underestimation of ice by Ramseier’s diffusivity is minimal at w = 0, but reaches  0.01 to 0.02 m (to ≈ 2000 m depth) if w = 

20 m yr–1. To gauge how much firn is perturbed, we calculate firn in Eq. (23) by using -profiles simulated in forward runs  
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 515 
 

                                  

Figure 13. Firn diffusion length firn recovered using Eq. (23), with obs taken from the diffusion-length profiles simulated in forward runs 

at the GRIP site (for scenarios with excess diffusion at different water-flow velocities w), and with ice calculated by assuming Ramseier’s 

diffusivity for the bulk ice. The forward runs are based on b = 2 mm in (a), and on the measured (variable) grain-size profile in (b). 520 

 

        

at different w as the input for obs, but using the profile of ice at f = 1 as the other input. These tests thus imitate Ramseier-

based reconstructions applied to isotope records influenced by excess diffusion (the tests are not comprehensive, as our runs 

used a fixed (0.08 m) rather than time-varying firn). The results show that firn is overestimated by an amount increasing with 525 

depth and w (Fig. 13). When w = 20 m yr–1, firn is too high by  0.02 m between 1000 m and 2000 m depths (ca. 5.5–17 ka) 

and the overestimation increases from  0.01 to 0.03 m through this depth range. With the typical sensitivity of the firn-

temperature inversion for Greenland (fig. S2 of Gkinis et al., 2014; fig. 3 of Gkinis et al., 2021), a deviation in firn of ±0.02 

m around 0.08 m translates to a temperature change of ≈ ±5 C. Hence the firn temperature in this scenario will be overestim-

ated by Ramseier-based reconstructions by several degrees, increasing (with age) through the Holocene and the period since 530 

the Last Glacial Maximum.  

In this connection, Gkinis et al. (2014) reconstructed a temperature history from 18O in the NGRIP ice core (retrieved 

325 km NNW of GRIP), which they regarded as ≈ 3 to 5 C too warm from  8 to 12 ka, when compared to other 

reconstructions (see their Fig. 6). They down-adjusted their temperature results by modifying the thinning function S to reflect 

lower past accumulation rates. Although the glaciological conditions at NGRIP and GRIP differ, our results show that 535 

adjustments of this size are possible with vein-flow modulated excess diffusion. This is not to say that excess diffusion with w 

 20 m yr–1 occurred at NGRIP – we are not aware of reports of excess diffusion for that core. However, we recommend that 
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diffusion-based temperature reconstructions assess whether their results could be biased by excess diffusion, besides 

considering the choices and uncertainties related to firn modelling (Gkinis et al., 2021) and diffusion-length estimation (Kahle 

et al., 2018). Our test case here with w = 20 m yr–1 at GRIP is exemplative. Any bias will depend on the magnitude, distribution 540 

and temporal variations of w.   

Dual-isotope reconstructions should be less affected by this problem. These reconstructions exploit the different diffusion 

lengths of 18O (or 17O) and D in the firn, as caused by the different fractionation coefficients (α) for 18O–16O (or 17O–16O) 

and D–H; specifically, they use the square differential ∆2 = 2(oxygen) – 2(deuterium) as the proxy for firn/surface 

temperature (Simonsen et al., 2011; Holme et al., 2018). If the profiles of ice were identical for oxygen and deuterium, as 545 

implied by our model of excess diffusion with α ≡ 1 (and by Ramseier-based models), then neither the size of ice nor bias on 

ice matter, because ice
2 cancels out in the differencing. But the cancellation is imperfect because oxygen and deuterium differ 

slightly in their fractionation coefficients. To study the effect, we repeated the GRIP runs by using their α-values in Eq. (15), 

to compute the corresponding ice-profiles and the ice part of the differential, ∆ice
2 = ice

2(oxygen) – ice
2(deuterium). When 

w  10 to 50 m yr–1, ∆ice
2 reaches  10–5  m2 mid-column (Fig. S3). Since the observed variations in ∆2 for Central Greenland 550 

fall in the range  10–4–10–3 m2 (e.g., figs. 2 and 3 of Simonsen et al., 2011), the ice contribution to the differential can bias 

dual-isotope reconstructions slightly where excess diffusion operates. 

