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Abstract. The mass balance of the Greenland ice sheet is strongly influenced by the dynamics of its outlet glaciers. Therefore,

it is of paramount importance to accurately and continuously monitor these glaciers, especially the variation of their frontal

positions. A temporally comprehensive parameterization of glacier calving is essential to understand dynamic changes and

to constrain ice sheet modelling. However, current calving front records are often limited in temporal resolution as they rely

on manual delineation, which is laborious and not feasible with the increasing amount of satellite imagery available. In this5

contribution, we address this problem by applying an automated method to extract calving fronts from optical satellite imagery.

The core of this workflow builds on recent advances in the field of deep learning while taking full advantage of multispectral

input information. The performance of the method is evaluated using three independent validation datasets.
:::
test

::::::::
datasets.

:::
We

:::::::
calculate

:
a
:::::
mean

::::::::::
delineation

::::
error

::
of 61.2m,

:
73.7m

:
,
:::
and

:
73.5m

:
,
::::::::::
respectively.

:
Eventually, we apply the technique to Landsat-8

imagery. We generate 9243 calving front positions across 23 Greenland outlet glaciers from 2013 to 2021. Resulting time series10

resolve not only long-term and seasonal signals but also sub-seasonal patterns. We discuss the implications for glaciological

studies and present a first application analysing the interaction between calving front variation and bedrock topography
::
to

:::
the

::::::
analysis

:::
of

::
the

:::::
effect

:::
of

::::::
bedrock

::::::::::
topography

::
on

:::::::
calving

::::
front

::::::::
variations. Our method and derived results represent an important

step towards the development of intelligent processing strategies for glacier monitoring, opening up new possibilities for

studying and modelling the dynamics of Greenland outlet glaciers. Thus, these also contribute to advance the construction of15

a digital twin of the Greenland ice sheet, which will improve our understanding of its evolution and role within the Earth’s

climate system.

1 Introduction

Over the past two decades, the Greenland Ice Sheet has been a major contributor to sea level rise (Horwath et al., 2022). Mod-

els suggest, that this imbalance will continue with a warming climate (Goelzer et al., 2020; Edwards et al., 2021; Rückamp20

et al., 2020). About half of the ice mass loss is due to increased meltwater runoff, while the other half is caused by dynam-
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ical imbalance (The IMBIE Team, 2020)
:::::::::::::::::
(Otosaka et al., 2023). While changes in the surface mass balance are forced by the

atmosphere, the dynamic imbalance is driven by changes at the ice-ocean boundary formed by the outlet glaciers that drain

the Greenland Ice Sheet. Here, several mechanisms act as controls and indicators for dynamic glacier changes. In particular,

calving and calving front variations have been identified as crucial parameters for investigating the physical mechanisms of25

Greenland outlet glaciers (Joughin et al., 2008a; Moon and Joughin, 2008; Benn et al., 2017; Trevers et al., 2019; Cook et al.,

2021; Melton et al., 2022). In addition, recent studies have shown that calving front retreat is associated with increased ice

discharge (King et al., 2018; Mouginot et al., 2019; King et al., 2020). An accurate representation of calving front behaviour

is therefore an important requirement for constraining ice sheet modelling and improving simulations of future mass loss and

sea level contribution (Vieli and Nick, 2011; Bondizo et al., 2017; Morlighem et al., 2017, 2019). Overall, temporally and spa-30

tially comprehensive data products of calving front variation are essential for a better understanding and modelling of marine

terminating glaciers.

The steady increase in quality and availability of satellite imagery provides new opportunities for a continuous and accurate

monitoring of glacier calving front positions. Nevertheless, current data records mostly rely on manual delineation (Schild and

Hamilton, 2013; Joughin et al., 2015; ENVEO, 2017; Andersen et al., 2019; King et al., 2020; Goliber et al., 2022; Black35

and Joughin, 2023). This is a laborious, time-consuming and therefore ineffective process, given the ever-increasing volume

of data. Thus, such calving front products often lack temporal resolution, making seasonal analysis and associated modelling

efforts difficult. In response to the need for scalable processing strategies, several empirical feature extraction algorithms have

been introduced over the last decades, all aiming to provide robust automated calving front extraction (Sohn and Jezek, 1999;

Liu and Jezek, 2004; Seale et al., 2011; Rosenau, 2014; Krieger and Floricioiu, 2017; Liu et al., 2021). Yet, most of these40

methods are either not tested for spatial transferability and large-scale application, or require case-specific modifications.

With the advent of deep learning and big data methods in remote sensing, new opportunities have emerged to solve complex

image processing tasks (Zhu et al., 2017). In recent years, a number of case studies have used deep Artificial Neural Networks

(ANN) to extract calving front positions. Both optical (Mohajerani et al., 2019) and synthetic aperture radar (SAR) (Zhang

et al., 2019; Baumhoer et al., 2019) sensors have been used. Based on this
::::
these

::::
case

:::::::
studies, numerous studies have advanced45

the ANN architecture (Heidler et al., 2021; Marochov et al., 2021; Periyasamy et al., 2022; Davari et al., 2022b,a; Heidler et al., 2022)

,
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Heidler et al., 2021; Marochov et al., 2021; Periyasamy et al., 2022; Davari et al., 2022b,a; Heidler et al., 2023; Herrmann et al., 2023; Wu et al., 2023)

:
,
::::
have assessed potential input information (Loebel et al., 2022) and

::::
have

:
pursued the multi-sensor capability (Zhang et al.,

2021). In addition, dedicated data products have been developed for training and validation (Goliber et al., 2022) as well

as benchmarking (Gourmelon et al., 2022) of ANN applications. Cheng et al. (2021) published the first and only
:::
The

::::::
results50

::::
from

::::::::::::::::
Cheng et al. (2021)

:::
and

::::::::::::::::
Zhang et al. (2023)

:
,
::::::
namely

:::
the

::::::::
CALFIN

:::
and

:::::::::
AutoTerm

::::::::::
repositories,

:::
are

::::::::
currently

:::
the

::::
only

::::
two

automatically generated data product
:::
sets

:
of calving front locations with a Greenlandic

:::::::::::::
Greenland-wide scope.

Building on these achievements, this paper discusses the application and extensive validation of a specially tailored deep

learning method for automated calving front extraction using Landsat-8 optical imagery. In doing so, we provide a data product

for 23 Greenland outlet glaciers from 2013 to 2021.
::
We

::::::::
compare

:::
this

::::
data

:::::::
product

::
to

:::::::
CALFIN

::::
and

:::::::::
AutoTerm

::::::::::
repositories. By55

exploiting the full multispectral sensor information, we achieve a more accurate and robust calving front extraction compared
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to using only single band inputs. This significantly increases the temporal resolution of the final product. Thus, the time

series of many of the glaciers processed are of unprecedented temporal resolution, resolving their sub-seasonal calving front

variability for the first time
:::
our

::::::
method

::
is
::::
able

::
to

::::::
extract

:
a
:::::::::
significant

::::::
amount

:::
of

::::::
calving

:::::
fronts

:::
that

:::::
could

:::
not

:::
be

:::::::
extracted

:::
by

:::
the

::::
other

::::::::::
automation

:::::::
methods. By achieving this robust and comprehensive parameterization of glacier calving in Greenland, we60

meet the glaciology community requirement and make an important first step
::::::::
important

::::
steps

:
towards establishing intelligent

processing strategies for glacier monitoring tasks. Overall, we provide the wider cryosphere community with a methodology,

a data product and implementation,
::
a

:::::::::
comparison

::
to
:::::::
existing

::::::::
products,

:
as well as a discussion of glaciological implicationsthat

open up new possibilities for studying and modelling Greenland glacier dynamics.

Section 2 introduces the
::::
data

:::
and

:::
the

:
applied deep learning method for automated calving front extractionand .

:::::::
Section

::
365

gives an assessment of its accuracy
::
the

::::::::
accuracy

::
of

:::
our

:::::::
method

:::
and

::
its

::::::
spatial

::::::::::::
transferability. In Section 4 we present our data

productand ,
:
the derived time series

:::
and

::
a

:::::::::
comparison

:::
to

::::::
existing

::::
data

::::::::::
repositories. As part of the discussion in Section 5, we

provide a first
::
an application of our results to analyse the interaction between calving front change and bedrock topography.

Finally, in Section 6 we draw conclusions and provide an outlook.

2 Delineating calving fronts by deep learning
::::
Data

:::
and

::::::::
Methods70

2.1 Neural network processing

For automated calving front extraction, we apply a modified version of the approach published by Loebel et al. (2022). In

doing so, we process multispectral
:::
The

::::::::
presented

:::::::::
processing

::::::
system

:::::::
extracts

::::::
glacier

::::::
calving

::::
front

:::::::::
shapefiles

::::
from

:::::::::::
multispectral

Landsat-8
:::::::
imagery.

::
In

:::
this

:::::::
process,

:::
we

::::
use

::::::
satellite

::::::::
imagery

::
as

::::::::
reference

::::
data

:::
and

:::::
apply

::
a
:::::::::
specialized

::::::
ANN.

::::
This

:::::::
involves

::
a

:::::
series

::
of

:::::::::
processing

::::
steps

::::
and

::::::::::::
configurations

:::::
which

:::
are

:::::::
explored

::
in
:::
the

:::::::::
following

::::::
section.

:
75

2.1
::::
Data

::::::
source

:::
Our

:::::::::
processing

:::::::
system

::
is

:::::
based

:::
on

::::::
optical

:::::::::
Landsat-8

:
imagery(Appendix ??) using a specialized ANN (Appendix ??). In

particular, we use a convolutional neural network of the U-Net architecture (Ronneberger et al., 2015) to semantically segment

multispectral imagery into a glacier/land and water class. The glacier calving front, which is described by the boundary between

these two classes, is then extracted by vectorizing and masking the model prediction. Figure 1 gives a broad overview of the80

processing workflow. Larger glaciers, exceeding the fixed window size, are processed by separating the region of interest into

multiple independent predictions which are then averaged in the overlapping area prior to vectorization (Baumhoer et al., 2019)

. The associated reference data (Appendix ??), which is instrumental both in training and validating machine learning applications,

is build from .
::::

We
:::
use

:::
the

:::::::::::
orthorectified

::::
and

::::::::::::
radiometrically

:::::::::
calibrated

::::::
level 1

:::
data

::::::::
products

::
as

::::::::
provided

::
by

:::
the

::::::
United

::::::
States

:::::::::
Geological

::::::
Survey

::::::::::::::::::::::::::
(U.S. Geological Survey, 2023).

::::::::
Carrying

::::
two

::::::::
scientific

::::::::::
instruments,

:::
the

::::::::::
Operational

:::::
Land

::::::
Imager

::::::
(OLI)85

:::
and

:::
the

:::::::
Thermal

:::::::
Infrared

::::::
Sensor

:::::::
(TIRS),

:::::::::
Landsat-8

:::::::
provides

::
a
::::::::::
particularly

::::
wide

:::::::::::
multispectral

::::::::
coverage.

::::
The

::::::
eleven

:::::::
spectral

:::::
bands

::::::::
comprise

::::
data

:::::
from

::::::
visible,

::::::::::::
near-infrared,

:::::::::
short-wave

:::::::
infrared

::::
and

:::::::
thermal

:::::::
infrared

:::::::::::
wavelengths,

:::::
from

:
0,435 µm

::
to
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Figure 1.
:::::::
Overview

::::
map

::
of

:::
the

::
23

::::::::
Greenland

::::::
glaciers

::::
used

:
in
:::

the
::::
TUD

:::::::
reference

::::::
dataset.

:::::::
Glaciers

::::::
marked

::
by

:
a
:::
red

:::
dot

::
are

::::
used

:::
for

::::::
training

:::
and

::::::
testing.

:::::
White

:::
dots

:::::::
indicate

::::::
glaciers

::::
only

::::
used

::
for

::::::
model

::::::
testing.

:::
Not

::
on

::::
this

::::
map:

::::::
Boydell

::::::
Glacier

::::::::::
(Antarctica),

::::::::
Drygalski

::::::
Glacier

:::::::::
(Antarctica),

::::::::
Storbreen

:::::
Glacier

:::::::::
(Svalbard)

:::
and

:::::
Upsala

::::::
Glacier

:::::::::
(Patagonia)

:::::
which

::
are

::::
only

::::::
applied

:::
for

:::::
model

:::::
testing.

