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Abstract. The mass balance of the Greenland ice sheet is strongly influenced by the dynamics of its outlet glaciers. Therefore,
it is of paramount importance to accurately and continuously monitor these glaciers, especially the variation of their frontal
positions. A temporally comprehensive parameterization of glacier calving is essential to understand dynamic changes and
to constrain ice sheet modelling. However, current calving front records are often limited in temporal resolution as they rely
on manual delineation, which is laborious and not feasible with the increasing amount of satellite imagery available. In this
contribution, we address this problem by applying an automated method to extract calving fronts from optical satellite imagery.
The core of this workflow builds on recent advances in the field of deep learning while taking full advantage of multispectral
input information. The performance of the method is evaluated using three independent validation-datasets—test datasets. We
calculate a mean delineation error of 61.2 m, 73.7m, and 73.5 m, respectively. Eventually, we apply the technique to Landsat-8
imagery. We generate 9243 calving front positions across 23 Greenland outlet glaciers from 2013 to 2021. Resulting time series
resolve not only long-term and seasonal signals but also sub-seasonal patterns. We discuss the implications for glaciological
studies and present a first application analysing-the-interaction-between-ecalving front-variation-and-bedrock-topography-to the

analysis of the effect of bedrock topography on calving front variations. Our method and derived results represent an important

step towards the development of intelligent processing strategies for glacier monitoring, opening up new possibilities for
studying and modelling the dynamics of Greenland outlet glaciers. Thus;-these-also-contribute-to-advance-the-constraetion-of

‘Q

1 Introduction

Over the past two decades, the Greenland Ice Sheet has been a major contributor to sea level rise (Horwath et al., 2022). Mod-
els suggest, that this imbalance will continue with a warming climate (Goelzer et al., 2020; Edwards et al., 2021; Riickamp

et al., 2020). About half of the ice mass loss is due to increased meltwater runoff, while the other half is caused by dynam-
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ical imbalance S Otosaka et al., 2023). While changes in the surface mass balance are forced by the

atmosphere, the dynamic imbalance is driven by changes at the ice-ocean boundary formed by the outlet glaciers that drain
the Greenland Ice Sheet. Here, several mechanisms act as controls and indicators for dynamic glacier changes. In particular,
calving and calving front variations have been identified as crucial parameters for investigating the physical mechanisms of
Greenland outlet glaciers (Joughin et al., 2008a; Moon and Joughin, 2008; Benn et al., 2017; Trevers et al., 2019; Cook et al.,
2021; Melton et al., 2022). In addition, recent studies have shown that calving front retreat is associated with increased ice
discharge (King et al., 2018; Mouginot et al., 2019; King et al., 2020). An accurate representation of calving front behaviour
is therefore an important requirement for constraining ice sheet modelling and improving simulations of future mass loss and
sea level contribution (Vieli and Nick, 2011; Bondizo et al., 2017; Morlighem et al., 2017, 2019). Overall, temporally and spa-
tially comprehensive data products of calving front variation are essential for a better understanding and modelling of marine
terminating glaciers.

The steady increase in quality and availability of satellite imagery provides new opportunities for a continuous and accurate
monitoring of glacier calving front positions. Nevertheless, current data records mostly rely on manual delineation (Schild and
Hamilton, 2013; Joughin et al., 2015; ENVEOQO, 2017; Andersen et al., 2019; King et al., 2020; Goliber et al., 2022; Black
and Joughin, 2023). This is a laborious, time-consuming and therefore ineffective process, given the ever-increasing volume
of data. Thus, such calving front products often lack temporal resolution, making seasonal analysis and associated modelling
efforts difficult. In response to the need for scalable processing strategies, several empirical feature extraction algorithms have
been introduced over the last decades, all aiming to provide robust automated calving front extraction (Sohn and Jezek, 1999;
Liu and Jezek, 2004; Seale et al., 2011; Rosenau, 2014; Krieger and Floricioiu, 2017; Liu et al., 2021). Yet, most of these
methods are either not tested for spatial transferability and large-scale application, or require case-specific modifications.

With the advent of deep learning and big data methods in remote sensing, new opportunities have emerged to solve complex
image processing tasks (Zhu et al., 2017). In recent years, a number of case studies have used deep Artificial Neural Networks
(ANN) to extract calving front positions. Both optical (Mohajerani et al., 2019) and synthetic aperture radar (SAR) (Zhang
et al., 2019; Baumhoer et al., 2019) sensors have been used. Based on thisthese case studies, numerous studies have advanced
the ANN architecture (Hei

+(Heidler et al., 2021; Marochov et al., 2021; Periyasamy et al.

2

. have assessed potential input information (Loebel et al., 2022) and have pursued the multi-sensor capability (Zhang et al.,
2021). In addition, dedicated data products have been developed for training and validation (Goliber et al., 2022) as well
as benchmarking (Gourmelon et al., 2022) of ANN applications. Cheng-et-al(2021H)-published-the-first-and-only-The results

from Cheng et al. (2021) and Zhang et al. (2023), namely the CALFIN and AutoTerm repositories, are currently the only two
automatically generated data produetsets of calving front locations with a Greentandie-Greenland-wide scope.

