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Abstract. The ERA5 climate reanalysis dataset plays an important role in applications such as monitoring 10 
and modelling climate system changes in polar regions, so the calibration of the reanalysis to ground 11 
observations is of great relevance. Here, we compare the 2-metre air temperature time series of the ERA5 12 
reanalysis and the near-surface bias-corrected reanalysis to the near-ground air temperature measured in 17 13 
Automatic Weather Stations in the McMurdo Dry Valleys, Antarctica. We find that the reanalysis data has 14 
biases that change with the season of the year and that do not clearly correlate with elevation. Our results 15 
show that future work should rely on secondary observations to calibrate when using the ERA5 reanalysis in 16 
polar regions. 17 
 18 
Short Summary. By analyzing temperature time series over more than 20 years, we have found a 19 
discrepancy between the 2-metre temperature values reported by the ERA5 reanalysis and the Automatic 20 
Weather Stations in the McMurdo Dry Valleys, Antarctica.  21 

1 Introduction 22 

 23 

ERA5 dataset represents the fifth iteration of ECMWF (European Center for Medium-Range Weather 24 

Forecasts) global climate hindcasting based on the Integrated Forecasting System (IFS) Cy41r2 derived by a 25 

combination of data assimilation and short-term simulations applying an operational numerical weather 26 

prediction (NWP) model (Hersbach et al, 2020). With its global coverage, high temporal resolution, and 27 

relatively high spatial resolution of 31 km, this dataset may prove particularly useful for research in polar 28 

regions such as Antarctica, where long-term climate observations are geographically sparse and often 29 

temporally discontinuous (Lazzara et al, 2012). A previous study found encouraging agreement between 30 

ERA5 output and AWS (Automatic Weather Station) data from 13 stations located in the southern section of 31 

Antarctic Peninsula (Tetzner et al., 2019). However, at least one other study has pointed out differences 32 

between ERA5 and selected weather stations across all Antarctica (Zhu et al., 2021). 33 
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Here, we report the results of a regional comparison between monthly 2-metre air temperatures in the 34 

McMurdo Dry Valleys region, Antarctica, reported in the ERA5 dataset and corresponding observations from 35 

17 AWS locations. We focus our analysis on this region because of the relatively high spatial and temporal 36 

coverage of AWS observations and due to the high multidisciplinary research interest in this region which 37 

contains the main USA and New Zealand research stations and is proximal to Italian and Korean research 38 

stations.  39 

Despite the encouraging results found by Tetzner et al. (2019) for the Southern Antarctic Peninsula, we find 40 

significant biases in the near-surface air temperatures measured at the AWS and the temperatures reported in 41 

the reanalysis datasets. 42 

2. Data and methods 43 

We analyze the daily surface temperature (2-metre temperature) recorded at 17 AWS (Figure 1) managed by 44 

the McMurdo Dry Valleys Long Term Ecological Research Project (LTER) since 1992, although some of 45 

the stations have been reporting data only since 1986 (Doran et al., 2002). Table 1 summarizes the AWS used 46 

in this study. We compare the AWS data to the monthly ECMWF ERA5 climate reanalysis surface 47 

temperature data (Muñoz Sabater, 2019) and we also tested against the near-surface bias-corrected reanalysis 48 

dataset (BCR) (Cucchi et al., 2022). The latter is obtained from applying the Water and Global Change 49 

(WATCH) forcing data methodology (Weedon et al., 2010) to the ERA5 dataset, which includes interpolating 50 

to a 0.5° × 0.5° grid and correcting for differences in elevation between the Climate Research Unit grid (New 51 

et al., 1999; 2000) and the ERA5 grid, along with other monthly-based biases corrections (Weedon et al., 52 

