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Abstract. The Greenland Ice Sheet (GrIS) has been contributing directly to sea level rise and this contribution is projected to 11 

accelerate over the next decades. A crucial tool for studying the evolution of surface mass loss (e.g., surface mass balance, 12 

SMB) consists of regional climate models (RCMs) which can provide current estimates and future projections of sea level rise 13 

associated with such losses. However, one of the main limitations of RCMs is the relatively coarse horizontal spatial resolution 14 

at which outputs are currently generated. Here, we report results concerning the statistical downscaling of the SMB modeled 15 

by the Modèle Atmosphérique Régional (MAR) RCM from the original spatial resolution of 6 km to 100 m building on the 16 

relationship between elevation and mass losses in Greenland. To this goal, we developed a geospatial framework that allows 17 

the parallelization of the downscaling process, a crucial aspect to increase the computational efficiency of the algorithm. The 18 

results obtained in the case of the SMB, surface and air temperature are assessed through the comparison of the modeled 19 

outputs with in-situ and satellite      measurements, show a considerable improvement in the case of the downscaled product 20 

with respect to the original, coarse output           with the coefficient of determination (R2) increasing      from 0.868 for the 21 

original MAR output to 0.935 for the SMB downscaled product. Moreover, the value of the slope and intercept of the linear 22 

regression fitting modeled and measured SMB values shifts from 0.865 for the original MAR to 1.015 for the downscaled 23 

product in the case of the slope      and from the value -235mm w.e. yr-1      (original) to -57 mm w.e. yr-1      (downscaled) in 24 

the case of the intercept     , considerably improving upon results previously published in the literature.  25 
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1 Introduction 26 

 The Greenland Ice Sheet (GrIS) has been contributing directly to sea level rise since the beginning of the century 27 

through meltwater runoff and ice mass loss. Hörhold et al. (2022) found that modern temperatures over North and Central 28 

Greenland are 1.5 °C warmer than the twentieth century and that meltwater run-off, a major contributor to sea level rise, has 29 

been consequently enhanced.       The duration of surface melting as well as melt extent have also been increasing since 1979, 30 

as measured by passive microwave satellite observations (e.g., Tedesco et al. 2013, Colosio et al., 2021). Moreover, Hanna et 31 

al. (2021) found that over the 1972-2018 period each 1°C of summer warming corresponds to 116 Gt of surface mass loss and 32 

26 Gt of solid ice discharge increase. A key tool for studying the evolution of surface mass loss (e.g., surface mass balance, 33 

SMB) over the GrIS is represented by (polar) regional climate models (RCMs), which, differently from remote sensing 34 

observations (that can provide information about surface height changes but are unable to attribute height change to a mass 35 

change without more information about snow/firn compaction, e.g., Smith et al., 2023) can provide information on the      mass 36 

loss and represent an irreplaceable tool to provide future projections of such losses. A widely used model in this regard is the 37 

Modèle Atmosphérique Régional (MAR, Fettweis et al., 2013, 2017, 2020; Tedesco et al., 2013)., a coupled surface-38 

atmospheric model forced at its boundaries with reanalysis data. However, one of the limitations of MAR (and of RCMs in 39 

general) lies in the horizontal spatial resolution at which outputs can be generated. This is due to computational considerations 40 

as well as to the physics behind the models. Currently, MAR simulations over Greenland are generated at a horizontal spatial 41 

resolution of 6 km (e.g., Colosio et al., 2021). Such spatial resolution           does not allow capturing fine-scale processes 42 

occurring in areas characterized by complex topography (e.g., glaciers terminating in fjords) or small glaciated surface (e.g., 43 

ice caps). Moreover, the knowledge of mass loss at a horizontal spatial resolution higher than the one currently available (e.g., 44 

100s of meters) might      allow a better      characterization of the spatial inputs of runoff and freshwater to the surrounding 45 

oceans.            46 

 To address the limitations associated with the      current horizontal spatial resolution of the MAR model, statistical 47 

downscaling can be used to enhance the spatial resolution of the modeled outputs. For example, Hanna et al. (2005, 2008, 48 

2011) statistically downscaled reanalysis data over the GrIS. A statistical downscaling technique based on elevation correction 49 

was also applied by Franco et al. (2012) to the 25 km MAR outputs to reconstruct GrIS SMB at 15 km spatial resolution. 50 

Following that, Noël et al. (2016) applied an elevation dependent statistical downscaling technique to SMB components 51 

simulated by the Regional Atmospheric Climate Model (RACMO2) at 11 km resolution to reconstruct a daily dataset of SMB 52 

over the GrIS over a 1 km resolution grid. Here, we build upon the approach proposed by Noël et al. (2016) to generate a 100 53 

m, statistically downscaled output of MAR SMB over the whole GrIS. Beside applying the approach to a different set of 54 

modeled outs (MAR instead of RACMO) and the enhanced spatial resolution with respect to Noël et al. (2016), we developed 55 

a geospatial framework that allows the parallelization of the downscaling process which increases the computational efficiency 56 

of the algorithm. In the following, we first describe the datasets used for our approach (Section 2), then we introduce the 57 

methodology (Section 3), followed by the results (Section 4) and our conclusions and future work (Section 5).  58 
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2 Datasets 59 

2.1 MAR Model 60 

 Modeled quantities to be downscaled are obtained from the regional climate model MAR (Colosio et al., 2021; 61 

Alexander et al., 2014; Fettweis et al., 2013; Fettweis et al., 2017; Tedesco et al., 2013). MAR is a modular atmospheric model 62 

that uses the sigma-vertical coordinate to simulate airflow over complex terrain and the Soil Ice Snow Vegetation Atmosphere 63 

Transfer scheme (SISVAT) (e.g., De Ridder and Gallée, 1998) as the surface model. The snow model in MAR, which is based 64 

on the CROCUS model of Brun et al. (1992), calculates albedo for snow and ice as a function of snow grain properties, which 65 

in turn depend on energy and mass fluxes within the snowpack. Lateral and lower boundary conditions are prescribed from 66 

reanalysis datasets. Sea-surface temperature and sea-ice cover are prescribed over the ocean      using the same reanalysis data. 67 

