
1 
 

Brief communication: Significant biases in ERA5 output for McMurdo 1 

Dry Valleys region, Antarctica 2 

Ricardo Garza-Girón1,2*, Slawek M. Tulaczyk1 3 
1Department of Earth and Planetary Sciences, University of California, Santa Cruz, CA, 95064, USA 4 
2Department of Geosciences, Warner College of Natural Resources, Colorado State University, Fort Collins, CO 5 
80523, USA. 6 
 7 
*Correspondence to: Ricardo Garza-Girón (rgarzagi@ucsc.edu/r.garza_giron@colostate.edu) 8 
 9 
Abstract. The ERA5 climate reanalysis dataset plays an important role in applications such as monitoring 10 
and modelling climate system changes in polar regions, so the calibration of the reanalysis to ground 11 
observations is of great relevance. Here, we compare the 2-metre air temperature time series of the ERA5 12 
reanalysis and the near-surface bias-corrected reanalysis to the near-ground air temperature measured in 17 13 
Automatic Weather Stations in the McMurdo Dry Valleys, Antarctica. We find that the reanalysis data has 14 
biases that change with the season of the year and that do not clearly correlate with elevation. Our results 15 
show that future work should rely on secondary observations to calibrate when using the ERA5 reanalysis in 16 
polar regions. 17 
 18 
Short Summary. By analyzing temperature time series over more than 20 years, we have found a 19 
discrepancy between the 2-metre temperature values reported by the ERA5 reanalysis and the Automatic 20 
Weather Stations in the McMurdo Dry Valleys, Antarctica.  21 

1 Introduction 22 

 23 

ERA5 dataset represents the fifth iteration of ECMWF (European Center for Medium-Range Weather 24 

Forecasts) global climate hindcasting based on the Integrated Forecasting System (IFS) Cy41r2 derived by a 25 

combination of data assimilation and short-term simulations applying an operational numerical weather 26 

prediction (NWP) model (Hersbach et al, 2020). With its global coverage, high temporal resolution, and 27 

relatively high spatial resolution of 31 km, this dataset may prove particularly useful for research in polar 28 

regions such as Antarctica, where long-term climate observations are geographically sparse and often 29 

temporally discontinuous (Lazzara et al, 2012). A previous study found encouraging agreement between 30 

ERA5 output and AWS (Automatic Weather Station) data from 13 stations located in the southern section of 31 

Antarctic Peninsula (Tetzner et al., 2019). However, at least one other study has pointed out differences 32 

between ERA5 and selected weather stations across all Antarctica (Zhu et al., 2021). 33 
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Here, we report the results of a regional comparison between monthly 2-metre air temperatures in the 34 

McMurdo Dry Valleys region, Antarctica, reported in the ERA5 dataset and corresponding observations from 35 

17 AWS locations. We focus our analysis on this region because of the relatively high spatial and temporal 36 

coverage of AWS observations and due to the high multidisciplinary research interest in this region which 37 

contains the main USA and New Zealand research stations and is proximal to Italian and Korean research 38 

stations.  39 

Despite the encouraging results found by Tetzner et al. (2019) for the Southern Antarctic Peninsula, we find 40 

significant biases in the near-surface air temperatures measured at the AWS and the temperatures reported in 41 

the reanalysis datasets. 42 

2. Data and methods 43 

We analyze the daily surface temperature (2-metre temperature) recorded at 17 AWS (Figure 1) managed by 44 

the McMurdo Dry Valleys Long Term Ecological Research Project (LTER) since 1992, although some of 45 

the stations have been reporting data only since 1986 (Doran et al., 2002). Table 1 summarizes the AWS used 46 

in this study. We compare the AWS data to the monthly ECMWF ERA5 climate reanalysis surface 47 

temperature data (Muñoz Sabater, 2019) and we also tested against the near-surface bias-corrected reanalysis 48 

dataset (BCR) (Cucchi et al., 2022). The latter is obtained from applying the Water and Global Change 49 

