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Abstract. This study explores an alternative way of deriving soil thermal properties from surface geophysical measurements.

We combined ground surface temperature timeseries with time lapse geoelectrical acquisitions measured from the ground sur-

face in a fully coupled inversion scheme to calibrate a heat conduction model. The quantitative link between the thermal and

geoelectrical parts of the modeling framework is the temperature-dependent unfrozen water content, which is also the main

factor influencing electrical response of the ground. The apparent resistivity data were incorporated into the coupled framework5

without being inverted separately, thus reducing the uncertainty inevitably associated with inverted resistivity models. We show

that geoelectrical time lapse data are useful as alternative calibration data, and can provide as good results as borehole temper-

ature measurements. The fully coupled modeling framework using field data achieved performance comparable to calibration

on borehole temperature records in terms of model fit within 0.6 ◦C, inversion convergence metrics as well as the predictive

performance of the calibrated model.10

1 Introduction

Numerical modeling is a powerful - and often the only available - tool for assessing the current and forecasting the future

thermal state of permafrost (Riseborough et al., 2008; Harris et al., 2009). Models rely on quality data for forcing, calibration

and validation. In thermal modeling of permafrost, calibration data are ideally ground temperature timeseries measured in

boreholes, as these provide the most direct information about ground thermal regime. Boreholes are, however, geographically15

sparse while providing only discrete information in one spatial dimension. Meanwhile, the ground thermal regime is highly

variable due to local conditions.

Surface geophysical measurements offer an attractive way of informing permafrost thermal models. Depending on the geo-

physical method used, they provide a 2D or 3D picture of subsurface properties, and cover comparatively large areas. Repeated

measurements have been shown to hold information about in-situ processes, guiding development of more accurate process-20

based models. Studies by Hoekstra (1973); Olhoeft (1975); Scott and Kay (1988); Hauck et al. (2008); Krautblatter et al.

(2010); Magnin et al. (2015); Wu et al. (2017); Tomaškovičová (2018); Tang et al. (2018); Holloway and Lewkowicz (2019);

Uhlemann et al. (2021); Tomaškovičová and Ingeman-Nielsen (2023) demonstrate that there is a quantitative link between

electrical and thermal properties of geological materials.

In permafrost thermal modeling with field data, coupling approaches have been applied essentially in two ways: i) temperature-25

calibrated resistivity tomography has been used for quantitative estimation of ground ice and water content changes (Kraut-
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blatter et al., 2010), and ii) inverted resistivity models have been used to constrain ground ice changes estimates (Hauck et al.,

2008). Tomaškovičová et al. (2012) presented a concept of a fully coupled thermo-geophysical inversion, where apparent elec-

trical resistivity data before inversion were used to constrain optimization of thermal model parameters. Jafarov et al. (2020)

demonstrated the feasibility of the approach on synthetic datasets.30

In this work, we evaluated performance of the fully coupled thermo-geophysical optimization framework on field monitoring

data. We demonstrated that thermal parameters of a real ground undergoing phase change can be calibrated using time lapse

geoelectrical measurements collected from the ground surface. Electrical properties of the ground depend mainly on the amount

of unfrozen water available to carry the current. This unfrozen water content is temperature-dependent, and temperature at any

depth depends on the surface energy balance (including water balance) and the soil thermal properties. We used electrical35

resistivity data for calibration because of their comparative ease of acquisition including possibility of automation, and relative

ease and speed of data processing. However, any kind of geophysical data is in principle suitable, as long as the petro-physical

relationship between ground temperature and the targeted geophysical property can be calibrated. Borehole temperature records

are not needed for thermal model calibration in the fully coupled inversion approach; however where available, they present

valuable validation data. The workflow of the fully coupled thermo-geophysical inversion is explained in the following section.40

2 The concept of the fully coupled thermo-geophysical inversion

The fully coupled thermo-geophysical inversion approach aims at predicting ground temperatures using geophysical measure-

ments for calibration of thermal parameters of a ground thermal model. When using electrical resistivity data for calibration,

the approach is built on the quantitative link between ground temperature and ground electrical properties (Hauck, 2002; Hauck

et al., 2008; Doetsch et al., 2015; Oldenborger and LeBlanc, 2018). The ground electrical properties depend on four main fac-45

tors: soil mineralogical composition, soil porosity, fraction of unfrozen water content and geochemical composition of the pore

water (e.g. Hoekstra et al. 1975; Friedman 2005). The unfrozen water is typically the dominant conducting phase in a soil. It is

also the only component that substantially changes its volume fraction over the course of a year, due to temperature-dependent

processes of freezing and thawing (as well as due to drying and wetting in the unfrozen part of the year). Due to the zero-curtain

effect, there is no single temperature value at which ground resistivity changes from frozen to unfrozen (Hauck, 2002; Doetsch50

et al., 2015; Tomaškovičová and Ingeman-Nielsen, 2023). It is the unfrozen water content that quantitatively links the temporal

changes in ground temperature with changes in ground electrical resistivity. The coupled inversion approach is outlined in Fig.

1 and further explained in herein.

The coupled model consists of two, essentially standalone, modules: a heat conduction model (described in Sect. 4) and an

electrical resistivity model (described in Sect. 5). The 1D heat conduction model calculates a temperature distribution in the55

ground given a set of initial and boundary conditions, and of initial thermal parameters estimates. The calculated temperature

distribution is then translated into a 1D multi-layer geoelectrical model by weighting the specific resistivities of the ground

constituents by their temperature-dependent volumetric fractions. From the geoelectrical model, forward apparent resistivity

response is calculated using the same electrode configurations as on the field site. The calculated apparent resistivities are
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Figure 1. Flow diagram of the fully coupled thermo-geophysical inversion using ground surface temperature data as model forcing, and

apparent resistivity data collected from the ground surface for calibration.

compared to the field geoelectrical measurements. The difference is then minimized by adjusting thermal parameters of the heat60

conduction model from which the forward resistivities were calculated, and the specific resistivities of the soil constituents. The

key characteristic of the fully coupled approach is the use of apparent resistivities for calibration, instead of inverted resistivity

models. The reason for using apparent resistivities is the expectation that they introduce less additional uncertainty to the

calibration in form of inherent inversion assumptions and artifacts. The relationship translating a certain ground electrical

composition into apparent resistivity is unique, and governed by equations for conservation of charge, Ohm’s law and the65

geometry of electrode configuration used to collect the resistivity data. Conversely, any inverted resistivity model is only one

of a large number of possible realizations that explains the measured apparent resistivity data acceptably well. Interpretation of

resistivity measurements from permafrost terrain in particular suffers from strong resistivity contrasts and ground ice features

that may lead to over-estimating resistivity model parameters (Ingeman-Nielsen, 2005; Supper et al., 2014; Tomaškovičová

and Ingeman-Nielsen, 2023). The non-unique nature of the inverted resistivity models thus provides a less solid basis for70

quantitative calibration.

We note that while the conversion from a ground resistivity model to an apparent resistivity response is unique, the number

of thermal parameter values combinations able to explain the measured apparent resistivities remains infinite. Hence the choice

of parameter bounds, optimization method and constraints, as well as careful interpretation of the inverted parameters in terms

of their physical plausibility and modeling assumptions are necessary.75

The fully coupled modeling framework does not rely on borehole temperature data for the thermal model calibration; only

ground surface temperatures, or possibly downscaled air temperatures, are needed to drive the model. Naturally, when available,
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borehole temperature records are a very useful resource for model validation and performance evaluation. We use borehole

temperatures in our study to: i) validate the heat conduction model formulation and implementation, ii) validate the inverse

problem formulation, and iii) to quantitatively assess the performance of the fully coupled inversion framework by comparing80

performance of the thermal model calibrated on resistivities to the performance of the thermal model calibrated on ground

temperatures.