::::
The

:::::::
basemap

:
is
:::::
taken

:::
from

:::
the

:::::::::
QGreenland

:::::::
package

::::::::::::::
(Moon et al., 2022)

:
.

1,384 µm.
:::::
With

::::::::
exception

::
to

:::
the

::::::::::::
panchromatic

::::
band

::::
and

:::
the

:::
two

:::::::
thermal

::::::
bands,

:::::
which

:::::
have

:
a
::::::
spatial

::::::::
resolution

:::
of 15m

:::
and

100m
::::::::::
respectively,

:::
all

::::
other

::::::
bands

::::
have

:
a
::::::::
resolution

:::
of 30m

:
.
:::::
Apart

::::
from

::::
band

::
9,

:::::
which

::
is
::::::
outside

:::
an

::::::::::
atmospheric

:::::::
window

::::
and,

::::::::
therefore,

:::::::
intended

:::
for

::::::::::
atmospheric

::::::::::::
observations,

::
all

::::::::
available

:::::
bands

:::
are

::::
used

:::
as

::::
input

:::
for

:::
our

::::::
ANN.

::::
The

:::::::::
integration

::
of

:::::
these90

::::::::::
multispectral

::::::
bands

::::
leads

:::
to

::::::::
generally

::::
more

::::::::
accurate

:::::::::
predictions

::::
than

:::::
using

:::::::::::
conventional

::::::::::
single-band

:::::
inputs

:::::
only,

:::::
which

::::
has

::::::
already

::::
been

::::::
shown

::
by

:::::::::::::::::
Loebel et al. (2022).

::::
This

::
is

::::::::
especially

::::
true

:::
for

:::::::
difficult

::::::::::
illumination

:::
and

:::::::::::
ice-melange

:::::::::
conditions.

2.2
::::::::

Reference
:::::::
dataset

:::
We

:::
use manually delineated calving front positions. To train the ANN model

:::::::
locations

::
as

::::::::
reference

::::
data.

:::
For

::::::
model

:::::::
training, we

use 698 calving front locations from
:::::::
positions

:::::
across

:
19 Greenland glaciers between 2013 and 2019.

:::::::
Glaciers

:::
are

:::::::
selected

:::
for95

::::
their

:::::
broad

:::::
spatial

::::::::::
distribution

:::
and

::::::
diverse

::::::::::
morphology

:::
as

:::
well

:::
as

::
for

::::::::
different

::::::
calving

:::
and

:::::
ocean

:::::::::
conditions.

::
A
::::::
spatial

::::::::
overview
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Figure 2. High-level overview of the applied workflow for automated calving front extraction. Based on multispectral satellite imagery

in visible (VIS), short-wave infrared (SWIR) and thermal infrared (TIR) wavelengths, the ANN performs a pixel-wise semantic image

segmentation. The final calving front position is obtained after vectorizing and masking the ANN prediction. Landsat-8 image courtesy of

the U.S. Geological Survey.

::
of

::
all

:::::::::
Greenland

:::::::
glaciers

:::::::
applied

::
in

:::
this

:::::
study

::
is

:::::
given

::
in

::::::
Figure

::
1.

:
As the performance of ANN methods highly depends on

training data we pay special attention to cover a diversity of morphological features,
:::::::
terminus

::::
with

:::::
heavy

:::::::::
crevassing,

:
different

calving and ice mélange conditions as well as varying illumination and cloud situations.
:::
To

:::
test

:::
the

::::::
model

:::
we

:::::
apply

:::::
three

:::::::
different

::::::
testing

::::
sets.

::::
The

::::
TUD

::::::
testing

::::::
dataset

::::::::
includes

::::
four

::::::::
additional

:::::::::
Greenland

:::::::
glaciers,

:::::::
Boydell

::::
and

::::::::
Drygalski

:::::::
Glacier

::
at100

::
the

:::::::::
Antarctic

::::::::
Peninsula,

:::::::::
Storbreen

::::::
Glacier

:::
in

:::::::
Svalbard

:::
as

::::
well

::
as

::::::
Upsala

:::::::
Glacier

::
in

:::::::::
Patagonia.

::
In

:::::
total,

:::
the

:::::
TUD

::::::
testing

:::
set

:::::::
contains

:::
200

:::::::
calving

::::
front

::::::::
positions

::::::
across

:::
27

::::::
glaciers

:::::
from

:::::
2020

:::
and

:::::
2021.

:::
In

:::::::
addition

::
to

:::
our

:::::
own

::::::
testing

::::
data

::
set

:::
we

::::
use

:::::::
manually

:::::::::
delineated

:::::::
calving

:::::
fronts

:::::
from

:::
the

::::::::
ESA-CCI

::::::::::::::
(ENVEO, 2017)

:::
and

:::
the

::::::::
CALFIN

:::::::::::::::::
(Cheng et al., 2021)

:::::::
product.

:::::
Here,

::
we

::::
use

::
all

::::::::
available

::::::
calving

:::::
front

::::::::
positions

:::
for

:::
our

:::::::
selected

:::::::::
Greenland

:::::::
glaciers

:::
for

:::::
which

:::
we

::::
find

:
a
::::::::::::
corresponding

:::::::::
Landsat-8

::::
scene

::::
with

::::
less

::::
than

::
24

:::::
hours

::::
time

:::::::::
difference.

::::
This

::::::
results

::
in

:::::::::
additional

:::
100

::::::::
manually

:::::::::
delineated

::::::
calving

::::
front

::::::::
positions

:::
for

:::
the105

::::::::
ESA-CCI

:::
and

::::
110

::
for

:::
the

::::::::
CALFIN

::::::
testing

:::::::
datasets.

:

2.3
:::::::::

Delineating
:::::::
calving

:::::
fronts

:::
by

:::::
deep

:::::::
learning

:::
For

:::::::::
automated

::::::
calving

:::::
front

:::::::::
extraction,

:::
we

:::::
apply

:
a
::::::::

modified
:::::::
version

::
of

:::
the

::::::::
approach

::::::::
published

:::
by

::::::::::::::::
Loebel et al. (2022)

:
.
::::
The

::::
main

:::::::::
difference

::
is,

::::
that

::
we

:::::
only

:::
use

:::
the

:::::::::::
multi-spectral

::::::::::
information

::::
and

::
no

:::::::
textural

:::
and

:::::::::::
topographic

:::::::
features.

::::
This

:::::::
reduces

:::
the

::::
input

:::::
from

::
17

::
to
::::
nine

::::::
layers.

:::::::::::
Additionally,

:::
we

:::::
have

::::::::
expanded

:::
the

::::::::
reference

::::
data

:::
set

::
by

::::
170

::::::
entries.

::::::
These

::::
new

::::::
calving

:::::
front110

:::::
traces

::::
focus

::::::::::
specifically

:::
on

::::::
cloudy,

:::
low

::::::::::
illumination

::::
and

:::::
scene

:::::
border

::::::::::
conditions,

::::::
thereby

:::::::::
enhancing

:::
the

::::::
method

::
in

::::
this

::::::
regard.

:::::
Figure

::
2

::::
gives

::
a
:::::
broad

::::::::
overview

::
of

:::
the

:::::::::
processing

::::::::
workflow.

:

2.4 Validation

Our

2.3.1
:::::::::::::
Pre-Processing115

5



::
To

:::
use

::::
the

:::::::
satellite

::::
data

::
as

:::::
input

:::
for

:::
the

:::::
ANN

:::::::
requires

:::::::::::::
pre-processing.

::
In
:::::::::

particular,
:::
we

::::::
create

::::::
stacked

::::::
raster

::::::
subsets

:::::
from

::
the

::::::::::::
multispectral

:::::::
satellite

:::::
bands

::::
and

:::
the

:::::::::
manually

:::::::::
delineated

::::::
calving

:::::
front

:::::::::
locations.

:::::
These

:::::::
subsets

::::
have

::::::::::
dimensions

:::
of

:

512
::::::::::
px× 512 px

::::
with

:
a
:::::::
unified 30m

:::::
ground

::::::::
sampling

:::::::
distance

::::
and

:::
are

:::::::
centered

:::
on

:::
the

::::::
calving

:::::
front

::
of

:::
the

::::::::
respective

:::::::
glacier.

:::
For

::::
each

:::::::::::
multispectral

::::
band

:::
we

:::::
apply

::
an

::::::
image

:::::::::::
enhancement

::
in

::::
form

:::
of

:
a
:::::::::
cumulative

:::::
count

::::
cut,

:::::::
clipping

:::
the

::::
data

:::::::
between

:::
the

:::
0.1

:::
and

::
98

:::::::::
percentile,

::::::::::::
counteracting

:::::::::::
overexposure

::
in

:::
our

:::::::
satellite

:::::::
imagery.

:::::::::::
Additionally,

:::
all

::::::
satellite

:::::
bands

:::
are

::::
then

::::::::::
normalized120

::
to

:::
the

:::::
range

:::::::
between

::
0

:::
and

::
1
:::::
using

::
an

:::::
8-bit

:::::::::::
quantization.

::::::::::::
Corresponding

::::::::
manually

:::::::::
delineated

:::::::
calving

::::
front

:::::::::
positions,

:::::
given

:::::
either

::
as

:
a
::::
line

:::::
string

::
or

::::::::
polygon

::::::::
shape-file,

:::
are

:::::::::
processed

::::
into

:::::
binary

:::::
raster

::::::
masks

::::::::::
segmenting

::::
land

:::
and

::::::
glacier

:::::
from

::::::
ocean.

:::::::::
Altogether,

:::
one

:::::::
stacked

:::::
raster

:::::
subset

:::::::
includes

::::
nine

:::::::
satellite

:::::
bands

::::
and

:
a
::::::::
matching

::::::
ground

::::
truth

::::::
mask.

2.3.2
::::::::
Semantic

:::::
image

::::::::::::
segmentation

::
To

::::::
extract

:::
the

::::::
calving

:::::
front

:::::::
location

::::
from

:::
the

::::
input

:::::::
images

::
we

:::::
apply

::
a

:::::::::::
convolutional

:::::
neural

:::::::
network

::::
that

::::::::
performs

:
a
:::::::::
pixel-wise125

:::::::
semantic

:::::
image

::::::::::::
segmentation,

:::::::::
separating

:
a
::::::::::
glacier-land

::::
class

:::::
from

:
a
:::::
water

:::::
class.

::
In

::::::::
particular,

:::
we

:::
use

::
a

:::::
U-Net

::::
type

::::::::::
architecture

:::::::::
introduced

::
by

:::::::::::::::::::::
Ronneberger et al. (2015)

:
.
::::
This

::::::::::
architecture

:::::::
consists

::
of

::
a
::::::::::
contracting

::::
path,

::::::::::
resembling

:
a
::::::
typical

::::::::::::
convolutional

:::::::
network

:::::
where

::::::
spatial

:::::::::
resolution

::
is

:::::::
reduced

:::::
while

:::::::
feature

::::::::::
information

::
is

:::::::::
increased,

:::::::
followed

:::
by

:::
an

:::::::::
expanding

::::
path

::::::
where

::::::
feature

:::
and

::::::
spatial

::::::::::
information

:::
are

::::::::::
combined.

:::
The

::::::::
receptive

:::::
field

::
of

::
a
::::::
U-Net

::
is

::::::
defined

:::
by

:::
the

:::::::
number

::
of

::::::::::
contracting

::::
and

::::::::
expanding

::::::
blocks.

:::
As

::::::
calving

:::::
front

::::::::
extraction

:::::
needs

::::::::
adequate

:::::
spatial

:::::::
context

:::::::::::::::::
(Heidler et al., 2021)

::
in

:::
this

:::::
study

:::
we

:::::::
enhance

:::
the130

:::::
U-Net

::
by

::::
two

::::::::
additional

:::::::::
resolution

::::::
levels,

:::
i.e.

::::
from

::::
four

::
to

:::
six.

:

:::
Our

::::::
model

:
is
:::::
fitted

:::::
using

:::
the

:::::::::::
pre-processed

:::::::
training

::::
data.

::::::
Before

:::::::::
initializing

:::
the

:::::
model

:::::::
training

:::
we

:::::
select

:::::
every

:::
fifth

::::::
image

::
of

::
the

:::::::
training

::::::
dataset

:::
for

::::::
internal

:::::::::
validation.

::::
The

::::::::
remaining

:::::::
training

::::
data

::
is

:::::::::
augmented

::::::::
eightfold

::
by

:::::::
rotating

:::
and

:::::::
flipping.

