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Abstract. TS1The mass balance of the Greenland Ice Sheet
is strongly influenced by the dynamics of its outlet glaciers.
Therefore, it is of paramount importance to accurately and
continuously monitor these glaciers, especially the variation
in their frontal positions. A temporally comprehensive pa-5

rameterization of glacier calving is essential for understand-
ing dynamic changes and constraining ice sheet modeling.
However, many current calving front records are limited in
terms of temporal resolution as they rely on manual delin-
eation, which is laborious and not appropriate considering10

the increasing amount of satellite imagery available. In this
contribution, we address this problem by applying an auto-
mated method to extract calving fronts from optical satel-
lite imagery. The core of this workflow builds on recent ad-
vances in the field of deep learning while taking full advan-15

tage of multispectral input information. The performance of
the method is evaluated using three independent test datasets.
For the three datasets, we calculate mean delineation errors
of 61.2, 73.7, and 73.5 m, respectively. Eventually, we apply
the technique to Landsat-8 imagery. We generate 9243 calv-20

ing front positions across 23 outlet glaciers in Greenland for
the period 2013–2021. Resulting time series not only resolve
long-term and seasonal signals but also resolve subseasonal
patterns. We discuss the implications for glaciological stud-
ies and present a first application for analyzing the effect of25

bedrock topography on calving front variations. Our method

and derived results represent an important step towards the
development of intelligent processing strategies for glacier
monitoring, opening up new possibilities for studying and
modeling the dynamics of Greenland’s outlet glaciers. 30

1 Introduction

Over the past 2 decades, the Greenland Ice Sheet has been
a major contributor to sea level rise (Horwath et al., 2022).
Models suggest that this imbalance will continue with a
warming climate (Goelzer et al., 2020; Edwards et al., 2021; 35

Rückamp et al., 2020). About half of the ice mass loss is
due to increased meltwater runoff, while the other half is
due to changes in ice discharge to the ocean, which are re-
lated to changes in the ice flow dynamics of outlet glaciers
(Otosaka et al., 2023). Several mechanisms act as controls 40

and indicators for dynamic glacier changes. In particular,
calving and calving front variations have been identified
as crucial parameters for investigating the physical mecha-
nisms of Greenland’s outlet glaciers (Joughin et al., 2008a;
Moon and Joughin, 2008; Benn et al., 2017; Trevers et al., 45

2019; Cook et al., 2021; Melton et al., 2022). In addition,
recent studies have shown that calving front retreat is as-
sociated with increased ice discharge (King et al., 2018;
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2 E. Loebel et al.: Calving front monitoring at a subseasonal resolution

Mouginot et al., 2019; King et al., 2020). An accurate repre-
sentation of calving front behavior is therefore an important
requirement for constraining ice sheet modeling and improv-
ing simulations of future mass loss and sea level contribu-
tion (Vieli and Nick, 2011; Bondizo et al., 2017; Morlighem5

et al., 2017, 2019; Greene et al., 2024). Overall, tempo-
rally and spatially comprehensive data products that con-
sider calving front variation are essential for a better un-
derstanding and modeling of marine-terminating glaciers.
The steady increase in the quality and availability of satel-10

lite imagery provides new opportunities for a continuous and
accurate monitoring of glacier calving front positions. Nev-
ertheless, current data records mostly rely on manual de-
lineation (Schild and Hamilton, 2013; Joughin et al., 2015;
ENVEO, 2017; Andersen et al., 2019; King et al., 2020;15

Goliber et al., 2022; Black and Joughin, 2023). This is a la-
borious, time-consuming, and thus ineffective process given
the ever-increasing volume of data. Therefore, such calv-
ing front products may not always fully exploit the tem-
poral information offered by satellite observations, which20

may be a limiting factor in seasonal analyses and associ-
ated modeling efforts. In response to the need for scalable
processing strategies, several empirical feature extraction al-
gorithms have been introduced over the last decades, all
aiming to provide robust automated calving front extrac-25

tion (Sohn and Jezek, 1999; Liu and Jezek, 2004; Seale
et al., 2011; Rosenau, 2014; Krieger and Floricioiu, 2017;
Liu et al., 2021). However, most of these methods have
not been tested for spatial transferability and large-scale
applications, or they require case-specific modifications.30

With the advent of deep learning and big-data methods in
remote sensing, new opportunities have emerged for solv-
ing complex image-processing tasks (Zhu et al., 2017). In re-
cent years, a number of case studies have used deep artificial
neural networks (ANNs) to extract calving front positions.35

Both optical (Mohajerani et al., 2019) and synthetic aper-
ture radar (SAR) (Zhang et al., 2019; Baumhoer et al., 2019)
sensors have been usedCE1 . Based on these case studies, nu-
merous studies have advanced the ANN architecture (Hei-
dler et al., 2021; Marochov et al., 2021; Periyasamy et al.,40

2022; Davari et al., 2022b, a; Heidler et al., 2023; Herrmann
et al., 2023; Wu et al., 2023), assessed potential input infor-
mation (Loebel et al., 2022), and pursued multisensor capa-
bilities (Zhang et al., 2021). In addition, dedicated data prod-
ucts have been developed for training and validation (Goliber45

et al., 2022) as well as for benchmarking (Gourmelon et al.,
2022) ANN applications. The results from Cheng et al.
(2021) and Zhang et al. (2023), specifically the Calving
Front Machine (CALFIN) and AutoTerm repositories, are
currently the only two automatically generated datasets that50

provide a Greenland-wide scope of calving front locations.
Building on these achievements, this paper discusses the ap-
plication and extensive validation of a specially tailored deep
learning method for automating calving front extraction us-
ing Landsat-8 optical imagery. We provide a data product for55

23 outlet glaciers in Greenland for the period 2013–2021. We
compare this data product with the automatically delineated
CALFIN and AutoTerm repositories as well as with the man-
ually delineated TermPicks and Black and Joughin (2023)
repositories. By exploiting the full multispectral sensor in- 60

formation, our method is able to extract a significant number
of calving fronts that could not be extracted using the other
automation methods. By achieving this method of robust
and scalable calving front extraction, we meet the glaciology
community’s requirement for a comprehensive parameteri- 65

zation of glacier calving in Greenland and make important
steps towards establishing artificial-intelligence-based pro-
cessing strategies for glacier-monitoring tasks. Overall, we
provide the wider cryosphere community with a methodol-
ogy, a data product and its implementation, a comparison 70

with existing products, and a discussion of the glaciological
implications.