Building on these achievements, this paper discusses the application and extensive validation of a specially tailored deep
learning method for automated calving front extraction using Landsat-8 optical imagery. In doing so, we provide a data product

for 23 Greenland outlet glaciers from 2013 to 2021. We compare this data product to CALFIN and AutoTerm repositories. By

exploiting the full multispectral sensor information, we-achieve-a-mere-aceurate-androbust-ealvingfront-extraction-compare

2022; Davari et al., 2022b,a; Heidler et al., 2023; Herrmann et al., 2023;
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vartability-for-the-first-timeour method is able to extract a significant amount of calving fronts that could not be extracted by the

other automation methods. By achieving this robust and comprehensive parameterization of glacier calving in Greenland, we
meet the glaciology community requirement and make an-tmpertantfirst-step-important steps towards establishing intelligent
processing strategies for glacier monitoring tasks. Overall, we provide the wider cryosphere community with a methodology,

a data product and implementation, a comparison to existing products, as well as a discussion of glaciological implicationsthat

Section 2 introduces the data and the applied deep learning method for automated calving front extractionand-, Section 3
gives an assessment of its-aceuracy-the accuracy of our method and its spatial transferability. In Section 4 we present our data
productand-, the derived time series and a comparison to existing data repositories. As part of the discussion in Section 5, we
provide a-first-an application of our results to analyse the interaction between calving front change and bedrock topography.

Finally, in Section 6 we draw conclusions and provide an outlook.

2 Delineating-ealving frontsby-deeplearningData and Methods

deing-sowe-process-multispeetral-The presented processing system extracts glacier calving front shapefiles from multispectral
Landsat-8 imagery. In this process, we use satellite imagery as reference data and apply a specialized ANN. This involves a
series of processing steps and configurations which are explored in the following section.

2.1 Data source

Our processing system is based on optical Landsat-8 imagery(Appendix—22)-using—a-specialized ANNAAppendix2D—In

Na+t e a ORVO On ne netwo O he Ne hite a(Raonne

is-build-from-, We use the orthorectified and radiometrically calibrated level 1 data products as provided by the United States
Geological Survey (U.S. Geological Survey, 2023). Carrying two scientific instruments, the Operational Land Imager (OLI)
and the Thermal Infrared Sensor (TIRS), Landsat-8 provides a particularly wide multispectral coverage. The eleven spectral
bands comprise data from visible, near-infrared, short-wave infrared and thermal infrared wavelengths, from 0,435 pm to
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Figure 1. Overview map of the 23 Greenland glaciers used in the TUD reference dataset. Glaciers marked by a red dot are used for trainin

. Not on this map: Boydell Glacier (Antarctica), Drygalski Glacier

and testing. White dots indicate glaciers only used for model testin

Antarctica), Storbreen Glacier (Svalbard) and Upsala Glacier (Patagonia) which are only applied for model testing. The basemap is taken

from the QGreenland package (Moon et al., 2022).

1,384 pm, With exception to the panchromatic band and the two thermal bands, which have a spatial resolution of 15 m and
100 m respectively, all other bands have a resolution of 30 m. Apart from band 9, which is outside an atmospheric window and,
therefore, intended for atmospheric observations. all available bands are used as input for our ANN. The integration of these
multispectral bands leads to generally more accurate predictions than using conventional single-band inputs only, which has

already been shown by Loebel et al. (2022). This is especially true for difficult illumination and ice-melange conditions.

2.2 Reference dataset

We use manually delineated calving front pesitions—TFo-train-the-ANN-modeHocations as reference data. For model training, we
use 698 calving front tecations-from-positions across 19 Greenland glaciers between 2013 and 2019. Glaciers are selected for

their broad spatial distribution and diverse morphology as well as for different calving and ocean conditions. A spatial overview
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Figure 2. High-level overview of the applied workflow for automated calving front extraction. Based on multispectral satellite imagery
in visible (VIS), short-wave infrared (SWIR) and thermal infrared (TIR) wavelengths, the ANN performs a pixel-wise semantic image
segmentation. The final calving front position is obtained after vectorizing and masking the ANN prediction. Landsat-8 image courtesy of

the U.S. Geological Survey.

of all Greenland glaciers applied in this study is given in Figure 1. As the performance of ANN methods highly depends on

training data we pay special attention to cover a diversity of morphological features, terminus with heavy crevassing, different
calving and ice mélange conditions as well as varying illumination and cloud situations. To test the model we apply three

different testing sets. The TUD testing dataset includes four additional Greenland glaciers, Boydell and Drygalski Glacier at
the Antarctic Peninsula, Storbreen Glacier in Svalbard as well as Upsala Glacier in Patagonia. In total, the TUD testing set
contains 200 calving front positions across 27 glaciers from 2020 and 2021, In addition to our own testing data set we use
manually delineated calving fronts from the ESA-CCI (ENVEQ, 2017) and the CALFIN (Cheng et al., 2021) product. Here,
we use all available calving front positions for our selected Greenland glaciers for which we find a corresponding Landsat-8
scene with less than 24 hours time difference. This results in additional 100 manually delineated calving front positions for the
ESA-CClLand 110 for the CALFIN testing datasets.

