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Abstract. This study explores an alternative way of deriv-
ing soil thermal properties from surface geophysical mea-
surements. We combined ground surface temperature time
series with time lapse geoelectrical acquisitions measured
from the ground surface in a fully coupled inversion scheme5

to calibrate a heat conduction model. The quantitative link
between the thermal and geoelectrical parts of the model-
ing framework is the temperature-dependent unfrozen water
content, which is also the main factor influencing electrical
response of the ground. The apparent resistivity data were10

incorporated into the coupled framework without being in-
verted separately, thus reducing the uncertainty inevitably as-
sociated with inverted resistivity models. We show that geo-
electrical time lapse data are useful as alternative calibration
data and can provide as good results as borehole tempera-15

ture measurements. The fully coupled modeling framework
using field data achieved performance comparable to calibra-
tion on borehole temperature records in terms of model fit
within 0.6 ◦C, inversion convergence metrics, as well as the
predictive performance of the calibrated model.20

1 Introduction

Numerical modeling is a powerful – and often the only avail-
able – tool for assessing the current and forecasting the future
thermal state of permafrost (Riseborough et al., 2008; Harris
et al., 2009). Models rely on quality data for forcing, cali-25

bration and validation. In thermal modeling of permafrost,
calibration data are ideally ground temperature time series
measured in boreholes, as these provide the most direct in-
formation about the ground thermal regime. Boreholes are,
however, geographically sparse while providing only discrete30

information in one spatial dimension. Meanwhile, the ground
thermal regime is highly variable due to local conditions.

Surface geophysical measurements offer an attractive way
of informing permafrost thermal models. Depending on the
geophysical method used, they provide a 2D or 3D picture of 35

subsurface properties and cover comparatively large areas.
Repeated measurements have been shown to hold informa-
tion about in situ processes, guiding the development of more
accurate process-based models. Studies by Hoekstra and Mc-
Neill (1973), Olhoeft (1975), Scott and Kay (1988), Hauck 40

et al. (2008), Krautblatter et al. (2010), Magnin et al. (2015),
Wu et al. (2017), Tomaškovičová (2018), Tang et al. (2018),
Holloway and Lewkowicz (2019), Uhlemann et al. (2021),
and Tomaškovičová and Ingeman-Nielsen (2023) demon-
strate that there is a quantitative link between the electrical 45

and thermal properties of geological materials.
In permafrost thermal modeling with field data, coupling

approaches have been applied essentially in two ways: (i)
temperature-calibrated resistivity tomography has been used
for quantitative estimation of ground ice and water content 50

changes (Krautblatter et al., 2010), and (ii) inverted resistiv-
ity models have been used to constrain ground ice change
estimates (Hauck et al., 2008). Tomaškovičová et al. (2012)
presented a concept of a fully coupled thermo–geophysical
inversion, where apparent electrical resistivity data before in- 55

version were used to constrain the optimization of thermal
model parameters. Jafarov et al. (2020) demonstrated the fea-
sibility of the approach on synthetic datasets.

In this work, we evaluated the performance of the fully
coupled thermo–geophysical optimization framework on 60

field monitoring data. We demonstrated that thermal pa-
rameters of a real ground undergoing phase change can be
calibrated using time lapse geoelectrical measurements col-
lected from the ground surface. The electrical properties of

1
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the ground depend mainly on the amount of unfrozen wa-
ter available to carry the current. This unfrozen water con-
tent is temperature dependent, and temperature at any depth
depends on the surface energy balance (including water bal-
ance) and the soil thermal properties. We used electrical re-5

sistivity data for calibration because of their comparative
ease of acquisition, including the possibility of automation,
and relative ease and speed of data processing. However, any
kind of geophysical data are in principle suitable, as long
as the petrophysical relationship between ground tempera-10

ture and the targeted geophysical property can be calibrated.
Borehole temperature records are not needed for thermal
model calibration in the fully coupled inversion approach;
however, where available, they present valuable validation
data. The workflow of the fully coupled thermo–geophysical15

inversion is explained in the following section.

2 The concept of the fully coupled thermo–geophysical
inversion

The fully coupled thermo–geophysical inversion approach
aims at predicting ground temperatures using geophysical20

measurements for the calibration of the thermal parameters
of a ground thermal model. When using electrical resistiv-
ity data for calibration, the approach is built on the quantita-
tive link between ground temperature and ground electrical
properties (Hauck, 2002; Hauck et al., 2008; Doetsch et al.,25

2015; Oldenborger and LeBlanc, 2018). The ground electri-
cal properties depend on four main factors: soil mineralogical
composition, soil porosity, fraction of unfrozen water content
and geochemical composition of the pore water (e.g., Hoek-
stra et al., 1975; Friedman, 2005). The unfrozen water is typ-30

ically the dominant conducting phase in a soil. It is also the
only component that substantially changes its volume frac-
tion over the course of a year due to temperature-dependent
processes of freezing and thawing (as well as due to drying
and wetting in the unfrozen part of the year). Due to the zero-35

curtain effect, there is no single temperature value at which
ground resistivity changes from frozen to unfrozen (Hauck,
2002; Doetsch et al., 2015; Tomaškovičová and Ingeman-
Nielsen, 2023). It is the unfrozen water content that quan-
titatively links the temporal changes in ground temperature40

with changes in ground electrical resistivity. The coupled in-
version approach is outlined in Fig. 1 and further explained
herein.

The coupled model consists of two, essentially standalone,
modules: a heat conduction model (described in Sect. 4)45

and an electrical resistivity model (described in Sect. 5).
The 1D heat conduction model calculates a temperature dis-
tribution in the ground given a set of initial and bound-
ary conditions and of initial thermal parameter estimates.
The calculated temperature distribution is then translated50

into a 1D multi-layer geoelectrical model by weighting
the specific resistivities of the ground constituents by their

Figure 1. Flow diagram of the fully coupled thermo–geophysical
inversion using ground surface temperature data as model forcing
and apparent resistivity data collected from the ground surface for
calibration.

temperature-dependent volumetric fractions. From the geo-
electrical model, the forward apparent resistivity response
is calculated using the same electrode configurations as on 55

the field site. The calculated apparent resistivities are com-
pared to the field geoelectrical measurements. The difference
is then minimized by adjusting the thermal parameters of the
heat conduction model, from which the forward resistivities
were calculated, and the specific resistivities of the soil con- 60

stituents.
The key characteristic of the fully coupled approach is

the use of apparent resistivities for calibration, instead of
inverted resistivity models. The reason for using apparent
resistivities is the expectation that they introduce less ad- 65

ditional uncertainty to the calibration in the form of in-
herent inversion assumptions and artifacts. The relationship
translating a certain ground electrical composition into ap-
parent resistivity is unique and governed by equations for
the conservation of charge, Ohm’s law and the geometry of 70

electrode configuration used to collect the resistivity data.
Conversely, any inverted resistivity model is only one of a
large number of possible realizations that explain the mea-
sured apparent resistivity data acceptably well. The inter-
pretation of resistivity measurements from permafrost ter- 75

rain in particular suffers from strong resistivity contrasts
and ground ice features that may lead to over-estimating re-
sistivity model parameters (Ingeman-Nielsen, 2005; Supper
et al., 2014; Tomaškovičová and Ingeman-Nielsen, 2023).
The non-unique nature of the inverted resistivity models thus 80

provides a less-solid basis for quantitative calibration.
We note that, while the conversion from a ground resis-

tivity model to an apparent resistivity response is unique,
the number of thermal parameter value combinations able
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to explain the measured apparent resistivities remains infi-
nite. Hence, the choice of parameter bounds, optimization
method and constraints, as well as careful interpretation of
the inverted parameters in terms of their physical plausibility
and modeling assumptions, are necessary.5

The fully coupled modeling framework does not rely on
borehole temperature data for the thermal model calibration;
only ground surface temperatures, or possibly downscaled air
temperatures, are needed to drive the model. Naturally, when
available, borehole temperature records are a very useful re-10

source for model validation and performance evaluation. We
use borehole temperatures in our study to (i) validate the heat
conduction model formulation and implementation, (ii) vali-
date the inverse problem formulation, and (iii) quantitatively
assess the performance of the fully coupled inversion frame-15

work by comparing the performance of the thermal model
calibrated on resistivities to the performance of the thermal
model calibrated on ground temperatures.