:::::::
Finally,

::
the

::::::::
resulting

::::
6208

:::::
raster

:::::::
subsets

:::
are

::::
used

:::
for

:::::
fitting

:::
the

::::::
model.

:::
For

::::
this,

:::
we

:::
use

::::::::::
randomized

::::::
batches

::
of

::::
size

::::
eight

::::
and

:::::
apply

:::
the

:::::
Adam

:::::::::::
optimization

::::::::
algorithm

::::::::::::::::::::
(Kingma and Ba, 2014)

::
on

:
a
::::::
binary

:::::::::::
cross-entropy

::::
loss

:::::::
function

:::
for

::
a

::::
total

::
of

:::
200

:::::::
epochs.

:::::
Final135

:::::
model

::::::::
weights

:::
are

:::::::
selected

:::::
based

::
on

:::
the

:::::::::::
classification

::::::::
accuracy

::
of

:::
the

::::::
internal

:::::::::
validation

::::::
dataset.

:

:::
The

:::::
ANN

:::::::::
processing

::
is

:::::::::::
implemented

:::::
using

:::
the

::::::::::::
TensorFlow 2.4

::::::
library

::::::::::::::::
(Abadi et al., 2015)

:
.
::::::
Model

::::::
training

::
is

::::::
carried

:::
out

:::
on

::
an

::::
IBM

::::::
Power

:
9
:::::

node
:::
and

:::
an

::::::::
NVIDIA

:::::
V100

::::
GPU

::::
with

::::::
32 GB

::::
high

:::::::::
bandwidth

::::::::
memory.

::::
The

::::::
training

:::
of

:::
one

::::::
model

:::::::
requires

::::
about

::::::
twelve

:::::
hours

::::
with

::
a

::::
main

:::::::
memory

:::::::::
utilization

::
of

::::::
80 GB

:::
and

::
an

:::::::
average

:::::
GPU

:::::
power

:::::::::::
consumption

::
of

::::::
265 W.

:

2.3.3
:::::::::::::
Post-Processing140

::
As

::::::
output

:::
of

:::
the

:::::
ANN

::::::
output

:::
we

::::::
derive

:
a
:::::::

floating
:::::

point
:::::::
number

::::::::::
probability

:::::
mask

:::::
where

:::::
each

:::::
image

:::::
pixel

::
is
::::::::

assigned
::
a

:::::::::
probability

:::::::
between

::
0

::::::
(water)

:::
and

::
1
:::::::
(glacier

:::
and

:::::
land).

:::::::
During

:::::::::::::
post-processing,

:::
we

::::::::
vectorize

::::
this

:::::::::
probability

:::::
mask

:::::
using

:::
the

:::::::::
Geospatial

::::
Data

::::::::::
Abstraction

::::::
Library

::::::::
(GDAL)

::::::
contour

::::::::
algorithm

::::::::::::::::::::::::::::
(GDAL/OGR contributors, 2020)

::::
with

:
a
::::::::
threshold

::
of

:::
0.5

::::
and

:::::::
separate

::
the

:::::::
longest

::::::
feature.

::::::::::
Eventually,

::
we

::::::
extract

:::
the

:::::::
glacier’s

:::::::
calving

::::
front

:::
by

:::::::::
intersecting

:::
the

:::::::::
vectorized

::::::::
coastline

::::::::
trajectory

::::
with

:
a
:::::
static

:::::
mask.

::::
This

:::::
mask

::
is

::::::
created

::::::::
manually

:::
for

::::
each

::::::
glacier

:::
and

::::::::
specifies

:
a
:::::::
corridor

:::
of

:::::::
possible

::::::
calving

::::
front

:::::::::
locations.145

::::::
Calving

::::::
fronts

::::::::
exceeding

:::
the

:::::::::::::
512 px× 512 px

:::::::
window

:::
are

::::
split

::::
into

:::::::
multiple

::::::::::
independent

::::::::::
predictions

:::::
which

:::
are

::::
then

::::::::
averaged

::
in

:::
the

::::::::::
overlapping

:::
area

::::::
before

::::::::::::
vectorization.

::::::::
Applying

:::
this

:::::::
strategy,

::::::
which

::
is

::::::::
motivated

:::
by

:::::::::::::::::::
Baumhoer et al. (2019),

:::::::::
Zachariae
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::::::
Isstrøm,

::::::::::::::::
Nioghalvfjerdsbrae

::::
and

::::::::
Humboldt

::::::
Glacier

:::
are

::::
split

:::
into

::::
two,

:::::
three

:::
and

:::::
seven

:::::::
separate

::::::::::
overlapping

:::::::::
predictions,

:::::::::::
respectively.

3
::::::::
Accuracy

::::::::::
assessment150

:::
Our

:
own TU Dresden (TUD) testing set contains 200 labeled images from the years 2020 and 2021. We emphasize that they

are temporally separated from the years of the training datasets. To ensure spatial transferability of our method this validation

:::
test data set includes imagery for additional four Greenland glaciers, two glaciers at the Antarctic Peninsula, one glacier in

Svalbard and one glacier in Patagonia. In addition to our own testing dataset we apply another 100 manually picked calving

fronts provided by the ESA Greenland Ice Sheet CCI project (ENVEO, 2017) and 110 provided by the CALFIN product155

(Cheng et al., 2021). Figure 2 gives a spatial overview of the Greenland glaciers used within this study. Overview map of

the 23 Greenland glaciers used in the TUD reference dataset. Glaciers marked by a red dot are used for training and testing.

White dots indicate glaciers only used for model testing. Not on this map: Boydell Glacier, Drygalski Glacier, Storbreen

Glacier and Upsala Glacier which are only applied for model testing. The basemap is taken from the QGreenland package

(Moon et al., 2022).160

3.1
::::

Error
::::::::::
Estimation

Accuracy assessment for the three independent test datasets. Every horizontal line inside the ’violin graphs’ represents one

trained model applied to the test dataset. The vertical extent of each graph is defined by the corresponding minimum and

maximum values. The distance between the predicted and the manually delineated calving front is taken as the main er-

ror metric in the validation. This is implemented
::::::
measure

:::
in

:::
the

::::::
model

::::::
testing.

:::
We

::::::::
calculate

:::
the

:::::::
average

:::::::
minimal

::::::::
distance165

::::
error

:
by averaging the minimal distances between the predicted front trajectory and the manual delineation calculated every

30m.
:::
Our

:::::::::
definition

::
of

:::
the

:::::::
average

::::::::
minimal

:::::::
distance

::::
error

::
is
::::::::::

comparable
:::

to
:::
the

::::::::
estimates

::::
used

:::
by

:::::::::::::::::
Cheng et al. (2021)

:::
and

:::::::::::::::
Zhang et al. (2023)

:
. Figure 3 illustrates some validation

:::
test results for diverse testing images from the three validation

:::
test

sets. Along with the manually picked calving front (dashed black) and the ANN delineated calving front (orange) the mean

::::::
average

:
distance between them is indicated. The ANN model reliably delineates calving front locations under a wide range of170

ocean, sea ice and ice mélange situations. Furthermore, the model is also able to handle images affected by challenging cloud

(Fig. 3d, j) and illumination (Fig. 3c) conditions, as well as calving fronts near the edge of a satellite scene (Fig. 3e). Validation

:::
Test

:
images showing large errors are associated to delineation subjectivity (Fig. 3f,h,i) or even human error (Fig. 3k).

Since the ANN training is stochastic every fitted model performs slightly different on our testing data. To ensure statistical

stability for a broader numerical assessment we train and validate
::
test

:
50 models using the same reference data and model175

parameters. In order to assess the distance error, we report both the mean and median over the scenes in the test data set. The

validation
:::
test

:
results for these 50 models are shown in Figure 4. Whereas the mean distance error is sensitive towards outliers

the median distance error informs about systematic model overfitting and general scene-by-scene performance. Since each

of the three testing data sets originated from its own, hence independent, imagery, resulting error estimates are not directly
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Figure 3. Validation
:::
Test

:
results for example scenes from the (a-f) TUD, (g,h) CALFIN and (i-k) ESA-CCI testing set. Manually delineated

calving fronts are depicted as dashed black lines. The ANN prediction is shown in orange. The mean
::::::
average

::::::
minimal

:
distance error for

the respective scene is given both in meters and in pixels. All depicted results derive from the same fitted ANN model. Landsat-8 imagery

courtesy of the U.S. Geological Survey.

comparable. Nevertheless, we suspect that the lower distance error yielded for the TUD testing set is due to the fact that it was180

generated by the same people who inferred the training data for these models. For all three testing sets the ANN mean distance
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Figure 4.
:::::::
Accuracy

:::::::::
assessment

::
for

:::
the

::::
three

:::::::::
independent

:::
test

:::::::
datasets.

:::::
Every

:::::::
horizontal

::::
line

::::
inside

:::
the

:::::
’violin

::::::
graphs’

::::::::
represents

:::
one

::
of

:::
the

::
50

:::::
trained

:::::
model

::::::
applied

::
to

::
the

:::
test

::::::
dataset.

:::
The

::::::
vertical

:::::
extent

:
of
::::
each

:::::
graph

:
is
::::::
defined

::
by

:::
the

::::::::::
corresponding

::::::::
minimum

:::
and

:::::::
maximum

::::::
values.

Table 1. Results of the accuracy assessment. Given are the average minimal distance and the Hausdorff distance for the TUD, ESA-CCI and

CALFIN test set. For both estimates we provide mean and median values. The standard deviations result from the 50 different models.

Test datast
Average minimal distance Hausdorff distance

Mean (m) Median (m) Mean (m) Median (m)

TUD 61.2± 7.5 28.3± 1.4 283.9± 28.1 156.4± 7.2

ESA-CCI 73.7± 2.9 45.9± 1.4 352.4± 14.1 205.4± 10.3

CALFIN 73.5± 3.3 43.6± 1.6 233.9± 5.7 162.9± 4.8

error is below the accuracy level of manual digitization which was estimated by Goliber et al. (2022) to be using
:::::::
Overall,

:::
the

::::
mean

:::::::
average

::::::::
minimal

:::::::
distance

:::::
errors

::::
are

::::::::::
comparable

::
to

:::
the

::::::
results

:::::
from

::::::::::::::::
Cheng et al. (2021)

:::
and

:::::::::::::::::
(Zhang et al., 2023)

::::
who

::::::::
estimated

::::
who

::::::::
estimated 86.7± 1.4m

:::
and 79m

:
,
::::::::::
respectively.

:::::
Table

::
1
::::
gives

:::
the

::::::::::::
corresponding

::::::::
statistics.

:

::
In

:::::::
addition

::
to

::
the

:::::::
average

:::::::
minimal

:::::::
distance

:::::::
estimate

:::
we

:::
also

::::::::
calculate

:::
the

::::::::
Hausdorff

:::::::
distance

::::::::::::::::::::::
(Huttenlocher et al., 1993).

::::
The185

::::::::
Hausdorff

:::::::
distance

::::
only

::::::::
considers

:::
the

:::::::
greatest

:::::::
distance

:::
of

::
all

:::::::::
minimum

:::::::
distances

:::::
along

:::
the

::::
two

::::::::::
trajectories.

:::
As

:::::
longer

::::::
fronts

::
are

:::::
more

:::::
likely

::
to

::::::
include

:::::::::::
misclassified

:::::
parts,

:::
this

::::::::
measure

::::
tends

::
to

:::
be

:::::
larger

::
for

::::::
longer

::::::
fronts.

:::::::::::::::::
Goliber et al. (2022)

::::::
applied

:::
the

::::::
median

::::::::
Hausdorff

::::::::
distance

::
to duplicated delineation from different authors .

:
in

:::::
order

::
to

:::::::
estimate

:::
the

::::::::
accuracy

::::
level

::
of

:::::::
manual

::::::::::
digitization.

:::::::::
Depending

::
on

:::
the

:::::
paired

:::::::
authors

:::
this

::::::
manual

::::::::::
delineation

::::
error

:::::
varies

:::::::
between

:
59m

:::
and 7350m

:
,
::::
with

::
an

:::::::
average

::
of

9



Figure 5.
:::
Test

:::::
results

:::
for

:::::::
example

::::::
glaciers

:::::
which

:::
are

::::::
outside

:::
the

:::::::
training

::::::
dataset.