2011, 2014; Cucchi et al., 2022). For each AWS, where daily 2-metre air temperature data was available, we 53 

ran a 30-day moving average filter with no overlap to obtain monthly time series. The ERA5 and BCR grid 54 

nodes used to compare to each individual AWS were selected by minimizing the distance between each AWS 55 

and all the nodes in the reanalysis grid (Figure 1). Finally, we interpolated both time series to a regular 56 

monthly sequence, and the time series for the ERA5 node data were truncated to match the periods where 57 
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data was available at their corresponding AWS. The elevation of the AWS and the nearest ERA5/BCR grid 58 

cells are often different, which can induce differences in the measured and calculated values of 2-metre air 59 

temperature. Therefore, we correct for the difference in altitude by applying a dry adiabatic lapse rate of 9.8 60 

°C/km to the ERA5/BCR data, as done elsewhere (Bromwich et al., 2013). We report the mean temperature 61 

for the span of each time series and the standard error of the mean for each sample for the differences between 62 

the ERA5 and BCR datasets and the AWS with and without the altitude correction. 63 

Furthermore, we compare the two data sets by analyzing the correlograms of the altitude-corrected 64 

temperatures and performing a linear regression. We report the squared correlation coefficients (R2) as a 65 

metric of the goodness of fit and the p-values from the F-statistic to assess the level of statistical significance. 66 

Besides inspecting biases by making comparisons for all individual stations and their corresponding 67 

reanalysis grid cells, we also compare the overall mean temperature across all stations with the mean 68 

temperature across all grid cells within the main region of the McMurdo Dry Valleys (black box in Figure 69 

1). We selected this region because it has the highest station density and including the stations outside of this 70 

box would imply using a much larger subgrid for the reanalysis that would not be truly representative of the 71 

area covered by the stations. This comparison is important given that the ERA5 and particularly the BCR 72 

grid cells might be too large to capture local phenomena such as topographic effects or seasonal temperature 73 

inversions at the AWS. Therefore, comparing average temperatures using the footprint of the whole region 74 

is different than calculating the average bias across all station, and it creates intuition on whether the 75 

individual elevation differences average out or not. We created median stacks of the temperature time-series 76 

for all AWS and for all the grid cells of the reanalysis that fall within the area. We interpolated all the data 77 

of the weather stations to a monthly time series, we patched with NaN (Not a Number) values the periods of 78 

time when data was not available (some stations have longer records than others) and we obtained a mean-79 

stack of the time-series. Figure S1 shows the individual time-series for all AWS and all the ERA5 and BCR 80 

grid cells and their corresponding mean stack. We also tested using median stacks to analyze the effect of 81 

outliers in the data, but we did not find major differences between the mean and median stacks. Finally, we 82 
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use the difference between the median altitude of all weather stations and the median altitude of the selected 83 

grid cells of each reanalysis product to apply the dry adiabatic lapse rate correction to the temperatures. 84 

3. Results 85 

Overall, the two reanalysis products show both cold and warm biases compared to the AWS temperatures. 86 

Table 2 shows the results of the comparison at each station and the elevation map of the AWS as well as the 87 

spatial distributions of the altitude-corrected biases are shown in Figure S2 and Figures S3 and S4, 88 

respectively. We find that the biases in the ERA5 dataset are of smaller magnitude than the biases observed 89 

for the BCR dataset. The altitude correction applied to the grid temperatures does not eliminate but reduces 90 

the average bias across all stations. However, this is not the case for all stations; for ERA5, the altitude 91 

correction increases the bias at three stations (FRSM, UHDM and VIAM), and for BCR the correction 92 

increases the bias at five stations (BENM, BRHM, CAAM, FLMM and VIAM).  93 

Contrary to the altitude-dependent biases found by Tetzner et al. (2019), our results do not show a clear 94 

correlation between bias and elevation (see Figures S2, S3 and S4). Nevertheless, our results do suggest that 95 

the ERA5 dataset has predominantly neutral to warm biases in the valleys, despite elevations, and neutral to 96 

cold biases in the mountain ranges. 97 

Figure 2 illustrates the comparison of the monthly temperature time series for one of 17 locations used in this 98 