We have not repeated the foregoing analyses for the EPICA ice column, because information about its pattern of excess 

diffusion, limited to the  estimates for MIS 19 and MIS 11 (Pol et al., 2010; Pol et al., 2011), is less complete than at GRIP. 

5    Conclusions and outlook    555 

In this paper, we described a mechanism whereby vein-water flow amplifies the short-circuiting conceived by Nye (1998), 

enhancing the rate of isotopic diffusion in polycrystalline ice above the rate predicted by Rempel and Wettlaufer’s (2003) 

model. Our simulations demonstrate its profound impact on signal smoothing in ice where the vein-water flow velocity w 

reaches  101–102 m yr–1. We explained why vein-flow modulated excess diffusion biases the spectral estimation of diffusion 

lengths from isotope records, as well as diffusion-based palaeothermometry at ice-core sites. Our findings contribute insights 560 

essential for developing more robust interpretation of ice-core isotope records. 

Potential modulation of excess diffusion by vein-water flow means that ice-core isotopic signals may have been altered 

in more complex ways than previously thought. Where modulation occurs, neither Ramseier’s (1967) formula nor Rempel and 

Wettlaufer’s (2003) model describe the bulk-ice isotopic diffusivity, and we caution their use in ice-core analysis. 
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Our GRIP and EPICA simulations (Sect. 4) represent the first detailed exploration of the impact of excess diffusion on 565 

diffusion-length profiles and probe the conditions behind the levels of excess diffusion inferred for those cores. Their 

expository nature should be emphasised: we have not fitted the observations precisely, and the vein-flow velocities in our 

model runs are only trial values in a sensitivity analysis. One reason is that the present model idealises some geometrical 

aspects of the system. Based on Nye’s and Rempel and Wettlaufer’s set-up (Fig. 1), it approximates the vein cross-section – 

which consists of three convex faces (Nye, 1989; Mader, 1992a) – as circular, and it assumes that veins are static features, 570 

even though grain-boundary migration in ice implies a continual slow motion of veins relative to crystal matrices (Ng, 2021), 

which will perturb the isotope concentration fields within ice grains. Another reason is that the model ignores isotope diffusion 

along grain boundaries (Johnsen et al., 2000), which might increase the amount of excess diffusion in fine-grained ice (Jones 

et al., 2017). Moreover, two factors in the simulations are difficult to constrain, namely (i) the suppression of short-circuiting 

due to blockage of veins by dust particles and bubbles and (ii) spatial variation in the vein radius. Regarding the latter, the 575 

mean vein size in ice at thermodynamic equilibrium should be governed locally by the average grain size, temperature, and 

total amount of dissolved ionic impurities in the veins (Nye, 1991; Mader, 1992b; Dani et al., 2012). Factors (i) and (ii) suggest 

possible influences by changing vein-impurity signals (Ng, 2021) and changing distributions of bubbles and solid particles on 

excess diffusion and the smoothing of isotopic signals. Extending the model for these controls and the detailed geometry of 

the vein network as grain size and texture evolve are worthwhile avenues for further research. 580 

A striking realisation from our study is how little is known about the vein-scale hydrology of ice sheets. The vein-flow 

velocity w is needed for predicting excess diffusion with the model, or validating model runs matching diffusion lengths 

measured from ice cores. However, reliable prediction of the size and pattern of w at ice-core sites is out of reach; our only 

handle on w is Nye and Frank’s (1973) theory for glaciostatically-driven porewater flow. This theory calculates the rate of 

(Poiseuille) flow through veins under the hydropotential gradient (w – i)g, where w is water density, i is ice density and g 585 

is gravitational acceleration. It yields a large range of plausible w because the ice porosity – a key input that determines the 

vein size for a given mean grain size – is uncertain for polar ice. When modelling the profile of w above subglacial lakes, 