:::::::::
Specifically

::
of
:::

(a)
:::::
Tracy

::::::
Glacier

::
in

:::::::::
Greenland,

:::
(b)

::::::::
Storebreen

::
in

:::::::
Svalbard,

:::
(c)

:::::
Upsala

::::::
Glacier

::
in
::::::::
Paragonia

:::
and

:::
(d)

::::::::
Drygalski

:::::
Glacier

::
in
:::::::::

Antarctica.
::::::
Orange

::::
lines

::::
show

:::
the

:::::::::
predictions

::::
from

::
our

:::
50

::::::
models.

::::::
Overlap

::
of

::::
lines

:
is
:::::::
indicated

:::
by

:::::
higher

::::
color

:::::::
intensity.

:::
The

::::::
average

::::::
minimal

:::::::
distance

:::::
metric

::
for

::::
each

::::
scene

::
is

::::
given

::
in

::::::
meters.

:::::::
Landsat-8

:::::::
imagery

::::::
courtesy

::
of

:::
the

:::
U.S.

:::::::::
Geological

::::::
Survey.

107m
:
.
:::
The

:::::::
median

::::::::
Hausdorff

::::::::
distances

:::::::::
calculated

::
for

::::
our

:::
test

::::
data

::
is

:::::::
therefore

::::::
within

:::
the

:::::
range

::
of

:::::::
manual

:::::::::
delineation

::::::
errors,190

:::
but

::::::
slightly

:::::
larger

::::
than

:::
the

::::::
overall

::::::::::::::
author-to-author

:::::
error

::
of 107m

::::::::
calculated

:::
by

:::::::::::::::::
Goliber et al. (2022).

:
Altogether, the quality

of calving fronts delineated by our ANN model is comparable to that of manually delineated calving fronts.

3.2
::::::

Spatial
::::::::::::
transferability

::
In

:::::::
addition

::
to

:::
the

::::::::
accuracy

:::::::::
assessment

::::
over

:::
the

:::::
entire

:::
test

::::
data

::::
set,

:::
we

:::::::
evaluate

:::
the

::::::
degree

::
of

:::::
model

::::::::::::
generalisation

::::
and

:::::
hence

::
the

::::::
spatial

::::::::::::
transferability

::
of

::::
our

:::::::
method.

:::
Out

:::
of

:::
our

::::
200

:::
test

::::::
scenes,

:::
61

::::::
scenes

:::
are

::::
from

:::::::
glaciers

::::
that

:::
are

:::
not

:::::::
included

:::
in

:::
the195

::::::
training

:::::
data.

:::
For

::::
these

:::
61

:::
test

::::::
scenes

::::
over

:::
our

::
50

::::::
trained

:::::::
models,

:::
we

::::::::
calculate

:
a
:::::
mean

::::
(and

:::::::
median)

:::::::
average

:::::::
minimal

:::::::
distance

::::
error

::
of

:
71.3± 19.4m

:::::::
(median:

:
24.6± 2.1m

:
).
::::
This

::::
test

::::
error

::
is

:::::
larger

::::
than

:::
the

::::
error

::::
over

:::
the

:::::
entire

::::
test

:::
set,

::
at 61.2± 7.5m

:
.
::
It

:
is
::::
thus

::::
also

:::::
larger

::::
than

:::
the

:::::
error

::::
over

:::
the

:::
139

::::
test

::::::
scenes

::
of

:::::::
glaciers

:::
that

:::
are

::::
part

::
of

:::
the

:::::::
training

:::
set,

::
at

:
56.0± 5.3m

:::::::
(median:

30.3± 1.7m
:
).
::::::::

Notably,
:::
we

:::
see

:::
not

::::
only

::
a
:::::
larger

::::
test

:::::
error,

:::
but

::::
also

:
a
::::::
higher

:::::::
standard

::::::::
deviation

::::::::
between

:::
the

:::::::
models.

::::
This

::
is

:::
due

::
to

:
a
:::::
lower

:::::::
success

::::
rate

:::
and

:::
the

::::::::
resulting

::::
high

::::
error

:::
for

:::::::::
individual

:::::::::
predictions

::
in

:::::
cases

:::::
where

:::
the

:::::
ANN

:::::
failed

::
to
::::::
locate

:::
the200

::::::
calving

:::::
front.

:::::
Figure

::
5

::::
gives

:::
the

::::
test

:::::
results

:::
for

::::
four

:::::::
example

:::::::
scenes.

:::::::
Depicted

:::::::
glaciers

:::
are

::::::
outside

:::
the

:::::::
training

:::::::
dataset.

:::
The

:::::::
calving

:::::
fronts

::
of

:::::
Tracy

::::::
Glacier

::::::::
(Fig. 5a),

::::::
Upsala

::::::
Glacier

:::::::
(Fig. 5c)

::::
and

::::::::
Drygalski

:::::::
Glacier

:::::::
(Fig. 5d)

:::
are

:::::::
reliably

:::::::
extracted

::::
with

::::
low

::::::::
distances

::
to

::
the

::::::::
manually

:::::::::
delineated

:::::::::
reference,

:::
and

:::
low

::::::::
deviation

::::::
among

:::
all

::::::
trained

::::::
models.

::::
The

::::::::
accuracy

:
is
::::::::::
comparable

::
to
::::
that

::
of

:::::::
glaciers

:::::
within

:::
the

:::::::
training

:::
data

::::
set.

::
In

:::::::
contrast,

:::
the

:::::::::
extractions

:::
for

::::::::
Storbreen

::::::
Glacier

::::::::
(Fig. 5b,

:::
left)

::::
have

::
a
::::
large

:::::
error

:::
and

::::
high

::::::::
deviation205

:::::
among

::::
the

::::::
trained

:::::::
models.

::::
The

::::::
calving

:::::
front

::
is

:::
not

:::::::::
delineated

:::::::
reliably.

::::
This

::::::
could

::
be

::::
due

::
to

::
a

::::::::::
combination

:::
of

:::
the

:::::::
difficult

::::::
lighting

::::
and

:::
the

:::::
snow

:::::::
covered

:::
sea

::::
ice,

:::::
which

::
is
::

a
::::::::
condition

::::
that

:::::
might

::::
not

::
be

::::::::::
adequately

::::::::::
represented

::
in

:::
the

:::::::
training

:::::
data.

::::::::::
Interestingly,

::::
the

::::::
calving

:::::
front

::
of

:::
the

::::::::::
neighboring

::::::::::
Hornbreen

::::::
Glacier

::::::::
(Fig. 5b,

::::::
bottom

:::::
right)

::
is

::::::::
extracted

:::::::::
accurately

::::
over

:::
all

::::::
models.

:
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::::::
Among

:::
the

::
61

::::
test

::::::
images

::::::
outside

:::
the

:::::::
glaciers

::
of

:::
the

::::::
training

::::::
dataset

:::
57

::::
have

::
an

:::::::
average

:::::::
minimal

:::::::
distance

::::
error

::::::
below 100m210

:
(93%

:
),

::::::::
compared

:::
to

:::
178

::::
out

::
of

::::
200

::::
over

:::
the

::::::
whole

:::
test

:::::::
dataset

:
(89%

:
)
:::
and

::::
121

:::
out

:::
of

:::
139

:::
of

:::
test

:::::::
images

::
of

:::::::
glaciers

::::
that

::
are

::::::::
included

::
in

:::
the

:::::::
training

:::
set

:
(87%

:
).
:::::::
Overall,

::::
this

:::::::::
assessment

::::::::
confirms

:::
the

::::::
spatial

:::::::::::
transferability

:::
of

:::
our

:::::::::
processing

:::::::
system.

::::::::
However,

::
the

::::::::
accuracy

::
is

:::::
lower

::::::::
compared

::
to

:::
the

::::::::
extraction

::::
from

:::::::
glaciers

:::
that

:::::
were

:::::::
included

::
in

:::
the

::::::
training

:::::
data.

::::::
Similar

:::::::
findings

::::
have

::::
been

:::::::
reported

:::
by

:::::::
previous

::::::
studies

:::::::::::::::::::::::::::::::::::::::::::::::::::
(Baumhoer et al., 2019; Cheng et al., 2021; Zhang et al., 2023).

:

4 Results215

4.1 Data product for Greenland from 2013 to 2021

Having trained and validated
::::
tested

:
the ANN model, we apply our processing to Landsat-8 imagery in order to generate tem-

porally dense calving front time series for 23 Greenland outlet glaciers. In doing so, we process all but completely clouded

Landsat scenes
::::::::
download

::::::::
Landsat-8

::::::::
imagery acquired between March 2013 and December 2021. Failed

:::::
Images

:::::
with

:::::
cloud

::::
cover

::::::
larger

::::
than

:::::
20 %

::::
and

::
all

::::::::::
Systematic

:::::::
Terrain

:::::::::
Correction

:::::::
(L1GT)

::::::
scenes

:::
are

:::::::::
manually

:::::::
checked

::::::
before

::::::::::::
downloading.220

:::::::::
Depending

::
of

:::
the

::::::
glacier

:::::
51 %

:::
(for

:::::
Ingia

::::::
Isbræ)

::
to

::::
63 %

::::
(for

::::::::
Helheim

:::::::
Glacier)

::
of

:::
the

::::::::
available

:::::::
satellite

:::::
scenes

:::
are

:::::::::
discarded

:::::
before

:::::::::
download.

:::::
After

:::::
ANN

:::::::::
processing,

::::::
failed calving front extractions ,

::
are

:::::::::
discarded.

:::::::
Calving

::::
front

:::::::::
extraction

::::
fails

:::::
when

::
the

::::::::
predicted

::::::::
coastline

::::::::
trajectory

::::
does

:::
not

:::::::
intersect

:::
the

:::::
static

:::::
mask.

:::::::
Finally,

::::::
calving

:::::
fronts

:::
are

::::::
filtered

:::::
using

:::
the

::::
time

::::::
series.

:::
For

:::
this

:::
we

:::::::
separate

::
all

::::::
entries

::::
with

::
an

::::
area

:::::::::
difference

::
of

:::::
larger

::::
than 1 km2

:
to

::::
both

:::
the

::::::::
previous

:::
and the percentage of which varies

between 5
::::
next

:::::
entry.

::::::::
Separated

::::::
entries

:::
are

:::::::
checked

:::::::::
manually.

:::
Out

::
of

:::
the

::::::
10587

:::::::
satellite

:::::
scenes

:::::::::
processed

:::
by

:::
our

:::::
ANN,

:::::
1344225

::::::
calving

::::
front

::::::::::
predictions

:::
(13 % and 10 % depending on the glacier, are then manually

::
%)

:::::
were discarded. Figure 5

:
6
:

gives a

tabular overview of the final data product (for locations see Figure 2
:
1). In total, we provide 9243 calving front lines, mostly

achieving sub-weekly sampling outside polar night. Due to overlapping satellite orbits, glaciers in north, northeast and north-

west Greenland undergo up to six image acquisitions per week depending on weather and season. Since we use optical data in

this study our time series has observation gaps during polar nights. Depending on latitude, this gap lasts about one month for230

glaciers in south Greenland and up to three months for glaciers in north Greenland.

4.2 Long term, seasonal and subseasonal calving front changes

Marine terminating glaciers experience calving front variations at different time scales. While long-term changes are easy to

resolve using already available data products, our time series offers unique opportunities to analyze seasonal and sub-seasonal

terminus changes. To quantify these calving front changes we apply the well-established rectilinear box method (Moon and235

Joughin, 2008). Rather than using a single profile to measure advance or retreat this method adopts a rectilinear box, thus

accounting for uneven changes along the calving front. Figure 6
:
7
:
shows the method applied to our calving front time series for

Jakobshavn Isbræ which is separated here into a northern and a southern branch. The inferred calving front variation exhibits

a pronounced annual pattern combined with smaller sub-seasonal fluctuations. For comparison, the derived time series of the

manually delineated ESA CCI
::::::::
ESA-CCI

:
product is shown. Although both datasets agree very well when it comes to comparing240
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2013 5 13 19 15 13 18 20 13 18 6 13 13 14 9 4 16 19 7 15 20 51 54 43
2014 23 33 42 29 33 40 43 30 30 19 18 33 38 26 25 41 46 32 46 38 66 60 53
2015 19 24 29 29 32 39 45 26 33 40 25 42 53 44 42 51 58 36 42 40 118 128 100
2016 17 29 38 26 29 37 44 38 44 33 28 46 48 38 42 51 54 45 60 62 127 127 105
2017 13 27 39 25 32 36 40 30 41 36 29 40 46 44 38 50 47 38 68 56 126 112 88
2018 17 17 40 25 35 40 37 29 38 33 39 46 45 34 37 52 54 40 60 50 135 89 114
2019 15 35 47 34 37 43 46 42 49 46 46 64 60 48 57 54 51 48 73 62 103 99 98
2020 13 29 40 25 31 35 37 28 47 43 30 40 56 44 53 52 58 47 52 48 93 82 107
2021 23 31 43 30 29 33 52 56 44 37 41 46 59 48 44 50 49 33 42 64 116 108 86
Total 145 238 337 238 271 321 364 292 344 293 269 370 419 335 342 417 436 326 458 440 935 859 794 9243
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Figure 6. Temporal coverage of our ANN generated time series. The numbers and the color intensity indicate the amount of processed

calving front positions in the respective year. Glaciers are sorted by latitude from south (left) to north (right).