3 Field site and data

The data used in this work come from an automated per-20

mafrost monitoring station in Ilulissat, West Greenland. The
Ilulissat monitoring site (69◦14′ N, 51◦3′W; 33 m above sea
level) is situated ca. 200 m east of the airport in Ilulissat,
on the mainland, in the inner part of the Disko Bay. The
mean annual air temperature (MAAT) between 2010–201925

was −3.1 ◦C (data from Cappelen, 2020). According to Obu
et al. (2019) and Brown et al. (1998), the site is located in the
continuous permafrost zone. Borehole temperature records
from the years 2012–2015 from the site (Tomaškovičová
and Ingeman-Nielsen, 2023) yield the following permafrost30

parameters: the maximum active layer thickness is around
0.9 m , the ground temperatures at 4 m depth are in the range
of −3.0 to −3.4 ◦C. The depth of zero annual amplitude
is 5 m (defined as the depth of maximum annual amplitude
< 0.1 ◦).35

The sedimentary profile in Ilulissat consists of fine-grained
marine sediments deposited during the sea transgression fol-
lowing deglaciation of the area some 9600 BP (Bennike and
Björck, 2002). The bedrock – Nagsugtoquidian gneisses with
amphibolitic bands – is encountered at 7 m depth accord-40

ing to borehole 78020 drilled as part of the site investiga-
tions for the nearby airport in 1978 (Geoteknisk Institut,
1978). The soils at the site are classified as silty to very silty
clays according to the Danish engineering geological prac-
tice (Larsen et al., 1995), which is normally used in Green-45

land. The soil column is covered by a few centimeter-thick
vegetation layer.

Tomaškovičová and Ingeman-Nielsen (2023) showed that
the thermal regime in the sediments at the site is strongly
influenced by hysteresis of unfrozen water content between50

freezing and thawing periods. The magnitude of this hystere-

sis justifies use of separate parameterization for the freezing
and thawing periods, respectively.

4 Heat conduction model

We set up a ground thermal model based on the one- 55

dimensional heat conduction equation with phase change
(Lunardini, 1981):(
Ce+L

∂

∂T
θw(T ,x)

)
∂

∂t
T (x, t)=

∂

∂x
λe
∂

∂x
T (x, t). (1)

In this formulation, T (◦C) is temperature; L (Jm−3) is the
volumetric latent heat of phase change between water and 60

ice; θw is the volumetric unfrozen water content of the bulk
soil (m3

water m−3
bulk); Ce (Jm−3 K−1) and λe (Wm−1 K−1) are

effective heat capacity and effective thermal conductivity, re-
spectively, of the multi-phase media under consideration; x
(m) is the depth below ground surface; and t (s) is the time. 65

Equation (1) applies under the assumptions that there are no
additional internal sources or sinks of heat, that no volume
change is associated with the phase changes, that migration
of water is negligible, and that there are no lateral variations
in topography and soil properties (standard 1D assumption). 70

Dirichlet boundary conditions are applied at the top and
bottom of the model (at depths x = 0 and x = l, respec-
tively), such that T (0, t)= Tu(t) and T (l, t)= Tl(t), where
subscripts u and l denote the upper and lower boundaries.
A fixed temperature is used as the bottom model boundary, 75

as the yearly temperature amplitude at the bottom of 6 m
deep borehole is < 0.09 ◦C. The initial temperature distri-
bution is specified throughout the model domain, such that
T (x,0)= T0(x), where T0(x) is the temperature at depth xm
and time t = 0 s. 80

Following Lovell (1957) and Anderson and Tice (1972),
we use a power function to describe the soil unfrozen water
content variation at temperatures below freezing point:

θw = ηφ, φ =

{
S T ≥ T ∗

α|Tf− T |
−β T < T ∗,

(2)

where θw is the volumetric unfrozen water content of the 85

bulk soil (m3
water m−3

bulk), η is the porosity (m3
voids m−3

bulk), φ is
the volumetric unfrozen pore water fraction (m3

water m−3
void),

S is the water saturation in a completely unfrozen state
(m3

water m−3
void) (assumed unity in this study), and α and β are

empirical positive valued constants describing the intrinsic 90

freezing characteristics of the given soil. T ∗ (◦C) is the effec-
tive freezing point of the bulk soil – the lowest temperature
at which all the water in the soil remains unfrozen (φ = S) –
and is given by

T ∗ = Tf−

(
S

α

)− 1
β

, (3) 95
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where Tf [◦C] is the freezing point of the pore water as a free
substance.

Given a certain value of unfrozen water content, and under
the assumption that the soil is fully saturated at all times, the
volumetric fractions of soil particles θs and ice θi are derived5

as

θs = 1− η, θi =

{
0 T ≥ T ∗

η(S−φ) T < T ∗.
(4)

Pronounced hysteresis in the unfrozen water content vari-
ation (e.g., Pellet and Hauck, 2017; Pellet et al., 2016; Over-
duin et al., 2006) and its effect on the yearly enthalpy change10

(Tomaškovičová and Ingeman-Nielsen, 2023) normally re-
quire that two separate parameterizations – (αf, βf) for the
freezing season and (αt, βt) for the thawing season in Eq. (2)
– are used to accurately model the freezing and thawing pro-
cesses, respectively. In this modeling exercise, we use data15

from the freezing seasons only; therefore, our notation (α,
β) relates to the freezing curve parameterization (instead of
notation (αf, βf)).

The effective parameters of a bulk, three-phase soil are de-
rived as a function of their respective volumetric fractions,20

which are essentially a function of temperature. The effec-
tive heat capacity Ce is expressed as the sum of the specific
heat capacities of the soil phases weighted by their volumet-
ric fractions (e.g., Anderson et al., 1973):

Ce = Csθs+Cwθw+Ciθi. (5)25

Common Johansen’s thermal parameterization (geometric
mean) is used for modeling the effective thermal conductivity
λe of a n-phase soil (Johansen, 1977; Zhang et al., 2008):

λe =

N∏
j=1

λj
θj . (6)

To solve the heat conduction equation, we used an30

in-house code soilfreeze1D, which implements a finite-
difference scheme on a fixed grid with equidistant nodes.
The code uses the unconditionally stable Crank–Nicholson
algorithm with adaptive time stepping to minimize errors in
the solution. For sufficiently small time steps, the analytical35

derivative of Eq. (2) may be used to estimate the change in
unfrozen water content. However, to allow manageable step
sizes, we implemented an iterative scheme for the change
in water content. The first iteration for each time step uses
the analytical derivative, while subsequent iterations use a fi-40

nite difference, based on the temperature estimate resulting
from the previous iteration. Iterations proceed until the max-
imum change in estimated temperature is less than a speci-
fied threshold, or until a specified number of iterations have
completed, in which case the time step is reduced.45

The lithology at the Ilulissat field site justifies that a num-
ber of simplifying assumptions are made in the interest of
maintaining the model parsimony:

1. Heat conduction is assumed to be the dominant mech-
anism of heat transport. This is reasonable considering 50

the waterlogged properties of the silty clays at the site
with low hydraulic conductivity. A similar assumption
was previously successfully used by, e.g., Nicolsky et al.
(2007, 2009).

2. The ground is assumed to be fully saturated, thus con- 55

sisting of up to three constituents: soil particles, water
and ice. This is a realistic assumption at our site dur-
ing the time period used for calibration, as evidenced
by unfrozen water content measurements reported in
Tomaškovičová and Ingeman-Nielsen (2023). 60

3. The ground is assumed to be homogeneous, thus ne-
glecting any lithological layers or varying thermal prop-
erties. This is true in terms of the soil type, which is
uniform throughout the modeled soil column. Hetero-
geneities, however, are present, namely in the form of 65

ice lenses (mainly in the depth of between 0.9–1.5 m)
and increasing pore water salinity (in the depth of be-
low 4 m).

4. The specific heat capacity and specific thermal conduc-
tivity of the respective soil constituents are assumed 70

constant, i.e., not dependent on temperature or salinity.
This is an acceptable approximation, as using constant
parameters resulted in errors of less than 10 % in the
calculation of the effective (bulk) thermal properties in
the temperature range of between −20 and 0 ◦C (Os- 75

terkamp, 1987).