3 Field site and data

The data used in this work come from an automated permafrost monitoring station in Ilulissat, West Greenland. The Ilulissat

monitoring site (69° 14’ N, 51° 3’ W, 33m above sea level) is situated ca. 200m east of the airport in Ilulissat, on the85

mainland, in the inner part of the Disko Bay. The mean annual air temperature (MAAT) between 2010-2019 was −3.1 ◦C (data

from Cappelen 2020). According to Obu et al. (2019) and Brown et al. (1998), the site is located in the continuous permafrost

zone. Borehole temperature records from years 2012 – 2015 from the site (Tomaškovičová and Ingeman-Nielsen, 2023) yield

the following permafrost parameters: the maximum active layer thickness is around 0.9m, the ground temperatures at 4 m

depth are in the range −3.0 to −3.4 ◦C. The depth of zero annual amplitude is 5m (defined as the depth of maximum annual90

amplitude < 0.1°).

The sedimentary profile in Ilulissat consists of fine-grained marine sediments deposited during the sea transgression fol-

lowing deglaciation of the area some 9600 BP (Bennike and Björck, 2002). The bedrock — Nagsugtoquidian gneisses with

amphibolitic bands — is encountered at 7m depth according to borehole 78020 drilled as part of the site investigations for the

nearby airport in 1978 (Geoteknisk Institut, 1978). The soils at the site are classified as silty to very silty clays according to the95

Danish engineering geological practice (Larsen et al., 1995) which is normally used in Greenland. The soil column is covered

by a few cm thick vegetation layer.

Tomaškovičová and Ingeman-Nielsen (2023) showed that the thermal regime in the sediments at the site is strongly influ-

enced by hysteresis of unfrozen water content between freezing and thawing periods. The magnitude of this hysteresis justifies

use of separate parameterization for the freezing and thawing periods, respectively.100

4 Heat conduction model

We set up a ground thermal model based on the one-dimensional heat conduction equation with phase change (Lunardini,

1981):

(
Ce +L

∂

∂T
θw(T,x)

)
∂

∂t
T (x,t) =

∂

∂x
λe

∂

∂x
T (x,t) (1)

In this formulation T [◦C] is temperature, L [J/m3] is the volumetric latent heat of phase change between water and ice, θw105

is the volumetric unfrozen water content of the bulk soil [m3
water/m

3
bulk], Ce [J/m3/K] and λe [W/m/K] are effective heat
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capacity and effective thermal conductivity, respectively, of the multi-phase media under consideration; x [m] is the depth

below ground surface and t [s] is the time. Eq. 1 applies under the assumptions that there are no additional internal sources or

sinks of heat, that no volume change is associated with the phase changes, that migration of water is negligible, and that there

are no lateral variation in topography and soil properties (standard 1D assumption).110

Dirichlet boundary conditions are applied at the top and bottom of the model (at depths x= 0 and x= l respectively), such

that T (0, t) = Tu(t) and T (l, t) = Tl(t), where subscripts u and l denote the upper and lower boundaries. A fixed temperature is

used as bottom model boundary, as the yearly temperature amplitude at the bottom of 6m deep borehole is < 0.09 °. The initial

temperature distribution is specified throughout the model domain, such that T (x,0) = T0(x), where T0(x) is the temperature

at depth x and time t= 0s.115

Following Lovell Jr (1957) and Anderson and Tice (1972), we use a power function to describe the soil unfrozen water

content variation at temperatures below freezing point:

θw = ηϕ, ϕ=

S T ≥ T ∗

α|Tf −T |−β T < T ∗
(2)

where θw is the volumetric unfrozen water content of the bulk soil [m3
water/m

3
bulk], η is the porosity [m3

voids/m
3

bulk],

ϕ is the volumetric unfrozen pore water fraction [m3
water/m

3
voids], S is the water saturation in completely unfrozen state120

[m3
water/m

3
voids] (assumed unity in this study) and α and β are empirical positive valued constants describing the intrinsic

freezing characteristics of the given soil. T ∗ [◦C] is the effective freezing point of the bulk soil – the lowest temperature at

which all the water in the soil remains unfrozen (ϕ= S) – and is given by:

T ∗ = Tf −
(
S

α

)− 1
β

(3)

where Tf [◦C] is the freezing point of the pore water as a free substance.125

Given a certain value of unfrozen water content, and under the assumption that the soil is fully saturated at all times, the

volumetric fractions of soil particles θs and ice θi (constants) are derived as:

θs = 1− η, θi =

0 T ≥ T ∗

η (S−ϕ) T < T ∗
(4)

Pronounced hysteresis in the unfrozen water content variation (e.g. Pellet and Hauck (2017); Pellet et al. (2016); Overduin

et al. (2006)) and its effect on the yearly enthalpy change normally requires that two separate parameterizations – (αf , βf ) for130

the freezing season and (αt, βt) for the thawing season in Eq. (2) – are used, to accurately model the freezing and thawing

processes respectively. In this modeling exercise, we use data from the freezing seasons only, therefore our notation (α, β)

relates to the freezing curve parameterization (instead of notation (αf , βf )).

5



The effective parameters of a bulk, three-phase soil are derived as a function of their respective volumetric fractions, which

are essentially a function of temperature. The effective heat capacity Ce is expressed as the sum of the specific heat capacities135

of the soil phases weighted by their volumetric fractions (e.g., Anderson et al., 1973):

Ce = Csθs +Cwθw +Ciθi (5)

Common Johansen’s thermal parameterization (geometric mean) is used for modeling the effective thermal conductivity λe

of a n-phase soil (Johansen, 1977; Zhang et al., 2008):

λe =

N∏
j=1

λj
θj (6)140

To solve the heat conduction equation, we used an in-house code SOILFREEZE1D which implements a finite-difference

scheme on a fixed grid with equidistant nodes. The code uses the unconditionally stable Crank-Nicholson algorithm with

adaptive time-stepping to minimize errors in the solution. For sufficiently small time-steps, the analytical derivative of Eq. (2)

may be used to estimate the change in unfrozen water content. However, to allow manageable step-sizes, we implemented

an iterative scheme for the change in water content. The first iteration for each time-step uses the analytical derivative, while145

subsequent iterations use a finite difference, based on the temperature estimate resulting from the previous iteration. Iterations

proceed until the maximum change in estimated temperature is less than a specified threshold, or until a specified number of

iterations have completed, in which case the time-step is reduced.

The lithology at the Ilulissat field site justifies that a number of simplifying assumptions are made in the interest of main-

taining the model parsimony:150

1. Heat conduction is assumed to be the dominant mechanism of heat transport. This is reasonable considering the wa-

terlogged properties of the silty clays at the site with low hydraulic conductivity. Similar assumption was previously

successfully used by e.g. (Nicolsky et al., 2007, 2009).

2. The ground is assumed to be fully-saturated thus consisting of up to three constituents: soil particles, water and ice. This

is a realistic assumption at our site during the time period used for calibration, as evidenced by unfrozen water content155

measurements reported in Tomaškovičová and Ingeman-Nielsen (2023).

3. The ground is assumed to be homogeneous, thus neglecting any lithological layers or varying thermal properties. This

is true in terms of the soil type, which is uniform throughout the modeled soil column. Heterogeneities, however, are

present, namely in the form of ice lenses (mainly in the depth between 0.9 - 1.5 m), and increasing pore water salinity

(in the depth below 4 m).160

4. Specific heat capacity and specific thermal conductivity of the respective soil constituents are assumed constant, i.e. not

dependent on temperature or salinity. This is an acceptable approximation, as using constant parameters resulted in errors
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of less than 10% in the calculation of the effective (bulk) thermal properties in the temperature range between -20 and

0 ◦C (Osterkamp, 1987).