Section 2 introduces the data and the applied deep learn-
ing method for automated calving front extraction. Section 3
provides an assessment of the accuracy of our method and 75

its spatial transferability. As part of the discussion in Sect. 4,
we present our data product, the derived time series, and a
comparison with existing data repositories. apply our results
to analyze the interaction between calving front change and
bedrock topography. Finally, in Sect. 6, we draw conclusions 80

and provide an outlook.

2 Data and methods

The presented processing system extracts glacier calving
front shapefiles from multispectral Landsat-8 imagery. In this
process, we use satellite imagery as reference data and apply 85

a specialized ANN. This involves a series of processing steps
and configurations, which are explored in the following sec-
tion.

2.1 Data source

Our processing system is based on optical Landsat-8 im- 90

agery. We use the orthorectified and radiometrically cali-
brated Level-1 data products provided by the United States
Geological Survey (U.S. Geological Survey, 2023). Carry-
ing two scientific instruments, the Operational Land Imager
(OLI) and the Thermal Infrared Sensor (TIRS), the Landsat- 95

8 satellite provides a particularly wide multispectral cov-
erage. The 11 spectral bands comprise data from visible,
near-infrared, shortwave infrared, and thermal infrared wave-
lengths (from 0.435TS2 to 1.384 µm). With the exception of
the panchromatic band and the two thermal bands, which 100

have a spatial resolution of 15 and 100 m, respectively, all
other bands have a resolution of 30 m. All available bands
(except band 8 and band 9) are used as input for our ANN.
Band 8, which has a 15 m resolution, is excluded due to its
high computational cost. Band 9 is outside an atmospheric 105
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window and is therefore intended for atmospheric observa-
tions. Integrating multispectral bands generally leads to more
accurate predictions than using conventional single-band in-
puts alone, as demonstrated by Loebel et al. (2022). This is
especially true for difficult illumination and ice mélange con-5

ditions.

2.2 Reference dataset

We use manually delineated calving front locations as refer-
ence data. For model training, we use 698 calving front po-
sitions across 19 glaciers in Greenland for the period 2013–10

2019. These glaciers have been selected for their broad spa-
tial distribution and diverse morphology as well as for their
differing calving and ocean conditions. A spatial overview
of all glaciers in Greenland analyzed in this study is given
in Fig. 1. As the performance of ANN methods highly de-15

pends on training data, we pay special attention to covering a
diverse range of morphological features, termini with heavy
crevassing, and differing calving and ice mélange conditions,
as well as varying illumination and cloud situations. To test
the model, we apply three different testing sets. The Technis-20

che Universität Dresden (TUD) testing dataset includes four
additional glaciers in Greenland, the Boydell and Drygalski
glaciers in the Antarctic Peninsula, the Storbreen glacier in
Svalbard, and the Upsala Glacier in Patagonia. In total, the
TUD testing set contains 200 calving front positions across25

27 glaciers for the period 2020–2021. In addition to our own
testing dataset, we use manually delineated calving fronts
from the ESA’s Climate Change Initiative (ESA-CCI) (EN-
VEO, 2017) and the CALFIN product (Cheng et al., 2021).
Here, we use all available calving front positions for our se-30

lected Greenland-based glaciers that have a corresponding
Landsat-8 scene with less than 24 h of time difference. This
results in a further 100 manually delineated calving front po-
sitions for the ESA-CCI and a further 110 for the CALFIN
testing datasets.35

2.3 Delineating calving fronts using deep learning

For automated calving front extraction, we apply a modified
version of the approach published by Loebel et al. (2022).
The main difference is that we only use multispectral in-
formation and no textural or topographic features. This re-40

duces the input from 17 to 9 layers. Additionally, we have
expanded the reference dataset by 170 entries. These new
calving front traces focus specifically on cloudy, low illu-
mination and scene border conditions, thereby enhancing the
method in this regard. Figure 2 presents a broad overview of45

the processing workflow.

2.3.1 Preprocessing

Using satellite data as input for the ANN requires prepro-
cessing. Specifically, we create stacked raster subsets from
the multispectral satellite bands and the manually delineated50

Figure 1. CE2 Overview map of the 23 Greenland-based glaciers
used in the TUD reference dataset. Glaciers marked with a red dot
are used for training and testing. White dots indicate the glaciers
that are only used for model testing. The Boydell Glacier (Antarc-
tica), Drygalski Glacier (Antarctica), Storbreen glacier (Svalbard),
and Upsala Glacier (Patagonia) are not on this map and are only
used for model testing. The base map is from the “QGreenland”
package (Moon et al., 2022).

calving front locations. These subsets have dimensions of
512 px × 512 px and a unified 30 m ground sampling dis-
tance, and they are centered on the calving front of the re-
spective glacier. The 30 m ground sampling distance, and
thus the exclusion of band 8, is a compromise between the 55

spatial context provided within a single subset, the computa-
tional effort, and the resolution of the calving front predic-
tions. For each multispectral band, we apply an image en-
hancement technique in the form of a cumulative count cut,
clipping the data between the 0.1 and 98 percentiles to coun- 60

teract overexposure in our satellite imagery. Additionally, all
satellite bands are then normalized to a range between 0 and
1 using 8-bit quantization. Corresponding manually delin-
eated calving front positions, given as either line strings or
polygon shapefiles, are processed into binary raster masks 65

that segment land and glaciers from the ocean. Altogether,
one stacked raster subset includes nine satellite bands and a
matching ground truth mask.
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4 E. Loebel et al.: Calving front monitoring at a subseasonal resolution

Figure 2. High-level overview of the applied workflow for automated calving front extraction. Using multispectral satellite imagery at visible
(VIS), shortwave infrared (SWIR), and thermal infrared (TIR) wavelengths, the ANN performs pixel-wise semantic image segmentation.
The final calving front position is obtained after vectorizing and masking the ANN prediction. Landsat-8 imagery is courtesy of the U.S.
Geological Survey.