2.3 Delineating calving fronts by deep learnin

For automated calving front extraction, we apply a modified version of the approach published by Loebel et al. (2022). The
main difference s, that we only use the multi-spectral information and no textural and topographic features. This reduces the
input from 17 to nine layers. Additionally, we have expanded the reference data set by 170 entries. These new calving front
traces focus specifically on cloudy, low illumination and scene border conditions, thereby enhancing the method in this regard.
Figure 2 gives a broad overview of the processing workflow.

2.4 Validatien

Our-

2.3.1 Pre-Processing
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To use the satellite data as input for the ANN requires pre-processing. In particular, we create stacked raster subsets from
the multispectral satellite bands and the manually delineated calving front locations. These subsets have dimensions of
S12px x 512 px with a unified 30 m ground sampling distance and are centered on the calving front of the respective glacier.
For each multispectral band we apply an image enhancement in form of a cumulative count cut, clipping the data between the
0.1 and 98 percentile, counteracting overexposure in our satellite imagery. Additionally, all satellite bands are then normalized
to_the range between 0 and 1 using an 8-bit quantization. Corresponding manually delineated calving front positions, given
cither as a line string or polygon shape-file, are processed into binary raster masks segmenting land and glacier from ocean.
Altogether, one stacked raster subset includes nine satellite bands and a matching ground truth mask.

2.3.2 Semantic image segmentation

introduced by Ronneberger et al. (2015). This architecture consists of a contracting path, resembling a typical conyolutional
network where spatial resolution is reduced while feature information is increased, followed by an expanding path where
feature and spatial information are combined. The receptive field of a U-Net is defined by the number of contracting and
expanding blocks. As calving front extraction needs adequate spatial context (Heidler et al., 2021) in this study we enhance the
U:-Net by two additional resolution levels, i.e. from four to six.

Qur model is fitted using the pre-processed training data, Before initializing the model training we select every fifth image of
the training dataset for internal validation. The remaining training data is augmented eightfold by rotating and flipping, Finally,
the resulting 6208 raster subsets are used for fitting the model. For this, we use randomized batches of size eight and apply the
Adam optimization algorithm (Kingma and Ba, 2014) on a binary cross-entropy loss function for a total of 200 epochs. Final

model weights are selected based on the classification accuracy of the internal validation dataset.

The ANN processing is implemented using the TensorFlow 2.4 library (Abadi et al.,

an IBM Power 9 node and an NVIDIA V100 GPU with 32 GB high bandwidth memory. The training of one model requires
about twelve hours with a main memory utilization of 80 GB and an average GPU power consumption of 265 W.

2015). Model training is carried out on

2.3.3 Post-Processing

As output of the ANN output we derive a floating point number probability mask where each image pixel is assigned a

robability between O (water) and 1 ost-processing, we vectorize this probability mask using the

Geospatial Data Abstraction Library (GDAL) contour algorithm (GDAL/OGR contributors, 2020) with a threshold of 0.5 and
separate the longest feature. Eventually, we extract the glacier’s calving front by intersecting the vectorized coastline trajector
with a static mask. This mask is created manually for each glacier and specifies a corridor of possible calving front locations.

Calving fronts exceeding the 512 px x 512 px window are split into multiple independent predictions which are then averaged
in the overlaj

lacier and land). Durin

ing area before vectorization. Applying this strategy, which is motivated by Baumhoer et al. (2019), Zachariae




Isstrom, Nioghalvfjerdsbrae and Humboldt Glacier are split into two, three and seven separate overlapping predictions, respectively.

150 3 Accuracy assessment

Our own TU Dresden (TUD) testing set contains 200 labeled images from the years 2020 and 2021. We emphasize that they
are temporally separated from the years of the training datasets. To ensure spatial transferability of our method this validation
test data set includes imagery for additional four Greenland glaciers, two glaciers at the Antarctic Peninsula, one glacier in
Svalbard and one glacier in Patagonia. In addition to our own testing dataset we apply another 100 manually picked calving
155 fronts provided by the ESA Greenland Ice Sheet CCI project (ENVEO, 2017) and 110 provided by the CALFIN product
(Cheng et al., 2021). Figure2-gives—a—spatial-overview—of-the-Greenland-glacters—used—withinthisstady—Overview—map-o

160 Moon-etal;2022)-

maximum—values: The distance between the predicted and the manually delineated calving front is taken as the main er-

165 ror metric-in-the-validation—Thisis-implemented-measure in the model testing. We calculate the average minimal distance
error by averaging the minimal distances between the predicted front trajectory and the manual delineation calculated every

30m. Qur definition of the average minimal distance error is comparable to the estimates used by Cheng et al. (2021) and
Zhang et al. (2023). Figure 3 illustrates some wvatidation-test results for diverse testing images from the three validation-test
sets. Along with the manually picked calving front (dashed black) and the ANN delineated calving front (orange) the mean
170 average distance between them is indicated. The ANN model reliably delineates calving front locations under a wide range of
ocean, sea ice and ice mélange situations. Furthermore, the model is also able to handle images affected by challenging cloud
(Fig. 3d, j) and illumination (Fig. 3c) conditions, as well as calving fronts near the edge of a satellite scene (Fig. 3e). Validation