study (Lake Vida) and the temperatures from the ERA5 and BCR datasets over the time span of more than 99 

two decades. In this case, the monthly temperature mismatch between the AWS and the ERA5 and BCR 100 

altitude-corrected temperatures is particularly large during the winter months, when observations indicate 101 

actual temperatures were about 10°C lower than ERA5 or BCR temperatures (Figure 2c,d). All the 102 

correlograms shown in Figures S5-S21 suggest that there is a strong seasonality in the relationship between 103 

the data sets. During the austral winter and summer seasons the temperatures are generally closely clustered 104 

together, systematically being more correlated during the winter and more dispersed during the summer. The 105 

spring and fall seasons show a hysteresis that is repeated over all the comparisons. As the environment warms 106 
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up during the spring months the ERA5 and BCR temperatures are above the best-fit line and drop below it 107 

during the fall. These seasonal biases may ultimately be helpful in revealing what climate processes must be 108 

better represented in the ERA5 reanalysis to eliminate the observed temperature biases. 109 

The comparison between the average stack of the AWS with the ERA5 and BCR temperatures for the selected 110 

subregion (black box in Figure 1) is shown in Figure 3. Interestingly, our regional average analysis suggests 111 

that the altitude corrected ERA5 temperatures (black line in Figure 3) have a cold bias of -9.6 ± 1.0 °C 112 

compared the AWS temperatures, but the altitude corrected BCR temperatures (black dashed line in Figure 113 

3) are much closer to the AWS temperatures. Nevertheless, the BCR temperatures do show a warm bias of 114 

3.3 ± 1.0 °C. 115 

4. Discussion 116 

Our results differ significantly from the findings reported by Tetzner et al. (2019) for the Southern Antarctic 117 

Peninsula - Ellsworth Land region. For that region there is a slight cold bias of the ERA5 surface temperatures 118 

close to the coast (-0.51 ± 0.74 °C) and a slight warm bias in the mountain range escarpment (0.14 ± 0.72 119 

°C) which has encouraging implications for using the reanalysis data where there is no AWS coverage, which 120 

represents most of Antarctica. In contrast, we find no obvious topographic dependence on the temperature 121 

differences between AWS and ERA5 data. Averaged over the whole region, the altitude-corrected 122 

temperatures of the ERA5 dataset have a slight cold bias of -0.4 ± 0.8 °C, whereas the BCR data has a cold 123 

bias of larger magnitude (-4.4 ± 1.9 °C). However, there are large variations from one site to another, and 124 

from one season to another. Some of the large cold biases for the altitude corrected ERA5 and BCR data are 125 

observed during the summer months, with average differences up to -4.9 ± 0.1 °C and -16.2 ± 0.3 °C, 126 

respectively. This may be a particularly significant problem given the fact that warm summer temperatures 127 

determine the annual melt rate of snow, glaciers, and permafrost in Antarctica. Modelling of snow or ice 128 

melting driven by ERA5 temperatures (e.g., Costi et al., 2018) with a strong cold bias, as observed in our 129 

study region, will result in a significant underestimate of summer melt production. Conversely, many stations 130 
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show a warm bias during the winter months, which could potentially be related to temperature inversions that 131 

create air parcels with negative buoyancy and drive katabatic winds down the glacial streams and valleys 132 

(Phillpot & Zillman, 1970).  133 

The differences in the regional averaged temperature time series for the AWS and the ERA5 and BCR 134 

renalyses do show different biases than the ones reported above, which are based on the average difference 135 

between each AWS and their corresponding grid cell. For the average stacks, the ERA5 temperatures are 136 

significantly colder than the mean AWS temperatures and the BCR temperatures are slightly warmer, and 137 

they have an overshoot during the Summer and the Winter alike. This finding is interesting and suggests that 138 

the BCR reanalysis might be a better reference for the Dry Valleys region when studying a large area, but 139 

that the ERA5 reanalysis might be a better model for more local targets. 140 

In general, our findings agree with the findings of Zhu et al. (2021) in that they also find a cold bias for West 141 