Figure 7. Rectilinear box method applied to the ANN generated calving front time series for Jakobshavn Isbræ (west Greenland). The glacier,

which is separated into a northern and a southern branch, and the calving fronts are shown on the left. The corresponding time series are

depicted on the right. Here, calving front positions, expressed as a surface area, are marked by a dot. For the TUD product (black) solid lines

connect frontal positions of each year. Time series from the ESA-CCI product (blue) are shown for comparison. Landsat-8 image courtesy

of the U.S. Geological Survey.

singular epochs
:
, the ESA-CCI time series does not reliably capture the temporal variation

::::::::
variations. This is particularly evident

for the year 2014 when a whole annual cycle is missed by the manually delineated product.
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Figure 8. Example time series generated by our ANN algorithm for twelve Greenland glaciers. For each glacier a satellite image (left),

containing the color-coded calving front trajectories, and the corresponding time series (right) are shown. Here, calving front positions are

marked by black dots and solid lines connecting entries each year. Note that the ordinate axis is scaled differently for each glacier. Landsat-8

imagery courtesy of the U.S. Geological Survey.

Figure 7
:
8
:
presents twelve more examples of our ANN generated time series. Most of these glaciers exhibit pronounced sea-

sonal and sub-seasonal variations overlaid by a long-term signal. Except for Kangiata Nunaata Sermia (Fig. 7
:
8a), Ryder Glacier

(Fig. 7
:
8b) and Hayes Glacier (Fig. 7

:
8h), all example glaciers are retreating during the analysed time period. Notably, Zachariae245
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Isstrøm and Humboldt Glacier show an area loss of about 120 km2 and 100 km2 respectively. Ryder Glacier (Fig. 7
:
8b) and

Nioghalvfjerdsbræ (Fig. 7
:
8d) are the only among the 23 glaciers in our study that do not undergo a pronounced seasonality. In

those cases, the calving front variation is characterized by a steady advance and the sporadic detachment of large kilometer-

sized icebergs. The date of detachment is precisely pinpointed by the time series. In the case of Nioghalvfjerdsbræ (Fig. 7
:
8d),

the time series also separates two
:::::::
resolves

:::
two

:::::::
separate

:
break-offs that occurred in close succession. Other glacier time series,250

like Hayes Glacier (Fig. 7
:
8h), Tracy Glacier (Fig. 7

:
8j), Docker Smith Glacier (Fig. 7

:
8k) and Harald Moltke Bræ (Fig. 7

:
8l),

reflect a change in calving rate during our observation period. For Harald Moltke Bræ (Fig. 7
:
8l) the onset of this calving front

retreat, starting 2019, coincides with the end of its six year-long surging phase and has already been anticipated by Müller et al.

(2021).

4.3
::::::::::

Comparison
::
to

:::
the

:::::::::
CALFIN,

:::::::::
AutoTerm

::::
and

::::::::::
TermPicks

::::
data

:::::::
product255

::
In

:::::::
addition

::
to

:::
the

::::
data

::
set

::::::::
produced

:::
in

:::
this

:::::
study,

:::::
there

:::
are

:::
two

:::::
other

::::::::
automatic

::::::::::
delineation

:::::::
products

::::
with

::
a

:::::::::::::::
circum-Greenland

::::::::
coverage:

:::
the

:::::::
CALFIN

::::
data

:::
set

::
by

:::::::::::::::::
Cheng et al. (2021)

::
and

:::
the

:::::::::
AutoTerm

:::::::::
repository

::
by

::::::::::::::::
Zhang et al. (2023).

:::::::::::
Additionally,

:::::
there

:
is
:::

the
::::::::::

TermPicks
:::::::
database

::::::::::::::::::
(Goliber et al., 2022),

::::::
which

:::::::::
comprises

::::::::
manually

:::::::::
delineated

::::::
calving

:::::
front

::::
data

:::::
from

::
19

::::::::
different

::::::
authors.

:::
In

:::
this

:::::::
section,

:::
we

:::
will

::::::::
compare

::::
these

:::::
three

::::
"big

::::
data"

:::::::::
Greenland

:::::::
calving

::::
front

:::::::
datasets

::::
with

:::
the

::::::
results

::
of

:::
this

::::::
study.

:::
The

::::::::::
comparison

::::
takes

:::::
place

:::
on

::::
three

::::::
levels.

::::::
Firstly,

:::
we

:::::::
compare

:::
the

::::::
general

::::::::
statistics

:::
and

::::::
scope.

::::::::
Secondly,

:::
we

:::::::
compare

::::::
results260

:::
over

::
a
::::::::
reference

::::::
period

:::
and

:::::::::
reference

::::::
glaciers

:::::::
defined

::::::::
according

:::
to

::::
their

::::::::
temporal

:::
and

::::::
spatial

:::::::
overlap.

:::::::
Thirdly,

:::
we

::::::::
examine

::::::::
individual

:::::::::
examples.

::::
Table

::
2
::::::::
(columns

:
2
::
to
:::

4)
:::::::
presents

:::
the

::::::
general

::::::::
statistics

::
for

:::
the

::::
four

::::::::
datasets.

:::
Our

::::
data

:::
set

::::::
covers

:
a
::::::::
relatively

::::
short

:::::
time

::::
span

::::
since

:::
we

:::::::
process

:::::::
imagery

:::::
from

:::
the

::::
OLI

:::
and

:::::
TIRS

:::::::
Landsat

:::::::
sensors,

::::::
which

::::
have

::::
only

:::::
been

::::::::
available

::::
since

:::::
2013.

:::::
With

:::::
9243

::::::
mapped

:::::::
calving

:::::
fronts

::::
over

:::
23

:::::::
glaciers

:::
our

::::
data

:::::::
product

::
is

::::::
smaller

::
in

:::::
both

:::::
scope

:::
and

::::
size

::::
than

:::
the

::::::::
CALFIN,

:::::::::
AutoTerm

::::
and265

:::::::::
TermPicks

::::::::
products.

:::::
When

:::::::::
examining

:::
the

:::::::
number

::
of

:::::::
calving

::::
front

::::::
traces,

::
it

::
is

::::::::
important

::
to

:::::::::
understand

::::
that

:::
the

::::::::
definition

:::
of

::::
what

:
a
:::::
single

:::::::
calving

::::
front

:::::::
contains

:::::
varies

:::::
from

::::
study

::
to
::::::
study.

:::
For

:::::::
instance,

::
a

:::::
single

::::
data

::::
entry

::
in

:::
our

::::::
dataset

:::
for

:::
the

:::::::::
Upernavik

::::::
Isstrøm

:::::::
includes

::::
four

:::::::
calving

::::
front

::::::::
features.

::::::::
CALFIN

:::
lists

:::::
three

:::::::
separate

:::::::
calving

:::::
fronts

:::
for

:::
the

:::::
same

::::::
glacier,

::::
and

:::::::::
AutoTerm

:::
and

:::::::::
Termpicks

:::
list

::::
two.

:::
For

::::::::::
Jakobshavn

:::::
Isbræ,

::::::::
CALFIN

::::::::
considers

:::
the

:::::
north

:::
and

:::::
south

::::::
branch

:::::::::
separately,

:::::
while

::
in

:::
our

::::
data

:::
set

:::
they

:::
are

:::::::
counted

:::
as

:::
one

:::::::
calving

:::::
front.

::
In

:::::::
addition,

:::::
some

:::
of

:::
our

:::::::::
predictions

::::
also

:::::::
include

::::::
smaller

::::::::::
neighboring

:::::::
glaciers

::::
that

:::
are270

::::::
located

::
on

:::
the

:::::
same

::::::
image

:::
tile

::::
(e. g.

::::::::
Farquhar

:::::::
Glacier

:::::
which

::
is

::::::::
included

:::::::
together

::::
with

:::::
Tracy

:::::::
Glacier

::
or

::::::::::
Akullersuup

:::::::
Sermia

:::::
which

::
is

:::::::
included

:::::::
together

::::
with

::::::::
Kangiata

:::::::
Nunaata

:::::::
Sermia).

:::::::
Usually,

::::
this

::::::
applies

::
to

::::::
glaciers

::
of

::
a
:::::
single

::::::
glacier

::::::
system

:::
that

:::::
were

::::::::
previously

::::::::::
connected.

:::::
When

:::::::
counting

:::::
shape

:::
file

::::::::
features,

:::
the

::::::
number

::
of

::::::
entries

::
in

:::
our

::::
data

:::::::
product

:::::::
contains

::::::
15150

::::::
entries.

::
To

:::::
better

::::::::
compare

:::::::::
differences

::
in

:::::::::
processing

:::::::
strategy,

:::
we

:::::
define

::
a
::::::::
reference

:::::
period

::::
and

::::::::
reference

::::::
glaciers

:::
by

::::::::::
considering

:::
the

:::::::
temporal

:::::
(2013

::
to
::::::

2019)
:::
and

::::::
spatial

::::::
overlap

::::
(13

:::::::
glaciers)

::
of

:::
the

::::
four

::::
data

::::
sets.

::::::
These

::::::
glaciers

::::
are:

::::::::
Kangiata

:::::::
Nunaata

:::::::
Sermia,275

:::::::
Helheim

:::::::
Glacier,

::::::::::::::
Kangerdlugssuaq

:::::::
Glacier,

::::::::::
Jakobshavn

:::::
Isbræ,

:::::::
Sermeq

::::::::::::
Avangnardleq,

:::::
Store

::::::
Glacier,

:::::
Rink

::::::
Isbrae,

::::
Ingia

::::::
Isbræ,

::::::::
Upernavik

::::::::
Isstrøm,

:::::
Hayes

:::::::
Glacier,

::::::::
Sverdrup

:::::::
Glacier,

:::::
Kong

::::::
Oscar

::::::
Glacier

::::
and

::::::
Døcker

::::::
Smith

:::::::
Glacier.

::::::
Within

::::
this

::::::::
reference

::
we

::::::
looked

:::
at

:::::::
mapped

:::::
fronts,

::::::::
sampling

::::
rate

::::
and

::::::
unique

::::::
entries.

:::::::
Results

:::
are

:::::
given

::
in

:::::
Table

::
2
::::::::
(columns

::
5
::
to

:::
7).

:::
We

::::::::
consider

::::
only

:::
one

:::::::
calving

::::
front

:::::
entry

:::
per

::::
day

:::
and

::::
per

::::::
glacier.

::::::::::
Effectively,

::::
this

:::::::
removes

:::
(1)

::::::::
duplicate

::::::::::
delineations

:::
of

:::
the

:::::
same

:::::
scene
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Table 2. Comparison of the CALFIN, AutoTerm, TermPicks product as well as the data product presented in this study. The reference period

(2013 to 2019) and the reference glaciers (13 glaciers) are defined by the temporal and spatial overlap of the four data products.

Dataset Glaciers Mapped fronts Time span
Reference period and glaciers

Mapped fronts Sampling rate (yr−1) Unique entries

This study (Loebel et al., 2023) 23 9243 2013-2021 3005 33.02 372

CALFIN (Cheng et al., 2021) 66 22678 1972-2019 1322 14.53 15

AutoTerm (Zhang et al., 2023) 295 278239 1984-2021 7220 79.34 3724

TermPicks (Goliber et al., 2022) 278 39060 1948-2021 2287 25.13 505

::::
(e. g.

::::
from

::::::::
multiple

::::::
authors

:::
in

:::
the

:::::::::
TermPicks

::::
data

::::
base

:::
or

::::
from

:::
the

:::::::::
reference

::::
data

:::::
which

::
is
::::::::

included
::
in

::::::::
CALFIN

::::
data

::::
set)280

:::
and

:::
(2)

::::::::::::
inconsistencies

:::
in

::::
what

:::::::::
constitutes

:
a
::::::

single
::::::
calving

:::::
front

:::::
entry.