5. Latent heat of phase change varies with unfrozen water content, but using a constant value has been proved satisfactory165

for temperatures above −20 ◦C (Anderson et al., 1973).

6. A fixed temperature is used as bottom model boundary. This is an acceptable simplification when modeling relatively

short temperature timeseries of 180 days, and considering that measured yearly temperature amplitude at the bottom of

6 m deep borehole is < 0.09 ◦C.

We distinguish principle limitations of the method from simplifying assumptions and further discuss their implications in170

Sect. 8.

The choice of model discretization in time and space was based on convergence testing. For this modeling experiment, the

thermal model domain was set to be 6m deep. The comparatively shallow model was adequate considering the relatively short

timeseries we modeled – up to 180 days, given by the need for separate parameterizations of freezing and thawing seasons

(Sect. 3). We specified equidistant mesh for the heat conduction model solution with nodes every 0.05m, and we limited the175

maximum step size of the differential equation solver to 1 h. The forcing data for the model were ground surface temperatures

collected every 3 hours. The fixed temperature at the model bottom boundary was informed by the observations from the 6m

deep borehole, located ca. 10m away from the resistivity acquisition line.

The modeling and inversion frameworks were implemented in MATLAB, with the heat equation solver SOILFREEZE1D

implemented in PYTHON using the numpy module for optimized array and matrix computations.180

5 Resistivity model

The geophysical part of the modeling framework consists of a 1D forward geoelectrical model. Through convergence testing,

we determined that 128 layers of equal thickness produced convergent solution for the 6m deep model. A representative

temperature was assigned to each resistivity model layer by interpolating the nearest heat conduction model solution. Fractions

of water, ice and soil minerals in each layer were calculated based on Eq. (2) and Eq. (4). The effective bulk resistivity ρe185

of each resistivity model layer was then derived using a resistivity mixing relationship. We considered two commonly used

resistivity mixing relationships: i) the Archie’s law, and ii) the geometric mean model. The choice between them was made

based on their parameters’ sensitivity to calibration in the fully coupled inversion scheme (Fig. 7).

The traditional Archie’s law (Archie et al., 1942) derives effective bulk resistivity of ground material based on material’s

porosity and on a resistivity of the pore fluid:190

ρe = ρwη
−mϕ−n (7)

where ρe is the effective resistivity of the bulk soil, ρw is the specific resistivity of the pore water, η is the porosity, ϕ is the

unfrozen fraction of pore water and m and n are empirical coefficients.
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The geometric mean model (eg. Guéguen and Palciauskas (1994)) estimates the effective bulk resistivity as the geometric

mean of specific resistivities of the respective ground components, weighted by their volumetric fractions:195

ρe =

(
n∏

i=1

ρθii

)
(8)

where ρi and θi are the specific resistivity and volumetric content of the i-th soil constituent respectively.

Based on the derived effective ground resistivity model, synthetic apparent resistivities ρs were forward-calculated using

CR1DMOD code (Ingeman-Nielsen and Baumgartner, 2006), using the same electrode configuration as in the field acquisitions.

As the apparent resistivity field measurements were launching every day at 18:00 UTC and last for up to 5.5 hours, the200

thermal model solutions at time steps between 18:00 – 00:00 UTC every day were averaged to provide the temperature profile

corresponding to the timing of the resistivity acquisitions.

6 Validation of the heat conduction model and of the inverse problem formulation

Prior to utilizing the heat conduction model as part of the coupled inversion, we evaluate its ability to reproduce real ground

temperature dynamics. We also evaluate performance of the optimization algorithm and identify a strategy for effective multi-205

parameter optimization.

6.1 Choice of the target parameters for optimization

Approaching an inverse problem begins with identifying a subset of model parameters to be targeted by the optimization, as

optimization with respect to all model parameters is not feasible. Diagnostic statistics can measure the amount of information

for parameter calibration in the available data, and can inform the choice of parameters that can be effectively recovered from210

the data (Hill, 1998).

Scaled sensitivities (SS) (Hill, 1998) compare the importance of different observations to the estimation of a single parameter

(or, the importance of different parameters to the calculation of a simulated value). SS can help to identify the time periods in

calibration data with most information for calibration of the target parameter. SS are calculated as:

ssij =

(
δy′i
δvj

)
vj
√
ωi (9)215

where y′i is a simulated value, vj is the jth estimated parameter,
(

δy′
i

δvj

)
is the sensitivity of the simulated value to the jth

parameter, and is evaluated at V , V is the vector which contains the parameter values at which sensitivities are evaluated, and

ωi is the weight of the ith observation.

To evaluate relative importance of respective model parameters for the model predictions, we calculate the composite scaled

sensitivities (CSS) (Hill, 1998) for each of the parameters of the heat conduction model. We chose to demonstrate the thermal220
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model’s sensitivity to all parameters as per the heat conduction Eq. 1, including the ones that are in practice not calibrated

(constants). This is because such constants would normally be excluded from a sensitivity analysis while they are, strictly

speaking, temperature- and salinity-dependent (specific heat capacity and thermal conductivity of ice and pore water). The

assumption of a constant is a standard simplifying modeling assumption in a study not focusing on the temperature- and

salinity dependence of these thermal parameters, and designed following the principle of model parsimony. Nevertheless, a225

known temperature and salinity dependence could easily be incorporated into the current model formulation, if the model

application required it and justified the increased complexity.

Fig. 2 shows the change in simulated temperature field caused by 10 % increase in each of the evaluated parameters. Because

the calibration problem is nonlinear with respect to many parameters of interest, the sensitivity of the evaluated parameter will

change for different values of parameters in the parameters vector V , as well as for different model discretizations in time and230

space. An exhaustive sensitivity analysis at every inversion iteration would, however, be computationally inefficient. Assuming

some degree of linearity in the model response to each parameter input, carefully chosen starting point will be descriptive for

sensitivity of each of the fitted parameters. Less influential parameters, as well as parameters with well-known table values were

fixed during the actual optimization. The most sensitive parameters were then calibrated in a multi-parameter optimization.

Please refer to the Table 1 for an overview of the fixed and fitted parameters.235
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Figure 2. Composite scaled sensitivities (CSS) of 10 parameters of the 3-phase heat conduction model, before and after calibration. CSS

corresponds to the change in simulated temperature field caused by 10% increase in the evaluated parameter. Parameters: Cs, Cw, Ci – heat

capacities of soil grains, water and ice, resp.; λs, λw, λi – thermal conductivities of soil grains, water and ice, resp.; α, β – soil freezing

parameters; Tf – freezing point of water as a free substance; η – porosity.
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According to Fig. 2, before calibration, parameters Cw (heat capacity of water), Ci (heat capacity of ice), λw (thermal

conductivity of water), λi (ice) and Tf had relatively less influence on the heat conduction model calculations and thus are

fixed to table values or an empirical small value (Tf ). Parameters Cs and λs (heat capacity and thermal conductivity of mineral

grains), α and β (freezing/thawing parameters), and porosity (η) are soil-specific properties with substantial influence on model

predictions. After calibration, porosity remained the key parameter for model predictions. Importance of α and β parameters240

slightly increased, while influence of heat capacity and thermal conductivity of mineral phase has relatively decreased.

Table 1. Parameterization of the heat conduction model. For the fixed parameters, we show their fixed values in the optimization. For the

fitted parameters, we list their bounds – maximum and minimum values that the optimization algorithm is permitted to investigate when

searching for the optimal parameter value.