(WATCH) forcing data methodology (Weedon et al., 2010) to the ERA5 dataset, which includes interpolating 50 

to a 0.5° × 0.5° grid and using an elevation correction, along with other monthly-based biases corrections 51 

(Weedon et al., 2011, 2014; Cucchi et al., 2022). For each AWS, where daily 2-metre air temperature data 52 

was available, we ran a 30-day moving average filter with no overlap to obtain monthly time series. The 53 

ERA5 and BCR grid nodes used to compare to each individual AWS were selected by minimizing the 54 

distance between each AWS and all the nodes in the reanalysis grid (Figure 1). Finally, we interpolated both 55 

time series to a regular monthly sequence, and the time series for the ERA5 node data were truncated to 56 

match the periods where data was available at their corresponding AWS. The elevation of the AWS and the 57 
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nearest ERA5/BCR grid cells are often different, which can induce differences in the measured and calculated 58 

values of 2-metre air temperature. Therefore, we correct for the difference in altitude by applying a dry 59 

adiabatic lapse rate of 9.8 °C/km to the ERA5/BCR data, as done elsewhere (Bromwich et al., 2013). We 60 

report the mean temperature for the span of each time series and the standard error of the mean for each 61 

sample for the differences between the ERA5 and BCR datasets and the AWS with and without the altitude 62 

correction. 63 

Furthermore, we compare the two data sets by analyzing the correlograms of the altitude-corrected 64 

temperatures and performing a linear regression. Figure 2.b shows an example of this comparison. We report 65 

the squared correlation coefficients (R2) as a metric of the goodness of fit and the p-values from the F-statistic 66 

to assess the level of statistical significance. 67 

3. Results 68 

Overall, the two reanalysis products show both cold and warm biases compared to the AWS temperatures. 69 

Table 2 shows the results of the comparison at each station and the elevation map of the AWS as well as the 70 

spatial distributions of the altitude-corrected biases are shown in Figure S1 and Figures S2 and S3, 71 

respectively. We find that the biases in the ERA5 dataset are of smaller magnitude than the biases observed 72 

for the BCR dataset. The altitude correction applied to the grid temperatures does not eliminate but reduces 73 

the average bias across all stations. However, this is not the case for all stations; for ERA5, the altitude 74 

correction increases the bias at three stations (FRSM, UHDM and VIAM), and for BCR the correction 75 

increases the bias at five stations (BENM, BRHM, CAAM, FLMM and VIAM).  76 

Contrary to the altitude-dependent biases found by Tetzner et al. (2019), our results do not show a clear 77 

correlation between bias and elevation (see Figures S1, S2 and S3). Nevertheless, our results do suggest that 78 

the ERA5 dataset has predominantly neutral to warm biases in the valleys, despite elevations, and neutral to 79 

cold biases in the mountain ranges. 80 
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Figure 2 illustrates the comparison of the monthly temperature time series for one of 17 locations used in this 81 

study (Lake Vida) and the temperatures from the ERA5 and BCR datasets over the time span of more than 82 

two decades. In this case, the monthly temperature mismatch between the AWS and the ERA5 and BCR 83 

altitude-corrected temperatures is particularly large during the winter months, when observations indicate 84 

actual temperatures were about 10°C lower than ERA5 or BCR temperatures (Figure 2c,d). All the 85 

correlograms shown in Figures S4-S20 suggest that there is a strong seasonality in the relationship between 86 

the data sets. During the austral winter and summer seasons the temperatures are generally closely clustered 87 

together, systematically being more correlated during the winter and more dispersed during the summer. The 88 

spring and fall seasons show a hysteresis that is repeated over all the comparisons. As the environment warms 89 

up during the spring months the ERA5 and BCR temperatures are above the best-fit line and drop below it 90 

during the fall. These seasonal biases may ultimately be helpful in revealing what climate processes must be 91 

better represented in the ERA5 reanalysis to eliminate the observed temperature biases. 92 