::::::::
Although

::::::
having

:::
the

::::
same

:::::::
Landsat

::::
data

:::::
basis

:::
our

::::
data

::::::
product

:::::::
achieves

::
a
::::::
higher

::::::::
sampling

:::
rate

::::
and

::::
more

::::::
unique

:::::
front

:::::::::
extractions

::::
than

::::::::
CALFIN.

:::::
This

:
is
::::::

likely
:::
due

::
to

::::::::::
differences

::
in

::::
input

::::::
feature

::::::::
selection

:::
and

::::::::::
processing.

::::::::
AutoTerm

::::
has

:::
the

::::
most

:::::::
mapped

:::
and

::::::
unique

:::::
fronts

:::
as

:::
well

:::
as

:::
the

::::::
highest

::::::::
sampling

::::
rate.

::::
This

:
is
:::::::

mainly
:::
due

::
to

:::
its

::::
data

::::
basis

::::::
which

:::::::
included

::::::::
Landsat,

:::::::::
Sentinel-2

:::
and

:::::::::
Sentinel-1.

::::::::
Overall,

:::
372

:::
out

:::
of

:::
the

::::
3005

:::::::
calving

:::::
fronts

:::::::
extracted

:::
by

:::
our

:::::::
method

:::::
within

:::
the

::::::::
reference

:::::
were

:::
not

::::::::
extracted

::
by

::::::::
CALFIN,

:::::::::
AutoTerm

::
or

:::::::::
TermPicks

::::::::
although

:::
all

:::
use285

::::::::
Landsat-8

:::::::
imagery.

:

:::::::
Figure 9

:::::
shows

:::
the

::::
time

::::::
series

::
of

::::::::
CALFIN,

:::::::::
AutoTerm

::::
and

:::::::::
TermPicks

::::::::
compared

::
to
::::

our
:::::
study

:::
for

::::
four

::::::::
individual

::::::::
glaciers.

::
To

:::::::::
maximise

:::
the

::::::::
sampling

::
of

:::
the

::::::::
different

::::
data

::::
sets,

:::
we

:::::::
analyse

:
a
::::::
centre

:::
line

::::::
profile

:::::::
instead

::
of

:::::
using

:::
the

::::
box

:::::::
method.

::::
The

::::
mean

:::::::
distance

:::
for

:::::::::
same-day

::::::
calving

::::
front

:::::::::::
acquisitions

:
d
::
is

::::::::
indicated

:::
for

::::
each

::::
pair

::
of

::::
time

::::::
series.

:::::
When

:::::::::
examining

:::::
these

::::
four

::::::::
examples,

:::
we

:::::::
observe

:
a
:::::::::

generally
::::
good

:::::::::
agreement

:::::::
between

::::
the

::::
time

::::::
series.

:::::::::
Significant

:::::::::
differences

:::::
exist

::::
only

:::
for

:::::::::
Humboldt290

::::::
Glacier

::::::::
(Fig. 9d).

:::::
Here,

:::
the

::::
data

::::::
quality

::
of

:::
the

:::::::::
AutoTerm

:::::::
product

:::::
seems

::
to

:::
be

::::::
notably

::::::
worse

::::
than

:::
for

:::
the

::::
other

::::::::
glaciers,

::::
with

::::
large

::::::::::
fluctuations

::
up

::
to
:
5 km

::
in

::::::::
distance.

::::
This

::::
may

::
be

::::::::
attributed

::
to

:::
the

::::::
glacier

::::::
front’s

::::
large

::::
size,

::::::
which,

::
at
::::
least

:::
in

:::
our

:::::::
method,

:::::::
required

::::::::
additional

:::::::::
processing

:::::
steps.

::::
For

::::::::
Kangiata

:::::::
Nunaata

::::::
Sermia

::::::::
(Fig. 9b)

:::
our

::::
data

::::::
product

::
is
:::
the

:::::
only

:::
one

:::::
which

::::::::
captures

::
the

::::::
signal

::::
from

:::
the

::::::::
seasonal

:::
ice

::::::
tongue

:::::::::::::::::::::::::::::::::
(Motyka et al., 2017; Moyer et al., 2017).

::::
This

::
is
::::::::
reflected

::
on

:::
the

::::
one

::::
hand

::
in
:::::
gaps

::
in

::
the

:::::
other

::::
data

::::
sets

:::
and

:::
on

:::
the

:::::
other

::::
hand

::
in

::
a
::::::
higher

:::::::
distance

:::
for

:::::
some

::::::::
same-day

::::::::::
acquisitions.

:::::::::
Although

:::::::
Landsat

:::::::
imagery

::
is295

::::::::
available,

::::
both

:::::::
CALFIN

::::
and

:::::::::
AutoTerm

::::
have

::::::
almost

::
no

::::::
calving

:::::
front

:::::
traces

::::::
during

:::
the

:::::::::
emergence,

::::::::
presence

:::
and

::::::::::::
disintegration

::
of

:::
this

:::::::
seasonal

:::
ice

:::::::
tongue.

:::
We

:::::::
suspect,

:::
that

:::
the

::::::::::::
multi-spectral

:::::
input

::::::::::
information

::
of

:::
our

:::::::::
processing

:::::
leads

::
to

:
a
:::::
better

:::::::::
extraction

:::
rate

:::
for

:::::
scenes

:::::
under

:::::
these

::::::::::
challenging

:::::::::
conditions.

:::
All

::::
four

::::::::
examples

::::::::
highlight

:::
the

::::::
varying

::::::::
sampling

::::
rates

::
of

:::
the

::::
data

::::::::
products.

::
In

::::::::
particular,

:::
the

:::::::::
AutoTerm

::::::
dataset

:::
has

:::
not

::::
only

:::
the

::::::
highest

::::::::
sampling

:::
rate

:::
but

::::
also

:::::::
coverage

::::::
during

:::::
polar

::::
night

::::
(see

:::
late

:::::
2017

::
in

:::::
Fig. 9a

::::
and

:::
late

:::::
2017

::
in

:::::::
Fig. 9c).

:::
The

::::::::
sampling

::::
rate

::
of

:::
the

:::::::::
TermPicks

::::::::
repository

::
is
:::::
lower

::::
than

::::
that

::
of

:::
the

:::::::::
automated

:::::::::
processing300

::::::
systems

::
in
:::::
these

::::
four

::::::::
examples.

:

::::::::
Compared

::
to

::::::::
CALFIN,

:::::::::
AutoTerm

:::
and

::::::::::
TermPicks,

:::
our

::::
data

::::::
product

:::
has

:::
the

:::::::
shortest

::::
time

:::::
frame,

::::::
lowest

:::::::
coverage

::::
and

:::::::
smallest

::::::
amount

::
of

::::::
overall

:::::::
mapped

:::::::
calving

::::
front

::::::
traces.

::::::::
However,

::::
due

::
to

:::::::
different

:::::::::
processing

::::
and

:::
the

:::::::
addition

::
of

::::::::::::
multi-spectral

:::::
input

:::::::::
information

::::
our

:::::::
method

::
is

::::
able

::
to

::::::
extract

::
a

:::::::::
significant

::::::
amount

:::
of

::::::
calving

::::::
fronts,

:::::
13 %

::::::
within

:::
the

:::::::::
reference,

:::
that

:::::
could

::::
not
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Figure 9.
::::::::
Comparison

:::
of

::
the

::::::::
CALFIN,

::::::::
AutoTerm,

:::::::::
TermPicks

::::::
product

:::::
(blue)

::
to

:::
the

:::
data

::::::
product

::::::::
presented

::
in

:::
this

:::::
study

:::::
(black)

:::
for

::::
four

::::::
example

:::::::
glaciers.

::::
Time

::::
series

:::
are

::::::
derived

::::
along

:::
the

:::::
central

::::
flow

:::
line

::
of

:::
the

:::::
glacier.

:::::
Every

:::::::::
comparison

:::::::
specifies

::
the

:::::
mean

::::::
distance

:
d
:::::::
between

:::::
calving

::::
front

:::::::::
delineations

::
at
:::::::
identical

::::
days.

::
be

::::::::
extracted

::
by

::::
the

::::
other

::::::::
methods.

:::::::::::
Importantly,

::::
these

:::::
13 %

:::::::
include

:::::::::
extractions

:::::
under

::::::::::
challenging

::::::
image

:::::::::
conditions.

::::
For

:::
the305

:::::::
analyzed

:::::::::
reference,

:::
our

:::::::
method

:::
has

:
a
::::::::
temporal

:::::::::
resolution

::::::
second

::::
only

::
to

::::
that

::
of

:::
the

:::::::::
AutoTerm

:::::::
product,

:::::
which

:::::::
benefits

:::::
from

::::::::::
multi-sensor

:::::
input

:::::::
imagery.

:::::::
Overall,

::::
this

::::::::::
comparison

::::
also

:::::::
presents

::
a

::::
clear

::::::::
argument

:::
for

:::
the

:::::::
benefits

::
of

::::::
having

::::::::
multiple

::::
data

:::::::
products

::
on

:::::::
glacier

::::::
calving

::::::
fronts.

::::::
Current

::::
data

::::::::
products

:::::
differ

::
in

:::::
scope

:::
but

::::
also

:::::
differ

:::
for

::::::::
duplicate

:::::::::
extractions

:::
for

::::::::
identical

:::::
glacier

:::::
front

::::::
traces,

::::
often

:::::::::
exceeding

::::::::
estimated

:::::::::
delineation

::::::::::::
uncertainties.

::
A

:::::
better

::::::::::::
understanding

::
of

:::::
these

:::::::::
differences

::
is

::::::
crucial

:::
and

:::::::
requires

::::::
further

:::::::::::
investigation.

:::
As

::
a
::::
final

:::::
point,

:::
we

:::::
want

::
to

:::::::::
emphasise

:::
the

::::::::
potential

::
of

::::::::::
combining

:::::::
different

::::::
glacier

:::::
front310

:::::::
products.

:::::::::::::::::
Greene et al. (2024)

::::
have

:::::::::::
demonstrated

:::
the

::::::::::
advantages

::
of

::::
such

:
a
:::::::::::
combination

:::
for

:::::::::
large-scale

::::::::::
glaciological

::::::::
analyses.

:

5 Discussion

Changes in calving front position are, along with other observables like ice velocity and elevation change, part of a complex

feedback cycle between a glacier and its environment. In discussing our results, we present a first application of our temporally

high-resolution calving front information. In particular, we infer valuable insights into glacier dynamics by linking changes315
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in calving front position to bedrock topography.
:::::::::
Long-term

::::::
calving

:::::
front

:::::
trends

:::
of

:::::::::
Greenland

::::::
glaciers

::::
are

::::
well

:::::::::::
characterised

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Howat and Eddy, 2011; King et al., 2020; Fahrner et al., 2021; Black and Joughin, 2022; Greene et al., 2024).

::::::::
However,

:::::
about

80%
:
of

:::::::::
Greenland

:::::::
glaciers

::::
also

:::::::::
experience

:::::::
terminus

:::::::
changes

:::
on

:
a
::::::::

seasonal
:::
and

::::::::::
subseasonal

:::::
basis

::::::::::::::::::::::
(Black and Joughin, 2023)

:
.
::
Of

:::
the

:::
23

::::::
glaciers

::::::::
analysed

::
in

:::
this

::::::
study,

::
19

:::::::
glaciers

:::::
show

:
a
::::
clear

::::::::::
seasonality

:::::::
between

:::::
2013

:::
and

:::::
2021.

:::
As

::::::::
observed

::
by

:::::
other

::::::
studies

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Joughin et al., 2008b; Seale et al., 2011; Carr et al., 2013; Schild and Hamilton, 2013; Murray et al., 2015; Moon et al., 2015; Cassotto et al., 2015; Kehrl et al., 2017; Fried et al., 2018; Sakakibara and Sugiyama, 2020; Kneib-Walter et al., 2021; Black and Joughin, 2023)320

:
,
::::::
glacier

::::::
retreat

::::::::
typically

:::::
starts

::
in

::::
late

::::::
spring

::::
with

::::::
retreat

:::::
rates

:::::::
peaking

::
in

::::
late

::::::::
summer.

::
A

:::::::
number

::
of

:::::::::::
mechanisms

:::::
have

::::
been

::::::::
identified

::
as

:::::::
controls

::::
for

::::
these

::::::::
seasonal

:::::::
terminus

::::::::
changes.