5. The latent heat of phase change varies with unfrozen
water content, but using a constant value has been
proved satisfactory for temperatures above−20 ◦C (An-
derson et al., 1973). 80

6. A fixed temperature is used as the bottom model bound-
ary. This is an acceptable simplification when model-
ing relatively short temperature time series of 180 d and
considering that measured yearly temperature ampli-
tude at the bottom of 6 m deep borehole is < 0.09 ◦C. 85

We distinguish principle limitations of the method from
simplifying assumptions and further discuss their implica-
tions in Sect. 8.

The choice of model discretization in time and space was
based on convergence testing. For this modeling experiment, 90

the thermal model domain was set to be 6 m deep. The com-
paratively shallow model was adequate considering the rela-
tively short time series we modeled – up to 180 d, given by
the need for separate parameterizations of freezing and thaw-
ing seasons (Sect. 3). We specified an equidistant mesh for 95

the heat conduction model solution with nodes every 0.05 m,
and we limited the maximum step size of the differential
equation solver to 1 h. The forcing data for the model were
ground surface temperatures collected every 3 h. The fixed
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temperature at the model bottom boundary was informed by
the observations from the 6 m deep borehole, located ca. 10 m
away from the resistivity acquisition line.

The modeling and inversion frameworks were imple-
mented in Matlab, with the heat equation solver soilfreeze1D5

implemented in Python using the NumPy module for opti-
mized array and matrix computations.

5 Resistivity model

The geophysical part of the modeling framework consists of
a 1D forward geoelectrical model. Through convergence test-10

ing, we determined that 128 layers of equal thickness pro-
duced a convergent solution for the 6 m deep model. A repre-
sentative temperature was assigned to each resistivity model
layer by interpolating the nearest heat conduction model so-
lution. Fractions of water, ice and soil minerals in each layer15

were calculated based on Eqs. (2) and (4). The effective bulk
resistivity ρe of each resistivity model layer was then derived
using a resistivity–mixing relationship. We considered two
commonly used resistivity–mixing relationships: (i) Archie’s
law and (ii) the geometric mean model. The choice between20

them was made based on their parameters’ sensitivities to
calibration in the fully coupled inversion scheme (Fig. 7).

The traditional Archie’s law (Archie, 1942) derives effec-
tive bulk resistivity of ground material based on the mate-
rial’s porosity and on the resistivity of the pore fluid:25

ρe = ρwη
−mφ−n, (7)

where ρe is the effective resistivity of the bulk soil, ρw is the
specific resistivity of the pore water, η is the porosity, φ is the
unfrozen fraction of pore water, and m and n are empirical
coefficients.30

The geometric mean model (e.g., Guéguen and Palci-
auskas, 1994) estimates the effective bulk resistivity as the
geometric mean of specific resistivities of the respective
ground components, weighted by their volumetric fractions:

ρe =

(
n∏
i=1
ρ
θi
i

)
, (8)35

where ρi and θi are the specific resistivity and volumetric
content of the ith soil constituent, respectively.

Based on the derived effective ground resistivity model,
synthetic apparent resistivities ρs were forward-calculated
using CR1Dmod code (Ingeman-Nielsen and Baumgartner,40

2006), using the same electrode configuration as in the field
acquisitions. As the apparent resistivity field measurements
launched every day at 18:00 UTC and last for up to 5.5 h,
the thermal model solutions at time steps between 18:00–
00:00 UTC every day were averaged to provide the tempera-45

ture profile corresponding to the timing of the resistivity ac-
quisitions.

6 Validation of the heat conduction model and of the
inverse problem formulation

Prior to utilizing the heat conduction model as part of the 50

coupled inversion, we evaluate its ability to reproduce real
ground temperature dynamics. We also evaluate the perfor-
mance of the optimization algorithm and identify a strategy
for effective multi-parameter optimization.

6.1 Choice of the target parameters for optimization 55

Approaching an inverse problem begins with identifying a
subset of model parameters to be targeted by the optimiza-
tion, as optimization with respect to all model parameters is
not feasible. Diagnostic statistics can measure the amount of
information for parameter calibration in the available data 60

and can inform the choice of parameters that can be effec-
tively recovered from the data (Hill, 1998).

Scaled sensitivities (SSs) (Hill, 1998) compare the impor-
tance of different observations to the estimation of a single
parameter (or the importance of different parameters to the 65

calculation of a simulated value). SSs can help to identify the
time periods in calibration data with the most information for
the calibration of the target parameter. SSs are calculated as

ssij =

(
δy′i

δvj

)
vj
√
ωi, (9)

where y′i is a simulated value, vj is the j th estimated pa- 70

rameter,
(
δy′i
δvj

)
is the sensitivity of the simulated value to the

j th parameter and is evaluated at V , V is the vector which
contains the parameter values at which sensitivities are eval-
uated, and ωi is the weight of the ith observation.

To evaluate the relative importance of the respective model 75

parameters for the model predictions, we calculate the com-
posite scaled sensitivities (CSSs) (Hill, 1998) for each of
the parameters of the heat conduction model. We chose to
demonstrate the thermal model’s sensitivity to all parame-
ters as per the heat conduction, Eq. (1), including the ones 80

that are not calibrated in practice (constants). This is because
such constants would normally be excluded from a sensitiv-
ity analysis while they are, strictly speaking, temperature and
salinity dependent (specific heat capacity and thermal con-
ductivity of ice and pore water). The assumption of a constant 85

is a standard simplifying modeling assumption in a study
not focusing on the temperature and salinity dependence of
these thermal parameters and designed following the princi-
ple of model parsimony. Nevertheless, a known temperature
and salinity dependence could easily be incorporated into the 90

current model formulation if the model application required
it and justified the increased complexity.

Figure 2 shows the change in simulated temperature field
caused by a 10 % increase in each of the evaluated param-
eters. Because the calibration problem is nonlinear with re- 95

spect to many parameters of interest, the sensitivity of the
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Figure 2. Composite scaled sensitivities (CSSs) of 10 parameters
of the three-phase heat conduction model, before and after calibra-
tion. CSS corresponds to the change in simulated temperature field
caused by a 10 % increase in the evaluated parameter. The param-
eters are Cs, Cw and Ci – the heat capacities of soil grains, water
and ice, respectively; λs, λw and λi – the thermal conductivities of
soil grains, water and ice, respectively; α and β – the soil freezing
parameters; Tf – the freezing point of water as a free substance; and
η – porosity.

evaluated parameter will change for different values of pa-
rameters in the parameter vector V , as well as for different
model discretizations in time and space. An exhaustive sensi-
tivity analysis at every inversion iteration would, however, be
computationally inefficient. Assuming some degree of linear-5

ity in the model response to each parameter input, a carefully
chosen starting point will be descriptive for the sensitivity of
each of the fitted parameters. Less influential parameters, as
well as parameters with well-known table values, were fixed
during the actual optimization. The most sensitive parame-10

ters were then calibrated in a multi-parameter optimization.
Please refer to Table 1 for an overview of the fixed and fitted
parameters.

According to Fig. 2, before calibration, parameters Cw
(heat capacity of water), Ci (heat capacity of ice), λw (ther-15

mal conductivity of water), λi (ice) and Tf had relatively less
influence on the heat conduction model calculations and thus
were fixed to table values or an empirical small value (Tf).
Parameters Cs and λs (heat capacity and thermal conductiv-
ity of mineral grains), α and β (freezing and thawing pa-20

rameters), and porosity (η) are soil-specific properties with
substantial influence on model predictions. After calibration,
porosity remained the key parameter for model predictions.
The importance of α and β parameters slightly increased,
while the influence of the heat capacity and thermal conduc-25

tivity of the mineral phase has relatively decreased.
Figure 3 shows the scaled sensitivity for each of the five

fitted parameters of the heat conduction model. As expected,
the periods of time when the ground undergoes a phase
change contained the most information for the estimation30

of each given parameter. Ground temperature cooling from

around −2 ◦C and lower appears to be the most important
part of data acquisition for the model calibration. This could
be, e.g., due to ice formation that has progressed enough to
alter the bulk thermal properties of the ground as suggested 35

by the highest sensitivity of porosity η to this part of the
dataset.