2.3.2 Semantic image segmentation

To extract the calving front location from the input images,
we apply a convolutional neural network that performs pixel-
wise semantic image segmentation, separating a glacier–land
class from a water class. Specifically, we use a U-Net ar-5

chitecture introduced by Ronneberger et al. (2015). This ar-
chitecture consists of a contracting path, similar to a typical
convolutional network, where spatial resolution is reduced
and feature information is increased, followed by an ex-
panding path where feature and spatial information are com-10

bined. The receptive field of a U-Net is defined by the num-
ber of contracting and expanding blocks. As calving front
extraction requires adequate spatial context (Heidler et al.,
2021), in this study, we enhance the U-Net by two addi-
tional resolution levels, i.e., from the fourth to the sixth level.15

Our model is fitted using the preprocessed training data.
Before initializing the model training, we select every fifth
image from the training dataset for internal validation. The
remaining training data are augmented 8-fold through ro-
tation and flipping. Finally, the resulting 6208 raster sub-20

sets are used to fit the model. For this, we use random-
ized batches (each containing eight samples) and apply
the Adam optimization algorithm (Kingma and Ba, 2014)
to a binary cross-entropy loss function for a total of 200
epochs. Final model weights are selected based on the25

classification accuracy of the internal-validation dataset.
ANN processing is implemented using the TensorFlow 2.4 li-
brary (Abadi et al., 2015). Model training is carried out using
an IBM POWER9 node and an NVIDIA V100 GPU with a
high memory bandwidth of 32 GB. The training of one model30

requires about 12 h, with a main memory utilization of 80 GB
and an average GPU power consumption of 265 W.

2.3.3 Postprocessing

As output from the ANN, we derive a floating-point-number
probability mask, where each image pixel is assigned a prob-35

ability between 0 (water) and 1 (glacier and land). During

postprocessing, we vectorize this probability mask using the
Geospatial Data Abstraction Library (GDAL) contour al-
gorithm (GDAL/OGR contributors, 2020) with a threshold
of 0.5 and separate the longest feature. Eventually, we ex- 40

tract the glacier’s calving front by intersecting the vector-
ized coastline trajectory with a static mask. This mask is
created manually for each glacier and specifies a corridor
of possible calving front locations. Calving fronts exceeding
the 512 px × 512 px window are split into multiple indepen- 45

dent predictions, which are then averaged in the overlapping
area before vectorization. By applying this strategy, which
is motivated by Baumhoer et al. (2019), the Zachariae Is-
strøm, Nioghalvfjerdsbrae, and Humboldt Glacier are split
into two, three, and seven separate overlapping predictions, 50

respectively.

3 Accuracy assessment

Our own TUD testing set contains 200 labeled images from
the years 2020 and 2021. We emphasize that the images
are temporally separated from those in the training datasets. 55

To ensure the spatial transferability of our method, this test
dataset includes imagery of four additional glaciers in Green-
land, two glaciers in the Antarctic Peninsula, one glacier in
Svalbard, and one glacier in Patagonia. In addition to our
own testing dataset, we apply a further 100 manually picked 60

calving fronts provided by the ESA Greenland Ice Sheet CCI
project (ENVEO, 2017) and a further 110 provided by the
CALFIN product (Cheng et al., 2021).

3.1 Error estimation

The distance between the predicted and manually delineated 65

calving fronts is taken as the main error measure in the model
testing. We calculate the average minimal-distance error by
averaging the minimal distances between the predicted front
trajectory and the manual delineation calculated every 30 m.
Our definition of the average minimal-distance error is com- 70
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parable to the estimates used by Cheng et al. (2021) and
Zhang et al. (2023). Figure 3 illustrates some test results for
diverse testing images from the three test sets. Along with the
manually picked calving front (dashed black) and the ANN-
delineated calving front (orange), the average distance be-5

tween them is indicated. The ANN model reliably delineates
calving front locations in a wide range of ocean, sea ice, and
ice mélange situations. Furthermore, the model is also able to
handle images affected by challenging cloud (Fig. 3d, j) and
illumination (Fig. 3c) conditions, as well as those affected by10

calving fronts near the edge of a satellite scene (Fig. 3e). Test
images showing large errors are associated with delineation
subjectivity (Fig. 3f, h, and i) or even human error (Fig. 3k).

Since the ANN training is stochastic, every fitted model
performs slightly differently when using our testing data.15

To ensure statistical stability for a broader numerical assess-
ment, we train and test 50 models using the same reference
data and model parameters. In order to assess the distance
error, we report both the mean and median across the scenes
in the test dataset. The test results for these 50 models are20

shown in Fig. 4. While the mean distance error is sensitive
to outliers, the median distance error informs us about sys-
tematic model overfitting and general scene-by-scene per-
formance. Since each of the three testing datasets originated
from its own independent imagery, resulting error estimates25

are not directly comparable. Nevertheless, we suspect that
the lower distance error yielded for the TUD testing set is due
to the fact that it was generated by the same people who in-
ferred the training data for these models. Overall, the means
of the average minimal-distance errors are comparable to the30

results from Cheng et al. (2021) and (Zhang et al., 2023),
who estimated errors of 86.7 ± 1.4 and 79 m, respectively.
Table 1 gives the corresponding statistics.