4. Discussion 93 

Our results differ significantly from the findings reported by Tetzner et al. (2019) for the Southern Antarctic 94 

Peninsula - Ellsworth Land region. For that region there is a slight cold bias of the ERA5 surface temperatures 95 

close to the coast (-0.51°C ± 0.74) and a slight warm bias in the mountain range escarpment (+0.14°C ± 0.72) 96 

which has encouraging implications for using the reanalysis data where there is no AWS coverage, which 97 

represents most of Antarctica. In contrast, we find no obvious topographic dependence on the temperature 98 

differences between AWS and ERA5 data. Averaged over the whole region, the altitude-corrected 99 

temperatures of the ERA5 dataset have a slight cold bias of 0.4 ± 0.8 °C, whereas the BCR data has a cold 100 

bias of larger magnitude (4.4 ± 1.9 °C). However, there are large variations from one site to another, and also 101 

from one season to another. Some of the large cold biases for the altitude-corrected ERA5 and BCR data are 102 

observed during the summer months, with average differences up to 4.9 ± 0.1 °C and 16.2 ± 0.3 °C, 103 

respectively. This may be a particularly significant problem given the fact that warm summer temperatures 104 
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determine the annual melt rate of snow, glaciers, and permafrost in Antarctica. Modelling of snow or ice 105 

melting driven by ERA5 temperatures (e.g., Costi et al., 2018) with a strong cold bias, as observed in our 106 

study region, will result in a significant underestimate of summer melt production. Conversely, many stations 107 

show a warm bias during the winter months, which could potentially be related to temperature inversions that 108 

create air parcels with negative buoyancy and drive katabatic winds down the glacial streams and valleys 109 

(Phillpot & Zillman, 1970). 110 

In general, our findings agree with the findings of Zhu et al. (2021) in that they also find a cold bias for West 111 

Antarctica. However, our results highlight the degree in which such biases can be found at a regional and 112 

local scale and by using different datasets. Although the ERA5 reanalysis and its bias-corrected version are 113 

outstanding sources of global climate variables, the discrepancy between our results and those obtained by 114 

Tetzner et al. (2019) suggests that secondary observations should be used to test the reliability of the ERA5 115 

and BCR dataset in polar regions, particularly when performing studies at scales shorter than 0.5°. 116 

5. Conclusions 117 

We have compared the surface temperature (2-metre temperature) recorded at 17 AWS in the McMurdo Dry 118 

Valleys, Antarctica with temperatures from the ERA5 reanalysis dataset. We found that the temperatures 119 

reported by the global climate reanalysis and its bias-corrected version can have significant warm and cold 120 

biases relative to the weather stations. The cold temperature bias appears to be the largest during the warm 121 

summer months, when loss of snow and ice to melting is the largest. Warm biases are more common during 122 

the winter months, when atmospheric temperature inversions are common. We advise using secondary 123 

observations to assess the accuracy of parameters included in ERA5 reanalysis for polar regions.	124 

	125 

Data availability. The AWS data were provided by the NSF-supported McMurdo Dry Valleys Long Term 126 
Ecological Research program (OPP-1637708) and can be accessed at: 127 
https://mcm.lternet.edu/meteorological-stations-location-map. The “ERA5-Land hourly data from 1950 to 128 
present” (DOI: 10.24381/cds.e2161bac) and the “Near surface meteorological variables from 1979 to 2019 129 
derived from bias-corrected reanalysis” (DOI: 10.24381/cds.20d54e34) were downloaded from the 130 
Copernicus Climate Change Service (C3S) Climate Data Store. 131 
 132 

https://mcm.lternet.edu/meteorological-stations-location-map
https://doi.org/10.24381/cds.e2161bac
https://doi.org/10.24381/cds.e2161bac
https://doi.org/10.24381/cds.20d54e34
https://doi.org/10.24381/cds.20d54e34
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 191 