Test images showing large errors are associated to delineation subjectivity (Fig. 3f,h,i) or even human error (Fig. 3k).
Since the ANN training is stochastic every fitted model performs slightly different on our testing data. To ensure statistical
175 stability for a broader numerical assessment we train and validate-test 50 models using the same reference data and model
parameters. In order to assess the distance error, we report both the mean and median over the scenes in the test data set. The
validation-test results for these 50 models are shown in Figure 4. Whereas the mean distance error is sensitive towards outliers
the median distance error informs about systematic model overfitting and general scene-by-scene performance. Since each

of the three testing data sets originated from its own, hence independent, imagery, resulting error estimates are not directly
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Figure 3. Vatidation-Test results for example scenes from the (a-f) TUD, (g,h) CALFIN and (i-k) ESA-CCI testing set. Manually delineated
calving fronts are depicted as dashed black lines. The ANN prediction is shown in orange. The mean average minimal distance error for
the respective scene is given both in meters and in pixels. All depicted results derive from the same fitted ANN model. Landsat-8 imagery

courtesy of the U.S. Geological Survey.

comparable. Nevertheless, we suspect that the lower distance error yielded for the TUD testing set is due to the fact that it was

generated by the same people who inferred the training data for these models. For-all-three-testingsets-the ANN-mean-distance
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Figure 4. Accuracy assessment for the three independent test datasets. Every horizontal line inside the ’violin graphs’ represents one of the

50 trained model applied to the test dataset. The vertical extent of each graph is defined by the corresponding minimum and maximum values.

Table 1. Results of the accuracy assessment. Given are the average minimal distance and the Hausdorff distance for the TUD, ESA-CCI and

CALFIN test set. For both estimates we provide mean and median values. The standard deviations result from the 50 different models.

Average minimal distance Hausdorff distance
Test datast

Mean (m) Median (m) Mean (m) Median (m)

TUD 61.2+75 283+14 283.9£28.1 156.4+7.2
ESA-CCI  73.7+29 459+14 3524+14.1 205.4+10.3
CALFIN  73.5+3.3 43.6%+1.6 233.9£5.7 162.9£4.8

mean average minimal distance errors are comparable to the results from Cheng et al. (2021) and (Zhang et al., 2023) who
estimated who estimated 86.7 & 1.4 m and 79 m, respectively. Table 1 gives the corresponding statistics.

In addition to the average minimal distance estimate we also calculate the Hausdorff distance (Huttenlocher et al., 1993). The
Hausdorff distance only considers the greatest distance of all minimum distances along the two trajectories. As longer fronts
are more likely to include misclassified parts, this measure tends to be larger for longer fronts. Goliber et al. (2022) applied the
median Hausdorff distance to duplicated delineation from different authors —in order to estimate the accuracy level of manual

digitization. Depending on the paired authors this manual delineation error varies between 59 m and 7350 m, with an average of
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Figure 5. Test results for example glaciers which are outside the training dataset. Specifically of (a) Tracy Glacier in Greenland, (b

Storebreen in Svalbard, (c) Upsala Glacier in Paragonia and (d) Drygalski Glacier in Antarctica. Orange lines show the predictions from

our 50 models. Overlap of lines is indicated by higher color intensity. The average minimal distance metric for each scene is given in meters.

Landsat-8 imagery courtesy of the U.S. Geological Survey.

107 m. The median Hausdorff distances calculated for our test data is therefore within the range of manual delineation errors

but slightly larger than the overall author-to-author error of 107 m calculated by Goliber et al. (2022). Altogether, the quality
of calving fronts delineated by our ANN model is comparable to that of manually delineated calving fronts.

3.2 Spatial transferabilit

In addition to the accuracy assessment over the entire test data set, we evaluate the degree of model generalisation and hence
the spatial transferability of our method. Out of our 200 test scenes, 61 scenes are from glaciers that are not included in the
training data. For these 61 test scenes over our 50 trained models, we calculate a mean (and median) average minimal distance
error of 71.3 + 19.4 m (median: 24.6 2.1 m), This test error is larger than the error over the entire test set, at 61.2 £ 7.5m. It
is thus also larger than the error over the 139 test scenes of glaciers that are part of the training set, at 56.0 + 5.3 m (median:
30.3+ 1.7 m). Notably, we see not only a larger test error, but also a higher standard deviation between the models. This is
due to a lower success rate and the resulting high error for individual predictions in cases where the ANN failed to locate the
calving front.

Figure 5 gives the test results for four example scenes. Depicted glaciers are outside the training dataset. The calving fronts
. 5a), Upsala Glacier (Fig. 5¢) and Drygalski Glacier (Fi
the manually delineated reference, and low deviation among all trained models. The accuracy is comparable to that of glaciers
within the training data set. In contrast, the extractions for Storbreen Glacier (Fig. b, left) have a large error and high deviation
among the trained models. The calving front is not delineated reliably. This could be due to a combination of the difficult
lighting and the snow covered sea ice, which is a condition that might not be adequately represented in the training data.

Interestingly, the calving front of the neighboring Hornbreen Glacier (Fig. Sb, bottom right) is extracted accurately over all

of Tracy Glacier (Fi . 5d) are reliably extracted with low distances to

models.

10
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Among the 6] test images outside the glaciers of the training dataset 57 have an average minimal distance error below 100m
(93 %), compared to 178 out of 200 over the whole test dataset (89 %) and 121 out of 139 of test images of glaciers that
are included in the training set (87 %
However, the accuracy is lower compared to the extraction from glaciers that were included in the training data. Similar findings
have been reported by previous studies (Baumhoer et al., 2019; Cheng et al.,, 2021; Zhang et al., 2023).