::::::
These

::::::
include

:::
the

::::::::
duration

:::
and

::::::
timing

::
of

:::::::::
meltwater

::::::
runoff

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Sohn et al., 1998; Nick et al., 2010; Chauche et al., 2014; Carroll et al., 2016; Fried et al., 2018; Wood et al., 2021),

:::::::
changes

::
in

:::::::::
buttressing

::::
force

:::
by

:::
sea

::
ice

::::
and

::
ice

:::::::
melange

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Howat et al., 2010; Carr et al., 2013; Todd and Christoffersen, 2014; Cassotto et al., 2015; Moon et al., 2015; Kehrl et al., 2017; Robel, 2017; Kneib-Walter et al., 2021)

:
,
::::
basal

::::::
sliding

:::::::::::::::::::::::::::::::::
(De Juan et al., 2010; Moon et al., 2015)

:::
and

:::::
ocean

:::::
driven

::::
melt

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Motyka et al., 2003; Bevan et al., 2012a; Chauche et al., 2014; Carroll et al., 2016)325

:
.
:::::
When

:
a
::::::
glacier

::
is

:::::
forced

::::
into

:
a
::::
state

:::
of

::::::
retreat,

::::
both

:::
the

:::
rate

:::
and

::::::
pattern

::
of
::::::
retreat

:::
are

:::::::::
modulated

::
by

:::
the

:::::::::
subglacial

::::::::::
topography.

:::
For

::::::
marine

:::::::::
terminating

:::::::
glaciers

::
in

:::::::::
Greenland,

:::
this

:::::
effect

:::
has

::::
been

:::::::
studied

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Warren, 1991; Warren and Glasser, 1992; Joughin et al., 2008b; Carr et al., 2015; Lüthi et al., 2016; Kehrl et al., 2017; Bunce et al., 2018; Catania et al., 2018; Felikson et al., 2021)

:::
and

::::::::
modelled

::::::::::::::::::::::::::::::::::::::::::::::::::::
(Enderlin et al., 2013; Morlighem et al., 2016; Choi et al., 2017)

:::::::::
intensively.

::
In

:::::::::
particular,

::::
faster

::::::
retreat

::::
rates

::::
were

:::::
found

::
to

::
be

:::::::::
associated

::::
with

::::::::::::
overdeepening

:::
and

:::::::::
retrograde

::::::::::
topography.

:

:::
The

::::
new

:::::::::
generation

:::
of

:::::::::::
automatically

:::::::::
delineated

:::::::
calving

::::
front

:::::
data

:::::::
products

:::
not

:::::
only

::::::::
facilitates

:::::::::::
glaciological

:::::::
analysis

:::
in330

::::
terms

:::
of

:::::::::
significant

::::
time

:::::::
savings,

:::
but

::::
may

:::
also

:::::::
provide

::::
new

:::::::
insights

:::
due

::
to

:::
the

::::
high

::::::::
temporal

::::::::
resolution

::::
and

::::::
spatial

::::::::
coverage.

Figure 8
::
10

:
shows our calving front time series

::
for

:::::
three

:::::::
example

:::::::
glaciers

:
in relation to bedrock elevation, taken from the

BedMachine Greenland model (Morlighem, 2022), for four example glaciers. Interaction between calving front variation and

bedrock topography for (a) Ingia Isbræ, (b) Upernavik Isstrøm C, (c) Daugaard Jensen Glacier and (d) Kangerdlugssuaq

Glacier. Shown are (from left to right) a satellite image with calving front trajectories as well as a marked profile, bedrock335

topography and color-coded calving front positions along this profile and the corresponding time series of calving front

variation. Note that the axis are scaled differently for each glacier. Landsat-8 imagery courtesy of the U.S. Geological Survey.

:::::::
Version 5

::::::
model

::::::::::::::::
(Morlighem, 2022).

:
Profiles extend from point A to point B along a central flowline. The calving front of Ingia

Isbræ (Fig. 8
::
10a) retreated from 2013 to the end of 2017 by 3.2 km (8.6 km2 in area) with a pronounced seasonal pattern. This

:::
Due

::
to
:::::::::
retrograde

::::::::::
topography

::
(at

::
~4 km

:
in

::::::::
Fig. 10a),

::::
this retreat is particularly rapid in 2017 and 2018. We suspect this is due340

to retrograde topography.
::::
2016

::::
and

:::::
2017. Since 2018, the calving front is located

::
has

:::::
been in a topographic minimum. This

seems to prevent a fast retreat and significantly reduces the
:
,
:::::::::
preventing

::::::
further

:::::
retreat

::::
and

:::::::
reducing

:
seasonal amplitude. In the

case of Upernavik Isstrøm C
:::::
These

:::::::::::
observations

::::::
confirm

:::
the

:::::::
analysis

:::
of

::::::::::::::::
Catania et al. (2018)

:
,
:::::
which

::::::::
described

:::
the

::::::::::
continuous

:::::
retreat

::
of

:::::
Ingia

:::::
Isbræ

::::
from

:::::
2002

::
to

:::::
2016

:::
and

:::::::::
suggested

::::::
further

:::::
retreat

:::
by

:::::
more

::::
than 1 km

:::
until

:::
the

:::::::
calving

::::
front

::::::::
stabilises

:::
on

::
the

::::::::
prograde

:::
bed

::::::::::
topography.

::::
The

::::::
calving

::::
front

::::::
change

:::
of

::::::::::::::
Kangerdlugssuaq

::::::
Glacier

:
(Fig. 8b) , there was a rapid decline in 2014345

and 2015, which has slowed considerably since the end of 2015. This is probably a result of the prograde topography of the

bedrock . In addition, the seasonal amplitude of the calving front change varies considerably, from a minimum of
:::
10b)

::::::
shows

::::
high

:::::::
seasonal

:::::::::
amplitudes

::
as

::::
well

::
as

::
a
:::::::::
significant

:::::
retreat

:::::
from

::::
2016

::
to

:::::
early

:::::
2018.

::::
With

:::
the

::::::::
exception

::
of

:::::
2017

:::
and

:::::
2018,

::::::
where

::
we

:::::::
observe

:
a
::::::::
sustained

::::::
retreat,

:::
the

:::::::
seasonal

:::::::::
amplitude

:::::::
remains

::::::
almost

:::::::
constant

::
at

::::::
around 4 km (in area) in 2020 to a maximum

of (in area)in 2019. This could be related to the prograde bedrock slope, which leads to a floating and less stable glacier tongue350
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Figure 10.
:::::
Effect

:
of
:::::::
bedrock

::::::::
topography

::
of

::::::
calving

::::
front

:::::::
variation

::
for

:::
(a)

::::
Ingia

:::::
Isbræ,

::
(b)

:::::::::::::
Kangerdlugssuaq

::::::
Glacier

:::
and

::
(c)

::::::::
Daugaard

:::::
Jensen

::::::
Glacier.

:::::
Shown

:::
are

::::
(from

:::
left

::
to
:::::
right)

:
a
::::::
satellite

:::::
image

::::
with

::::::
calving

::::
front

::::::::
trajectories

::
as

::::
well

::
as

:
a
::::::
marked

::::::
profile,

::::::
bedrock

:::::::::
topography

:::
and

:::::::::
color-coded

:::::
calving

:::::
front

:::::::
positions

::::
along

::::
this

:::::
profile

:::
and

:::
the

:::::::::::
corresponding

::::
time

::::
series

::
of
::::::

calving
::::

front
::::::::

variation.
::::
Note

:::
that

:::
the

::::
axes

:::
are

::::
scaled

:::::::::
differently

::
for

::::
each

:::::
glacier.

::::::::
Landsat-8

::::::
imagery

:::::::
courtesy

::
of

:::
the

:::
U.S.

:::::::::
Geological

:::::
Survey.

during rapid glacier advance21 km2
:
in

:::::
area).

::::
This

:::::::
calving

::::
front

::::::
pattern

::
is
::::
also

::::::::
described

:::
by

:::::::::::::::
Kehrl et al. (2017)

:
.
:::::::::::
Furthermore,

::
the

:::::::
authors

:::::
show

:::
that

::::::::::::::::
Kangerdlugssuaq’s

:::::::::
grounding

:::
line

:::
has

::::::::
retreated

::
in

::::
2010

::::
and

::::
2011

:::
to

:
a
:::::
stable

:::::::
bedrock

:::::::
position

::::::::
(bedrock

:::::
bump

::
at

:
~10 km

:
in

:::::::::
Fig. 10b),

:::::::
resulting

::
in

::
a

::::::
floating

:::
ice

::::::
tongue

::
of

::
~5 km

:
in

::::::
length.

::::
Due

::
to

:::
the

:::::::::
retrograde

:::::::
bedrock

::::::::::
topography

::::
after

:::
the

:::::::
bedrock

:::::
bump

:::::
(from 10 km

::
to 15 km

:
in

::::::::
Fig. 10b)

:::
and

:::
the

:::::::::::::
reinitialization

::
of

:::
the

:::::::
seasonal

::::::::
terminus

::::::
pattern

::::
from

:::::
2019

::
to

:::::
2021,

:::
we

::::::
suspect

::::
that

:::
the

:::::::
calving

::::
front

::::::
retreat

::::
from

:::::
2016

::
to
:::::

2018
::
is

:::::::
coupled

::::
with

::
a
:::::::::
grounding

:::
line

::::::
retreat

:::
on

:::::::::
retrograde355

:::
bed

::::::::::
topography

:::::::
followed

:::
by

::
a
::::::::::::
restabilisation

::::::
further

:::::
inland

::::::
(likely

:::
at 15.5 km

:
in

::::::::
Fig. 10b).

:::::
This

:::::
would

:::::::
confirm

:::
the

:::::::
second

:::::::
scenario

::::::::
suggested

:::
by

::::::::::::::::
Brough et al. (2019). The calving behavior of Daugaard Jensen Glacier (Fig. 8

::
10c) is influenced by the

abrupt change of bedrock slope near
:::::
close to the frontal position. An advance beyond this point, from a slightly retrograde

into a steeply prograde topography, results in a floating ice tongue
:::::
leads

::
to

:
a
::::
loss

::
of

:::::
basal

::::
drag

:::
and

::::::::::
longitudinal

:::::::
stresses. This

influences calving behaviour, and in particular results in the calving of large tabular icebergs up to
:::::
favors

::::::
calving

:::
of

::::::
tabular360

:::::::
icebergs

:::
like

::
in
:::::

2013
:
(8.2 km2 in size. The calving front change of Kangerdlugssuaq Glacier (Fig. 8d) shows high seasonal
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amplitudes as well as a significant retreat from late 2016 to early 2018. With the exception of 2017 and 2018, where we

observe a sustained retreat, the seasonal amplitude remains almost constant at around (in area). Our time series does not show

long-term calving front changes since 2018. Considering the bed topography, it is apparent that the glacier front , which was

at a stable position until late 2021, has the potential to retreat into a steeply retrograde topography. This retrograde topography365

continues for about upstream. If this tipping point is reached, an accelerated retreat of the glaciers’ calving front location

might be expected. These examples further highlight the benefits of the temporally high-resolution )
::::

and
:::::
2020

:
(4.2 km2

::
in

::::
size).

::::::::
Although

:::::::::
Daugaard

:::::::
Jensen’s

::::::
glacier

::::
front

::::
has

::::::::
remained

::::::
roughly

::
at
::::
this

:::::::
location

:::
for

::::
over

::
70

:::::
years

::::::::::::::::::
(Stearns et al., 2005)

:::
and

::
is

:::::::::
considered

::
to

:::
be

:::::
stable

:::::::::::::::::
(Bevan et al., 2012b)

:
,
:::::::::
temporally

::::
high

:::::::::
resolution calving front information

::
is

:::
still

:::::::::
necessary

::
to

::::::
resolve

:::
and

::::::::::
understand

::::
these

:::::
stable

::::::
glacier

:::::::::
dynamics.

:::::
More

::::::::
generally,

:::::
high

:::::::
temporal

:::::::::
resolution

::::::
calving

:::::
front

::::::::::
information

:::
not370

::::
only

::::
allow

:::
to

::::::
analyze

::::::
glacier

::::::
retreat

:::
and

::::::::
advance,

:::
but

::::
also

::
to

:::::
better

::::::::::
differentiate

:::::::
between

:::::::
different

:::::::
calving

:::::
styles

:::
and

:::::::
patterns.