In addition to the average minimal-distance estimates, we
also calculate the Hausdorff distance (Huttenlocher et al.,35

1993). The Hausdorff distance only considers the greatest
distance of all minimum distances along the two trajecto-
ries. As longer fronts are more likely to include misclassi-
fied parts, this measure tends to be larger for longer fronts.
Goliber et al. (2022) applied a median Hausdorff distance to40

duplicated delineations from different authors in order to es-
timate the accuracy level of manual digitization. Depending
on the paired authors, this manual-delineation error varies be-
tween 59 and 7350 m, with an average of 107 m. The median
Hausdorff distances calculated for our test data are there-45

fore within the range of the manual-delineation errors but
are slightly larger than the overall author-to-author error of
107 m calculated by Goliber et al. (2022). Altogether, the
quality of calving fronts delineated by our ANN model is
comparable to that of manually delineated calving fronts.50

3.2 Spatial transferability

In addition to the accuracy assessment over the entire test
dataset, we evaluate the degree of model generalization and,

hence, the spatial transferability of our method. Out of our
200 test scenes, 61 are from glaciers that are not included in 55

the training data. For these 61 test scenes over our 50 trained
models, we calculate a mean (median) average minimal-
distance error of 71.3 ± 19.4 m (24.6 ± 2.1 m). This test er-
ror is larger than the error over the entire test set, which is
61.2 ± 7.5 m. It is thus also larger than the error over the 60

139 test scenes from glaciers that are part of the training set,
which is 56.0 ± 5.3 m (median: 30.3 ± 1.7 m). Notably, we
observe not only a larger test error but also a higher standard
deviation between the models. This is due to a lower success
rate and the resulting high error for individual predictions in 65

cases where the ANN failed to locate the calving front.
Figure 5 presents the test results for four example scenes.

The depicted glaciers are outside the training dataset. The
calving fronts of the Tracy Glacier (Fig. 5a), Upsala Glacier
(Fig. 5c), and Drygalski Glacier (Fig. 5d) are reliably ex- 70

tracted with low distances to the manually delineated refer-
ence and low deviation among all trained models. The ac-
curacy is comparable to that of glaciers within the training
dataset. In contrast, the extractions for the Storbreen glacier
(left-hand side of Fig. 5b) exhibit a large error and high de- 75

viation among the trained models. The calving front is not
delineated reliably. This could be due to a combination of
difficult lighting conditions and snow-covered sea ice, which
may not be adequately represented in the training data. In-
terestingly, the calving front of the neighboring Hornbreen 80

glacier (bottom-right corner of Fig. 5b) is extracted accu-
rately across all models.

Among the 61 test images from glaciers outside the train-
ing dataset, 57 have an average minimal-distance error be-
low 100 m (93 %), compared to 178 out of 200 images from 85

the entire test dataset (89 %) and 121 out of 139 test images
from glaciers included in the training set (87 %). Overall, this
assessment confirms the spatial transferability of our pro-
cessing system. However, the accuracy is lower compared to
that of the extraction from glaciers included in the training 90

data. Similar findings have been reported by previous stud-
ies (Baumhoer et al., 2019; Cheng et al., 2021; Zhang et al.,
2023).

4 Results

4.1 Data product for Greenland from 2013 to 2021 95

After training and testing the ANN model, we apply our pro-
cessing to Landsat-8 imagery in order to generate tempo-
rally dense calving front time series for 23 outlet glaciers
in Greenland. In doing so, we download Landsat-8 imagery
acquired between March 2013 and December 2021. Images 100

with cloud cover greater than 20 % and all Systematic Ter-
rain Correction (L1GT) scenes are manually checked before
being downloaded. Depending on the glacier, 51 % (Ingia
Isbræ) to 63 % (Helheim Glacier) of the available satellite
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Figure 3. Test results for example scenes from the (a–f) TUD, (g,h) CALFIN, and (i–k) ESA-CCI testing sets. Manually delineated calving
fronts are depicted as dashed black lines. The ANN prediction is shown in orange. The average minimal-distance error for the respective
scene is given both in meters and pixels. All depicted results are from the same fitted ANN model. Landsat-8 imagery is courtesy of the U.S.
Geological Survey.

Table 1. Results of the accuracy assessment. The average minimal distance and Hausdorff distance are provided for the TUD, ESA-CCI,
and CALFIN test sets. For both estimates, we provide mean and median values. The standard deviations are calculated from the 50 different
models.TS3

Test dataset Average minimal distance Hausdorff distance

Mean (m) Median (m) Mean (m) Median (m)

TUD 61.2 ± 7.5 28.3 ± 1.4 283.9 ± 28.1 156.4 ± 7.2
ESA-CCI 73.7 ± 2.9 45.9 ± 1.4 352.4 ± 14.1 205.4 ± 10.3
CALFIN 73.5 ± 3.3 43.6 ± 1.6 233.9 ± 5.7 162.9 ± 4.8
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Figure 4. Accuracy assessment for the three independent test
datasets. Each horizontal line inside the violin plots represents 1
of the 50 trained models applied to the test dataset. The vertical
extent of each plot is defined by the corresponding minimum and
maximum values.

scenes are discarded before downloading begins. After ANN
processing, failed calving front extractions are discarded.
Calving front extraction fails when the predicted coastline
trajectory does not intersect the static mask. Finally, calving
fronts are filtered using the time series. To achieve this, we5

separate all entries with an area difference larger than 1 km2

from both the previous and the next entry. Separated entries
are checked manually. Out of the 10 587 satellite scenes pro-
cessed by our ANN, 1344 calving front predictions (13 %)
were discarded. Figure 6 provides a tabular overview of the10

final data product (for locations, see Fig. 1). In total, we pro-
vide 9243 calving front lines, with most sampling occurring
at subweekly intervals outside of polar night. Due to overlap-
ping satellite orbits, glaciers in northern, northeastern, and
northwestern Greenland underwent up to six image acquisi-15

tions per week depending on the weather and season. Since
we use optical data in this study, our time series exhibit obser-
vation gaps during polar nights. Depending on the latitude,
this gap lasts about 1 month for glaciers in southern Green-
land and up to 3 months for glaciers in northern Greenland.20