The atmospheric model within MAR interacts dynamically with SISVAT. MAR outputs have been assessed over the GrIS      68 

by many authors (e.g., Fettweis et al., 2017, 2020; Alexander et al., 2014). 69 

In this study, we use the output from MAR version v3.11.5 characterized by an enhanced computational efficiency 70 

and improved snow model parameters (Fettweis et al., 2020; Delhasse et al., 2020). The model is 6-hourly forced at the 71 

boundaries from 1950 using ERA5 reanalysis (Hersbach et al., 2020), the newest generation of global atmospheric reanalysis 72 

data that superseded ERA- Interim (Dee et al., 2011), and output is produced at a horizontal spatial resolution of 6 km. 73 

Specifically, we focus our attention on daily air temperature (TT variable, being the temperature above 2 m from the surface), 74 

surface temperature (ST variable) and surface mass balance (SMB) outputs.  75 

2.2 Digital Elevation Model 76 

 For the Digital Elevation Model (DEM), we adopt the ArcticDEM data product (Porter et al., 2018, Figure 1). 77 

ArcticDEM is a National Geospatial-Intelligence Agency (NGA) and National Science Foundation (NSF) public-private 78 

initiative to produce high-quality DEM of the Arctic applying stereo auto-correlation techniques to high-resolution optical 79 

satellite images and adopting the SETSM open-source photogrammetric software (Noh and Howat, 2015). Further information 80 

about the dataset can be found at https://www.pgc.umn.edu/guides/arcticdem/introduction-to-arcticdem/. GrisSpecifically, we 81 

use a DEM provided at the spatial resolution of 100 m. The data are projected to the National Snow and Ice Data Center 82 

(NSIDC) Sea Ice Polar Stereographic North and referenced to WGS84 datum. The overall dataset is composed of 403,920,000 83 

cells and is distributed as a GeoTIFF with a total size of approximately 1.6 Gb. 84 

2.3 PROMICE Surface Mass Balance measurements 85 

 The main objective of this work is to obtain a high-resolution SMB dataset from the downscaling of the MAR model 86 

suitable for local (i.e., glacier scale) studies. Consequently, we carried out a validation of our results by comparing the original 87 

SMB outputs from MAR at a spatial resolution of 6 km and the downscale outputs at 100 m with in-situ SMB measurements. 88 
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For this purpose, we used the dataset collected by Machguth et al. (2016), containing 2955 SMB measurements from 46 sites, 89 

reported in Figure 1 as blue dots and      available on GEUS Dataverse portal (Machguth, 2022; last access 16/02/2023). Such 90 

a comprehensive      dataset spans from 1892 to 2015. From the 123 years, we focused our attention to the period 1980 - 2015 91 

when the largest portion of the dataset is temporally located and the MAR outputs are available. From the 2955 measurements 92 

we obtained 1982 suitable SMB measurements to be used for validation. The SMB measurements are carried out by computing 93 

the difference of stake readings between two dates. The observations are identified by the measuring site (i.e., the area or 94 

location, containing at least one measuring point), measuring point      (i.e., specific stakes, associated with multiple readings) 95 

and the actual readings (i.e., the SMB measurement). In Table 1 we report the number of readings for each measuring site 96 

considered, together with its coordinates (WGS 84) and time period when the measurements were collected. Measurement 97 

periods are various, covering specific seasons (summer or winter SMB) or an entire year (annual SMB). In some cases, also 98 

short-term (at least one month) and multi-year measurements are present. We reconstructed the SMB in correspondence of the 99 

measurement location as an algebraic      sum of the daily simulated SMB between the start and end dates of the measurement. 100 

In order, as a metric to assess the performance of the downscaled product, we compute the root mean squared error (RMSE) 101 

and the least-square linear regression parameters (slope and intercept) between model outputs (SMB      original and 102 

downscaled) and measurements.  103 

2.4 GC-Net air temperature 104 

 To test the results of the applied downscaling procedure at local scale we also compare the values of near surface air 105 

temperature obtained from MAR with in-situ measurements. We use data from the Greenland Climate Network (GC-Net; 106 

Steffen et al., 1996), a set of Automatic Weather Stations (AWS) located all around the GrIS      and continuously measuring 107 

air temperature, wind speed, wind direction, humidity, pressure, and other parameters. Since direct measurements of surface 108 

temperature are not available as continuous records at multiple sites around Greenland, we use the air temperature records 109 

measured at 3 m above ground level. Specifically, we consider 17 selected stations reported in Figure 1 as red triangles. 110 

Specific location and elevation for each station are also reported in Table 2 in the Results section. The AWS thermometers 111 

collect air temperature measurements at sub-daily temporal scale while MAR outputs are provided at daily temporal resolution. 112 

Consequently, we compute daily average air temperatures for the comparison with the modeled      and downscaled near-113 

surface temperatures (TT variable). 114 

2.5 Landsat-8 surface temperature 115 

 As in situ measurements are only available at point scale, it is not possible to assess the potential improvement of the 116 

downscaling approach on spatially distributed fields. In the absence of spatially distributed, high spatial resolution SMB 117 

outputs, we use surface temperature fields from seven different Landsat-8 scenes covering the Jakobshavn and the Helheim 118 

Glaciers, acquired on 5 June 2015, 30 June 2015 (two images), 9 July 2015 (two images), 16 July 2015, and 18 July 2015. The 119 
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Landsat-8 surface temperature product has been available      at 30 m spatial resolution since April 2013 and is generated from 120 

Landsat Collection 2 Level-1 thermal infrared bands and other parameters obtained from satellite observations and reanalysis 121 

data. The images were downloaded from the USGS Earth Explorer data portal (https://earthexplorer.usgs.gov/, last access 122 

17/01/2023). We compared the Landsat-8 observations with the original and downscaled MAR outputs of surface temperature 123 

(ST variable). 124 

3. Methods 125 

3.1 Downscaling methodology 126 

 We adopted the approach used by No.l et al. (2016), in which a statistical downscaling method was applied to 127 