. Overall, this assessment confirms the spatial transferability of our processing system.

4 Results
4.1 Data product for Greenland from 2013 to 2021

Having trained and validated-tested the ANN model, we apply our processing to Landsat-8 imagery in order to generate tem-

porally dense calving front time series for 23 Greenland outlet glaciers. In doing so, we proecess-all-but-completely-eclouded
Landsat-seenes-download Landsat-8 imagery acquired between March 2013 and December 2021. Failed-Images with cloud
cover larger than 20 % and all Systematic Terrain Correction (L1GT) scenes are manually checked before downloading.
Depending of the glacier 51 % (for Ingia Isbre) to 63 % (for Helheim Glacier) of the available satellite scenes are discarded
before download. After ANN processing, failed calving front extractions «are discarded. Calving front extraction fails when
this we separate all entries with an area difference of larger than 1km? to both the previous and the pereentage-of swhich-varies
between-Snext entry. Separated entries are checked manually. Out of the 10587 satellite scenes processed by our ANN, 1344
calving front predictions (13 %-and+0-%depending-on-the-glacier-are-then-manually %) were discarded. Figure 5-6 gives a

tabular overview of the final data product (for locations see Figure 21). In total, we provide 9243 calving front lines, mostly
achieving sub-weekly sampling outside polar night. Due to overlapping satellite orbits, glaciers in north, northeast and north-
west Greenland undergo up to six image acquisitions per week depending on weather and season. Since we use optical data in
this study our time series has observation gaps during polar nights. Depending on latitude, this gap lasts about one month for

glaciers in south Greenland and up to three months for glaciers in north Greenland.
4.2 Long term, seasonal and subseasonal calving front changes

Marine terminating glaciers experience calving front variations at different time scales. While long-term changes are easy to
resolve using already available data products, our time series offers unique opportunities to analyze seasonal and sub-seasonal
terminus changes. To quantify these calving front changes we apply the well-established rectilinear box method (Moon and
Joughin, 2008). Rather than using a single profile to measure advance or retreat this method adopts a rectilinear box, thus
accounting for uneven changes along the calving front. Figure 6-7 shows the method applied to our calving front time series for
Jakobshavn Isbra which is separated here-into a northern and a southern branch. The inferred calving front variation exhibits
a pronounced annual pattern combined with smaller sub-seasonal fluctuations. For comparison, the derived time series of the

manually delineated ESA-CELESA-CCI product is shown. Although both datasets agree very well when it comes to comparing

11
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Figure 6. Temporal coverage of our ANN generated time series. The numbers and the color intensity indicate the amount of processed

calving front positions in the respective year. Glaciers are sorted by latitude from south (left) to north (right).
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Figure 7. Rectilinear box method applied to the ANN generated calving front time series for Jakobshavn Isbrae (west Greenland). The glacier,
which is separated into a northern and a southern branch, and the calving fronts are shown on the left. The corresponding time series are
depicted on the right. Here, calving front positions, expressed as a surface area, are marked by a dot. For the TUD product (black) solid lines
connect frontal positions of each year. Time series from the ESA-CCI product (blue) are shown for comparison. Landsat-8 image courtesy

of the U.S. Geological Survey.

singular epochs, the ESA-CCI time series does not reliably capture the temporal variationyariations. This is particularly evident

for the year 2014 when a whole annual cycle is missed by the manually delineated product.
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Figure 8. Example time series generated by our ANN algorithm for twelve Greenland glaciers. For each glacier a satellite image (left),
containing the color-coded calving front trajectories, and the corresponding time series (right) are shown. Here, calving front positions are
marked by black dots and solid lines connecting entries each year. Note that the ordinate axis is scaled differently for each glacier. Landsat-8

imagery courtesy of the U.S. Geological Survey.

Figure 7-8 presents twelve more examples of our ANN generated time series. Most of these glaciers exhibit pronounced sea-
sonal and sub-seasonal variations overlaid by a long-term signal. Except for Kangiata Nunaata Sermia (Fig. 78a), Ryder Glacier

245 (Fig.78b) and Hayes Glacier (Fig. 78h), all example glaciers are retreating during the analysed time period. Notably, Zachariae
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Isstrgm and Humboldt Glacier show an area loss of about 120 km? and 100 km? respectively. Ryder Glacier (Fig. 78b) and
Nioghalvfjerdsbre (Fig. 78d) are the only among the 23 glaciers in our study that do not undergo a pronounced seasonality. In
those cases, the calving front variation is characterized by a steady advance and the sporadic detachment of large kilometer-
sized icebergs. The date of detachment is precisely pinpointed by the time series. In the case of Nioghalvfjerdsbra (Fig. 78d),
the time series also separates-two-resolves two separate break-offs that occurred in close succession. Other glacier time series,
like Hayes Glacier (Fig.78h), Tracy Glacier (Fig.78j), Docker Smith Glacier (Fig.78k) and Harald Moltke Bra (Fig.78l),
reflect a change in calving rate during our observation period. For Harald Moltke Brz (Fig. 78l) the onset of this calving front
retreat, starting 2019, coincides with the end of its six year-long surging phase and has already been anticipated by Miiller et al.