Antarctica. However, our results highlight the degree in which such biases can be found at a regional and 142 

local scale and by using different datasets. As in situ instrumentation increases in the future in the McMurdo 143 

Dry Valleys, future research on the topic could illustrate in more detail the sources of the biases between 144 

reanalyses products and weather stations reported here. Particular attention should be given to the effect on 145 

topography and seasonal temperature inversions at smaller scales. Although the ERA5 reanalysis and its bias-146 

corrected version are outstanding sources of global climate variables, the discrepancy between our results 147 

and those obtained by Tetzner et al. (2019) suggests that secondary observations should be used to test the 148 

reliability of the ERA5 and BCR dataset in polar regions, particularly when performing studies at scales 149 

shorter than 0.5°. 150 

5. Conclusions 151 

We have compared the surface temperature (2-metre temperature) recorded at 17 AWS in the McMurdo Dry 152 

Valleys, Antarctica with temperatures from the ERA5 reanalysis dataset. We found that the temperatures 153 

reported by the global climate reanalysis and its bias-corrected version can have significant warm and cold 154 
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biases relative to the weather stations. The cold temperature bias appears to be the largest during the warm 155 

summer months, when loss of snow and ice to melting is the largest. Warm biases are more common during 156 

the winter months, when atmospheric temperature inversions are common.  157 

When using the average temperature across many stations in a region and compared to the average 158 

temperature of all the grid cells in that region, the bias corrected reanalysis shows a slight warm bias, whereas 159 

the ERA5 temperatures show a significant cold bias. We advise using secondary observations to assess the 160 

accuracy of parameters included in ERA5 reanalysis and its bias corrected version for polar regions when 161 

performing studies at different scales.	162 

	163 

Data availability. The AWS data were provided by the NSF-supported McMurdo Dry Valleys Long Term 164 
Ecological Research program (OPP-1637708) and can be accessed at: 165 
https://mcm.lternet.edu/meteorological-stations-location-map. The “ERA5-Land hourly data from 1950 to 166 
present” (DOI: 10.24381/cds.e2161bac) and the “Near surface meteorological variables from 1979 to 2019 167 
derived from bias-corrected reanalysis” (DOI: 10.24381/cds.20d54e34) were downloaded from the 168 
Copernicus Climate Change Service (C3S) Climate Data Store. 169 
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 236 

Figure 1. Map of the McMurdo Dry Valleys region. The location of the AWS managed by LTER is 237 

shown with yellow squares and their corresponding closest ERA5 and BCR grid nodes are shown with red 238 

squares and magenta squares, respectively. The black box represents the area where regional averages for 239 

all AWS and ERA5 and BCR grid cells were calculated. The distance to the sea and the topography of the 240 

region can be appreciated in the background satellite image. 241 

 242 
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 243 
Figure. 2 Comparison of the monthly averaged 2-metre air temperatures recorded at station Lake 244 

Vida (VIAM) and the values from the closest grid node of the ERA5 and BCR datasets. Time series of 245 
the AWS data (grey curve) compared to the reanalysis data (black curve) and the altitude-corrected (ac) 246 

reanalysis data (dashed orange curve) for the ERA5 (a) and BCR (b) datasets. The correlograms showing 247 
the best fit line (red line) to the relationship between the AWS temperatures and the ERA5 and BCR 248 
temperatures are shown in (c) and (d), respectively. Note the seasonal variation in the relationship, 249 

particularly the large bias during the winter months. 250 
 251 

 252 

 253 
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 254 

Figure. 3 Regional mean stacks comparison for a subarea of the McMurdo Dry Valleys (black box in 255 
Figure 1). The average time series of temperatures across all stations is shown with a thick gray line, the 256 

average temperature from the ERA5 grid cells that are within the region is shown with a black line, and the 257 
average temperature from the BCR subgrid is shown with a black dashed line. 258 
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AWS	Location	name	 AWS	ID	 Latitude	 Longitude	 Elevation	(m.a.s.l.)	