RACMO to achieve a 1-km horizontal resolution. Here, we use a similar methodology applied to MAR, but instead downscale 128 

the product to 100 m horizontal resolution.     The method exploits the potential dependency of the modeled      variables (e.g., 129 

surface temperature, runoff) with elevation. In order, to overcome the large number of cells and reduce the computational time, 130 

we parallelized the procedure through a combination of geospatial tools (in the software R) so that our approach can also be 131 

used for near-real time generation of downscaled maps over a specific region of the GrIS     .  132 

 The first step involves the calculation of the local dependency of the MAR outputs with respect to the elevation. For 133 

this step we refer to the methodology proposed by Noël et al. (2016). Accordingly, we compute the local linear regression 134 

(least squares) between the specific variable and the elevation (obtained from the MAR DEM) obtaining the values of slope 135 

(m6km) and intercept (q6km). The linear regression is carried out for each pixel of the MAR 6 km resolution DEM using the 136 

values of the adjacent pixels with a minimum of 6 points used for the regression. In the case of pixels with less than 5 adjacent 137 

pixels (e.g., margins of the ice sheet), we compute m and q for that pixel by interpolation. Such regression is carried out for 138 

every day and pixel of the region of interest. Figure 2 provides an example of such a procedure     .      Parallelizing such 139 

procedure for each MAR pixel, we obtain the daily maps of m6km and q6km for the considered MAR output variable. Differently 140 

from Noël et al. (2016), we downscale the SMB output of MAR directly, rather than downscaling the components of the SMB 141 

(runoff and sublimation) and then approximating SMB as the sum of its components. We opted for this choice because we 142 

found that downscaling directly SMB provides better performance of the downscaling when compared with in-situ 143 

measurements.      Then, the m6km and q6km maps are reprojected to the Polar Stereographic coordinate system which is used 144 

by the DEM. The original MAR data are distributed by providing only the coordinates for the center      of each grid cell. To 145 

create a continuous grid, and avoid introducing errors, the coordinates for the four corners of each MAR grid are computed, 146 

and then they are transformed into the Polar Stereographic coordinate system. The result is a shapefile that contains a polygon 147 

for each MAR grid. Additionally, the new shapefile contains metadata to ease computations, such as a unique MAR grid ID, 148 

the Polar Stereographic coordinates for the center      of the grid, the corresponding coordinates in longitude and latitudes for 149 

the center      of the grid. The next step consists in fragmenting the high-resolution DEM into a series of smaller files, 150 

specifically one for each polygon of the reprojected MAR cells generated in the previous steps. There are a total of 55,144 151 
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files generated through each step, which are less than the total number of cells in the original MAR output. This discrepancy 152 

is due to the fact that the DEM is limited to only areas covered by the ice sheet, and it thus does not cover all the locations of 153 

where MAR output is generated. While it might seem counterintuitive that maintaining over 55,000 small files is more efficient 154 

than maintaining a single file, the answer lies in the fact that this preprocessing      step translates our problem into                 a 155 

parallelization one that can be efficiently solved using multi-core and multi-node infrastructure. Because the DEM is required 156 

for downscaling each grid cell, which are computed simultaneously in parallel, each task needs to read only a small file of a 157 

few kb, rather than one larger file, and it also avoids file system bottlenecks when multiple processes try accessing the same 158 

file. Most file systems do not allow for concurrent access to the same file, and therefore if hundreds of tasks try to read the 159 

same file, each task would have to idle in a queue for the file access to become available. This problem is prevented by 160 

generating a DEM file for each MAR grid, so that both input/output      transfer rate and file access are optimized. Furthermore, 161 

because the DEM are segmented using the original Polar Stereographic projection, which matches the reprojected MAR grid, 162 

no further transformation is required, further speeding up the downscaling process. The final step consists in obtaining the 163 

high-resolution maps of slope and intercept (m100m and q100m) by bilinear interpolation of  m6km and q6km over the high-164 

resolution DEM grid. While this process was not parallelized in the current version, it is possible to speed it up using a parallel 165 

solution.  Finally, the downscaled variable is obtained by applying the high-resolution linear regression coefficients to the 166 

high-resolution DEM as 167 

 168 

!"#!""# = %!""#&!""# + (!""#,	 	 	 	 	 	 	 	 	 (1)	169 

	170 

where VAR is the generic downscaled variable computed as a linear function of high-resolution elevation of the DEM (H100m) 171 

through the coefficients previously obtained (m100m and q100m).      Since the origin of the MAR DEM and the high-resolution 172 

DEM is different, errors in terms of mass conservation can arise. For example, within a MAR pixel the average elevation of 173 

the high-resolution DEM might be higher than the original MAR elevation, possibly leading to the previously mentioned mass 174 

conservation error (e.g., the original MAR pixel suggests for a day a lower mass loss than the ensemble of the high-resolution 175 

pixels). For this reason, differently from Noël et al. (2016), we decided to provide physical constraints      (SMB mass 176 

conservation within each pixel at the original MAR spatial resolution) to be satisfied as the very      final step of the downscaling 177 

procedure.  178 

 In this research, we apply the downscaling methodology to daily near-surface temperature, surface temperature and 179 

SMB MAR outputs      . 180 
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3.2 Spatial autocorrelation analysis and variograms 181 

 Beside RMSE,      slope      and intercept, we also focus on evaluating the potential improvements of the downscaled 182 

product with respect to the original coarser resolution MAR outputs in terms of capability to describe the spatial distribution 183 

of the considered variable. To this aim, we perform a spatial autocorrelation analysis using variograms. Variogram analysis is 184 

generally adopted in geostatistical analyses to evaluate autocorrelation of spatial data (Edward et al., 1989, Webster and Oliver, 185 