(2021).

4.3 Comparison to the CALFIN, AutoTerm and TermPicks data product

In addition to the data set produced in this study, there are two other automatic delineation products with a circum-Greenland
coverage: the CALFIN data set by Cheng et al. (2021) and the AutoTerm repository by Zhang et al. (2023). Additionally, there
is the TermPicks database (Goliber et al., 2022), which comprises manually delineated calving front data from 19 different
authors. In this section, we will compare these three "big data” Greenland calving front datasets with the results of this study.
The comparison takes place on three levels. Firstly, we compare the general statistics and scope. Secondly, we compare results
over a reference period and reference glaciers defined according to their temporal and spatial overlap. Thirdly, we examine
individual examples.

Table 2 (columns 2 to 4) presents the general statistics for the four datasets. Our data set covers a relatively short time span
since we process imagery from the OLI and TIRS Landsat sensors, which have only been available since 2013. With 9243
mapped calving fronts over 23 glaciers our data product is smaller in both scope and size than the CALFIN, AutoTerm and
TermPicks products. When examining the number of calving front traces, it is important to understand that the definition of
what a single calving front contains varies from study to study. For instance, a single data entry in our dataset for the Upernavik
Isstrgm includes four calving front features. CALFIN lists three separate calving fronts for the same glacier, and AutoTerm
and Termpicks list two. For Jakobshavn Isbra, CALFIN considers the north and south branch separately, while in our data set
they are counted as one calving front. In addition, some of our predictions also include smaller neighboring glaciers that are
located on the same image tile (e.
which is included together with Kangiata Nunaata Sermia). Usually, this applies to glaciers of a single glacier system that were
previously connected. When counting shape file features, the number of entries in our data product contains 15130 entries.

To better compare differences in processing strategy, we define a reference period and reference glaciers by considering the
temporal (2013 to 2019) and spatial overlap (13 glaciers) of the four data sets. These glaciers are: Kangiata Nunaata Sermia,
Helheim Glacier, Kangerdlugssuaq Glacier, Jakobshayn Isbre, Sermeq Avangnardleq, Store Glacier, Rink Isbrae, Ingia Isbre,
Upernavik Isstrgm, Hayes Glacier, Sverdrup Glacier, Kong Oscar Glacier and Dgcker Smith Glacier. Within this reference
we looked at mapped fronts, sampling rate and unique entries. Results are given in Table 2 (columns 3 to 7). We consider

only one calving front ent; er day and per glacier. Effectively, this removes (1) duplicate delineations of the same scene

. Farquhar Glacier which is included together with Tracy Glacier or Akullersuup Sermia
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Table 2. Comparison of the CALFIN, AutoTerm, TermPicks product as well as the data product presented in this study. The reference period
(2013 to 2019) and the reference glaciers (13 glaciers) are defined by the temporal and spatial overlap of the four data products.

Reference period and glaciers

Dataset Glaciers Mapped fronts ~ Time span
Mapped fronts ~ Sampling rate (yr—*)  Unique entries
This study (Loebel et al., 2023) 23 9243 2013-2021 3005 33.02 372
CALFIN (Cheng et al., 2021) 66 22678 1972-2019 1322 14.53 15
AutoTerm (Zhang et al., 2023) 295 278239 1984-2021 7220 79.34 3724
TermPicks (Goliber et al., 2022) 278 39060 1948-2021 2287 25.13 505

(e.g. from multiple authors in the TermPicks data base or from the reference data which is included in CALFIN data set)
and (2) inconsistencies in what constitutes a single calving front entry. Although having the same Landsat data basis our data
product achieves a higher sampling rate and more unique front extractions than CALFIN. This is likely due to differences in
input feature selection and processing. AutoTerm has the most mapped and unique fronts as well as the highest sampling rate.
This is mainly due to its data basis which included Landsat, Sentinel-2 and Sentinel-1. Overall, 372 out of the 3005 calving
fronts extracted by our method within the reference were not extracted by CALFIN, AutoTerm or TermPicks although all use
Landsat-8 imagery.

Figure 9 shows the time series of CALFIN, AutoTerm and TermPicks compared to our study for four individual glaciers.
To maximise the sampling of the different data sets, we analyse a centre line profile instead of using the box method. The
mean distance for same-day calving front acquisitions d is indicated for each pair of time series. When examining these four
examples, we observe a generally good agreement between the time series. Significant differences exist only for Humboldt
Glacier (Fig. 9d). Here, the data quality of the AutoTerm product seems to be notably worse than for the other glaciers, with
large fluctuations up to 5 km in distance. This may be attributed to the glacier front’s large size, which, at least in our method,
required additional processing steps. For Kangiata Nunaata Sermia (Fig. 9b) our data product is the only one which captures

the signal from the seasonal ice tongue (Motyka et al., 2017; Moyer et al., 2017). This is reflected on the one hand in gaps in

2

the other data sets and on the other hand in a higher distance for some same-day acquisitions. Although Landsat imagery is
available, both CALFIN and AutoTerm have almost no calving front traces during the emergence, presence and disintegration
of this seasonal ice tongue. We suspect, that the multi-spectral input information of our processing leads to a better extraction
rate for scenes under these challenging conditions. All four examples highlight the varying sampling rates of the data products.
In particular, the AutoTerm dataset has not only the highest sampling rate but also coverage during polar night (see late 2017 in
Fig.9a and late 2017 in Fig. 9¢). The sampling rate of the TermPicks repository is lower than that of the automated processing.
systems in these four examples.