Fixed parameters Value Fitted parameters Bounds

Cw 4.19e6 J/m3/K Cs 0.6e6 – 4.1e6 J/m3/K

Ci 1.9228e6 J/m3/K λs 0.5 – 8 W/m/K

λw 0.56 W/m/K η 0.1 – 0.9

λi 2.18 W/m/K α 0.1 – 5

Tf −0.0001 ◦C β 0.01 – 5

Fig. 3 shows the scaled sensitivity for each of the five fitted parameters of the heat conduction model. As expected, the periods

of time when the ground undergoes phase change contained the most information for estimation of each given parameter.

Ground temperature cooling from around −2 ◦C and lower appears to be the most important part of data acquisition for the

model calibration. This could be eg. due to ice formation that have progressed enough to alter the bulk thermal properties of245

the ground as suggested by the highest sensitivity of porosity η to this part of the dataset.

6.2 Inverse problem formulation

To describe the inverse problem we adopt the notation from (Nicolsky et al., 2007) and (Nicolsky et al., 2009). We define the

vector V as consisting of the fitted thermal parameters: V = {Cs,λs,α,β,η}. For each physically realistic control vector V ,

it is possible to compute temperature dynamics and compare it to measured borehole data. The measured data are organized250

in a vector d in form of averages of eight daily temperature records at each sensor depth. The data d are related to the control

vector V by m(V )−d= e, where m is the modeled counterparts of the data and e is the misfit vector. In theory, if there are no

measurement errors or model inadequacies, the misfit vector e can be reduced to zero. If there are errors in the data or in the

model, the aim is to minimize e by varying the control vector V .

The optimization of thermal parameters uses trust-region reflective algorithm based on the interior-reflective Newton method255

(Coleman and Li, 1996), as implemented in the MATLAB solver lsqnonlin. The cost function is the root mean square error

(RMSE) between measured and simulated ground temperatures. Convergence is identified by meeting at least one of the two
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Figure 3. Scaled sensitivities of the 5 fitted parameters of the 3-phase heat conduction model. Intensity of the grey shading corresponds to the

absolute value of change in the simulated temperature value caused by 10% increase in the evaluated parameter. Contour lines with various

dashing correspond to isotherms of the ground freeze-up period.

criteria: either 1) the change of parameter value, or 2) the change in the RMSE between previous and current iterations should

be smaller than a prescribed tolerance.

Specifying bounds for the fitted parameters spares the solver from examining physically implausible parameter values. An260

overview of the fixed parameter values and fitted parameter bounds is provided in Table 1. The values of the fixed C and λ

parameters were chosen based on the most commonly encountered values in literature. Tf value was set to be negative but very

small. The bounds for the fitted parameters were selected as the widest physically possible bounds (in case of porosity η), or

the extreme values encountered in literature. The bounds could be narrowed down to further constrain the optimization, based

on knowledge of site conditions.265

To identify a viable combination of fitted parameters that can be calibrated simultaneously, we first test the calibration

approach in two synthetic scenarios, with and without noise (Sect. 6.3), before applying it to the field data (Sect. 6.4).
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6.3 Heat conduction model validation on synthetic data

Heat conduction model parameters in the control vector V were set to values drawn from within the limits of Table 2. These

values were considered the true parameter values (Vt) and were used to calculate a temperature field m(Vt) in the forward270

problem (Eq. 1); we termed this temperature field the reference temperature field. Next, the control vector Vt was perturbed

with an error coefficient e= [0.5,1] so that the Vp = Vt ± e×Vt. The resulting temperature field calculated was called the

perturbed temperature field. We then minimized the RMSE between the perturbed and the reference temperature field by

optimizing for one to five of the perturbed fitted parameters at once. The heat conduction model solutions at mesh nodes every

0.1m between 0.1m to 1.5m depth were used in the objective function. This corresponds to the real-life situation, where275

temperature measurements are typically available from only a limited portion of the soil profile. To force both the reference

and perturbed temperature field calculations, we used ground surface temperatures available from a rigid thermistor string at

this site (referred to as the ’MRC stick’ in Tomaškovičová and Ingeman-Nielsen (2023)). Bottom boundary at 6m was set to

−3.1◦ based on borehole information from the area.

Each one of the fitted parameter of the heat conduction model (Cs,λs,α,β,η) converged towards its true value in the single-280

parameter optimization on synthetic data without noise. For porosity (η), the most sensitive parameter of the model, starting

the single-parameter calibration from anywhere within the parameter bounds (0.1 - 0.9), the optimization converged to the true

value (0.3) within 7 iterations, with RMSE in the order of 10-4. β was the least sensitive of the fitted parameters; nevertheless,

the optimization converged to its true value within 4 iterations, with RMSE in the order of 10-4 to 10-3 depending on the initial

guess. All the parameters were well-determined with narrow 95%-confidence intervals.285

Up to four parameters could be estimated at once. The joint optimization for the four parameters λs, α, β and η converged

within 26 iterations. The recovered parameters were found within 15 % from their true values.

In the next experiment, we added random noise with amplitude ±0.03 ◦C to each of the ’measurements’ of the reference

temperature field. The perturbed parameters were then recovered by optimizing on this ’noisy’ reference temperature field.

True values of all the fitted parameters were recovered in single-parameter calibration starting from an initial guess up to 50%290

higher than the true parameter value. Equally, performance of the four-parameter calibration with noise was comparable to the

case without noise – recovered parameters laid within 15% from their true values.

Attempting joint calibration of all five fitted heat conduction model parameters Cs, λs, α, β and η caused the optimization

to converge towards a solution relatively far from the true parameter values. This approach was therefore deemed not viable.

A way to get around fitting the fifth parameter Cs was to define an plausible range for the Cs values, then run a sequence295

of 4-parameter optimizations with Cs fixed at every step of the predefined range. In result, we obtained a RMSE value for

four-parameter optimizations with Cs fixed at respective values of the predefined range (such as in Fig. 4a that shows such

results for the field, instead of the synthetic, dataset). We call this the 4+1 optimization approach and we use it in the next

validation step: validation of the heat conduction model on field borehole temperature measurements (section 6.4).

The calibration tests on synthetic datasets confirmed that the trust-region reflective algorithm can recover true parameter300

values even in scenarios with reduced amount of calibration data, with noisy calibration data, and is not affected by the use
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of daily averages instead of individual temperature records. We thus deem the inversion algorithm well-suited for handling

our optimization problem, provided that right optimization settings are used. The essential settings for optimal performance of

the optimization are the convergence tolerances, size of finite-difference steps, and upper and lower bounds of the permitted

parameter value range.305

6.4 Heat conduction model validation on field data

The next step following the synthetic tests was to confirm that our thermal model succeeds at recovering thermal parameters of

a real ground. This meant to optimize the thermal parameters on borehole temperature timeseries instead of synthetic reference

temperature field.

Initial and boundary conditions were identical as in the synthetic tests (Sect. 6.3) as these came from a sensor at the site. The310

difference was that the reference temperature field in this case were the actual in-situ ground temperature timeseries measured

by the rigid thermistor string in the depth between 0.1m to 1.5m during freezing season 1st September 2014 – 28th February

2015 (for description of the sensors and datasets, refer to Tomaškovičová and Ingeman-Nielsen (2023)). The reason to choose

the shallow rigid thermistor string records was that they provided the longest uninterrupted series of boundary conditions for

forcing our model.315

We used the 4+1 optimization approach developed in the synthetic tests (Sect. 6.3). As a maximum of four parameters could

be calibrated at once, we began by defining a plausible range for the fifth parameter Cs as 0.6e6 – 4.1e6 J/m3/K, subsequently

narrowed down to 2.4e6 – 3.7e6 J/m3/K. We then ran a total of 92 4-parameter optimizations of the remaining fitted parameters

α, β, η, and λs, with Cs fixed at 0.1e6-increments of the pre-defined range. The summary of all the optimization runs is

provided in Table 2, including the ’Initial’ and the ’Optimized’ parameter values, average error after optimization (’Minimum320

RMSE’) and the confidence intervals.