4.2 Long-term, seasonal, and subseasonal calving front
changes

Marine-terminating glaciers experience calving front varia-
tions at different timescales. While long-term changes are
easy to resolve using already available data products, our 25

time series offers unique opportunities to analyze seasonal
and subseasonal terminus changes. To quantify these calving
front changes, we apply the well-established rectilinear-box
method (Moon and Joughin, 2008). Rather than using a sin-
gle profile to measure advance or retreat, this method adopts 30

a rectilinear box, accounting for uneven changes along the
calving front. Figure 7 shows the method applied to our calv-
ing front time series for the Jakobshavn Isbræ, which is sep-
arated into a northern branch and a southern branch. The in-
ferred calving front variation exhibits a pronounced annual 35

pattern combined with smaller subseasonal fluctuations. For
comparison, the derived time series of the manually delin-
eated ESA-CCI product is shown. Although both datasets
agree very well when it comes to comparing singular epochs,
the ESA-CCI time series does not reliably capture the tempo- 40

ral variations. This is particularly evident for the year 2014,
when the manually delineated product failed to capture an
entire annual cycle.

Figure 8 presents 12 more examples of our ANN-
generated time series. Most of these glaciers exhibit pro- 45

nounced seasonal and subseasonal variations overlaid by
a long-term signal. Apart from Kangiata Nunaata Sermia
(Fig. 8a), the Ryder Glacier (Fig. 8b), and the Hayes Glacier
(Fig. 8h), all example glaciers retreat during the analyzed
time period. Notably, the Zachariae Isstrøm and Humboldt 50

Glacier show an area loss of about 120 and 100 km2, respec-
tively. The Ryder Glacier (Fig. 8b) and Nioghalvfjerdsbræ
(Fig. 8d) are the only glaciers among the 23 in our study
that do not exhibit pronounced seasonality. In these cases,
the calving front variation is characterized by a steady ad- 55

vance and the sporadic detachment of large, kilometer-sized
icebergs. The date of detachment is precisely pinpointed by
the time series. For the Nioghalvfjerdsbræ (Fig. 8d), the time
series also resolves two separate break-offs that occurred in
close succession. Other glacier time series, such as those for 60

the Hayes Glacier (Fig. 8h), Tracy Glacier (Fig. 8j), Døcker
Smith Glacier (Fig. 8k), Harald Moltke Bræ (Fig. 8l), reflect
changes in the calving rate during our observation period.
For the Harald Moltke Bræ (Fig. 8l), the onset of this calv-
ing front retreat, starting in 2019, coincides with the end of 65

its 6-year-long surging phase, as anticipated by Müller et al.
(2021).

4.3 Comparison to existing data products

In addition to the dataset produced in this study, there are two
other automatic-delineation products with circum-Greenland 70

coverage: the CALFIN dataset from Cheng et al. (2021) and
the AutoTerm repository from Zhang et al. (2023). Addition-
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Figure 5. Test results for example glaciers which are outside the training dataset – specifically, (a) the Tracy Glacier in Greenland, (b)
the Storbreen glacier in Svalbard, (c) the Upsala Glacier in Patagonia, and (d) the Drygalski Glacier in Antarctica. Orange lines show the
predictions from our 50 models, with overlapping lines indicated by increased color intensity. The average minimal-distance metric for each
scene is given in meters. Landsat-8 imagery is courtesy of the U.S. Geological Survey.

Figure 6. Temporal coverage of our ANN-generated time series. The numbers and color intensity indicate the number of processed calving
front positions in each year. Glaciers are sorted by latitude from south (left) to north (right).

ally, there are a number of manually picked data records.
Two particularly comprehensive databases are the TermPicks
product (Goliber et al., 2022) and the dataset from Black
and Joughin (2023). The TermPicks product (Goliber et al.,
2022) is a compilation of manually delineated calving front5

data from 19 different authors across 278 glaciers. The Black
and Joughin (2023) dataset was created to study weekly and
monthly calving front variability. For this purpose, the au-
thors digitized 199 glaciers with a monthly frequency and
20 glaciers with a 6 d frequency over a 7-year period. In this10

section, we will compare these four big-data calving front
datasets on Greenland’s glaciers with the results of this study.
This comparison takes place on three levels. Firstly, we com-
pare the general statistics and scope. Secondly, we compare
results over a reference period and reference glaciers that15

are defined according to their temporal and spatial overlap.
Thirdly, we examine individual examples.

Table 2 (second through fourth columns) presents the gen-
eral statistics for the four datasets. Our dataset covers a rela-
tively short time span since we process imagery from the OLI20

and TIRS Landsat sensors, which have only been active since
2013. With 9243 mapped calving fronts over 23 glaciers, our
data product is smaller in terms of both scope and size than
the CALFIN, AutoTerm, TermPicks, and Black and Joughin
(2023) products. When examining the number of calving 25

front traces, it is important to understand that the definition
of what a single calving front contains varies from study to
study. For instance, a single data entry in our dataset for the
Upernavik Isstrøm includes four calving front features. The
CALFIN product lists three separate calving fronts for the 30

same glacier, and the AutoTerm and TermPicks products list
two. For the Jakobshavn Isbræ, the CALFIN product consid-
ers the northern and southern branches separately, while in
our dataset, they are counted as one calving front. In addition,
some of our predictions include smaller neighboring glaciers 35

that are located on the same image tile (e.g., the Farquhar
Glacier, included with the Tracy Glacier, or Akullersuup Ser-
mia, included with Kangiata Nunaata Sermia). Usually, this
applies to glaciers in a single glacier system that were previ-
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Figure 7. Rectilinear-box method applied to the ANN-generated calving front time series for the Jakobshavn Isbræ (western Greenland). The
glacier, which is separated into a northern branch and a southern branch, and the calving fronts are shown on the left. The corresponding time
series are depicted on the right. Here, calving front positions, expressed as surface areas, are marked with dots. For the TUD product (black),
solid lines connect frontal positions for each year. Time series from the ESA-CCI product (blue) are shown for comparison. Landsat-8 image
courtesy of the U.S. Geological Survey.

ously connected. When counting shapefile features, the num-
ber of entries in our data product is 15 150.