2001). Autocorrelation and variogram analysis are geostatistical tools that can be used to quantify spatial variability using 186 

metrics such as the spatial correlation length (simply correlation length hereafter). Though these techniques were mainly 187 

designed to support the prediction of values at locations where measurements are not available, they can be used for 188 

characterizing processes across the scale spectrum (Herzfeld, 1993). Once process scales are known, the scale ranges over 189 

which process relationships (and thus spatial pattern) are consistent must be determined. This             can support the 190 

identification           of      spatial scales at which the process interactions change (e.g., scale breaks), being such scales critical 191 

for measurement or model interests (Mark and Aronson, 1984; Vedyushkin, 1994). Geostatistical methods such as spatial 192 

covariance, variogram analysis, and spectral analysis (Webster and Oliver, 2001) quantify the spatial pattern of variability of 193 

an observed property over a scale range from the minimum sample separation to the distance at which the variable becomes 194 

spatially independent. This quantified variability can, then, be used for spatial estimation based on a finite number of data 195 

points.       In our            case, we fit the experimental variogram with a circular model, as this is the model that       provided      196 

us with the highest R2 when fitting the experimental data. The formal expression of the      experimental variogram      can be 197 

written as:      198 

 199 

*(,) = !
$%(')∑),+∈%(') (/) − /+)$,	 	 	 	 	 	 	 	 	 (2)	200 

	201 

where γ is the semi-variance, N(δ) is the number of data pairs (i-th and j-th) distanced by d while xi and xj are the corresponding 202 

variable values. The fitting spherical function is, then, used to compute the three main parameters characterizing the variogram: 203 

the sill, the range and the nugget effect. The sill is defined as the maximum value at which the fitted curve becomes flat; such 204 

variance value is reached at a certain distance called range, beyond which the data are no longer autocorrelated. The range can 205 

be seen as a scale break (where data are no longer correlated).  Of course, there can also be several scale breaks before the sill 206 

is reached, depending on the drivers controlling the modeled process. The nugget corresponds to γ(0) and it should be ideally 207 

0. The departure from 0 can be interpreted       as the result of measurement errors or highly localized variability (Webster and 208 

Oliver, 2001). F     ollowing Colosio et al. (2021), we focus our attention on the range, the descriptor of the correlation length, 209 

comparing the range values computed for the original MAR temperature outputs, the downscaled temperature and the surface 210 

temperature observed by Landsat-8.  211 
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To further investigate and quantify possible improvements in terms of spatial description of the variable of interest by the 212 

downscaled product, we also compute the so-called Structural Similarity Index Measure (SSIM). Such an index      has been 213 

introduced by Wang et al. (2004) to provide a similarity measure between two images. This index can objectively quantify a 214 

qualitative aspect such as the      similarity between two images. Considering a pair of images (X,Y) to be compared, the values 215 

assumed by the SSIM are bounded by a unique maximum (SSIM(X,Y)=1) in case X=Y, otherwise SSIM(X,Y)<1. We compute 216 

such a similarity      index for both original and downscaled MAR ST outputs, considering as reference the Landsat-8 surface 217 

temperature image.  218 

4 Results and discussion 219 

4.1 Surface and near-surface temperature 220 

 We first tested the downscaling algorithm with the MAR near-surface temperature outputs. We compared the results 221 

obtained with air temperature measurements from 17 AWS of the GC-Net. We performed the comparison by computing RMSE 222 

and R2 between the modeled      (original and downscaled) and the observed variable. The results obtained for the original 223 

MAR and the downscaled temperatures are reported in Table 2. Both R2 and RMSE obtained for the downscaled temperatures 224 

do not exhibit significant improvements or worsening with respect to the original coarser resolution output. The difference 225 

between the 6 km and 100 m resolution is in the order 10-3 for R2 and 10-2 °C for RMSE, with improvements in some stations 226 

(Swiss Camp, Crawford Pt. 1, NASA-U, Summit, Crawford Pt. 2, KAR, JAR2 and KULU) and worsening in others (Tunu-N, 227 

JAR1, South Dome and NASA-E). However, such small differences appear to be randomly distributed in space, without any 228 

clear correlation with elevation or latitude/longitude. Such results demonstrate that the applied downscaling methodology does 229 

not introduce errors in case of the TT variable at point scale.  230 

 To evaluate the results over a wider area, we considered two Landsat-8 surface temperature images collected over 231 

two different areas of the ice sheet. The two selected areas are located on the eastern and western coasts of Greenland and 232 

show a variable topography. In Figure 3 we report the surface temperature image from Landsat-8 (Figure 3a), the original ST 233 

output at 6 km spatial resolution (Figure 3b) and the downscaled ST at 100 m resolution (Figure 3c) for one of the selected 234 

Landsat-8 scenes.                          In Figure 4 where we report the histograms of the difference between Landsat-8 surface 235 

temperature and the original ST (Figure 4a) and the downscaled one (Figure 4b) for the same image. The results show no 236 

differences in terms of mean difference (μ), with an average difference of 2.7°C in both cases, similarly to the AWS 237 

comparison. Also, the standard deviation (σ) remains unvaried      at      2.6 °C. Similar results have been obtained for all the 238 

compared Landsat-8 images, with mean differences ranging between -0.59°C and 3.44°C for the downscaled product (2.09°C 239 

on average) and between -0.62°C and 3.43°C for the original MAR data (2.07°C on average). The similarity in mean 240 

differences is not surprising       considering the physical constraints      imposed for the ST to maintain the average ST constant 241 

for each MAR pixel as the final      step of the downscaling procedure. These results indicate that in case of ST the downscaling 242 
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algorithm does not introduce significant improvements or errors in terms of overall difference with observed temperature 243 

(expressed as RMSE for the AWS case and spatial average difference for the Landsat-8 image).  244 

 Considering such results in terms of difference at point scale and spatially averaged difference, we evaluated possible 245 

improvements in terms of spatial information content and spatial description obtained in the downscaled product. We report 246 

in Figure 5 the results of the      variogram analysis performed for two sub-regions of interest within the same Landsat-8 image 247 

shown in Figure 3. The two areas have been selected because of the strong differences in topography and elevation gradients. 248 

Concerning the results obtained over the topographically more complex area, we observe that the scale break of the downscaled 249 

temperature (blue line) is 13.5 km, better capturing the one from Landsat-8 data (11.5 km, red line) with respect to the original 250 

MAR outputs (24.1 km, black line, Figure 5). On the other hand, the same analysis performed over an area in a more interior 251 

region of the ice sheet, where downscaling might lead to less improvement in view of the reduced topography, does not present 252 

improvements in terms of spatial autocorrelation (Figure 5b) and that all three datasets do not reach the      variogram plateau 253 

within the considered distance. In order to      extend the comparison to another area of the ice sheet, we performed the same 254 

variogram based analysis for another Landsat-8 scene in the surroundings of Jakobshavn glacier collected on 11 June (Figure 255 