The smallest average error (’RMSE5’ = 0.5503) between the field and simulated temperature fields was found for the

following parameter combination: Cs = 2e7 J/m3/K, α = 0.75, β = 0.10, η = 0.50 and λs = 1.51 W/m/K (Table 2). This

optimization run took 14 iterations to converge. The fit between the field measurements and the temperature field calculated

with these parameter values is shown on Fig. 4b. It shows consistently good agreement of the simulations with observations,325

particularly in the portion of the dataset below the freezing point. The highest misfit is associated with temperatures above

freezing point – when the ground temperature is not largely controlled by phase change processes and water movement and

evaporation of the soil moisture may potentially influence the bulk thermal properties.

It is however important to point out that the changes in RMSE between all the 92 optimization runs were very small – below

precision of our temperature sensor – in spite of the large range of Cs values evaluated (Fig. 4a). This suggests two conclusions;330

first, that our implementation of the heat conduction model is not sensitive enough to the parameter Cs to enable its calibration.

Second, the optimized model parameter values depend on the initial parameter values of the starting model, which is reflected

in the spread of the optimized parameter values producing practically the same model fit. We can therefore expect that the

optimized parameter values are not the true ground thermal properties, however they reflect them well enough to simulate the

temperature field within 0.6 ◦C of the field measurements, on average.335
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Table 2. Summary of the 92 calibration runs on field data using the 4+1 optimization approach. The ’RMSE1’ shows the ’Minimum

RMSE’ from 36 optimizations runs, each starting with Cs fixed at 0.1 MJ-increments between 0.6 – 4.1 MJ/m3/K and remaining parameters

[α,β,η,λs] starting from the ’Initial’ values. The ’RMSE2’ through ’RMSE5’ show ’Minimum RMSE’ from 14 calibration runs each,

starting with Cs fixed at 0.1 MJ-increments between 2.4 – 3.7 MJ/m3/K (narrower Cs range) and the remaining four fitted parameters

starting from the ’Initial’ values as specified. The 95% confidence intervals (’95% CI’) indicate the range of values that one can be 95%

certain contains the true mean value of the parameter.

Run Parameter Initial Optimized 95% CI Minimum RMSE [◦C]

RMSE1 Cs 0.6 – 4.1 3 – 0.5517

α 0.21 0.7468 ± 0.0064

β 0.60 0.1006 ± 0.0089

η 0.30 0.5258 ± 0.0198

λs 2.00 1.7136 ± 0.0955

RMSE2 Cs 2.4 – 3.7 2.9 – 0.5515

α 0.10 0.7738 ± 0.0053

β 0.20 0.0839 ± 0.0070

η 0.40 0.5935 ± 0.0172

λs 3.00 2.0573 ± 0.1328

RMSE3 Cs 2.4 – 3.7 2.4 – 0.5509

α 0.40 0.7916 ± 0.0040

β 0.55 0.0792 ± 0.0059

η 0.35 0.6308 ± 0.0145

λs 1.80 2.2407 ± 0.1413

RMSE4 Cs 2.4 – 3.7 2.5 – 0.5523

α 0.32 0.8129 ± 0.0033

β 0.70 0.0719 ± 0.0049

η 0.60 0.7276 ± 0.0113

λs 2.20 4.1891 ± 0.3923

RMSE5 Cs 2.4 – 3.7 2.7 – 0.5503

α 0.50 0.7482 ± 0.0061

β 0.58 0.1045 ± 0.0090

η 0.20 0.5012 ± 0.0188

λs 1.90 1.5080 ± 0.0713
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Figure 4. (a) RMSE [◦C] after optimization for the 92 model runs starting from different initial parameter estimates. The same-color markers

indicate the calibrations starting from the same initial values for parameters α, β, η and λs (as specified in Table 2), and the initial value

for Cs fixed on 0.1e6-increments in the specified range (0.6e6 – 4.1e6 J/m3/K for the group of runs RMSE1, and 2.4e6 – 3.7e6 J/m3/K for

RMSE2 – RMSE5). (b) Crossplot of field-measured temperature field vs. the temperature field simulated with parameters optimized in the

’RMSE5’ run; the optimized parameter estimates are indicated in the annotation. The average misfit between simulated and field temperatures

is 0.55 ◦C.

Figure 5 shows the analysis of differences between the field-measured vs. simulated (using ’RMSE5’ parameterization)

temperatures at five depths throughout the active layer (0 to 0.9m) and top of permafrost (below 0.9m). Predictably, the

model struggles to accurately reproduce amplitudes of rapid temperature fluctuations in the shallow subsurface and introduces

smoothing and lag into the simulated temperature timeseries. Overall, above the freezing point, the model introduces a warm

bias, with simulated temperatures warmer than field measurements; conversely, below the freezing point, the model exhibits340

a cold bias. These observations suggest that the thermal conductivity λs in the model may be over-estimated compared to the

properties of the real ground. Permafrost temperatures (below 0.9m) are reproduced more accurately, possibly because the

ground spends more time in the phase transition around 0◦, which the model reproduces very well. This suggests that the soil

freezing curve parameters (α, β) are close to the real soil values.

Since sensitivity of a model to input parameters changes with changing values of these parameters, we repeated the sensitivity345

analysis from Sect. 6.1 using the calibrated parameter values (’RMSE5’). The CSS analysis confirmed the importance of the

fitted parameters Cs, α, β, η and λs for the thermal model predictions and did not reveal new optimization targets (Fig. 2, after

calibration). We accepted the model calibrated in the ’RMSE5’ optimization run as well performing model with physically

plausible parameter values, and we proceeded to validate these in the following Sect. 6.5.
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Figure 5. Performance of the thermal model calibrated on borehole temperatures evaluated shown as differences between simulated vs.

measured ground temperature timeseries at five different depths across the active layer and top of permafrost (below 0.9m) during the

freezing season 2014/2015. RMSE is in [◦C].

6.5 Validation of the optimized heat conduction model parameter values350

Direct measurements of the heat conduction model parameters were not available, except for porosity η, which was found to

be between 0.40 – 0.62 depending on the exact location near the site, and depth (Pedersen, 2013). Thus we chose to validate

the model calibration by data-splitting (Power, 1993). This was done by using the parameter values optimized on the freezing

season 2014/2015 to predict temperature regimes in the previous freezing seasons 2012/2013 and 2013/2014, respectively.

The model calibrated on freezing season 2014/2015 (’RMSE5’ parameterization) predicted ground temperatures measured355

between 1st November 2012 – 28th February 2013 within ± 0.63°(Fig. 6a). The measurements from freezing season 2013/2014

(only two months between 1st September 2013 — 29th October 2013 available) were reproduced within ± 0.32°(Fig. 6b).

We consider the results of the ’RMSE5’ optimization run our best approximation of the actual ground thermal properties in

Ilulissat, and we refer to these values when evaluating the performance of other inversion approaches.
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Figure 6. (a) Validation of the thermal model calibration on freezing season 2012/2013, data between 1st November 2012 – 28th February

2013. (b) Validation on freezing season 2013/2014. data between 1st September 2013 – 29th October 2013. RMSE is in [◦C]

.

7 The fully coupled thermo-geophysical inversion360

We describe the choice of petro-physical relationship for the resistivity model, then validate the coupled optimization approach

on synthetic data before evaluating performance of the fully coupled inversion scheme in comparison to calibration on borehole

temperatures.