Beacon	Valley	 BENM	 -77.828	 160.6569	 1,176	

Lake	Bonney	 BOYM	 -77.7147	 162.4646	 64	

Lake	Brownworth	 BRHM	 -77.4344	 162.7036	 279	

Canada	Glacier	 CAAM	 -77.6133	 162.9644	 264	

Commonwealth	Glacier	 COHM	 -77.5646	 163.2823	 290	

Explorer's	Cove	 EXEM	 -77.5887	 163.4175	 25	

Mt.	Fleming	 FLMM	 -77.5327	 160.2714	 1,870	

Lake	Fryxell	 FRLM	 -77.6113	 163.1701	 19	

Friis	Hills	 FRSM	 -77.7474	 161.5162	 1,591	

Garwood	Ice	Cliff	 GAFM	 -78.0259	 164.1315	 51	

Howard	Glacier	 HODM	 -77.6712	 163.0773	 472	

Lake	Hoare	 HOEM	 -77.6254	 162.9005	 77	

Miers	Valley	 MISM	 -78.1011	 163.7877	 51	

Taylor	Glacier	 TARM	 -77.74	 162.1314	 334	

Upper	Howard	 UHDM	 -77.686	 163.145	 826	

Lake	Vanda	 VAAM	 -77.5257	 161.6913	 296	

Lake	Vida	 VIAM	 -77.3778	 161.8007	 351	

Table 1. List of available AWS in the McMurdo Dry Valleys region. 279 
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AWS 
Location 

name 
AWS ID 

Distance to 
closest 

ERA5 node 
(km) 