To better compare the data products and differences in pro-
cessing strategies, we define a reference period and refer-
ence glaciers by considering the temporal overlap (2015 to5

2019) and spatial overlap (13 glaciers) of the four datasets.
These glaciers are Kangiata Nunaata Sermia, the Helheim
Glacier, the Kangerdlugssuaq Glacier, the Jakobshavn Isbræ,
the Sermeq Avangnardleq glacier, the Store Glacier, the Rink
Isbræ, the Ingia Isbræ, the Upernavik Isstrøm, the Hayes10

Glacier, the Sverdrup Glacier, the Kong Oscar Glacier, and
the Døcker Smith Glacier. Within this reference period, we
analyzed mapped fronts, sampling rates, and unique entries.
Results are provided in Table 2 (fifth to seventh columns).
We consider only one calving front entry per day and per15

glacier. Effectively, this removes (1) duplicate delineations of
the same scene (e.g., from multiple authors in the TermPicks
database or from the reference data included in the CALFIN
dataset) and (2) inconsistencies in what constitutes a sin-
gle calving front entry. Although based on the same Land-20

sat data, our data product achieves a higher sampling rate
and more unique front extractions than the CALFIN prod-
uct. This is likely due to differences in input feature selection
and processing. The AutoTerm product has the most mapped
and unique fronts as well as the highest sampling rate. This25

is mainly due to its ability to process multisensor imagery
and its resulting larger database, which includes Landsat,
Sentinel-2, and Sentinel-1 data. This provides a clear advan-
tage over our approach, which is limited to the use of multi-
spectral Landsat data. The manually picked TermPicks and30

Black and Joughin (2023) datasets have a lower (yet still
comparable) sampling rate to that of our product. It should

also be noted that the sampling rate of all five calving front
products, and thus the number of mapped fronts, is unevenly
distributed across the glaciers. This is due to varying satel- 35

lite image availability and quality, and for manually digital-
ized products, it is also due to time constraints and prioriti-
zation. This is evident not only in the TermPicks database,
which has a significantly higher sampling rate in western
Greenland than in eastern Greenland (Goliber et al., 2022), 40

but also in the Black and Joughin (2023) dataset, where 8 of
the 13 glaciers in our reference period have a 6 d sampling
rate, while the remaining glaciers have a monthly sampling
rate. Overall, our method achieves the second-highest sam-
pling rate within this reference period, with 281 out of the 45

2423 extracted calving fronts not extracted by the CALFIN,
AutoTerm, Black and Joughin (2023) or TermPicks products.

Figure 9 shows the time series of the CALFIN, AutoTerm,
Black and Joughin (2023), and TermPicks products com-
pared to our study for four individual glaciers. To maximize 50

the sampling of the different datasets, we analyze the central
line profiles instead of using the box method. The mean dis-
tance for same-day calving front acquisitions (d) is indicated
for each pair of time series. When examining these four ex-
amples, we observe generally good agreement between the 55

time series. Significant differences exist only for the Hum-
boldt Glacier (Fig. 9d). Here, the data quality of the Au-
toTerm product seems to be notably worse than for the other
glaciers, with large fluctuations of up to 5 km in distance.
This may be attributed to the large size of the glacier’s front, 60

which, at least when using our method, required additional
processing steps. For Kangiata Nunaata Sermia (Fig. 9b),
our data product is the only one which captures the signal
from the seasonal ice tongue (Motyka et al., 2017; Moyer
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Figure 8. Example time series generated by our ANN algorithm for 12 glaciers in Greenland. Each panel illustrates a glacier, with a satellite
image showing the color-coded calving front trajectories on the left and the corresponding time series on the right. Here, calving front
positions are marked with black dots, and solid lines connect the entries for each year. Note that the y axis is scaled differently in each panel.
Landsat-8 imagery is courtesy of the U.S. Geological Survey.

Table 2. Comparison of the CALFIN, AutoTerm, Black and Joughin (2023), and TermPicks products with the data product presented in this
study. The reference period (2015 to 2019) and the reference glaciers (13 glaciers) are defined by the temporal and spatial overlap of the four
data products.

Dataset Glaciers Mapped fronts Time span Reference period and glaciers

Mapped fronts Sampling rate (yr−1) Unique entries

This study (Loebel et al., 2023) 23 9243 2013–2021 2423 37.28 281
CALFIN (Cheng et al., 2021) 66 22 678 1972–2019 956 14.71 3
AutoTerm (Zhang et al., 2023) 295 278 239 1984–2021 6512 100.18 2545
Black and Joughin (2023) 219 23 333 2015–2021 2187 33.65 676
TermPicks (Goliber et al., 2022) 278 39 060 1916–2020 1806 27.78 271
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Figure 9. Comparison of the CALFIN, AutoTerm, Black and Joughin (2023), and TermPicks products (blue) with the data product presented
in this study (black) for four example glaciers. Time series are derived along the central flow line for each glacier. Each comparison specifies
the mean distance d between the calving front delineations on the same days.