6a). The map also shows the two regions of interests (ROI) selected for the analysis. We selected ROI1 as this area is 256 

characterized by a large topographic gradient within a relatively small distance and to understand the potential improvement 257 

of the downscaling procedure over regions that are outside the main ice sheet (e.g., smaller glaciers). On the other hand, ROI2 258 

contains both strong and mild elevation gradients (e.g., nunataks and ice sheet elevation gently increasing as moving towards 259 

the interior).      In case of ROI1 (Figure 6b), the variogram analysis indicates that the scale break      distance for Landsat-8 260 

when considering only the pixels where the DEM is available is 7.5 km. This value becomes 14.6 km for the high-resolution 261 

map of ST and 24.7 km in the case of the original MAR outputs, suggesting that the downscaled product is able to perform 262 

better than the original one in terms of spatial scale similarity with respect to the Landsat-8 data. The mean difference between 263 

Landsat-8 and the downscaled (original MAR) surface temperature, considering only the pixels where the DEM is available, 264 

are 1.69 ºC (1.7 ºC) with a standard deviation of 2.02 ºC (2.14 ºC), with differences of the same order of magnitude obtained 265 

in the previous analysis for the other Landsat-8 image. When considering all pixels within the ROI (e.g., also where no DEM 266 

is available), the mean differences between Landsat-8 and downscaled (original) MAR surface temperature become 1.89 ºC 267 

(2.12 ºC) with a standard deviation of 2.15 ºC (2.23 ºC). In this case, the scale breaks for the original and the downscaled MAR 268 

versions are similar, ~ 25 km (~ 16km in the case of Landsat-8). We point out that the scale breaks are sensitive to the different 269 

physical processes driving the spatial properties. The ROI2 contains both strong and mild elevation gradients given the presence 270 

of nunataks and the slow ice sheet increasing elevation after the ice cliff begins. The area is covered by most of its portion 271 

containing the ice sheet (right of the image) by the DEM, which, however, is absent in the case of the left portion of the ROI, 272 

containing fjords and the ocean. The scale breaks for the Landsat-8, downscaled and original MAR cases for the portion of the 273 

ROI2 where the DEM is available are close to each other, on the order of ~ 25 km. We observe an improvement in the SSIM 274 

in the case of the downscaled data by 30 % (from 0.33 in the case of the original MAR resolution to 0.43 in the case of 275 

downscaled MAR). Unexpectedly, despite      the mean and standard deviation of the distribution of the differences between 276 
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the Landsat-8 data and the simulated quantities remains similar, we notice a reduction in both the mean (from 0.86ºC for 277 

original MAR to 0.83ºC for the downscaled product) and of the standard deviation (from 0.71ºC for original MAR to 0.63ºC 278 

for the downscaled product) when downscaling the MAR output. We further note that when considering all pixels (including 279 

those where no DEM), the SSIM of the two products improves from 0.11 (original) and 0.14 (downscaled) and that the scale 280 

break of the original MAR products is larger (~ 63 km     ) than the one of the Landsat-8 data (~ 21 km). In synthesis, the 281 

downscaling does not introduce any considerable bias on the original value, preserves the total integrated quantity of energy 282 

within each area and improves      the spatial performance of the MAR outputs by generating a product that has a spatial 283 

structure that is closer to the one of the observed remote sensing dataset. 284 

4.2 Surface Mass Balance 285 

 After applying the downscaling algorithm to surface temperature, we applied it to MAR SMB outputs of SMB and 286 

assessed the results obtained with in situ measurements from the dataset collected by Machguth et al. (2016). As mentioned, 287 

we compared 1982 SMB measurements carried out between 1980 and 2015 and localized in the ablation area of the GrIS 288 

(Table 1). Figure 7 shows the scatterplots of the comparison of modeled      SMB from the original MAR (Figure 7a) and the 289 

downscaled product (Figure 7b) with in situ measured SMB. Our results show that the downscaled product better estimates 290 

the measured SMB, exhibiting an increased R2 from an already relatively high value of 0.868 for the original MAR to 0.935 291 

for the downscaled product. As a comparison, Noël et al. (2016) obtained an increase of R2 from the downscaling of SMB 292 

outputs of the RACMO regional climate model from 0.47 in the case of the original 11 km spatial resolution outputs to 0.78 293 

in case of the downscaled SMB (1 km resolution). As explained in Fettweis et al. (2020), the SMB was extrapolated 294 

(interpolated + corrected) to the common 1km grid by applying an elevation gradient as done in this study. One of the key 295 

issues raised by the first SMB model intercomparison performed by Vernon et al. (2013) was the high dependency of modeled 296 

integrated SMB values to the ice sheet mask used. To mitigate this problem, we interpolate all model outputs to the same 1 km 297 

grid used in the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6). This resolution is chosen because the highest 298 

resolution model outputs (e.g. RACMO2.3p2) are available at 1 km and choosing a coarser resolution could compromise their 299 

quality. A common grid also allows a comparison on two common ice sheet masks: the contiguous Greenland Ice Sheet, which 300 

is common to all the models and the Greenland Ice Sheet plus peripheral ice caps and mountain glaciers, common to all the 301 

models except the two PDD models. Unless otherwise indicated, the SMB components have been interpolated to 1 km using 302 

a simple linear interpolation metric of the four nearest inverse-distance-weighted model grid cells. Moreover, as done in Le 303 

clec’h et al. (2019), the interpolated 1 km SMB and runoff fields have been corrected for elevation differences between the 304 

model native topography and the GIMP 250 m topography (upscaled to 1 km here), using time- and space-varying SMB–305 

elevation gradients, similar to Franco et al. (2012) and Noël et al. (2016). No correction was applied to precipitation after 306 

interpolation to 1 km. We point out that, in our case, the starting value of R2 for the original MAR product already exceeds the 307 

value obtained in the case of the downscaled RACMO outputs.  308 
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 The values of slope and intercept of the best-fitting line improve as well when considering the downscaled product. 309 

The value of the slope shifts from 0.865 for the original MAR to 1.015 for the downscaled product; similarly, the intercept 310 

increases from the value -235 mm w.e. yr-1      of the coarse resolution outputs to -57 mm w.e. yr-1      of the downscaled 311 