Figure 1. Map of the McMurdo Dry Valleys region showing the location of the AWS managed by LTER 192 

(yellow squares) and their corresponding closest ERA5 and BCR grid nodes (red squares and magenta 193 

squares, respectively). The distance to the sea and the topography of the region can be appreciated in the 194 

background satellite image. 195 

 196 
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 197 
Figure. 2 Comparison of the monthly averaged 2-metre air temperatures recorded at station Lake Vida 198 

(VIAM) and the values from the closest grid node of the ERA5 and BCR datasets. Time series of the AWS 199 
data (grey curve) compared to the reanalysis data (black curve) and the altitude-corrected (ac) reanalysis 200 

data (dashed orange curve) for the ERA5 (a) and BCR (b) datasets. The correlograms showing the best fit 201 
line (red line) to the relationship between the AWS temperatures and the ERA5 and BCR temperatures are 202 
shown in (c) and (d), respectively. Note the seasonal variation in the relationship, particularly the large bias 203 

during the winter months. 204 
 205 
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AWS	Location	name	 AWS	ID	 Latitude	 Longitude	 Elevation	(m.a.s.l.)	

Beacon	Valley	 BENM	 -77.828	 160.6569	 1,176	

Lake	Bonney	 BOYM	 -77.7147	 162.4646	 64	

Lake	Brownworth	 BRHM	 -77.4344	 162.7036	 279	

Canada	Glacier	 CAAM	 -77.6133	 162.9644	 264	

Commonwealth	Glacier	 COHM	 -77.5646	 163.2823	 290	

Explorer's	Cove	 EXEM	 -77.5887	 163.4175	 25	

Mt.	Fleming	 FLMM	 -77.5327	 160.2714	 1,870	

Lake	Fryxell	 FRLM	 -77.6113	 163.1701	 19	

Friis	Hills	 FRSM	 -77.7474	 161.5162	 1,591	

Garwood	Ice	Cliff	 GAFM	 -78.0259	 164.1315	 51	

Howard	Glacier	 HODM	 -77.6712	 163.0773	 472	

Lake	Hoare	 HOEM	 -77.6254	 162.9005	 77	

Miers	Valley	 MISM	 -78.1011	 163.7877	 51	

Taylor	Glacier	 TARM	 -77.74	 162.1314	 334	

Upper	Howard	 UHDM	 -77.686	 163.145	 826	

Lake	Vanda	 VAAM	 -77.5257	 161.6913	 296	

Lake	Vida	 VIAM	 -77.3778	 161.8007	 351	

Table 1. List of available AWS in the McMurdo Dry Valleys region. 219 

 220 
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AWS 
Location 

name 
AWS ID 

Distance to 
closest 

ERA5 node 
(km) 