AWS data 
date range 

Average 2 
m air 

temperatur
e @ AWS 

Average 2 
m air 

temperatur
e @ ERA5 

node / 
altitude 

corrected 

Average 2 
m air 

temperatur
e @ BCR 

node 
/altitude 
corrected 

ERA5mean_te

mp  - 
AWSmean_tem

p / ERA5 
(ac) mean_temp  

- 
AWSmean_tem

p 

BCRmean_tem

p  - 
AWSmean_tem

p / BCR (ac) 
mean_temp  - 

AWSmean_tem

p 

Beacon 
Valley BENM 3.27 2000-12-11 - 

2012-11-19 -21.5 ± 0.7 -33.5/-24.2 ± 
0.7 

-29.4/-38.3 ± 
0.7 

-12.1/-2.8 ± 
1.4 

-8.0/-16.8 ± 
1.4 

Lake 
Bonney BOYM 1.84 1993-12-08 - 

2018-10-09 -17.2 ± 0.6 -24.0/-13.3 ± 
0.4 

-29.3/-20.7 ± 
0.5 

-6.7/3.9 ± 
1.0 

-12.1/-3.4 ± 
1.1 

Lake 
Brownworth BRHM 3.83 1995-01-23 - 

2018-11-10 -19.9 ± 0.7 -25.4/-20.0 ± 
0.5 

-29.3/-31.0 ± 
0.5 

-5.5/-0.1 ± 
1.2 

-9.4/-11.1 ± 
1.2 

Canada 
Glacier CAAM 1.71 1994-12-18 - 

2011-01-05 -16.3 ± 0.7 -23.1/-18.8 ± 
0.6 

-29.3/-30.9 ± 
0.6 

-6.7/-2.5 ± 
1.3 

-13.0/-14.5 ± 
1.3 

Commonwe
alth Glacier COHM 3.96 1993-12-06 - 

2018-10-30 -17.6 ± 0.5 -22.1/-21.1 ± 
0.5 

-29.3/-16.1 ± 
0.5 

-4.4/-3.4 ± 
1.0 

-11.6/-1.6 ± 
1.0 

Explorer's 
Cove EXEM 1.32 1997-12-05 - 

2018-11-23 -18.9 ± 0.7 -21.7/-19.0 ± 
0.5 

-9.3/-13.5 ± 
0.5 

-2.7/0.0 ± 
1.2 

-10.3/5.5 ± 
1.2 

Mt. Fleming FLMM 3.7 2011-01-22 - 
2018-11-11 -24.2 ± 0.6 -34.0/-23.5 ± 

0.8 
-29.2/-35.9 ± 

0.8 
-9.8/-0.7 ± 

1.4 
-5.0/-11.7 ± 

1.4 

Lake Fryxell FRLM 1.45 1994-12-12 - 
2018-11-19 -19.7 ± 0.7 -22.4/-17.8 ± 

0.5 
-29.3/-13.4 ± 

0.5 
-2.6/2.0 ± 

1.2 
-9.5/6.4 ± 

1.2 

Friis Hills FRSM 5.28 2011-01-04 - 
2018-11-06 -22.5 ± 0.6 -26.8/-28.6 ± 

0.7 
-29.2/-28.7 ± 

0.8 
-4.3/-6.0 ± 

1.3 
-6.6/-6.2 ± 

1.4 

Garwood Ice 
Cliff GAFM 2.97 2012-01-24 - 

2012-12-19 -16.6 ± 2.8 -23.6/-17.7± 
2.3 

-30.7/-29.6 ± 
2.3 

-7.0/-1.0 ± 
5.1 

-14.0/-12.9 ± 
5.1 

Howard 
Glacier HODM 3.25 1993-12-04- 

2018-10-31 -17.18 ± 0.4 -20.8/-20.3 ± 
0.5 

-29.3/-17.9 ± 
0.5 

-3.6/-3.1 ± 
0.9 

-12.1/-0.7 ± 
0.9 

Lake Hoare HOEM 2.82 1987-11-25 - 
2018-11-29 -17.61 ± 0.5 -23.5/-15.9 ± 

0.4 
-29.2/-28.9 ± 

0.4 
-5.9/1.7 ± 

0.9 
-11.6/-11.3 ± 

0.9 

Miers Valley MISM 0.31 2012-02-11 - 
2018-11-06 

-16.69 ± 
1.00 

-23.2/-18.2 ± 
0.9 

-29.5/-20.0 ± 
0.9 

-6.6/-1.5 ± 
1.9 

-12.8/-3.3 ± 
1.9 

Taylor 
Glacier TARM 4.51 1994-12-05 - 

2018-11-05 -16.9 ± 0.5 -25.4/-15.1 ± 
0.4 

-29.3/-23.3 ± 
0.5 

-8.5/1.8 ± 
0.9 

-12.4/-6.4 ± 
1.0 

Upper 
Howard UHDM 1.89 2001-11-28 - 

2003-12-24 -16.56 ± 1.5 -20.3/-23.3 ± 
1.7 

-28.7/-20.8 ± 
1.7 

-3.7/-6.8 ± 
3.2 

-12.2/-4.2 ± 
3.2 

Lake Vanda VAAM 2.87 1994-12-08 - 
2018-12-07 -19.58 ± 0.7 -25.1/-17.4 ± 

0.4 
-29.2/-16.1 ± 

0.5 
-5.5/-2.2 ± 

1.2 
-9.6/3.5 ± 

1.1 

Lake Vida VIAM 2.47 1995-12-08 - 
2018-11-14 -26.68 ± 1.0 -24.1/-19.2 ± 

0.5 
-29.3/-16.7 ± 

0.5 2.6/7.5 ± 1.5 -2.6/10.0 ± 
1.5 
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Table 2. List of comparison results between the temperatures recorded at the AWS and the closest ERA5 291 

and BCR nodes. For each of the reanalysis datasets, we show the reported 2 m air temperature and the 292 

altitude-corrected (ac) value and their comparison to the average temperature at the AWS. 293 