SMB, closer to its optimal value (i.e., null intercept). As a comparison, the downscaling algorithm of Noël et al. (2016) applied 312 

to RACMO improved the estimate of SMB in terms of slope      from 0.72 to 1.03, with a slight increase of the intercept (from 313 

70 mm w.e. yr-1      to 100 mm w.e. yr-1     ). The RMSE between modeled      and measured SMB also decreases in the case 314 

of the downscaled product from 669 mm w.e. yr-1      for the 6 km outputs to 511 mm w.e. yr-1      for the 100 m case, 315 

significantly improving the estimate of SMB at local scale. Noël et al. (2016) obtained a reduction of the RMSE passing from 316 

a value of 1200 mm w.e. yr-1      for the 11 km RACMO outputs to a value of 740 mm w.e. yr-1      for the 1 km case. Fettweis 317 

et al. (2020) compared MAR and RACMO, among 13 models of four types (positive degree day models, energy balance 318 

models, regional climate models and general circulation models), SMB estimates with the same PROMICE in situ 319 

measurements within the GrIS SMB model intercomparison project (GrSMBMIP). They considered only the measurements 320 

collected between 1980 and 2012 and with measurement periods      longer than 3 months. They also excluded the records 321 

located outside the 1 km ice mask they used for the intercomparison of the models, for a total of 1438 SMB measurements. 322 

The model versions in this case are MARv3.9.6, an older version than the one we adopted and at the spatial resolution of 15 323 

km, and RACMO2.3p2 (Noël et al., 2019), a new version of the one adopted in Noël et al. (2016) and with a spatial resolution 324 

of 5.5 km. From the comparison, they obtained a RMSE of 480 mm w.e. yr-1      for MAR and 630 mm w.e. yr-1      for 325 

RACMO. In both cases, the RMSE is lower than the one obtained in this work for MAR (both original and downscaled) and 326 

by Noël et al. (2016) for RACMO. The difference can be related to the differences in spatial resolution and model versions 327 

and, most probably, to the sub-sampling of the SMB measurements discarding short-term records (i.e., measurement period 328 

lower than 3 months), suggesting that the bias might be dissipated for longer observation periods. 329 

 To further investigate our results, we compute the variation in RMSE between the 6 km spatial resolution MAR 330 

outputs and the downscaled product for different elevation classes, longitude and latitude ranges and for each specific 331 

glacier/location (i.e., for each station ID, Table 1) of the PROMICE in situ SMB dataset. The RMSE difference is computed 332 

as ΔRMSE=RMSE100     km-RMSE     6km (i.e., improvements are characterized by negative values of ΔRMSE) and the results 333 

obtained are reported in Figure 8 grouped by location (Figure 8a), elevation (Figure 8b), latitude (Figure 8c) and longitude 334 

(Figure 8d). The results exhibit improvements in the estimate of SMB at all the altitudes besides the 100-200 m asl, 200-300 335 

m asl and 1300-1400 m asl elevation classes, with the best performance obtained at 700-800 m asl and 800-900 m asl elevation 336 

classes. The results grouped by latitudinal bands show the highest improvements in south Greenland; a decrease in performance 337 

has been recorded in the latitudinal band 67.5-70 °N where the only Paakitsoq JAR (ΔRMSE= 181 mm w.e. yr-1     , worst 338 

result obtained) and Swiss Camp/ST2 (ΔRMSE= -127 mm w.e. yr-1     ) measurement sites are located, and the improvement 339 

obtained in case of Swiss Camp is strongly counterbalanced by the reduced performances in Paakitsoq JAR. However, the 340 

longitudinal classes do not present any decrease of the performances, indicating that the worsening in the spotted critical 341 

stations is counterbalanced by the improvements measured in the others. We obtained a decrease in performances in 6 out of 342 
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22 considered cases with the worst result obtained for the already presented Paakitsoq JAR case. In the 5 other cases (i.e., 343 

Hans Tausen Ice Cap, Nioghalfvjerdsfjorden, Isortoq     , Nordbo Glacier and K-Transect) we recorded an average ΔRMSE of 344 

26 mm w.e. yr-1      (ranging from 6 mm w.e. yr-1      to 80 mm w.e. yr-1     ). On the other hand, we obtained an improvement 345 

in 16 out of 22 measurement sites with the best performances in the case      of A.P. Olsen Ice Cap (ΔRMSE= -611 mm w.e. 346 

yr-1     ). In the other 15 cases (i.e., Qaanaaq Ice Cap, Petermann, Hare Glacier, Kronprins Christian      Land, Storstrømmen, 347 

Freya Glacier, Violin Glacier, Helheim, Isortuarssup Sermia, Qamanarssup Sermia, Kangilinnguata Sermia, Qapiarfiup, 348 

Amitsuloq Ice Cap, Tasersiaq and Swiss Camp/ST2) we found an average decrease in RMSE of 183 mm w.e. yr-1      (ranging 349 

between 59 mm w.e. yr-1      and 371 mm w.e. yr-1     ). Even if such reduction of performances in terms of SMB estimate 350 

accounts for 27% of the considered stations, it does not compromise the overall improvement, being smaller in terms of 351 

average, minimum and maximum absolute values of ΔRMSE than the results obtained for the stations where      improvement 352 

occurred. 353 

5 Conclusions and future work 354 

 We applied a statistical downscaling technique to increase the horizontal spatial resolution of the outputs of the MAR 355 

regional climate model from 6 km to 100 m for the surface temperature and SMB quantities. The approach builds on the 356 

dependency of such quantities on elevation, as originally proposed in Noël et al. (2016). Here, however, the technique was 357 

applied to the output of a different climate model (RACMO) and the spatial resolution of the downscaled product was 1 km, 358 

rather than 100 m. Moreover, differently from Noël et al. (2016), we imposed a mass conservation so that the overall mass 359 

obtained for each pixel at high resolution nested within a coarse resolution one is preserved. To address the computational 360 

issues associated with the relatively high spatial resolution, we developed a geospatial, parallelized framework that allows us 361 

to perform      the downscaling over the whole ice sheet in an efficient way.  362 