et al., 2017). This is reflected in the gaps in the other datasets
as well as in the greater distances for certain same-day ac-
quisitions. Although Landsat imagery is available, both the
CALFIN and AutoTerm products exhibit almost no calving
front traces during the emergence, presence, and disintegra-5

tion of this seasonal ice tongue. We suspect that the multi-
spectral input information in our processing leads to a bet-
ter extraction rate for scenes under these challenging condi-
tions. All four examples highlight the varying sampling rates
of the data products. In particular, the AutoTerm and Black10

and Joughin (2023) datasets, which use Sentinel-1 SAR im-
agery, exhibit coverage during polar nights, as observed in
late 2017 (Fig. 9a) and late 2016 (Fig. 9c). The sampling rate
of the TermPicks repository is lower than that of the auto-
mated processing systems shown in these four examples.15

Compared to the CALFIN, AutoTerm, Black and Joughin
(2023), and TermPicks products, our data product has the

lowest coverage and smallest number of overall mapped
calving front traces. However, due to different processing
and the addition of multispectral input information, our 20

method is able to extract a significant number of calving
fronts that could not be extracted using the other methods
(i.e., 12 % within the reference period). Importantly, these
calving fronts (amounting to 12 %) are likely to include ex-
tractions under challenging ice mélange and illumination 25

conditions. For the analyzed reference period, our method
has a temporal resolution that is second only to that of the
AutoTerm product, which benefits from multisensor input
imagery. Overall, this comparison also presents a clear ar-
gument for the benefits of having multiple data products for 30

monitoring glacier calving fronts. Current data products not
only differ in scope but also differ in regard to duplicate ex-
tractions for identical glacier front traces, which often exceed
estimated delineation uncertainties. A better understanding
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of these differences is crucial and requires further investiga-
tion. As a final point, we want to emphasize the potential
of combining different glacier front products (Goliber et al.,
2022). Particularly for datasets based on optical data, this not
only increases the overall sampling rate but also allows for5

data gaps to be filled during the polar winter. Greene et al.
(2024) have demonstrated the advantages of such a combi-
nation for large-scale glaciological analyses.

5 Discussion

Changes in calving front position are, along with other ob-10

servables (such as ice velocity and elevation change), part of
a complex feedback cycle between a glacier and its environ-
ment. Long-term calving front trends exhibited by glaciers
in Greenland are well characterized (Howat and Eddy, 2011;
King et al., 2020; Fahrner et al., 2021; Black and Joughin,15

2022; Greene et al., 2024). However, about 80 % of Green-
land’s glaciers also experience terminus changes on seasonal
and subseasonal bases (Black and Joughin, 2023). A visual
inspection of the time series shows that 19 of the 23 glaciers
analyzed in this study exhibit a seasonal pattern between the20

years 2013 and 2021. As observed in other studies (Joughin
et al., 2008b; Seale et al., 2011; Carr et al., 2013; Schild
and Hamilton, 2013; Murray et al., 2015; Moon et al., 2015;
Cassotto et al., 2015; Kehrl et al., 2017; Fried et al., 2018;
Sakakibara and Sugiyama, 2020; Kneib-Walter et al., 2021;25

Black and Joughin, 2023), glacier retreat typically starts in
late spring, with retreat rates peaking in late summer. A num-
ber of mechanisms have been identified as controls for these
seasonal terminus changes. These include the duration and
timing of meltwater runoff (Sohn et al., 1998; Nick et al.,30

2010; Chauche et al., 2014; Carroll et al., 2016; Fried et al.,
2018; Wood et al., 2021), changes in buttressing force due
to sea ice and ice mélange (Howat et al., 2010; Carr et al.,
2013; Todd and Christoffersen, 2014; Cassotto et al., 2015;
Moon et al., 2015; Kehrl et al., 2017; Robel, 2017; Kneib-35

Walter et al., 2021), basal sliding (De Juan et al., 2010; Moon
et al., 2015), and ocean-driven melt (Motyka et al., 2003; Be-
van et al., 2012a; Chauche et al., 2014; Carroll et al., 2016).
When a glacier is forced into a state of retreat, both the rate
and pattern of retreat are modulated by the subglacial topog-40

raphy. For marine-terminating glaciers in Greenland, this ef-
fect has been studied (Warren, 1991; Warren and Glasser,
1992; Joughin et al., 2008b; Carr et al., 2015; Lüthi et al.,
2016; Kehrl et al., 2017; Bunce et al., 2018; Catania et al.,
2018; Felikson et al., 2021) and modeled intensively (Ender-45

lin et al., 2013; Morlighem et al., 2016; Choi et al., 2017).
In particular, faster retreat rates have been found to be as-
sociated with overdeepening and retrograde topography.
The new generation of automatically delineated calving
front data products not only facilitates glaciological analysis50

through significant time savings but also potentially provides

new insights due to their high temporal resolution and spatial
coverage.

Figure 10 shows our calving front time series in relation
to bedrock elevation data, taken from the fifth version of the 55

BedMachine Greenland model (Morlighem, 2022), for three
example glaciers. Profiles extend from point A to point B
along a central flow line. The calving front of the Ingia Isbræ
(Fig. 10a) retreated by 3.2 km (8.6 km2 in area) from 2013
to the end of 2017, revealing a pronounced seasonal pattern. 60

Due to retrograde topography (at ∼ 4 km in Fig. 10a), this
retreat was particularly rapid in 2016 and 2017. Since 2018,
the calving front has been at a topographic minimum, pre-
venting further retreat and reducing the seasonal amplitude.
These observations confirm the analysis by Catania et al. 65

(2018), which describes the continuous retreat of the Ingia Is-
bræ from 2002 to 2016 and suggests further retreat by more
than 1 km until the calving front stabilizes on the prograde
bed topography. The calving front changes exhibited by the
Kangerdlugssuaq Glacier (Fig. 10b) show high seasonal am- 70

plitudes as well as a significant retreat from 2016 to early
2018. With the exception of 2017 and 2018, where we ob-
serve a sustained retreat, the seasonal amplitude remains al-
most constant at around 4 km (21 km2 in area). This calving
front pattern is also described by Kehrl et al. (2017). Further- 75

more, the authors show that the Kangerdlugssuaq Glacier’s
grounding line retreated in 2010 and 2011 to a stable bedrock
position (bedrock bump at ∼ 10 km in Fig. 10b), resulting in
a floating ice tongue of ∼ 5 km in length. Due to the retro-
grade bedrock topography located after the bedrock bump 80