Compared to CALFIN, AutoTerm and TermPicks, our data product has the shortest time frame, lowest coverage and smallest
amount of overall mapped calving front traces. However, due to different processing and the addition of multi-spectral input
information our method is able to extract a significant amount of calving fronts, 13 % within the reference, that could not
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Figure 9. Comparison of the CALFIN, AutoTerm, TermPicks product (blue) to the data product presented in this study (black) for four

example glaciers. Time series are derived along the central flow line of the glacier. Every comparison specifies the mean distance d between

calving front delineations at identical days.

305 be extracted by the other methods. Importantly, these 13 % include extractions under challenging image conditions. For the
analyzed reference, our method has a temporal resolution second only to that of the AutoTerm product, which benefits from
multi-sensor input imagery. Overall, this comparison also presents a clear argument for the benefits of having multiple data
products on glacier calving fronts. Current data products differ in scope but also differ for duplicate extractions for identical
glacier front traces, often exceeding estimated delineation uncertainties. A better understanding of these differences is crucial

310 and requires further investigation. As a final point, we want to emphasise the potential of combining different glacier front
products. Greene et al. (2024) have demonstrated the advantages of such a combination for large-scale glaciological analyses.

5 Discussion

Changes in calving front position are, along with other observables like ice velocity and elevation change, part of a complex

feedback cycle between a glacier and its environment.
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80 % of Greenland glaciers also experience terminus changes on a seasonal and subseasonal basis (Black and Joughin, 2023)
, 2008b; Seale et al., 2011; Carr et al., 2013; Schild and Hamilton, 2013; Murray et al., 2015; Moon et al.
» glacier retreat typically starts in late spring with retreat rates peaking in late summer. A number of mechanisms have
been identified as controls for these seasonal terminus changes. These include the duration and timing of meltwater runoff
Sohn et al., 1998; Nick et al., 2010; Chauche et al., 2014; Carroll et al., 2016; Fried et al., 2018; Wood et al., 2021), changes in

. When a glacier is forced into a state of retreat, both the rate and pattern of retreat are modulated by the subglacial topography.
laciers in Greenland, this effect has been studied (Warren, 1991; Warren and Glasser, 1992; Joughin et al., 2008Db; !

and modelled (Enderlin et al., 2013; Morlighem et al.,

found to be associated with overdeepening and retrograde topography.
330 The new generation of automatically delineated calving front data products not only facilitates glaciological analysis in

terms of significant time savings, but may also provide new insights due to the high temporal resolution and spatial coverage.
Figure 8-10 shows our calving front time series for three example glaciers in relation to bedrock elevation, taken from the

320 studies (Joughin et al. 2015; Cas

2

For marine terminatin

2016; Choi et al., 2017) intensively. In particular, faster retreat rates were

BedMachine Greenland model-Motlichem; 2022)for four-example-claciers—Interaction-betweencalvine front-variation-a

335

Version 5 model (Morlighem, 2022). Profiles extend from point A to point B along a central flowline. The calving front of Ingia
Isbre (Fig. 810a) retreated from 2013 to the end of 2017 by 3.2 km (8.6 km? in area) with a pronounced seasonal pattern. Fhis
340 Due to retrograde topography (at ~4 km in Fig. 10a), this retreat is particularly rapid in 2647-and-2018—-We-suspeet-this-is-due
to-retrograde-topography—2016 and 2017. Since 2018, the calving front isteeated-has been in a topographic minimum-—Fhis
seems-to-prevent-a-fastretreat-and-significantly reduces-the-, preventing further retreat and reducing seasonal amplitude. 1n-the
ease-of Upernaviksstrgm-€ These observations confirm the analysis of Catania et al. (2018), which described the continuous
retreat of Ingia Isbree from 2002 to 2016 and suggested further retreat by more than 1 km until the calving front stabilises on

345 the prograde bed topography. The calving front change of Kangerdlugssuaq Glacier (Fig. 8b)~-there-was-atrapid-deeline-in 2044

high seasonal amplitudes as well as a significant retreat from 2016 to early 2018. With the exception of 2017 and 2018, where
we observe a sustained retreat, the seasonal amplitude remains almost constant at around 4 km (in-area)in2020-to-a-maximum

350 eoftnarea)in2019-This-could-berelated-to-the-prograde-bedro ope,-whichleads-to-a-floating-and-e able-glacter-tongue
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Figure 10. Effect of bedrock topography of calving front variation for (a) Ingia Isbre, (b) Kangerdlugssuaq Glacier and (¢) Daugaard Jensen

Glacier. Shown are (from left to right) a satellite image with calving front trajectories as well as a marked profile, bedrock topography and

color-coded calving front positions along this profile and the corresponding time series of calving front variation. Note that the axes are

scaled differently for each glacier. Landsat-8 imagery courtesy of the U.S. Geological Survey.