6.2 Inverse problem formulation

To describe the inverse problem we adopt the notation from
(Nicolsky et al., 2007) and (Nicolsky et al., 2009). We de- 40

fine the vector V as consisting of the fitted thermal parame-
ters: V = {Cs,λs,α,β,η}. For each physically realistic con-
trol vector V , it is possible to compute the temperature dy-
namics and compare them to measured borehole data. The
measured data are organized in a vector d in the form of 45

averages of eight daily temperature records at each sensor
depth. The data d are related to the control vector V by
m(V )− d = e, where m is the modeled counterpart of the
data, and e is the misfit vector. In theory, if there are no mea-
surement errors or model inadequacies, the misfit vector e 50

can be reduced to zero. If there are errors in the data or in the
model, the aim is to minimize e by varying the control vector
V .

The optimization of thermal parameters uses the trust-
region reflective algorithm based on the interior-reflective 55

Newton method (Coleman and Li, 1996), as implemented
in the Matlab solver lsqnonlin. The cost function is the root
mean square error (RMSE) between measured and simulated
ground temperatures. Convergence is identified by meeting
at least one of the two criteria: either (1) the change of pa- 60

rameter value or (2) the change in the RMSE between previ-
ous and current iterations should be smaller than a prescribed
tolerance.

Specifying bounds for the fitted parameters spares the
solver from examining physically implausible parameter val- 65

ues. An overview of the fixed parameter values and fitted pa-
rameter bounds is provided in Table 1. The values of the fixed
C and λ parameters were chosen based on the most com-
monly encountered values in the literature. The Tf value was
set to be negative but very small. The bounds for the fitted 70

parameters were selected as the widest physically possible
bounds (in the case of porosity η) or the extreme values en-
countered in the literature. The bounds could be narrowed
down to further constrain the optimization based on knowl-
edge of the site conditions. 75

To identify a viable combination of fitted parameters that
can be calibrated simultaneously, we first test the calibration
approach in two synthetic scenarios, with and without noise
(Sect. 6.3), before applying it to the field data (Sect. 6.4).

6.3 Heat conduction model validation of synthetic data 80

Heat conduction model parameters in the control vector V

were set to values drawn from within the limits of Table 2.
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Table 1. Parameterization of the heat conduction model. For the fixed parameters, we show their fixed values in the optimization. For the
fitted parameters, we list their bounds – maximum and minimum values that the optimization algorithm is permitted to investigate when
searching for the optimal parameter value.

Fixed Value Fitted Bounds
parameters parameters

Cw 4.19× 106 J m−3 K−1 Cs 0.6× 106–4.1× 106 J m−3 K−1

Ci 1.9228× 106 J m−3 K−1 λs 0.5–8 W m−1 K−1

λw 0.56 W m−1 K−1 η 0.1–0.9
λi 2.18 W m−1 K−1 α 0.1–5
Tf −0.0001 ◦C β 0.01–5

Figure 3. Scaled sensitivities of the five fitted parameters of the three-phase heat conduction model. Intensity of the grey shading corresponds
to the absolute value of change in the simulated temperature value caused by a 10 % increase in the evaluated parameter. Contour lines with
various dashing correspond to isotherms of the ground freeze-up period.

These values were considered the true parameter values (V t)
and were used to calculate a temperature field m(V t) in the
forward problem (Eq. 1); we termed this temperature field
the reference temperature field. Next, the control vector V t
was perturbed with an error coefficient e = [0.5,1] so that the5

V p = V t±e×V t. The resulting temperature field calculated
was called the perturbed temperature field. We then mini-
mized the RMSE between the perturbed and the reference
temperature field by optimizing for one to five of the per-
turbed fitted parameters at once. The heat conduction model10

solutions at mesh nodes every 0.1 m between 0.1–1.5 m depth
were used in the objective function. This corresponds to the

real-life situation, where temperature measurements are typ-
ically available from only a limited portion of the soil profile.
To force both the reference and perturbed temperature field 15

calculations, we used ground surface temperatures available
from a rigid thermistor string at this site (referred to as
the “MRC stick” in Tomaškovičová and Ingeman-Nielsen,
2023). The bottom boundary at 6 m was set to−3.1 ◦C based
on borehole information from the area. 20

Each one of the fitted parameters of the heat conduction
model (Cs,λs,α,β,η) converged towards its true value in
the single-parameter optimization on synthetic data without
noise. For porosity (η), the most sensitive parameter of the
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model, when starting the single-parameter calibration from
anywhere within the parameter bounds (0.1–0.9) the opti-
mization converged to the true value (0.3) within seven it-
erations, with RMSE in the order of 10−4 ◦C. β was the least
sensitive of the fitted parameters; nevertheless, the optimiza-5

tion converged to its true value within four iterations, with
RMSE in the order of 10−4 to 10−3 ◦C depending on the ini-
tial guess. All the parameters were well determined with nar-
row 95 % confidence intervals.

Up to four parameters could be estimated at once. The10

joint optimization for the four parameters λs, α, β and η con-
verged within 26 iterations. The recovered parameters were
found within 15 % of their true values.

In the next experiment, we added random noise with am-
plitude±0.03 ◦C to each of the “measurements” of the refer-15

ence temperature field. The perturbed parameters were then
recovered by optimizing on this “noisy” reference tempera-
ture field. True values of all the fitted parameters were recov-
ered in a single-parameter calibration starting from an initial
guess of up to 50 % higher than the true parameter value.20

Equally, the performance of the four-parameter calibration
with noise was comparable to the case without noise – re-
covered parameters laid within 15 % from their true values.

Attempting joint calibration of all five fitted heat con-
duction model parameters Cs, λs, α, β and η caused the25

optimization to converge towards a solution relatively far
from the true parameter values. This approach was therefore
deemed not viable. A way to get around fitting the fifth pa-
rameter Cs was to define a plausible range for the Cs val-
ues and then run a sequence of four-parameter optimizations,30

with Cs fixed at every step of the predefined range. As a
result, we obtained a RMSE value for four-parameter opti-
mizations with Cs fixed at the respective values of the pre-
defined range (such as in Fig. 4a that shows such results for
the field, instead of the synthetic, dataset). We call this the35

4+1 optimization approach, and we use it in the next vali-
dation step: validation of the heat conduction model on field
borehole temperature measurements (Sect. 6.4).

The calibration tests on synthetic datasets confirmed that
the trust-region reflective algorithm can recover true parame-40

ter values even in scenarios with a reduced number of calibra-
tion data, with noisy calibration data, and which are not af-
fected by the use of daily averages instead of individual tem-
perature records. We thus deem the inversion algorithm well
suited for handling our optimization problem, provided that45

the right optimization settings are used. The essential settings
for optimal performance of the optimization are the conver-
gence tolerances, size of finite-difference steps, and upper
and lower bounds of the permitted parameter value range.

6.4 Heat conduction model validation of field data50

The next step following the synthetic tests was to confirm
that our thermal model succeeds at recovering the thermal
parameters of a real ground. This meant to optimize the ther-

mal parameters on borehole temperature time series instead
of the synthetic reference temperature field. 55

Initial and boundary conditions were identical as in the
synthetic tests (Sect. 6.3), as these came from a sensor at the
site. The difference was that the reference temperature fields
in this case were the actual in situ ground temperature time
series measured by the rigid thermistor string in the depth of 60

between 0.1–1.5 m during the freezing season of 1 Septem-
ber 2014–28 February 2015 (for description of the sensors
and datasets refer to Tomaškovičová and Ingeman-Nielsen,
2023). The reason for choosing the shallow rigid thermis-
tor string records was that they provided the longest uninter- 65

rupted series of boundary conditions for forcing our model.
We used the 4+1 optimization approach developed in the

synthetic tests (Sect. 6.3). As a maximum of four param-
eters could be calibrated at once, we began by defining a
plausible range for the fifth parameter Cs as 0.6×106–4.1× 70

106 J m−3 K−1, subsequently narrowed down to 2.4× 106–
3.7×106 J m−3 K−1. We then ran a total of 92 four-parameter
optimizations of the remaining fitted parameters α, β, η, and
λs, with Cs fixed at 0.1× 106 increments of the predefined
range. The summary of all the optimization runs is provided 75

in Table 2, including the “initial” and the “optimized” param-
eter values, the average error after optimization (“minimum
RMSE”), and the confidence intervals.