 We, first, tested our approach by applying it to surface temperature data and assessing      the outputs using both in-363 

situ and satellite      data. Our results showed no significant improvement or      deterioration of the downscaled product with 364 

respect to the original MAR outputs. This confirms that our approach was not introducing any bias and was properly 365 

implemented. However, we found improvement of the downscaled surface temperature when analyzing the skills of the 366 

downscaled product to capture the spatial scales (e.g., scale breaks) of the observed surface temperature fields. The results 367 

obtained in the case of the SMB      show a considerable improvement in the case of the downscaled product with respect to 368 

the original, coarse output.           In the case of the downscaled MAR product, the R2 value increases from 0.868 for the 369 

original MAR to 0.935 for the SMB       product with the value of the slope and intercept shifting from 0.865 for the original 370 

MAR to 1.015 for the downscaled product in the case of the intercept and from the value -235mm w.e. yr-1      of the coarse 371 

resolution outputs to -57 mm w.e. yr-1           in the case of the slope. As a reference, Noël et al. (2016) obtained an increase 372 

of R2 from the downscaling of SMB outputs of the RACMO regional climate model from 0.47 in the case of the original 11 373 

km spatial resolution outputs to 0.78 in case of the downscaled SMB (1 km resolution) and a shift in the slope and intercept 374 
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from 0.72 to 1.03 (slope) and from 70 mm w.e. yr-1      to 100 mm w.e. yr-1      (intercept). An analysis of the performance of 375 

the downscaled product for different elevation classes, longitude      and latitude ranges and for each specific glacier/location 376 

where SMB in-situ data is available shows that the downscaled product does not perform as expected for 27% of the stations.     377 

. However, we point out that                 the deterioration of the performance over those stations (expressed in terms of changes 378 

on the average error           ΔRMSE) is much smaller than the improvement obtained in the remaining cases.            379 

 The next step is to implement a similar approach for downscaling MAR outputs over both the Greenland and 380 

Antarctica ice sheet using machine learning (ML) based approaches. Indeed, the approach proposed here      cannot be easily 381 

extended to Antarctica, where surface melting does not exhibit a strong dependency from elevation, as most of it occurs over 382 

ice shelves, at the sea level and where little elevation gradients exist. Moreover, improvements to the downscaling of the SMB 383 

can be obtained by either considering complementary inputs that can improve estimates of losses (e.g., remotely sensed albedo) 384 

or of mass gains (e.g., accumulation). ML tools can help in this regard. ML tools have, indeed, been used for improving 385 

predictions beyond that of state-of-the-art physical models or for improving parameterization in models. In particular, 386 

conditional generative adversarial networks (C-GANs or simply GANs in the following) can be successfully applied to the 387 

problems discussed above (Goodfellow et al., 2014). GANs is a class of ML tools in which two neural networks compete with 388 

each other in a min-max optimization problem. The first network, called generator, aims to generate new data samples that are 389 

indistinguishable from the training data (e.g., high-resolution melting maps obtained from the remote sensing observations) 390 

by the other network, called discriminator. In our case the GAN aims to generate high-resolution melting maps that are 391 

indistinguishable by the second network from high-resolution remote sensing observations or numerical model outputs. We 392 

have already started to build the architecture for this framework and are in the phase of collecting the necessary datasets and 393 

are building the proper data framework to perform such work.  394 

Code and data availability  395 

The MAR v3.11.5 code and outputs are available at https://www.mar.cnrs.fr/ and ftp://climato.be/fettweis/MARv3.11. 396 

Automatic weather      station data are available on EnviDat portal (https://www.envidat.ch/#/metadata/gcnet, Steffen et al., 397 

2020, last access 16/02/2023). Surface mass balance measurements are available on GEUS Dataverse portal 398 

(https://doi.org/10.22008/FK2/5VNBQA, Machguth, 2015, last access 16/02/2023). Landsat-8 images are available on the 399 

USGS Earth Explorer portal (https://earthexplorer.usgs.gov/, last access 16/02/2023). Downscaled data is available at 400 

https://doi.org/10.5281/zenodo.7803611. Downscaling code is available upon request to mtedesco@ldeo.columbia.edu.  401 
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      517 

 518 
Figure 1: Map of Greenland ice sheet. The digital elevation model (DEM) at 100 m resolution is represented in greyscale, the GC-519 
Net air temperature locations are plotted as red triangles and the PROMICE surface mass balance measurements locations are 520 
reported as blue dots. The two rectangles indicate the Jakobshavn (blue) and Helheim (black) regions.  521 
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ID Glacier/Site name Latitude [°] Longitude [°] Measurement years Points Readings 