Rempel (2005) combined Nye and Frank’s (1973) theory with an equation of vein-equilibrium thermodynamics to constrain 

the porosity through the influence of dissolved impurities alluded to above. Although this approach can predict w specifically, 

it requires knowledge (or assumption) about the amount of ionic impurities partitioned to the vein network, which is not 590 

resolved by most ice-core analytical measurements. Besides, neither his model nor Nye and Frank’s model has been 

observationally tested. A separate theory by Nye (1976) treats vein-water flow in detail, but analyses its stability only, not flow 

rates. Thus currently, knowledge about w in polar ice is limited to a few unverified theories, and we cannot assess whether the 

range of w found to modulate excess diffusion sensitively are common at ice-core sites. 

Direct measurements of vein-water flow in polar ice are critical for progress, for informing studies of excess diffusion 595 

and hydrological modelling. Vein size measurements at low temperature are also desirable, because the observations of Mader 

(1992b) (vein widths 10–100 m) were made within 1 C below the melting point. It may be possible to measure w by 
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innovating on NMR and Doppler-based techniques. Laboratory studies should couple vein size and flow measurements with 

experiments where water percolates through ice containing isotopic signals. In such instances, one can use LA-ICP-MS (laser 

ablation inductively-coupled plasma mass spectrometry; Bohleber et al., 2021) to try to discern excess diffusion, by studying 600 

the relationship between isotopic signals in the crystals and those in the veins, and looking for the flow-induced “shear layer” 

in isotopic concentration near triple junctions predicted by us (Sect. 3). Hitherto, no experiments have been made to 

demonstrate Nye’s short-circuiting effect, even for the case without water flow. 

Because the amplification of excess diffusion is due to isotopic gradients caused by vein-flow advection (Sect. 3), our 

model implies that any non-zero pattern of w will accelerate the smoothing of isotopic signals. The water flow need not be 605 

vertical or unidirectional, nor occur on long length scales (as experimented herein). We think that recrystallisation in deforming 

ice will cause nonuniform vein-water flow at the grain scale, although no theories yet address this process and we do not know 

the flow velocities involved. Notably, polygonisation and strain-induced migration recrystallisation that reconfigure grain 

boundaries must create new vein segments while eliminating others, thus inducing local water flow superposed on any long-

range transport (e.g., the downward percolation envisaged by Nye and Frank (1973)). If this hypothesis is correct, then the 610 

coupling between recrystallisation processes and isotopic diffusion is more complicated than the irregular shape and motion 

of existing veins, and the rate and mode of ice deformation will affect the level of excess diffusion. 

Future studies should analyse the pattern of excess diffusion in multiple ice cores systematically, to help unravel its 

diverse controls; this is not least because the origin of excess diffusion at the GRIP and EPICA sites remains elusive. High-

resolution isotopic measurements on ice cores that are becoming more common (e.g., Steig et al., 2021) will aid this effort. 615 

Our modelling shows that where excess diffusion occurs, one should be able to quantify and remove the biases on spectrally-

derived diffusion lengths and firn-temperature reconstructions, by calculating ice and its wavelength dependence with Eqn. 

(22). Although this is not possible to do until w can be predicted for a given core site, diffusion-based studies should at least 

scrutinise their isotope records for signs of excess diffusion, by studying the decay rate of signals at specific (unthinned) 

wavelengths (Johnsen et al., 1997; Johnsen et al., 2000) and testing for significant trends on log(PSD)/k2 data (Sect. 4). 620 
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Appendix A: diffusivities Dv and Ds 

Following Rempel and Wettlaufer (2003), we use a relation for Dv(T) based on experimental measurements on supercooled 

water, even though strictly speaking the vein water is liquid – in thermodynamic equilibrium with ice – due to the presence of 755 

dissolved impurities and interfacial curvature (Mulvaney et al., 1988; Nye, 1991; Ng, 2021), not because of supercooling.  