Long-term calving front trends are often superimposed by seasonal variability and sub-seasonal fluctuations. A separation of

these signals is crucial for studying dynamic glacier changes and fully understand underlying processes.

6 Conclusions

This study presents a deep learning based processing system for automatic delineation of calving front locations from multi-375

spectral Landsat-8 imagery. Using three independent test datasets we validate the performance
:::
and

::::::
spatial

::::::::::::
transferability of our

processing system. The quality of the automatically extracted calving fronts is comparable to that of manually delineated calv-

ing fronts. By overcoming
:::
Our

:::::::
method

::::::
enables

::
a
:::::::::::
considerably

:::::
higher

:::::::::
extraction

:::
rate

:::::::::
compared

::
to

:::::
other

:::::::::
automation

::::::::
methods

:::
that

:::
use

:::
the

:::::
same

::::
data

:::::
basis.

:::::::::::
Importantly,

:::
this

::::::
higher

:::::::::
extraction

:::
rate

::
is

:::::
partly

::::
due

::
to

:::
the

::::::
ability

::
to

:::::::
perform

::::::::::
extractions

:::::
under

challenging cloud, illumination and ice mélange conditionswe make an important step forward to considerably enhancing380

both the temporal resolution as well as the coverage of our resulting time series. The time series derived by this processing

system resolve long-term, seasonal and sub-seasonal calving front variations. This clearly surpasses the potential of manually

delineated data products.
:::
Our

::::::::
resulting

:::
data

:::::::
product,

::::::
which

:::::::
includes

::::
9242

::::::
calving

:::::
fronts

::::
over

:::
23

::::::::
Greenland

:::::::
glaciers,

::
is

::::::::
therefore

:
a
:::::::
valuable

::::::::::
contribution

::
to
:::
the

:::::::
existing

::::
data

::::::::::
repositories.

:

The presented method and the resulting data product addresses
::::::
address

:
the needs of the glaciology community for a com-385

prehensive parameterization of glacier calving in Greenland. The presented example time series highlight the high temporal

resolution achieved by our deep learning method. Especially for longer calving fronts, dense sampling is not attainable

using manual delineation. Thus, our time series provided for Humboldt
::::
time

:::::
series

::::::
derived

:::
by

:::
this

:::::::::
processing

::::::
system

:::::::
resolve

::::::::
long-term,

::::::::
seasonal

:::
and

:::::::::::
sub-seasonal

:::::::
calving

::::
front

:::::::::
variations.

::::
The

::::::
benefit

::
is

::::::::::
particularly

:::::::::
significant

:::
for

::::
large

:::::::
glaciers

::::::
where

::::
there

::
is

::
a

::::
lack

::
of

:::::::
manual

:::::::::
delineated

::::
data,

:::::
such

::
as

::::::::
Humbold

:
Glacier, Zachariae Isstrøm and Nioghalvfjerdsbræ are, among390

many others, are of unprecedented temporal resolution, resolving their sub-seasonal calving front variability for the first

time
:::::::::::::::
Nioghalvfjerdsbrae.

::::
Due

::
to

:::
the

::::::
spatial

::::::::::::
transferability

::
of

:::
this

:::::::
method,

:::
our

:::::::::
processing

::::::
system

::::
has

::
the

::::::::
potential

::
to

::
be

:::::::
applied

::
to

::::
other

::::::::::::::::
marine-terminating

:::::::
glaciers

::::::
around

:::
the

:::::
world.
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Although
::
By

:
the time series presented in this paper,

:::
we

:
give only a selected and a rather narrow glimpse into the dynam-

ics of these glaciers, it is highly important to note that
:
.
::::::::
However,

:
the demonstrated capability of automatically resolving395

the sub-seasonal calving front variations is an important step forward towards a spatially comprehensive Greenland wide

:::::::::::::
Greenland-wide monitoring system. In conjunction with other components concerning ice flow, elevation change, solid earth

response and hydrological processes, this will open up new opportunities to integratively assess, model and simulate dynamic

ice sheet changes. Advancing towards this digital twin of the Greenland Ice Sheet will improve our understanding of its evolu-

tion and its role within the broader Earth climate system.400

Intelligent processing strategies, like deep ANN, will play a major role in shaping the future of glacier monitoring and

associated modelling tasks. This is especially true for analyzing the increasing amount of remote sensing imagery. Well-trained

and thoroughly validated ANN will be state-of-the-art for automated calving front delineation. The results presented in this

paper do not only reinforce existing efforts of deep learning based calving front detection but also lay the foundation for future

developments
:::
will

::::::::
contribute

::
to

::::::
future

:::::::::::
advancements

:
in this field.405

7 Data

6.1 Data source

The presented processing system is based on optical Landsat-8 imagery. We use the orthorectified and radiometrically calibrated

level 1 data products as provided by the United States Geological Survey (U.S. Geological Survey, 2023). Carrying two

scientific instruments, the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS), Landsat-8 provides a410

particularly wide multispectral coverage. The eleven spectral bands comprise data from visible, near-infrared, short-wave

infrared and thermal infrared wavelengths, from to . With exception to the panchromatic band and the two thermal bands,

which have a spatial resolution of and respectively, all other bands have a resolution of . Apart from band 9, which is

outside an atmospheric window and, therefore, intended for atmospheric observations, all available bands are used as input

for our ANN. The integration of these multispectral bands leads to generally more accurate predictions than using conventional415

single-band inputs only, which has already been shown by Loebel et al. (2022). This is especially true for difficult illumination

and ice-melange conditions.

6.1 Reference dataset

We use manually delineated calving front locations as reference data. For model training, we use 698 calving front positions

across 19 Greenland glaciers between 2013 and 2019. Glaciers are selected for their broad spatial distribution and diverse420

morphology as well as for different calving and ocean conditions. A spatial overview of all Greenland glaciers applied in

this study is given in Figure 2. To test the model we apply three different testing sets. The TUD testing dataset includes four

additional Greenland glaciers, Boydell and Drygalski Glacier at the Antarctic Peninsula, Storbreen Glacier in Svalbard as well

as Upsala Glacier in Patagonia. In total, the TUD testing set contains 200 calving front positions across 27 glaciers from 2020
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and 2021. In addition to our own testing data set we use manually delineated calving fronts from the ESA-CCI (ENVEO, 2017)425

and the CALFIN (Cheng et al., 2021) product. Here, we use all available calving front positions for our selected Greenland

glaciers for which we find a corresponding Landsat-8 scene with less than 24 hours time difference. This results in additional

100 manually delineated calving front positions for the ESA-CCI and 110 for the CALFIN testing datasets.

7 Methods

6.1 Pre-Processing430

To use the satellite data as input for the ANN requires pre-processing. In particular, we create stacked raster subsets from the

multispectral satellite bands and the manually delineated calving front locations. These subsets have dimensions of px× 512 px

with a unified ground sampling distance and are centered on the calving front of the respective glacier. For each multispectral

band we apply an image enhancement in form of a cumulative count cut, clipping the data between the 0.1 and 98 percentile,

counteracting overexposure in our satellite imagery. Additionally, all satellite bands are then normalized to the range between435

0 and 1 using an 8-bit quantization. Corresponding manually delineated calving front positions, given either as a line string or

polygon shape-file, are processed into binary raster masks segmenting land and glacier from ocean. Altogether, one stacked

raster subset includes nine satellite bands and a matching ground truth mask.

6.1 Semantic image segmentation

To extract the calving front location from the input images we apply a convolutional neural network that performs a pixel-wise440

semantic image segmentation, separating a glacier-land class from a water class. In particular, we use a U-Net type architecture

introduced by Ronneberger et al. (2015). This architecture consists of a contracting path, resembling a typical convolutional

network where spatial resolution is reduced while feature information is increased, followed by an expanding path where

feature and spatial information are combined. The receptive field of a U-Net is defined by the number of contracting and

expanding blocks. As calving front extraction needs adequate spatial context (Heidler et al., 2021) in this study we enhance445

the U-Net by two additional resolution levels, i.e. from four to six. The applied processing architecture and the relevant

dimensions are shown in Figure 9. U-Net based model architecture used this study. Contracting sequences are composed of

convolutions followed by batch normalization (BatchNorm), a rectified linear unit (ReLU) and a max pooling operation.

An expanding sequence is built from a concatenation from the contracting path, convolutions followed by BatchNorm,

a ReLU and an up-convolution. The specific dimensions are designated at the top of the blocks. Our model is fitted450

using the pre-processed training data. Before initializing the model training we select every fifth image of the training dataset

for internal validation. The remaining training data is augmented eightfold by rotating and flipping. Finally, the resulting 6208

raster subsets are used for fitting the model. For this, we use randomized batches of size eight and apply the Adam optimization

algorithm (Kingma and Ba, 2014) on a binary cross-entropy loss function for a total of 200 epochs. Final model weights are

selected based on the classification accuracy of the internal validation dataset. The ANN processing is implemented using the455
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TensorFlow 2.4 library (Abadi et al., 2015). Model training is carried out on an IBM Power 9 node and an NVIDIA V100 GPU

with 32 GB high bandwidth memory. The training of one model requires about twelve hours with a main memory utilization

of 80 GB and an average GPU power consumption of 265 W.

6.1 Post-Processing

As output of the ANN output we derive a floating point number probability mask where each image pixel is assigned a460

probability between 0 (water) and 1 (glacier and land). During post-processing we vectorize this probability mask using the

Geospatial Data Abstraction Library (GDAL) contour algorithm (GDAL/OGR contributors, 2020) with a threshold of 0.5.

Eventually, we extract the glacier’s calving front by intersecting the vectorized coastline trajectory with a static mask. This mask

is created manually for each glacier and specifies a corridor of possible calving front locations. Calving fronts exceeding the

512 px× 512 px window are split into multiple independent predictions which are then averaged in the overlapping area before465

vectorization. Applying this strategy, which is motivated by Baumhoer et al. (2019), Zachariae Isstrøm, Nioghalvfjerdsbræ and

Humboldt Glacier are split into two, three and seven separate overlapping predictions, respectively.

7 Binary classification metrics

Although our model is fitted using pixel-wise binary cross-entropy the mean and median distances to manual delineation

form the main error metric to validate our model. The reason for this is that a high binary classification performance does not470

necessarily lead to an accurate prediction of the calving front trajectory. The binary classification performance is most important

for pixels at the glacier front but less relevant for the rest of the image. Nevertheless, in Table 1 we specify, along with the

mean and median distance errors, the confusion matrix of our model accuracy assessment using the TUD test dataset. This

confusion matrix enables to derive commonly used binary classification metrics like accuracy, precision, recall or F1-Score

making our results more comparable with those of already existing studies. Results of the accuracy assessment. The mean and475

median distance to manual delineation and the confusion matrix for the glacier/land class are given. In addition, the standard

deviation of the respective parameters is indicated. Example: Mean TP are all glacier/land image pixels of the test dataset that

are correctly classified on average across all 50 models. (lr)2-3(lr)4-7Mean (m)Median (m)Mean TP Mean TN Mean FP Mean

FN (lr)1-7TUD ESA-CCI CALFIN

Code and data availability. The following assets are published along with this article:480

– The data product of automatically delineated calving front positions (format: ESRI shapefile), containing 9243 calving front positions

across 23 Greenland outlet glaciers, is available at http://dx.doi.org/10.25532/OPARA-208 (Loebel et al., 2023).

– All reference data applied in this study is available at http://dx.doi.org/10.25532/OPARA-282 (Loebel et al., 2024). In particular,

this includes 898 manually delineated calving front positions provided in a georeferenced shapefile format, as well as 1220 machine

learning ready raster subsets (pre-processed, 9 channels) with their corresponding manual delineated segmentation mask.485
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– We provide a containerized implementation (platform: Docker) of the presented processing system. The software automatically extracts

calving front positions from Landsat-8 or Landsat-9 Level-1 data archives for glaciers used within this study or at user-defined coordi-

nates. This enables the analysis of glaciers that are outside our reference dataset or beyond the temporal frame of our study. The software

is available at https://github.com/eloebel/glacier-front-extraction (last access 24 March 2023) and

https://doi.org/10.5281/zenodo.7755774 (Loebel, 2023a).490

– Our implementation (software: Python 3) of the rectilinear box method is available at https://github.com/eloebel/rectilinear-box-method

(last access 24 March 2023) and https://doi.org/10.5281/zenodo.7738605 (Loebel, 2023b).
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