during rapid-ghacieradvance21 kim? in area). This calving front pattern is also described by Kehrl et al, (2017). Furthermore,
the authors show that Kangerdlugssuaq’s grounding line has retreated in 2010 and 2011 to a stable bedrock position (bedrock
bump at ~10km in Fig. 10b), resulting in a floating ice tongue of ~5km in length. Due to the retrograde bedrock topography.
after the bedrock bump (from 10 km to 15 km in Fig, 10b) and the reinitialization of the seasonal terminus pattern from 2019
10 2021, we suspect that the calving front retreat from 2016 to 2018 is coupled with a grounding line retreat on retrograde

bed topography followed by a restabilisation further inland (likely at 15.5km in Fig. 10b). This would confirm the second
scenario suggested by Brough et al. (2019). The calving behavior of Daugaard Jensen Glacier (Fig. 810c) is influenced by the

abrupt change of bedrock slope near—close to the frontal position. An advance beyond this point, from a slightly retrograde

into a steeply prograde topography, resultsin-afleating-tee-tongueleads to a loss of basal drag and longitudinal stresses. This
influences calving behaviour, and in particular fesu}ts—ﬂffheea}vmg—eﬂafge{ﬂbtﬂafieebefgs—ﬂﬁ&favors calving of tabular
icebergs like in 2013 (8.2km? in size-
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size). Although Daugaard Jensen’s glacier front has remained roughly at this location for over 70 years (Stearns et al., 2005)
and is considered to be stable (Bevan et al., 2012b). temporally high resolution calving front information is still necessary to
resolve and understand these stable glacier dynamics. More generally, high temporal resolution calving front information not
only allow to analyze glacier retreat and advance, but also to better differentiate between different calving styles and patterns.

6 Conclusions

This study presents a deep learning based processing system for automatic delineation of calving front locations from multi-
spectral Landsat-8 imagery. Using three independent test datasets we validate the performance and spatial transferability of our

processing system. The quality of the automatically extracted calving fronts is comparable to that of manually delineated calv-

ing fronts. By-evereoming-Our method enables a considerably higher extraction rate compared to other automation methods

that use the same data basis. Importantly, this higher extraction rate is partly due to the ability to perform extractions under
challenging cloud, illumination and ice mélange conditionsw i i i

delineated-dataproeduets. Qur resulting data product, which includes 9242 calving fronts over 23 Greenland glaciers, is therefore

a valuable contribution to the existing data repositories.
The presented method and the resulting data product addresses-address the needs of the glaciology community for a com-

prehenswe parametenzanon of glacier calv1ng in Greenland. The pfeseﬂtedre*amp}e—&m&seﬂeﬂﬂghhg{%fheﬁtg}ﬁempefa}

long-term, seasonal and sub-seasonal calving front variations. The benefit is particularly significant for large glaciers where
there is a lack of manual delineated data, such as Humbold Glacier, Zachariae Isstrgm and Nioghatvijerdsbree-are;among

#tmeNioghalvfjerdsbrae. Due to the spatial transferability of this method, our processing system has the potential to be applied
to other marine-terminating glaciers around the world.
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Altheugh-By the time series presented in this paper, we give only a selected and-a-rather-narrow-glimpse into the dynam-
395 ics of these glaciers;—it-is-highly-impertant-to-note-that-. However, the demonstrated capability of automatically resolving
the sub-seasonal calving front variations is an important step forward towards a spatially comprehensive Greenland—wide
Greenland-wide monitoring system. In conjunction with other components concerning ice flow, elevation change, solid earth
response and hydrological processes, this will open up new opportunities to integratively assess, model and simulate dynamic
ice sheet changes. Advancing towards this digital twin of the Greenland Ice Sheet will improve our understanding of its evolu-

400 tion and its role within the broader Earth climate system.
Intelligent processing strategies, like deep ANN, will play a major role in shaping the future of glacier monitoring and

associated modelling tasks. This is especially true for analyzing the increasing amount of remote sensing imagery. Well-trained

and thoroughly validated ANN will be state-of-the-art for automated calving front delineation. The results presented in this
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480 Code and data availability. The following assets are published along with this article:
— The data product of automatically delineated calving front positions (format: ESRI shapefile), containing 9243 calving front positions

across 23 Greenland outlet glaciers, is available at http://dx.doi.org/10.25532/OPARA-208 (Loebel et al., 2023).
— All reference data applied in this study is available at http://dx.doi.org/10.25532/OPARA-282 (Loebel et al., 2024). In particular,
this includes 898 manually delineated calving front positions provided in a georeferenced shapefile format, as well as 1220 machine

485 learning ready raster subsets (pre-processed, 9 channels) with their corresponding manual delineated segmentation mask.
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— We provide a containerized implementation (platform: Docker) of the presented processing system. The software automatically extracts
calving front positions from Landsat-8 or Landsat-9 Level-1 data archives for glaciers used within this study or at user-defined coordi-
nates. This enables the analysis of glaciers that are outside our reference dataset or beyond the temporal frame of our study. The software
is available at https://github.com/eloebel/glacier-front-extraction (last access 24 March 2023) and
https://doi.org/10.5281/zenodo.7755774 (Loebel, 2023a).

— Our implementation (software: Python 3) of the rectilinear box method is available at https://github.com/eloebel/rectilinear-box-method

(last access 24 March 2023) and https://doi.org/10.5281/zenodo.7738605 (Loebel, 2023b).
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