7.1 Choice of the resistivity model parameterization

Sensitivity analysis was repeated for the fully coupled optimization scheme to identify the more suitable petro-physical for-365

mulation for use in the resistivity model (Sect. 5). Both thermal and resistivity parameters were evaluated, as success of the

coupled optimization depends on sensitivity of the forward apparent resistivity calculation to change in the heat parameters

(C, λ), as well as the resistivity parameters (ρ of the water, ice and soil minerals, Archie’s parameters m and n). Parameters

α, β, Tf , and η describe the unfrozen water content variation with temperatures below freezing point and are common to both

heat and resistivity modules in the coupled scheme. Figure 7 shows changes in simulated apparent resistivity (log-transformed)370

resulting from 10% change in each of the input parameters for the two petro-physical relationships evaluated – the geometric

mean model and the Archie’s law.

Both petro-physical relationships showed relatively little sensitivity to changes in the thermal model-only parameters C and

λ. Porosity (η) was among the most influential parameters in the coupled scheme, as it was previously in the thermal model

alone. This makes sense, as the total volume (in addition to inter-connectedness) of pores available for storage and movement of375
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Figure 7. Composite scaled sensitivities (CSS) of the 13 parameters of the heat and the resistivity modules of the fully coupled inversion

scheme. The sensitivity is expressed as change in logarithm of forward-calculated apparent resistivity following 10% change in the evaluated

parameter.

soil moisture determine resistance to current flow. In terms of the resistivity parameters (ρw for Archie’s law and the geometric

mean, ρi and ρs for the geometric mean only) and the parameters of soil freezing curve α and β, the Archie’s formulation was

more sensitive and therefore offered better chances at model calibration. We therefore proceeded with using the Archie’s law

as the petro-physical relationships in the resistivity module. This was in spite of the two extra parameters to calibrate in the

Archie’s law (m and n). Following these considerations as well as the experience from thermal model calibration, we identified380

our target parameters for optimization as the following: λs, α, β, η, ρw, m and n.

Parameter optimization in the coupled inversion scheme is based on the same approach as in the thermal modeling alone:

the iterative non-linear least-squares formulation using the trust-region reflective algorithm. The cost function is the RMSE

between logarithms of field-measured and forward-calculated apparent resistivities. We use log-transformed resistivities, as this

way the optimization problem becomes more linear and a more equally weighted fitting of the resistivity data is achieved. The385

cost function is minimized by adjusting thermal parameters of the heat conduction model from which the forward resistivities

are calculated, as well as the parameters of the resistivity model.

7.2 Validation on synthetic data

We performed several optimization runs on synthetic data without noise, to get a feel for the sensitivity of the optimization

algorithm, correct optimization settings and identify the combination of parameters that can be estimated at once. In the pro-390
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cedure common with the thermal model testing (Sect. 6.3), a set of arbitrary though realistic parameter values (termed true

parameters) was used to produce a reference temperature field, which in turn produced the corresponding synthetic effective re-

sistivity model of the ground. From this synthetic resistivity model, reference apparent resistivity response was calculated. The

true parameter value(s) were then perturbed by a random error coefficient ranging from ±20 – 90%. We then aimed to recover

the true parameter values by updating the perturbed heat and resistivity parameters iteratively, and comparing the forward-395

calculated synthetic apparent resistivity to the reference apparent resistivity. The optimization algorithm and the convergence

criteria were the same as described in the analogous section on the thermal model testing (Sect. 6.3).

Porosity η as the most sensitive parameter of the coupled model was recovered accurately within 3 iterations and with

narrow 95% confidence intervals. Thermal conductivity of soil grains λs is an essential parameter for heat conduction model

predictions, even though the coupled scheme appeared to be very little sensitive to it. Nevertheless, in a single-parameter400

optimization on synthetic data without noise, the true parameter value was recovered accurately within 4 iterations. Joint

calibration of all of the 7 fitted parameters at once – α, β, η, λs, ρw, m, n – converged within 4 –5 iterations, depending

on the starting values, while producing very good fit between simulated and reference apparent resistivities (final RMSE after

optimization in the range of 10−3 – 10−2). However, in spite of the good model fit, the true parameter values were not accurately

recovered and their optimized values depended on their starting values. In spite of the non-unique results of the inversion, all405

the optimized parameters lied in physically plausible range.

To improve the accuracy of recovery of the true parameters in the synthetic scenario, we experimented with fixing some

of the less sensitive parameters of the coupled scheme. The optimization with 6 fitted parameters (α, β, η, ρw, m, n) and Cs

and λs fixed, produced slightly lower final RMSE in comparison to the optimization with 7 and 5 fitted parameters; however,

it did not improve recovery of the true parameter values. We noted that the coupled inversion scheme may not arrive at a410

unique estimation of the accurate parameter values; nevertheless, our synthetic tests confirmed that the optimization algorithm

repeatedly converged to a set of physically plausible parameters while producing very good fit with the reference dataset.

In the following section, we applied the fully coupled inversion approach to recovery of thermal and resistivity parameters

of the real ground, and we compared the results to the traditional method of calibration on borehole temperatures only.

7.3 Fully coupled inversion with field data415

Following the experience from synthetic testing (Sect. 7.2), we chose to optimize 6 fitted parameters at once: α, β, η, ρw, m,

and n. We fixed the thermal conductivity λs to value 1.70 W/m/K and the heat capacity Cs to 3e6 J/m3/K (values from thermal

model calibration RMSE1, section 6.4).

The results of the 6-parameter optimization on field resistivity data are shown in Fig. 8. Fig. 8a shows the best fit of apparent

resistivities after calibration on freezing season 2014/2015. Although the fit between simulated and field apparent resistivi-420

ties is not ideal, the optimized parameterization produces temperature field that fits the field temperatures in freezing season

2014/2015 within ±0.66°(Fig. 8b).

To assess the predictive value of the model, we used the optimized parameterization estimates (values as listed in Fig. 8a

and 8b) to forward-calculate the apparent resistivity distribution in the freezing seasons 2012/2013 (Fig. 8c) and 2013/2014
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Figure 8. Results of the fully coupled inversion: a) and b) show results of calibration, c) through f) show results of validation. a) Fit of the

simulated apparent resistivities (ρapp) to field ρapp measured during freezing season 2014 – 2015; b) fit of the heat conduction model after

optimization, freezing season 2014 – 2015. c) and d) Validation of the optimized coupled model on freezing season 2012 – 2013. e) and f)

Validation of the optimized coupled model on freezing season 2013 – 2014 (e and f). Values of the fixed and optimized thermal and resistivity

model parameters are listed in annotations. RMSE is in [◦C].
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respectively (Fig. 8e). The parameter values optimized on the freezing season 2014/2015 predicted the field temperature mea-425

surements from freezing season 2012/2013 with mean error 0.38 ◦C (Fig. 8d). The field temperature measurements from

freezing season 2013/2014 (only two months are available for comparison) were predicted with mean error 0.30 ◦C (Fig. 8f).

In terms of the model fit, the performance of the coupled optimization approach is comparable to the traditional optimization

on borehole temperatures (Section 6.4). In terms of determination true parameters of the real ground, the coupled inversion

approach does not improve the non-uniqueness of parameter optimization; the optimized parameter values depend on their430

initial parameter estimates. Nevertheless, all the optimization runs come up with physically plausible parameter values and the

forward-calculated temperature fields fit the field datasets with mean error of around 0.6 ◦C.

8 Discussion

Efforts using geophysical data to constrain other – especially hydrological – models are by now well documented. The coupling

strategies vary, from constraining inversion and interpretation of the other models with inverted geophysical data (Doetsch435

et al., 2013), through structurally-coupled approaches (Gallardo and Meju, 2011; Lochbühler et al., 2013), to fully coupled

inversion schemes using the geophysical data before inversion (Hinnell et al., 2010; Herckenrath et al., 2013b; Tran et al.,

2017). The fully coupled approaches have been encouraged by some (Gallardo and Meju, 2011), as separate data inversions

lead to inconsistent models for the same subsurface target. The fully coupled framework has been shown to improve accuracy

and reduce the uncertainty of prediction of hydrological parameters (Hinnell et al., 2010; Herckenrath et al., 2013a).440

To distinguish the principle limitations of the presented fully coupled inversion method from possible pathways for improve-

ment, a number of conceptual simplifications and assumptions stated in Sect. 4 are hereby evaluated.