(from 10 to 15 km in Fig. 10b) and the reinitialization of
the seasonal terminus pattern from 2019 to 2021, we sus-
pect that the calving front retreat from 2016 to 2018 was
coupled with a grounding-line retreat on retrograde bed to-
pography, followed by restabilization further inland (likely 85

at 15.5 km, as shown in Fig. 10b). This would confirm the
second scenario suggested by Brough et al. (2019). The calv-
ing behavior of the Daugaard-Jensen Glacier (Fig. 10c) is in-
fluenced by the abrupt change in the bedrock slope close to
the frontal position. An advance beyond this point, from a 90

slightly retrograde to a steeply prograde topography, leads
to a loss of basal drag and longitudinal stresses. This in-
fluences calving behavior and particularly favors the calv-
ing of tabular icebergs, as seen in 2013 (8.2 km2 in size) and
2020 (4.2 km2 in size). Although the front of the Daugaard- 95

Jensen Glacier has remained roughly in this location for over
70 years (Stearns et al., 2005) and is considered to be sta-
ble (Bevan et al., 2012b), high-temporal-resolution calving
front information is still necessary to resolve and under-
stand these stable glacier dynamics. More generally, high- 100

temporal-resolution calving front information not only al-
lows us to analyze glacier retreat and advance but also helps
us to better differentiate between different calving styles and
patterns.
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Figure 10. Effect of bedrock topography on calving front variations for (a) the Ingia Isbræ, (b) the Kangerdlugssuaq Glacier, and (c) the
Daugaard-Jensen Glacier. In each panel (from left to right), there is a satellite image showing calving front trajectories, a marked profile
indicating bedrock topography, color-coded calving front positions along the profile, and the corresponding time series of calving front
variations. Note that the axes are scaled differently in each panel. Landsat-8 imagery is courtesy of the U.S. Geological Survey.

6 Conclusions

This study presents a deep-learning-based processing sys-
tem for the automatic delineation of calving front locations
from multispectral Landsat-8 imagery. Using three indepen-
dent test datasets, we validate the performance and spatial5

transferability of our processing system. The quality of the
automatically extracted calving fronts is comparable to that
of manually delineated calving fronts. Our method achieves
a considerably higher extraction rate compared to that of
other automation methods that are based on the same Land-10

sat data. The resulting data product, which includes 9242
calving fronts over 23 glaciers within Greenland, is there-
fore a valuable contribution to the existing data repositories.
The presented method and the resulting data product ad-
dress the needs of the glaciology community for a com-15

prehensive parameterization of glacier calving in Greenland.
The time series derived from this processing system resolve
long-term, seasonal, and subseasonal calving front varia-
tions. This benefit is particularly significant with regard to
large glaciers for which manually delineated data are lack-20

ing, such as the Humboldt Glacier, Zachariae Isstrøm, and
Nioghalvfjerdsbrae. Due to the spatial transferability of this

method, our processing system has the potential to be ap-
plied to other marine-terminating glaciers around the world.
By presenting the time series in this paper, we offer only a se- 25

lected glimpse into the dynamics of these glaciers. However,
the demonstrated capability of automatically resolving sub-
seasonal calving front variations is an important step towards
having a spatially comprehensive Greenland-wide monitor-
ing system. In conjunction with other components concern- 30

ing ice flow, elevation change, solid-Earth response, and hy-
drological processes, this will open up new opportunities to
holistically assess, model, and simulate dynamic ice sheet
changes. Advancing towards this digital twin of the Green-
land Ice Sheet will improve our understanding of its evolu- 35

tion and its role within the broader Earth climate system.
Intelligent processing strategies, such as deep ANNs, will
play a major role in shaping the future of glacier monitor-
ing and associated modeling tasks. This is especially true for
analyzing the increasing amount of remote sensing imagery. 40

Well-trained and thoroughly validated ANNs will become
the state-of-the-art method for automated calving front de-
lineation. The results presented in this paper will contribute
to future advancements in this field.
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Code and data availability. The following assets are published
along with this article:

– The data product featuring automatically delineated calving
front positions (Environmental Systems Research Institute
(ESRI) shapefile format), which contains 9243 calving front5

positions across 23 outlet glaciers within Greenland, is avail-
able at https://dx.doi.org/10.25532/OPARA-208 (Loebel et al.,
2023).

– All reference data applied in this study are available at
https://dx.doi.org/10.25532/OPARA-282 (Loebel et al., 2024).10

This includes 898 manually delineated calving front posi-
tions provided in a georeferenced shapefile format as well as
1220 machine-learning-ready preprocessed raster subsets (nine
channels) along with their corresponding manually delineated
segmentation masks.15

– We provide a containerized implementation of the presented
processing system using the platform Docker. The software
automatically extracts calving front positions from Landsat-
8 or Landsat-9 Level-1 data archives for glaciers used in this
study or at user-defined coordinates. This enables the analy-20

sis of glaciers that are outside our reference dataset or beyond
the temporal frame of our study. The software is available at
https://github.com/eloebel/glacier-front-extraction (last access
24 March 2023) and https://doi.org/10.5281/zenodo.7755774
(Loebel, 2023a).25

– Our implementation of the rectilinear-box method, devel-
oped using Python 3, is available at https://github.com/eloebel/
rectilinear-box-method (last access 24 March 2023) and https:
//doi.org/10.5281/zenodo.7738605 (Loebel, 2023b).

Supplement. The supplement related to this article is available on-30

line at: https://doi.org/10.5194/tc-18-1-2024-supplement.
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