126 Qaanaaq Ice cap 77° 30’ 36’’ N 69° 9’ 0’’ W 2012-2015 6 12 

128 Petermann 80° 41’ 2’’ N 60° 17’ 35’’ W 2002-2013 2 4 

130 Hans Tausen Ice Cap 82° 29’ 24’’ 37° 30’ 0’’ W 1995 and earlier 5 13 

140 Hare Glacier 82° 50’ 24’’ N 36° 40’ 12’’ W 1994-95 29 62 

170 Kronprins Christian Land 79° 46’ 48’’ N 25° 11’ 24’’ W 1993-1994, 2008-2013 20 62 

180 Nioghalfvjerdsfjorden 79° 30’ 0’’ N 21° 36’ 0’’ W 1996-1997 13 13 

215 Storstrømmen 77° 30’ 0’’ N 23° 0’ 0’’ W 1989-1994 22 113 

220 A.P. Olsen Ice Cap 74° 38’ 24’’ N 21° 26’ 60’’ W 2008-2013 17 56 

230 Freya Glacier 74° 22’ 48’’ N 20° 49’ 12’’ W 2008-2013 29 93 

232 Violin Glacier 72° 20’ 60’’ N 26° 58’ 48’’ W 2008-2013 2 12 

254 Helheim 66° 24’ 36’’ N 38° 20’ 24’’ W 2008-2010 21 118 

270 Isertoq 65° 42’ 0’’ N 38° 53’ 24’’ W 2007-2013 2 15 

315 Nordbo Glacier 61° 30’ 0’’ N 45° 22’ 12’’ W 1977-83 41 200 

412 Isortuarssup Sermia 63° 47’ 60’’ N 49° 47’ 60’’ W 1983-1988 3 9 

414 Qamanarssup Sermia 64° 30’ 0’’ N 49° 23’ 60’’ W 1979-1988, 2007-2013 20 164 

416 Kangilinnguata Sermia 64° 52’ 48’’ N 49° 17’ 60’’ W 2010-2013 1 3 

420 Qapiarfiup 65° 34’ 48’’ N 52° 12’ 36’’ W 1980-1989 5 75 

440 Amitsuloq Ice Cap 66° 8’ 24’’ N 50° 19’ 12’’ W 1981-1990 26 422 

450 Tasersiaq 66° 15’ 36’’ N 51° 23’ 60’’ W 1982-1989 6 111 

454 K-Transect 67° 5’ 60’’ N 48° 51’ 36’’ W 1990-2013 11 193 

456 Paakitsoq, JAR 69° 29’ 24’’ N 49°51’ 36’’ W 1982-1992, 1996-2013 22 220 
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458 Swiss Camp/ST2 69° 33’ 53’’ N 49° 19’ 51’’ W 1990-2014 2 12 

 523 
Table 1: PROMICE surface mass balance measurements information for the selected Glaciers and measurements sites. 524 

  525 
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 526 
Figure 2: Elevation downscaling procedure example for a generic variable. In panel (a) the considered MAR pixel (red) and the 527 
surrounding pixels (green) adopted for the local linear regression are represented. The blue dot represents 100 m pixel location 528 
centered within the considered MAR pixel. In panel (b) the variable value of each considered pixel is reported as numbered circle. 529 
The dashed red line represents the linear regression computed for such pixels, the blue circle represents the downscaled variable for 530 
the blue pixel in panel (a) and the grey circles represent the downscaled variable for a group of 100 m pixels randomly picked within 531 
the considered MAR pixel which locations are represented as black dots in panel (a).                                         532 

  533 
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Station Latitude [°] Longitude [°] Elevation 

[m] 

R2 MAR6km R2 MAR100m RMSE 

MAR6km 

RMSE 

MAR100m 

Swiss Camp 69° 34’ 06” N 49° 18’ 57” W 1149 0.945 0.945 2.37 2.36 

Crawford Pt.1 69° 52’ 47” N 46° 59’ 12” W 2022 0.872 0.873 3.95 3.95 

NASA-U 73° 50’ 31” N 49° 29’ 54” W 2369 0.788 0.789 5.35 5.34 

GITS 77° 08’ 16” N, 61° 02’ 28” W 1887 0.915 0.915 3.4 3.4 

Humboldt 78° 31’ 36” N 56° 49’ 50” W 1995 0.801 0.801 5.64 5.64 

Summit 72° 34’ 47” N 38° 30’ 16” W 3254 0.837 0.84 4.62 4.58 

Tunu-N 78° 01’ 0” N 33° 59’ 38” W 2113 0.937 0.936 3.17 3.2 

DYE2 66° 28’ 48” N 46° 16’ 44” W 2165 0.94 0.94 2.72 2.72 

JAR1 69° 29’ 54” N 49° 40’ 54” W 962 0.787 0.786 4.37 4.38 

Saddle 66° 00’ 02” N 44° 30’ 05” W 2559 0.935 0.935 2.77 2.77 

South Dome 63° 08’ 56” N 44° 49’ 00” W 2922 0.915 0.915 2.76 2.77 

NASA-E 75° 00’ 00” N 29° 59’ 59” W 2631 0.882 0.881 3.94 3.97 

Crawford Pt.2 69° 54’ 48” N 46° 51’ 17” W 1990 0.893 0.894 3.62 3.61 

NASA-SE 66° 28’ 47” N 42°30’ 00” W 2425 0.86 0.86 3.83 3.83 

KAR 69° 41’ 58” N 33° 00’ 21” W 2579 0.935 0.936 2.6 2.57 

JAR2 69º 25’ 12” N 50º 03’ 27” W 568 0.706 0.709 4.79 4.76 

KULU 65° 45’ 30” N 39° 36’ 06” W 878 0.59 0.595 5.22 5.19 

 534 
Table 2: Root-mean-square error and R2 computed comparing MAR6km and MAR100m with air temperature measurements from the 535 
GC-Net considered stations. Longitude, latitude and elevation of the station are also reported. 536 

  537 



 

23 

 538 
(a) 539 

 540 
(b) 541 
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 542 
(c) 543 

      544 
Figure 3: Maps of temperature from (a) Landsat-8, (b) MAR6kmv2 and (c) MAR100m over the area covered by the Landsat 8 selected 545 
image on 30 June 2015. The blue dot reported to every map represents the 6 km pixel of the original MAR grid reported in red in 546 
Figure 2a. 547 

  548 
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 549 
Figure 4: Histograms of the difference (a) between the 6 km MAR temperature and Landsat-8 temperature and (b) between 100 m 550 
MAR temperature and Landsat-8 temperature. 551 

  552 
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      553 

 554 
 555 
Figure 5: Modeled      semi variograms for the Landsat-8, MAR6km and MAR100m computed over two regions of interest reported in 556 
the inset. 557 

  558 



 

27 

 559 
Figure 6: (a) Landsat-8 temperature captured on 11 June 2015 over areas around the Jakobshavn Glacier and (b, c) modeled      semi 560 
variograms for the Landsat-8, MAR6km and MAR100m computed over (b) the first region of interest (ROI1) and (b) the second region 561 
of interest (ROI2). 562 
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 564 
Figure 7: Comparison between measured and modeled      surface mass balance from (a) original 6 km MAR and (b) downscaled 565 
100 m MAR. 566 

  567 
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 568 
Figure 8: Difference between original and downscaled MAR modeled      surface mass balance RMSE with respect to the measured 569 
surface mass balance data (RMSE100m-RMSE6km) by (a) glacier, (b) elevation, (c) latitude and (d) longitude. In the bubble chart map 570 
the contour lines are plotted every 500 m (original MAR6 km DEM), positive values (worsening) of ΔRMSE are reported in magenta 571 
while negative values (improvement) in cyan. 572 

 573 