The smallest average error (RMSE5= 0.5503) be-
tween the field and simulated temperature fields was 80

found for the following parameter combination: Cs = 2×
107 TS1 J m−3 K−1, α = 0.75, β = 0.10, η = 0.50 and λs =

1.51 W m−1 K−1 (Table 2). This optimization run took 14 it-
erations to converge. The fit between the field measurements
and the temperature field calculated with these parameter val- 85

ues is shown on Fig. 4b. It shows consistently good agree-
ment of the simulations with observations, particularly in the
portion of the dataset below the freezing point. The high-
est misfit is associated with temperatures above the freezing
point – when the ground temperature is not largely controlled 90

by phase change processes and water movement and evapo-
ration of the soil moisture may potentially influence the bulk
thermal properties.

It is, however, important to point out that the changes in
RMSE between all the 92 optimization runs were very small 95

– below the precision of our temperature sensor – in spite of
the large range of Cs values evaluated (Fig. 4a). This sug-
gests two conclusions: first, that our implementation of the
heat conduction model is not sensitive enough to the pa-
rameter Cs to enable its calibration. Second, the optimized 100

model parameter values depend on the initial parameter val-
ues of the starting model, which is reflected in the spread
of the optimized parameter values producing practically the
same model fit. We can therefore expect that the optimized
parameter values are not the true ground thermal properties; 105

however, they reflect them well enough to simulate the tem-
perature field within 0.06 ◦C of the field measurements, on
average.

melda.ohan
Highlight
Change Cs = 2*10^7 to of Cs = 2*10^6.This was a typo in the approved version of the manuscript, that apparently neither reviewers nor the editor noticed. The value of Cs = 2*10^7 is one order of magnitude larger than what's written everywhere else in the manuscript, including in the paragraph right before ("... we began by defining a plausible range for the fifth parameter Cs as 0.6*10^6–4.1*10^6..."), in Table 1 (Fitted parameter bounds, parameter Cs) and Table 2 (Initial value of Cs and figures. Value of Cs = 2*10^7 (power of seven) is not mentioned anywhere else in the manuscript and would be, in fact, impossible for natural soil grains.

melda.ohan
Highlight
This value has to be changed to 0.6 deg C, instead of 0.06 deg C.This is consistent with the information on performance of the thermal model as mentioned 1. in the Abstract, 2. in the Table 2 (RMSE values around 0.55), 3. in the Conclusions, 4. In Figure 4), and 5. in the same order as the RMSE values reported in the end of the section 6.5 (page 11).	.So, this sentence is the only instance where this value is not consistent.Mean error 0.06 deg C would also be ambitiously small for a model simulating field data, this must have slipped the attention of the reviewers.
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Table 2. Summary of the 92 calibration runs on field data using the 4+1 optimization approach. The “RMSE1” shows the minimum RMSE
from 36 optimizations runs, each starting with Cs fixed at 0.1 MJ increments between 0.6– 4.1 MJ m−3 K−1 and remaining parameters
(α,β,η,λs) starting from the initial values. The RMSE2 through RMSE5 show the minimum RMSE from 14 calibration runs each, starting
with Cs fixed at 0.1 MJ increments between 2.4–3.7 MJ m−3 K−1 (narrower Cs range) and the remaining four fitted parameters starting from
the initial values as specified. The 95 % confidence intervals (95 % CI) indicate that the range of values that one can be 95 % certain contains
the true mean value of the parameter.

Run Parameter Initial Optimized 95 % CI Minimum RMSE [◦C]

RMSE1 Cs 0.6–4.1 3 – 0.5517
α 0.21 0.7468 ±0.0064
β 0.60 0.1006 ±0.0089
η 0.30 0.5258 ±0.0198
λs 2.00 1.7136 ±0.0955

RMSE2 Cs 2.4–3.7 2.9 – 0.5515
α 0.10 0.7738 ±0.0053
β 0.20 0.0839 ±0.0070
η 0.40 0.5935 ±0.0172
λs 3.00 2.0573 ±0.1328

RMSE3 Cs 2.4–3.7 2.4 – 0.5509
α 0.40 0.7916 ±0.0040
β 0.55 0.0792 ±0.0059
η 0.35 0.6308 ±0.0145
λs 1.80 2.2407 ±0.1413

RMSE4 Cs 2.4–3.7 2.5 – 0.5523
α 0.32 0.8129 ±0.0033
β 0.70 0.0719 ±0.0049
η 0.60 0.7276 ±0.0113
λs 2.20 4.1891 ±0.3923

RMSE5 Cs 2.4–3.7 2.7 – 0.5503
α 0.50 0.7482 ±0.0061
β 0.58 0.1045 ±0.0090
η 0.20 0.5012 ±0.0188
λs 1.90 1.5080 ±0.0713

Figure 5 shows the analysis of differences between the
field-measured vs. simulated (using RMSE5 parameteriza-
tion) temperatures at five depths throughout the active layer
(0–0.9 m) and top of the permafrost (below 0.9 m). Pre-
dictably, the model struggles to accurately reproduce ampli-5

tudes of rapid temperature fluctuations in the shallow sub-
surface and introduces smoothing and lag into the simulated
temperature time series. Overall, above the freezing point,
the model introduces a warm bias, with simulated tempera-
tures being warmer than field measurements; conversely, be-10

low the freezing point, the model exhibits a cold bias. These
observations suggest that the thermal conductivity λs in the
model may be over-estimated compared to the properties
of the real ground. Permafrost temperatures (below 0.9 m)
are reproduced more accurately, possibly because the ground15

spends more time in the phase transition around 0 ◦C, which
the model reproduces very well. This suggests that the soil
freezing curve parameters (α, β) are close to the real soil
values.

Since the sensitivity of a model to input parameters 20

changes with the changing values of these parameters, we
repeated the sensitivity analysis from Sect. 6.1 using the cal-
ibrated parameter values (RMSE5). The CSS analysis con-
firmed the importance of the fitted parameters Cs, α, β, η and
λs for the thermal model predictions and did not reveal new 25

optimization targets (Fig. 2, after calibration). We accepted
the model calibrated in the RMSE5 optimization run as a
well-performing model with physically plausible parameter
values, and we proceeded to validate these in the following
Sect. 6.5. 30

6.5 Validation of the optimized heat conduction model
parameter values

Direct measurements of the heat conduction model param-
eters were not available, except for porosity η, which was
found to be between 0.40–0.62 depending on the exact loca- 35

tion near the site, and depth (Pedersen, 2013). Thus, we chose
to validate the model calibration by data splitting (Power,
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Figure 4. (a) RMSE (◦C) after optimization for the 92 model runs starting from different initial parameter estimates. The same-color markers
indicate the calibrations starting from the same initial values for parameters α, β, η and λs (as specified in Table 2), and the initial value for
Cs is fixed on 0.1× 106 increments in the specified range (0.6× 106–4.1× 106 J m−3 K−1 for the group of runs RMSE1 and 2.4× 106–
3.7× 106 J m−3 K−1 for RMSE2–RMSE5). (b) Cross-plot of field-measured temperature field vs. the temperature field simulated with
parameters optimized in the RMSE5 run; the optimized parameter estimates are indicated in the annotation. The average misfit between
simulated and field temperatures is 0.55 ◦C.

Figure 5. Performance of the thermal model calibrated on borehole temperatures evaluated shown as the differences between simulated vs.
measured ground temperature time series at five different depths across the active layer and the top of permafrost (below 0.9 m) during the
freezing season of 2014/2015. RMSE is in degrees Celsius (◦C).
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1993). This was done by using the parameter values opti-
mized on the freezing season of 2014/2015 to predict temper-
ature regimes in the previous freezing seasons of 2012/2013
and 2013/2014, respectively.

The model calibrated on the freezing season of 2014/20155

(RMSE5 parameterization) predicted ground temperatures
measured between 1 November 2012–28 February 2013
within ±0.63 ◦C (Fig. 6a). The measurements from the
freezing season of 2013/2014 (only 2 months between
1 September 2013–29 October 2013 available) were repro-10

duced within ±0.32 ◦C (Fig. 6b).
We consider the results of the RMSE5 optimization run to

be our best approximation of the actual ground thermal prop-
erties in Ilulissat, and we refer to these values when evaluat-
ing the performance of other inversion approaches.15

7 The fully coupled thermo–geophysical inversion

We describe the choice of petrophysical relationship for the
resistivity model and then validate the coupled optimization
approach on synthetic data before evaluating performance of
the fully coupled inversion scheme in comparison to calibra-20

tion of borehole temperatures.