Rempel and Wettlaufer (2003) fitted a quadratic to the self-diffusion coefficients measured by Gillen et al. (1972) with 

an NMR method for supercooled water down to ≈ –31 C. At lower T, their quadratic is not meant to apply, especially as it 

predicts Dv to increase again (Fig. 2a, red dashed curve). One cannot extrapolate the trend of Gillen et al.’s (1972) data to those 

temperatures, as there has been much debate about a possible liquid–liquid phase transition in the so-called ‘no man’s land’ of 760 

deeply supercooled water near 228 K (≈ –45 C), which is thought to be responsible for various observed anomalies in the 

properties of water. Reviews of this topic have been given by Amann-Winkel et al. (2016), Handle et al. (2017) and Hestand 

and Skinner (2018). 

Recently, Xu et al. (2016) measured the rate of growth of ice crystals into supercooled water by using a pulsed-laser 

heating technique and used the results with the Wilson–Frenkel model (Wilson, 1900; Frenkel, 1946) to derive new estimates 765 

of Dv, down to 125 K. From their growth and diffusivity data, they inferred no thermodynamic transitions or singularities in 

‘no man’s land’. Here we fit their Dv values between –12.8 C and –60.8 C (blue circles, Fig. 2a), which exhibit a slope break 

on the Arrhenius plot at ≈ –38 C, by using the composite exponential  

v

6 7

1

1 1

1870 9474
1.085 10 exp 2.942 10 exp

D

T T

   m2 s–1    (A1) 

(blue curve, Fig. 2a). Although their experiment was conducted in an ultra-high vacuum, we use (A1) without pressure 770 

correction in our model, because combined atmospheric and glaciostatic pressures should increase Dv by a few percent only 

(Dv increases by 10–40 % as pressure rises from 0.1 to 100 MPa (Prielmeier et al., 1988)) and because the data points of Xu 

et al. actually lie above those of Gillen et al. (Fig. 2a).  

For the self-diffusivity of ice, Ds, we use Ramseier’s (1967) formula 

3
4 2 1

s

7.2 10
9.1 10 exp   m sD

T
,      (A2) 775 

which is based on experiments on ice monocrystals down to –35.9 C. We are not aware of measurements of Ds at lower 

temperatures, where diffusion is too slow to be easily determinable on experimental timescales. However, there is no reason 

to expect that the activation energy of volume self-diffusion (≈ 60 kJ mol–1 according to (A2)) would change drastically at low 

T. Examples of the use of (A2) for T as low as ≈ –50 C appear in earlier studies (e.g., Pol et al., 2010; Grisart et al., 2022). 
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Appendix B: scaled model  

By non-dimensionalising the independent variables with r* = r/b, z* = z/b and t* = t/(b2/Ds), Eqs. (3) to (5) become 

2

2

1
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* * * * *
r

t r r r z
,       (B1) 

with the boundary conditions 
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,        (B2) 785 
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r zr z
.     (B3) 

The parameters 

a

b
  (≪ 1) and    

s

wb

D
       (B4) 

signify the dimensionless vein radius and the dimensionless vein-water flow velocity, respectively. If we rescale the decay-

rate parameter, wavelength and wavenumbers according to * = b2, * = /b and [kz*, kr*] = b[kz, kr] (thus ensuring * = 2/ 790 

kz*), then the solution in Eq. (7) becomes  

0 1( *, *, *) ( *)exp( * * * *)zr z t F r t ik z ,     (B5) 

and the enhancement factor f = 1 + (kr*/kz*)2 retain the form in Eq. (9).  

This scaled model implies f = f(, *, , ) or f(*, , ) at fixed . The signal migration velocity v (= IDs/kz 

dimensionally) is given by (Ds/b)Im(*)/kz* or (Ds/b)g, where g is another function of the same parameters. Indeed, one can 795 

solve the scaled model by the method of Sect. 2 (replacing a by , b and Ds by 1, and w by ) and, after computing f and g, 

infer the dimensional controls on f and v (considered in Sect. 3 and Fig. 7) through the parameter and scaling definitions. 
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