21 Apr 2023
 | 21 Apr 2023
Status: a revised version of this preprint is currently under review for the journal TC.

Evaluation of snow cover properties in ERA5 and ERA5-Land with several satellite-based datasets in the Northern Hemisphere in spring 1982–2018

Kerttu Kouki, Kari Luojus, and Aku Riihelä

Abstract. Seasonal snow cover of the Northern Hemisphere (NH) greatly influences surface energy balance, hydrological cycle, and many human activities, such as tourism and agriculture. Monitoring snow cover at continental scale is only possible from satellites or using reanalysis data. The aim of this study is to analyze timeseries of surface albedo, snow water equivalent (SWE), and snow cover extent (SCE) in spring in ERA5 and ERA5-Land reanalysis data and to compare the timeseries with several satellite-based datasets. As satellite data for the SWE intercomparison, we use bias-corrected SnowCCI v1 data for non-mountainous regions and the mean of Brown, MERRA-2 and Crocus v7 datasets for the mountainous regions. For surface albedo, we use the black-sky albedo datasets CLARA-A2 SAL, based on AVHRR data, and MCD43D51 based on MODIS data. Additionally, we use Rutgers and JAXA JASMES SCE products. Our study covers land areas north of 40° N and the period between 1982 and 2018 (spring season from March to May). The analysis shows that both ERA5 and ERA5-Land overestimate SWE. ERA5-Land shows larger overestimation, which is mostly due to very high SWE values over mountainous regions. The analysis revealed a discontinuity in ERA5 around year 2004, since adding IMS (Interactive Multisensor Snow and Ice Mapping System) from year 2004 onwards considerably improves SWE estimates but makes the trends less reliable. The negative NH SWE trends in ERA5 range from −249 Gt decade−1 to −236 Gt decade−1 in spring, which is two to three times larger than the trends detected by the other datasets (ranging from −124 Gt decade−1 to −77 Gt decade−1). Albedo estimates are more consistent between the datasets with a slight overestimation in ERA5 and ERA5-Land. SCE is accurately described in ERA5-Land, whereas ERA5 shows notably larger SCE than the satellite-based datasets. The negative trends in albedo and SCE are strongest in May, when albedo trend varies from −0.011 decade−1 to −0.006 decade−1 depending on the dataset. The negative SCE trend detected by ERA5 in May (−1.22 million km2 decade−1) is about twice as large as the trends detected by other datasets (ranging from 0.66 million km2 decade−1 to −0.50 million km2 decade−1). The analysis also shows that there is a large spatial variability in the trends, which is consistent with other studies.

Kerttu Kouki et al.

Status: final response (author comments only)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on tc-2023-53', Anonymous Referee #1, 20 May 2023
    • AC1: 'Reply on RC1', Kerttu Kouki, 27 Jun 2023
  • RC2: 'Comment on tc-2023-53', Anonymous Referee #2, 22 May 2023
    • AC2: 'Reply on RC2', Kerttu Kouki, 27 Jun 2023

Kerttu Kouki et al.

Kerttu Kouki et al.


Total article views: 602 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
360 227 15 602 36 8 8
  • HTML: 360
  • PDF: 227
  • XML: 15
  • Total: 602
  • Supplement: 36
  • BibTeX: 8
  • EndNote: 8
Views and downloads (calculated since 21 Apr 2023)
Cumulative views and downloads (calculated since 21 Apr 2023)

Viewed (geographical distribution)

Total article views: 583 (including HTML, PDF, and XML) Thereof 583 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
Latest update: 30 Sep 2023
Short summary
We evaluated snow cover properties in state-of-the-art reanalyses (ERA5 and ERA5-Land) with satellite-based datasets. Both ERA5 and ERA5-Land overestimate snow mass, whereas albedo estimates are more consistent between the datasets. Snow cover extent (SCE) is accurately described in ERA5-Land, while ERA5 shows larger SCE than the satellite-based datasets. The trends in snow mass, SCE and albedo are mostly negative in 1982–2018 and the negative trends become more apparent when spring advances.