7.1 Choice of the resistivity model parameterization

The sensitivity analysis was repeated for the fully coupled
optimization scheme to identify the more suitable petrophys-
ical formulation for use in the resistivity model (Sect. 5).25

Both thermal and resistivity parameters were evaluated, as
the success of the coupled optimization depends on sensitiv-
ity of the forward apparent resistivity calculation to change
in the heat parameters (C, λ) as well as the resistivity pa-
rameters (ρ of the water, ice and soil minerals, Archie’s pa-30

rameters m and n). Parameters α, β, Tf and η describe the
unfrozen water content variation with temperatures below
freezing point and are common to both the heat and resistiv-
ity modules in the coupled scheme. Figure 7 shows changes
in simulated apparent resistivity (log-transformed) resulting35

from a 10 % change in each of the input parameters for the
two petrophysical relationships evaluated – the geometric
mean model and Archie’s law.

Both petrophysical relationships showed relatively little
sensitivity to changes in the thermal model-only parameters40

C and λ. Porosity (η) was among the most influential pa-
rameters in the coupled scheme, as it was previously in the
thermal model alone. This makes sense, as the total volume
(in addition to interconnectedness) of pores available for the
storage and movement of soil moisture determines the re-45

sistance to current flow. In terms of the resistivity parame-
ters (ρw for Archie’s law and the geometric mean, ρi and ρs
for the geometric mean only) and the parameters of the soil
freezing curve α and β, Archie’s formulation was more sen-
sitive and therefore offered better chances at model calibra-50

tion. We therefore proceeded with using Archie’s law as the
petrophysical relationship in the resistivity module. This was
in spite of the two extra parameters to calibrate in Archie’s
law (m and n). Following these considerations as well as the
experience from thermal model calibration, we identified our 55

target parameters for optimization as the following: λs, α, β,
η, ρw, m and n.

Parameter optimization in the coupled inversion scheme
is based on the same approach as in the thermal model-
ing alone: the iterative non-linear least-squares formulation 60

using the trust-region reflective algorithm. The cost func-
tion is the RMSE between logarithms of field-measured
and forward-calculated apparent resistivities. We use log-
transformed resistivities, as this way the optimization prob-
lem becomes more linear and a more equally weighted fit- 65

ting of the resistivity data is achieved. The cost function is
minimized by adjusting the thermal parameters of the heat
conduction model from which the forward resistivities are
calculated, as well as the parameters of the resistivity model.

7.2 Validation of synthetic data 70

We performed several optimization runs on synthetic data
without noise to get a feel for the sensitivity of the optimiza-
tion algorithm, correct the optimization settings and iden-
tify the combination of parameters that can be estimated at
once. In the procedure common with the thermal model test- 75

ing (Sect. 6.3), a set of arbitrary though realistic parameter
values (termed true parameters) was used to produce a ref-
erence temperature field, which in turn produced the corre-
sponding synthetic effective resistivity model of the ground.
From this synthetic resistivity model, reference apparent re- 80

sistivity response was calculated. The true parameter value(s)
were then perturbed by a random error coefficient ranging
from ±20 %–90 %. We then aimed to recover the true pa-
rameter values by updating the perturbed heat and resistivity
parameters iteratively, and comparing the forward-calculated 85

synthetic apparent resistivity to the reference apparent resis-
tivity. The optimization algorithm and the convergence crite-
ria were the same as described in the analogous section on
the thermal model testing (Sect. 6.3).

Porosity η as the most sensitive parameter of the coupled 90

model was recovered accurately within three iterations and
with narrow 95 % confidence intervals. The thermal conduc-
tivity of soil grains λs is an essential parameter for heat con-
duction model predictions, even though the coupled scheme
appeared to have very little sensitivity to it. Nevertheless, 95

in a single-parameter optimization on synthetic data with-
out noise, the true parameter value was recovered accurately
within four iterations. Joint calibration of all of the seven fit-
ted parameters at once – α, β, η, λs, ρw,m and n – converged
within four to five iterations, depending on the starting val- 100

ues, while producing a very good fit between the simulated
and reference apparent resistivities (final RMSE after opti-
mization in the range of 10−3–10−2). However, in spite of
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.

Figure 6. (a) Validation of the thermal model calibration of the freezing season of 2012/2013, data between 1 November 2012–28 Febru-
ary 2013. (b) Validation of the freezing season of 2013/2014, data between 1 September 2013–29 October 2013. RMSE is in degrees Celsius
(◦C)

Figure 7. Composite scaled sensitivities (CSS) of the 13 parameters of the heat and the resistivity modules of the fully coupled inversion
scheme. The sensitivity is expressed as the change in logarithm of forward-calculated apparent resistivity following a 10 % change in the
evaluated parameter.

the good model fit, the true parameter values were not ac-
curately recovered, and their optimized values depended on
their starting values. In spite of the non-unique results of
the inversion, all the optimized parameters lay in physically
plausible range.5

To improve the accuracy of recovery of the true parameters
in the synthetic scenario, we experimented with fixing some
of the less sensitive parameters of the coupled scheme. The
optimization with six fitted parameters (α, β, η, ρw, m, n)

and Cs and λs fixed produced a slightly lower final RMSE 10

in comparison to the optimization with seven and five fitted
parameters; however, it did not improve the recovery of the
true parameter values. We noted that the coupled inversion
scheme may not arrive at a unique estimation of the accurate
parameter values; nevertheless, our synthetic tests confirmed 15

that the optimization algorithm repeatedly converged to a set
of physically plausible parameters while producing a very
good fit with the reference dataset.
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In the following section, we applied the fully coupled in-
version approach to the recovery of thermal and resistivity
parameters of the real ground, and we compared the results
to the traditional method of calibration of borehole tempera-
tures only.5

7.3 Fully coupled inversion with field data

Following the experience from synthetic testing (Sect. 7.2),
we chose to optimize six fitted parameters at once: α, β,
η, ρw, m and n. We fixed the thermal conductivity λs
to the value 1.70 W m−1 K−1 and the heat capacity Cs to10

3× 106 J m−3 K−1 (values from thermal model calibration
RMSE1; Sect. 6.4).

The results of the six-parameter optimization on field re-
sistivity data are shown in Fig. 8. Figure 8a shows the best
fit of apparent resistivities after calibration of the freezing15

season of 2014/2015. Although the fit between simulated
and field apparent resistivities is not ideal, the optimized
parameterization produces a temperature field that fits the
field temperatures in the freezing season of 2014/2015 within
±0.66 ◦C (Fig. 8b).20

To assess the predictive value of the model, we used
the optimized parameterization estimates (values as listed in
Fig. 8a and b) to forward-calculate the apparent resistivity
distribution in the freezing seasons of 2012/2013 (Fig. 8c)
and 2013/2014, respectively (Fig. 8e). The parameter val-25

ues optimized on the freezing season of 2014/2015 predicted
the field temperature measurements from the freezing sea-
son of 2012/2013 with a mean error of 0.38 ◦C (Fig. 8d).
The field temperature measurements from the freezing sea-
son of 2013/2014 (only 2 months are available for compari-30

son) were predicted with a mean error of 0.30 ◦C (Fig. 8f).
In terms of the model fit, the performance of the cou-

pled optimization approach is comparable to the traditional
optimization on borehole temperatures (Sect. 6.4). In terms
of determination of the true parameters of the real ground,35

the coupled inversion approach does not improve the non-
uniqueness of parameter optimization; the optimized param-
eter values depend on their initial parameter estimates. Nev-
ertheless, all the optimization runs come up with physically
plausible parameter values, and the forward-calculated tem-40

perature fields fit the field datasets with mean error of around
0.6 ◦C.

8 Discussion

Efforts using geophysical data to constrain other – espe-
cially hydrological – models are by now well documented.45

The coupling strategies vary, from constraining inversion and
interpretation of the other models with inverted geophysi-
cal data (Doetsch et al., 2013), through structurally coupled
approaches (Gallardo and Meju, 2011; Lochbühler et al.,
2013), to fully coupled inversion schemes using the geophys-50

ical data before inversion (Hinnell et al., 2010; Herckenrath
et al., 2013b; Tran et al., 2017). The fully coupled approaches
have been encouraged by some (Gallardo and Meju, 2011),
as separate data inversions lead to inconsistent models for
the same subsurface target. The fully coupled framework has 55

been shown to improve accuracy and reduce the uncertainty
of the prediction of hydrological parameters (Hinnell et al.,
2010; Herckenrath et al., 2013a).