Heat conduction is assumed to be the dominant process of heat transport. This is a reasonable assumption at our site where

for most of the year (from beginning of September to mid-June), we do not observe substantial lateral water movement (Jessen

et al., 2014; Tomaškovičová and Ingeman-Nielsen, 2023). Evaporation and increased pore water movement produce water445

content variations in the unfrozen period (mid-June to end-August), but this is outside of the calibration period (1. September

– 28. February). Accounting for the processes of water movement and evaporation would require their description and param-

eterization, which could be handled effectively outside of the coupled inversion scheme. Including such modules would only

be of interest if the goal was to carry out year-round ground temperature modeling.

Full saturation is a valid assumption at our site between the beginning of September and mid-June (Tomaškovičová and450

Ingeman-Nielsen, 2023); and only the data from the fully saturated periods were used in the calibration. It is important to

highlight that this is not a principle limitation of the method. If the saturation is known, it is straightforward to include its true

value in the current model formulation. If we were to optimize for saturation different from 1 but constant in time, then it would

correspond to adding just another parameter to the heat conduction (and the coupled) model. However, to include saturation

in a realistic way, it should be included as a time-variable parameter (and as a space-variable parameter when expanding the455

method to more space dimensions). This could be done in one of two ways: by i) parameterizing saturation (in a way similar

to the parameterization of θw by the two parameters α and β), which would result in additional parameters to calibrate; or
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by ii) adding a hydrological model driven by the same climatological parameters that would calculate saturation and inform

the coupled thermal-resistivity model about the time-variable values of saturation. Depending on the hydrological model used,

it may become necessary to include additional parameters, e.g. describing subsurface hydraulic properties, in the calibration460

routine.

The assumption of homogeneous ground is to a certain extent a simplification at our site. While the geology on our site is

indeed homogeneous in terms of soil type (silty clays, based on geotechnical drilling reported in (Geoteknisk Institut, 1978)),

heterogeneities are present in the form of ice lenses (mainly in the depth between 0.9m to 1.5m) and increasing pore water

salinity (in the depth below 4m). In the homogeneous model setup, the specific thermal properties of soil constituents, the465

porosity and the freezing curve parameterization are assumed to be the same for the entire soil column. However the model

does resolve varying bulk (effective) thermal properties, as these depend on the temperature and phase distribution of the soil

constituents at a given time and depth in the soil column. We experimented with an implementation of a heterogeneous model

with four layers corresponding to the field situation (active layer, ice-rich permafrost with ice lenses, saline permafrost and

bedrock). The optimization algorithm searched for four different sets of the specific thermal parameters, one set for each of470

the model layers. The performance of the heterogeneous model was comparable to the homogeneous model in terms of the

RMSE (◦C), and different sets of parameters were identified for each of the four layers. However, the parameters remained non-

uniquely determined, as different sets of starting values converged to different optimized parameter values, all fitting the field

data similarly well. We concluded that without further constraining information, the use of the more complex, heterogeneous

model was not justified, neither in terms of the model fit, speed of convergence, nor the uniqueness of parameter estimation.475

Constraining information could be added e.g. in form of orthogonally determined fixed model parameters, or a constrain on

parameter change e.g. that porosity has to be decreasing with depth.

Specific thermal properties of the soil constituents were assumed constant, i.e. independent of the temperature or salinity.

This is an acceptable approximation, previously used by e.g. Nicolsky et al. (2007) and Romanovsky et al. (2000). According

to Osterkamp (1987), using constant parameters resulted in errors of less than 10% in the calculation of the effective (bulk)480

thermal properties in the temperature range between −20 ◦C to 0 ◦C. Latent heat of phase change in reality varies with unfrozen

water content; however, using a constant value has been proved satisfactory for temperatures above −20 ◦C (Anderson et al.,

1973). These are standard assumptions used in modeling experiments designed following the principle of parsimony, and

where the focus is not on the temperature and salinity dependence of the thermal parameters. Nevertheless, temperature-

or salinity-dependent variation could be readily implemented if the requirements on model output and quality of input data485

justified the increased model complexity. Including effect of salinity would additionally require adaptation of the freezing

curve formulation.

A fixed temperature was used as the bottom model boundary. This assumption has no impact on our calculations considering

the short modeled time span (up to 180 days), and the known yearly temperature amplitude (<0.09 °) at the bottom of the 6m

deep borehole (Tomaškovičová and Ingeman-Nielsen, 2023). If the model was to be used for future predictions, this assumption490

would have to be reviewed, just as in any model expanding its domain of application. Including variable bottom temperature

or geothermal heat flux boundaries is technically straightforward in the current model setup. This would however require extra
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data input in the form of borehole temperature measurements (for the variable bottom boundary) or a reasonable estimate of the

geothermal heat flux at the site (from a deep borehole, or from a regional geothermal heat flux model accounting for variations).

Experiences show that volumetric heat capacities C of materials are difficult to estimate from typical field and laboratory495

tests (Shonder and Beck, 1998; Kojima et al., 2018). Our forward temperature field calculations are relatively insensitive to

the value chosen for the volumetric heat capacity of soil minerals Cs. A plausible explanation for this could be that significant

phase change is necessary to separately estimate heat capacity and thermal conductivity from field data; in a system with little

phase change, only thermal diffusivity can be estimated. In a saturated system, when the rate of phase change is the largest,

the energy consumed by the phase transition between water and ice is much larger than the energy needed to change the500

temperature of soil grains, and the value of Cs becomes insignificant. Outside of the period of signification phase change, the

phase change may not be enough to allow for separate calibration of the heat capacity of the soil grains.

The use of Archie’s law is usually limited to sediments with low clay content, when virtually all conductivity in the bulk soil

can be attributed to the pore liquid. This condition is not entirely met in our field situation, as high clay content may contribute to

lowering the overall soil resistivity by surface conduction. Adaptation of the resistivity mixing relationship remains a possibility505

for improvement of performance of the coupled inversion framework.

Although we advocate for the use of easy-to-measure ground surface temperatures to drive the model, we do recognize

that these typically suffer from rapid fluctuations influenced by short-wave radiation. Using daily averages or near-surface

temperatures to drive the model instead (at ca. 10 cm depth) could improve performance in the upper portion of the modeled

domain. Performance in the deeper parts of the model would be improved by using a heterogeneous model setup allowing to510

capture vertical variations in the specific soil properties.

The value of replacing borehole temperature data with geophysical data for thermal model calibration could be discussed,

as the geoelectrical data achieved calibration comparable to the borehole calibration, though not better. Admittedly, in the

absence of directly measured thermal properties, borehole data are the best calibration and validation data for a 1D thermal

model. However, depending on the survey requirements and limitations, geophysical data afford a number of benefits that may515

constitute a practical advantage over the use of borehole temperatures, evidently without sacrificing the model performance:

1. Measurements from the surface rather than the need for drilling. This encompasses two advantages: larger depth reach,

as well as the possibility to work in both sedimentary and bedrock settings. Hand-operated, engine-powered drilling tools

are of limited depth penetration and restricted to sedimentary geology. Logistics associated with mobilizing a drilling rig

able to reach larger depths or drilling through bedrock is often prohibitive in remote arctic areas. Meanwhile, the depth520

reach of a geoelectrical array can be more readily adjusted by the design of the largest spacing of the current electrodes.