To distinguish the principle limitations of the presented
fully coupled inversion method from possible pathways for 60

improvement, a number of conceptual simplifications and as-
sumptions stated in Sect. 4 are hereby evaluated.

Heat conduction is assumed to be the dominant process
of heat transport. This is a reasonable assumption at our
site, where for most of the year (from beginning of Septem- 65

ber to mid-June) we do not observe substantial lateral water
movement (Jessen et al., 2014; Tomaškovičová and Ingeman-
Nielsen, 2023). Evaporation and increased pore water move-
ment produce water content variations in the unfrozen period
(mid-June to end-August), but this is outside of the calibra- 70

tion period (1 September–28 February). Accounting for the
processes of water movement and evaporation would require
their description and parameterization, which could be han-
dled effectively outside of the coupled inversion scheme. In-
cluding such modules would only be of interest if the goal 75

was to carry out year-round ground temperature modeling.
Full saturation is a valid assumption at our site between the

beginning of September and mid-June (Tomaškovičová and
Ingeman-Nielsen, 2023), and only the data from the fully sat-
urated periods were used in the calibration. It is important to 80

highlight that this is not a principle limitation of the method.
If the saturation is known, it is straightforward to include its
true value in the current model formulation. If we were to
optimize for saturation different from 1 but constant in time,
then it would correspond to adding just another parameter to 85

the heat conduction (and the coupled) model. However, to
include saturation in a realistic way, it should be included as
a time-variable parameter (and as a space-variable parame-
ter when expanding the method to more space dimensions).
This could be done in one of two ways: by (i) parameteriz- 90

ing saturation (in a way similar to the parameterization of θw
by the two parameters α and β), which would result in addi-
tional parameters to calibrate, or by (ii) adding a hydrologi-
cal model driven by the same climatological parameters that
would calculate saturation and inform the coupled thermal– 95

resistivity model about the time-variable values of saturation.
Depending on the hydrological model used, it may become
necessary to include additional parameters, e.g., describing
subsurface hydraulic properties, in the calibration routine.

The assumption of homogeneous ground is to a certain ex- 100

tent a simplification at our site. While the geology on our
site is indeed homogeneous in terms of soil type (silty clays,
based on geotechnical drilling reported in Geoteknisk In-
stitut, 1978), heterogeneities are present in the form of ice
lenses (mainly in the depth between 0.9–1.5 m) and increas- 105
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Figure 8. Results of the fully coupled inversion: panels (a) and (b) show results of calibration, and panels (c) through (f) show results of
validation. (a) Fit of the simulated apparent resistivities (ρapp) to field ρapp measured during freezing season of 2014–2015; (b) fit of the
heat conduction model after optimization, freezing season of 2014–2015. Panels (c) and (d) show the validation of the optimized coupled
model on the freezing season of 2012–2013. Panels (e) and (f) show the validation of the optimized coupled model on the freezing season
of 2013–2014.The values of the fixed and optimized thermal and resistivity model parameters are listed in annotations. RMSE is in degrees
Celsius (◦C).

ing pore water salinity (in the depth below 4 m). In the ho-
mogeneous model setup, the specific thermal properties of
soil constituents, the porosity and the freezing curve param-
eterization are assumed to be the same for the entire soil
column. However, the model does resolve varying bulk (ef-5

fective) thermal properties, as these depend on the tempera-
ture and phase distribution of the soil constituents at a given
time and depth in the soil column. We experimented with
an implementation of a heterogeneous model with four lay-
ers corresponding to the field situation (active layer, ice-rich10

permafrost with ice lenses, saline permafrost and bedrock).
The optimization algorithm searched for four different sets
of the specific thermal parameters, one set for each of the
model layers. The performance of the heterogeneous model
was comparable to the homogeneous model in terms of the15

RMSE (◦C), and different sets of parameters were identi-
fied for each of the four layers. However, the parameters re-
mained non-uniquely determined, as different sets of starting
values converged to different optimized parameter values,
all fitting the field data similarly well. We concluded that,20

without further constraining information, the use of the more
complex, heterogeneous model was not justified, in terms
of neither the model fit, the speed of convergence nor the
uniqueness of parameter estimation. Constraining informa-
tion could be added, e.g., in the form of orthogonally deter- 25

mined fixed model parameters or a constrain on parameter
change (e.g., that porosity has to be decreasing with depth).

Specific thermal properties of the soil constituents were as-
sumed constant, i.e., independent of the temperature or salin-
ity. This is an acceptable approximation, previously used by, 30

e.g., Nicolsky et al. (2007) and Romanovsky et al. (2000).
According to Osterkamp (1987), using constant parameters
resulted in errors of less than 10 % in the calculation of the
effective (bulk) thermal properties in the temperature range
between −20–0 ◦C. Latent heat of phase change in reality 35

varies with unfrozen water content; however, using a constant
value has been proved satisfactory for temperatures above
−20 ◦C (Anderson et al., 1973). These are standard assump-
tions used in modeling experiments designed following the
principle of parsimony and where the focus is not on the 40
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temperature and salinity dependence of the thermal param-
eters. Nevertheless, temperature- or salinity-dependent vari-
ation could be readily implemented if the requirements of
model output and quality of input data justified the increased
model complexity. Including the effect of salinity would ad-5

ditionally require adaptation of the freezing curve formula-
tion.

A fixed temperature was used as the bottom model bound-
ary. This assumption has no impact on our calculations con-
sidering the short modeled time span (up to 180 d) and the10

known yearly temperature amplitude (< 0.09 ◦C) at the bot-
tom of the 6 m deep borehole (Tomaškovičová and Ingeman-
Nielsen, 2023). If the model was to be used for future pre-
dictions, this assumption would have to be reviewed, just as
in any model expanding its domain of application. Including15

variable bottom temperature or geothermal heat flux bound-
aries is technically straightforward in the current model
setup. This would, however, require extra data input in the
form of borehole temperature measurements (for the variable
bottom boundary) or a reasonable estimate of the geothermal20

heat flux at the site (from a deep borehole or from a regional
geothermal heat flux model accounting for variations).

Experiences show that the volumetric heat capacities C of
materials are difficult to estimate from typical field and lab-
oratory tests (Shonder and Beck, 1998; Kojima et al., 2018).25

Our forward temperature field calculations are relatively in-
sensitive to the value chosen for the volumetric heat capacity
of soil minerals Cs. A plausible explanation for this could be
that significant phase change is necessary to separately esti-
mate heat capacity and thermal conductivity from field data;30

in a system with little phase change, only thermal diffusiv-
ity can be estimated. In a saturated system, when the rate
of phase change is the largest, the energy consumed by the
phase transition between water and ice is much larger than
the energy needed to change the temperature of soil grains,35

and the value of Cs becomes insignificant. Outside of the pe-
riod of significant phase change, the phase change may not
be enough to allow for separate calibration of the heat capac-
ity of the soil grains.

The use of Archie’s law is usually limited to sediments40

with low clay content, when virtually all conductivity in the
bulk soil can be attributed to the pore liquid. This condition
is not entirely met in our field situation, as high clay con-
tent may contribute to lowering the overall soil resistivity by
surface conduction. Adaptation of the resistivity–mixing re-45

lationship remains a possibility for improvement of the per-
formance of the coupled inversion framework.

Although we advocate for the use of easy-to-measure
ground surface temperatures to drive the model, we do recog-
nize that these typically suffer from rapid fluctuations influ-50

enced by short-wave radiation. Using daily averages or near-
surface temperatures to drive the model instead (at ca. 10 cm
depth) could improve performance in the upper portion of
the modeled domain. Performance in the deeper parts of the
model would be improved by using a heterogeneous model55

setup, allowing one to capture vertical variations in the spe-
cific soil properties.

The value of replacing borehole temperature data with
geophysical data for thermal model calibration could be dis-
cussed, as the geoelectrical data achieved calibration compa- 60

rable to the borehole calibration, though not better. Admit-
tedly, in the absence of directly measured thermal properties,
borehole data are the best calibration and validation data for
a 1D thermal model. However, depending on the survey re-
quirements and limitations, geophysical data afford a number 65

of benefits that may constitute a practical advantage over the
use of borehole temperatures, evidently without sacrificing
the model performance:

1. Measurements from the surface rather than the need for
drilling. This encompasses two advantages: larger depth 70

reach, as well as the possibility to work in both sedi-
mentary and bedrock settings. Hand-operated, engine-
powered drilling tools have limited depth penetration
and are restricted to sedimentary geology. The logistics
associated with mobilizing a drilling rig able to reach 75

greater depths or drilling through bedrock is often pro-
hibitive in remote arctic areas. Meanwhile, the depth
reach of a geoelectrical array can be more readily ad-
justed by the design of the largest spacing of the current
electrodes. 80

2. Lower impact on fragile ecosystems. Few roads exist in
the Arctic, and the movement of drilling equipment on
the tundra, especially outside of the frozen season, seri-
ously damages the terrain, particularly in wetter and ice-
rich permafrost areas (Rickard and Brown, 1974; Kevan 85

et al., 1995). Arctic tundra are characterized by rela-
tively low biological activity and diversity and by short,
cool and dry growing seasons. This leads to the nat-
ural re-vegetation process after surface disruption be-
ing very slow. The disruption of the surface organic 90

layer then typically results in the accelerated thaw of
permafrost. Together with the risk of pollution from
engine-operated equipment, these factors may cause is-
sues securing the necessary permits for drilling field-
work. In comparison, the impact of the surface or air- 95

borne geophysical methods is minimal.

3. Assessment of spatially varying conditions. Geophysi-
cal mapping methods, unlike point borehole measure-
ments, allow for a relatively quick assessment of ground
conditions over a comparatively large areas. Therefore, 100

expanding the presented approach to three-dimensional
mapping presents another potential for future develop-
ment of the method.

Spatial variability of the ground electrical properties is re-
solved by a combination of electrode layouts on a heteroge- 105

neous half space because of the different depth sensitivities
of different layouts. This applies to the 1D scenario as well
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as to the 2D and 3D scenarios, where different layouts are
necessary to cover the part of the subsurface of interest. A
real concern is if the equivalencies observed in the inversion
of resistivity data from permafrost (Ingeman-Nielsen, 2006;
Ingeman-Nielsen et al., 2008; Tomaškovičová and Ingeman-5

Nielsen, 2023) impact this type of inversion. Such a question
is targeting a more complex situation than what we focused
on in the simple conditions of this study; more work is nec-
essary to understand how the method performs in more com-
plex settings.10

While we illustrated the coupled approach using geoelec-
trical data, in principle, any geophysical data could be used
as long as the petrophysical relationship between the ground
temperatures are the geophysical parameter can be cali-
brated. For example, transient electro-magnetic data (TEM),15

acquired by towing the instrumentation behind a snowmo-
bile (Kass et al., 2021; Maurya et al., 2021) would exploit
the same petrophysical relationship while providing greater
spatial coverage. In some settings, TEM acquired from an
airplane could be of interest – if the benefit of fast acqui-20

sition and great coverage would outweigh the greater cost.
These considerations suggest the far-reaching potential of the
concept of the coupled thermo–geophysical inversion.

For each new type of geophysical data to be used in the
coupled inversion scheme, the required measurement repeat25

frequency would be of interest. This frequency would de-
pend on the rate of phase change (which varies throughout
the year) and the sensitivity of the method to these changes.
We observed (Tomaškovičová and Ingeman-Nielsen, 2023)
that in the temperature range between −2 and 0 ◦C, the un-30

frozen water content changes very rapidly. Data from this pe-
riod also contain the most information for the thermal model
calibration. Hence, it makes sense to collect geophysical ac-
quisition daily, when possible. When daily acquisitions are
not feasible, as well as outside of the period of the fastest35

phase change, the acquisition frequency can be optimized by
first evaluating the effect of sampling frequency on the pa-
rameter recovery in a synthetic exercise.

Other types of geophysical data may benefit from the in-
put of independently measured model parameters constrain-40

ing the model. The identification of such parameters would
depend on the sensitivity of the geophysical method of choice
and on the desired outcome of the model. Naturally, having a
fix on an important parameter such as, e.g., porosity (a single
value throughout the soil column or porosity variable with45

depth) would improve the estimation of the remaining pa-
rameters. This would make sense to implement if the pur-
pose of the model was to obtain as close to true parameter
values as possible without directly measuring them on soil
samples. However, porosity is also one of the trickiest param-50

eters to impose. If the purpose of the modeling is to come up
with a model that can reproduce the calibration and valida-
tion data within certain acceptable error limits, then this can
be achieved even when the true porosity is not known and is
one of the calibrated parameters.55

The performance of the coupled inversion method at sites
of very different geology is of interest for expanding the ap-
plicability of the method. While definite answers cannot be
given without testing, we can base our assessment on the
knowledge of the behavior of the ground thermal parameters, 60

as well as the results of our sensitivity analysis. A site where
the ground consists of coarse-grained dry sediment would
present a very different scenario to the saturated silty clay
geology on which we developed and tested the coupled in-
version method. The parameters that we would expect to dif- 65

fer the most in such conditions would be porosity, saturation,
and the freezing curve parameterization α and β. Porosity, α
and β were among the most sensitive parameters of the ther-
mal model. The sensitivity of the model to saturation was
not evaluated in this study; however, as it is a property that 70

directly controls the amount of conductive liquid phase, we
would expect it to be a very sensitive parameter. Based on
these considerations, we expect that the method would likely
be able to resolve the thermal regime even at a site of differ-
ent geology as long as there is some moisture present in the 75

ground and phase change takes place.
The approach described in this work constitutes one of a

number of possible ways of adding constraining information
directly to the process of estimation of the heat conduction
model parameters. The field geoelectrical data were shown 80

to contain constraining information for the calibration of the
thermal model. Even though we did not obtain an ideal resis-
tivity model, the thermal calibration was useful. The fit and
predictive performance of the resistivity-calibrated thermal
model were comparable to the fit of thermal model calibrated 85

on borehole temperature measurements.

9 Conclusions

The two main conclusions of our study can be summarized
as follows.

1. We evaluated the amount of information contained in 90

the time lapse geoelectrical data for the calibration of a
soil heat conduction model.

2. We demonstrated that the geoelectrical calibration data
are useful as alternative calibration data for a heat con-
duction model and can provide as useful calibration re- 95

sults as borehole temperature data.

This is the first time that field data have been used to
demonstrate that the concept of the fully coupled thermo–
geophysical inversion can work in praxis. The fully coupled
model achieved a performance comparable to the traditional 100

method of calibration of borehole temperatures. While the
model did not necessarily improve the estimation of thermal
parameters compared to the calibration of borehole temper-
ature measurements, it provided an alternative way of deriv-
ing it from surface measurements. Additionally, the thorough 105
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sensitivity analysis of the model parameters improved our
understanding of what geological information may be neces-
sary for constraining the model.

In the development process of the fully coupled inver-
sion scheme, we thoroughly evaluated a comparatively sim-5

ple (1D, homogeneous, three-phase) model for heat trans-
fer in a ground undergoing cycles of freezing and thawing.
The model relies on a number of conceptual assumptions
to maintain parsimony. Nevertheless, it predicts temperature
variation at our test site with satisfactory accuracy – within10

0.55 ◦C. The simplicity of the model is a benefit in that the
requirements of input data are relatively low – only surface
temperature time series (measured or downscaled from air
temperature data), initial temperature distribution and bottom
boundary condition are needed. On the other hand, it has to15

be expected that the final, optimized parameter estimates will
compensate for conceptual simplifications of the model.

In the context of geotechnical and engineering applica-
tions (such as forecasting stability of infrastructure built on
thawing permafrost), the true values of thermal parameters20

remain of interest, as they can be used further in geotech-
nical models. Further efforts in improving the structure and
sensitivity of the model, constraining the optimization, and
including further independent validation will be required to
validate the model in this context.25

The relatively short time series of one freezing season
(180 d) were sufficient to reach a plausible parameter esti-
mation for the freezing season, providing good fit to the val-
idation dataset. Due to hysteretic nature of freeze–thaw pro-
cesses, the heat conduction model should be calibrated for30

freezing and thawing seasons separately.
With the constantly improving understanding of electri-

cal resistivity responses in the very specific permafrost set-
tings, the resistivity coupling with thermal models opens up
new possibilities for monitoring the current and forecasting35

the future thermal state of permafrost. The method has the
demonstrated potential for offering a more resource-efficient
alternative to calibration of ground thermal models on bore-
hole temperature records.
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