2. Lower impact on fragile ecosystems. Few roads exist in the Arctic, and movement of drilling equipment on the tundra,

especially outside of the frozen season, seriously damages the terrain, particularly in wetter and ice-rich permafrost areas

(Rickard and Brown, 1974; Kevan et al., 1995). Arctic tundras are characterized by relatively low biological activity

and diversity, and by short, cool and dry growing-seasons. This leads to the natural re-vegetation process after surface525

disruption to be very slow. The disruption of the surface organic layer then typically results in the accelerated thaw of
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permafrost. Together with the risk of pollution from engine-operated equipment, these factors may cause issues securing

the necessary permits for drilling fieldwork. In comparison, impact of the surface or airborne geophysical methods is

minimal.

3. Assessment of spatially varying conditions. Geophysical mapping methods, unlike point borehole measurements, al-530

low for a relatively quick assessment of ground conditions over a comparatively large areas. Therefore, expanding the

presented approach to three-dimensional mapping presents another potential for future development of the method.

Spatial variability of the ground electrical properties is resolved by a combination of electrode layouts on a heterogeneous

half-space because of the different depth sensitivity of different layouts. This applies to the 1D scenario as well as to 2D and

3D scenarios, where different layouts are necessary to cover the part of the subsurface of interest. A real concern is if the535

equivalencies observed in the inversion of resistivity data from permafrost (Ingeman-Nielsen, 2006; Ingeman-Nielsen et al.,

2008; Tomaškovičová and Ingeman-Nielsen, 2023) impact this type of inversion. Such a question is targeting a more complex

situation than what we focused on in the simple conditions of this study; more work is necessary to understand how the method

performs in more complex settings.

While we illustrated the coupled approach using geoelectrical data, in principle, any geophysical data could be used as540

long as the petro-physical relationship between the ground temperatures are the geophysical parameter can be calibrated. E.g.

transient electro-magnetic data (TEM), acquired by towing the instrumentation behind a snowmobile (Kass et al., 2021; Maurya

et al., 2021) would exploit the same petro-physical relationship while providing greater spatial coverage. In some settings, TEM

acquired from an airplane could be of interest – if the benefit of fast acquisition and great coverage would outweigh the greater

cost. These considerations suggest the far-reaching potential of the concept of the coupled thermo-geophysical inversion.545

For each new type of geophysical data to be used in the coupled inversion scheme, the required measurement repeat fre-

quency would be of interest. This frequency would depend on the rate of phase change (which varies throughout the year) and

the sensitivity of the method to these changes. We observed (Tomaškovičová and Ingeman-Nielsen, 2023) that in the tempera-

ture range between −2◦ and 0 ◦C, the unfrozen water content changes very rapidly. Data from this period also contain the most

information for the thermal model calibration. Hence it makes sense to collect geophysical acquisition daily, when possible.550

When daily acquisitions are not feasible, as well as outside of the period of the fastest phase change, the acquisition frequency

can be optimized by first evaluating the effect of sampling frequency on the parameter recovery in a synthetic exercise.

Other types of geophysical data may benefit from input of independently measured model parameters constraining the model.

Identification of such parameters would depend on the sensitivity of the geophysical method of choice, and on the desired

outcome of the model. Naturally, having a fix on an important parameter such as e.g. porosity (a single value throughout the555

soil column, or porosity variable with depth) would improve the estimation of the remaining parameters. This would make

sense to implement if the purpose of the model was to obtain as close to true parameter values as possible without directly

measuring them on soil samples. However, porosity is also one of the trickiest parameters to impose. If the purpose of the

modeling is to come up with a model that can reproduce the calibration and validation data within certain acceptable error

limits, this can be achieved even when the true porosity is not known and is one of the calibrated parameters.560

24



Performance of the coupled inversion method at sites of very different geology is of interest for expanding the applicability

of the method. While definite answers cannot be given without testing, we can base our assessment on the knowledge of the

behavior of the ground thermal parameters, as well as the results of our sensitivity analysis. A site where the ground consists of

coarse-grained dry sediment would present a very different scenario to the saturated silty clay geology on which we developed

and tested the coupled inversion method. The parameters that we would expect to differ the most in such conditions would565

be porosity, saturation, and the freezing curve parameterization α and β. Porosity, α and β were among the most sensitive

parameters of the thermal model. Sensitivity of the model to saturation was not evaluated in this study; however, as it is a

property that directly controls the amount of conductive liquid phase, we would expect it to be a very sensitive parameter.

Based on these considerations, we expect that the method would likely be able to resolve the thermal regime even at a site of

different geology.570

The approach described in this work constitutes one of a number of possible ways of adding a constraining information

directly to the process of estimation of the heat conduction model parameters. The field geoelectrical data were shown to

contain constraining information for calibration of the thermal model. Even though we did not obtain an ideal resistivity

model, the thermal calibration was useful. The fit and predictive performance of the resistivity-calibrated thermal model was

comparable to the fit of thermal model calibrated on borehole temperature measurements.575

9 Conclusions

Two main conclusions of our study can be summarized as follows:

1. We evaluated the amount of information contained in the time lapse geoelectrical data for calibration of a soil heat

conduction model.

2. We demonstrated that the geoelectrical calibration data are useful as an alternative calibration data for heat conduction580

model, and can provide as useful calibration results as borehole temperature data.

This is the first time that field data have been used to demonstrate that the concept of the fully coupled thermo-geophysical

inversion can work in praxis. The fully coupled model achieved performance comparable to the traditional method of calibra-

tion on borehole temperatures. While the model did not necessarily improved the estimation of thermal parameters compared

to calibration on borehole temperature measurements, it provided an alternative way of deriving it from surface measure-585

ments. Additionally, the thorough sensitivity analysis of the model parameters improved our understanding of what geological

information may be necessary for constraining the model.

In the development process of the fully coupled inversion scheme, we thoroughly evaluated a comparatively simple (1D,

homogeneous, 3-phase) model for heat transfer in a ground undergoing cycles of freezing and thawing. The model relies on

a number of conceptual assumptions to maintain parsimony. Nevertheless, it predicts temperature variation at our test site590

with satisfactory accuracy – within 0.55 ◦C. Simplicity of the model is a benefit in that the requirements on input data are

relatively low – only surface temperature timeseries (measured, or downscaled from air temperature data), initial temperature

25



distribution and bottom boundary condition are needed. On the other hand, it has to be expected that the final, optimized

parameter estimates will compensate for conceptual simplifications of the model.

In the context of geotechnical and engineering applications (such as forecasting stability of infrastructure built on thawing595

permafrost), the true values of thermal parameters remain of interest, as they can be used further in geotechnical models.

Further efforts in improving the structure and sensitivity of the model, constraining the optimization and including further

independent validation will be required to validate the model in this context.

The relatively short timeseries of one freezing season (180 days) were sufficient to reach a plausible parameter estimation

for the freezing season providing good fit to the validation dataset. Due to hysteretic nature of freeze-thaw processes, the heat600

conduction model should be calibrated for freezing and thawing seasons separately.

With the constantly improving understanding of electrical resistivity responses in the very specific permafrost settings,

the resistivity coupling with thermal models opens up new possibilities for monitoring the current and forecasting the future

thermal state of permafrost. The method has the demonstrated potential for offering a more resource-efficient alternative to

calibration of ground thermal models on borehole temperature records.605
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Tomaškovičová, S. and Ingeman-Nielsen, T.: Quantification of freeze–thaw hysteresis of unfrozen water content and elec-

trical resistivity from time lapse measurements in the active layer and permafrost, Permafrost and Periglacial Processes,

https://doi.org/https://doi.org/10.1002/ppp.2201, 2023.
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