AWS data 
date range 

Average 2 
m air 

temperatur
e @ AWS 

Average 2 
m air 

temperatur
e @ ERA5 

node / 
altitude 

corrected 

Average 2 
m air 

temperatur
e @ BCR 

node 
/altitude 
corrected 

ERA5mean_te

mp  - 
AWSmean_tem

p / ERA5 
(ac) mean_temp  

- 
AWSmean_tem

p 

BCRmean_tem

p  - 
AWSmean_tem

p / BCR (ac) 
mean_temp  - 

AWSmean_tem

p 

Beacon 
Valley BENM 3.27 2000-12-11 - 

2012-11-19 -21.5 ± 0.7 -33.5/-24.2 ± 
0.7 

-29.4/-38.3 ± 
0.7 

-12.1/-2.8 ± 
1.4 

-8.0/-16.8 ± 
1.4 

Lake 
Bonney BOYM 1.84 1993-12-08 - 

2018-10-09 -17.2 ± 0.6 -24.0/-13.3 ± 
0.4 

-29.3/-20.7 ± 
0.5 

-6.7/3.9 ± 
1.0 

-12.1/-3.4 ± 
1.1 

Lake 
Brownworth BRHM 3.83 1995-01-23 - 

2018-11-10 -19.9 ± 0.7 -25.4/-20.0 ± 
0.5 

-29.3/-31.0 ± 
0.5 

-5.5/-0.1 ± 
1.2 

-9.4/-11.1 ± 
1.2 

Canada 
Glacier CAAM 1.71 1994-12-18 - 

2011-01-05 -16.3 ± 0.7 -23.1/-18.8 ± 
0.6 

-29.3/-30.9 ± 
0.6 

-6.7/-2.5 ± 
1.3 

-13.0/-14.5 ± 
1.3 

Commonwe
alth Glacier COHM 3.96 1993-12-06 - 

2018-10-30 -17.6 ± 0.5 -22.1/-21.1 ± 
0.5 

-29.3/-16.1 ± 
0.5 

-4.4/-3.4 ± 
1.0 

-11.6/-1.6 ± 
1.0 

Explorer's 
Cove EXEM 1.32 1997-12-05 - 

2018-11-23 -18.9 ± 0.7 -21.7/-19.0 ± 
0.5 

-9.3/-13.5 ± 
0.5 

-2.7/0.0 ± 
1.2 

-10.3/5.5 ± 
1.2 

Mt. Fleming FLMM 3.7 2011-01-22 - 
2018-11-11 -24.2 ± 0.6 -34.0/-23.5 ± 

0.8 
-29.2/-35.9 ± 

0.8 
-9.8/-0.7 ± 

1.4 
-5.0/-11.7 ± 

1.4 

Lake Fryxell FRLM 1.45 1994-12-12 - 
2018-11-19 -19.7 ± 0.7 -22.4/-17.8 ± 

0.5 
-29.3/-13.4 ± 

0.5 
-2.6/2.0 ± 

1.2 
-9.5/6.4 ± 

1.2 

Friis Hills FRSM 5.28 2011-01-04 - 
2018-11-06 -22.5 ± 0.6 -26.8/-28.6 ± 

0.7 
-29.2/-28.7 ± 

0.8 
-4.3/-6.0 ± 

1.3 
-6.6/-6.2 ± 

1.4 

Garwood Ice 
Cliff GAFM 2.97 2012-01-24 - 

2012-12-19 -16.6 ± 2.8 -23.6/-17.7± 
2.3 

-30.7/-29.6 ± 
2.3 

-7.0/-1.0 ± 
5.1 

-14.0/-12.9 ± 
5.1 

Howard 
Glacier HODM 3.25 1993-12-04- 

2018-10-31 -17.18 ± 0.4 -20.8/-20.3 ± 
0.5 

-29.3/-17.9 ± 
0.5 

-3.6/-3.1 ± 
0.9 

-12.1/-0.7 ± 
0.9 

Lake Hoare HOEM 2.82 1987-11-25 - 
2018-11-29 -17.61 ± 0.5 -23.5/-15.9 ± 

0.4 
-29.2/-28.9 ± 

0.4 
-5.9/1.7 ± 

0.9 
-11.6/-11.3 ± 

0.9 

Miers Valley MISM 0.31 2012-02-11 - 
2018-11-06 

-16.69 ± 
1.00 

-23.2/-18.2 ± 
0.9 

-29.5/-20.0 ± 
0.9 

-6.6/-1.5 ± 
1.9 

-12.8/-3.3 ± 
1.9 

Taylor 
Glacier TARM 4.51 1994-12-05 - 

2018-11-05 -16.9 ± 0.5 -25.4/-15.1 ± 
0.4 

-29.3/-23.3 ± 
0.5 

-8.5/1.8 ± 
0.9 

-12.4/-6.4 ± 
1.0 

Upper 
Howard UHDM 1.89 2001-11-28 - 

2003-12-24 -16.56 ± 1.5 -20.3/-23.3 ± 
1.7 

-28.7/-20.8 ± 
1.7 

-3.7/-6.8 ± 
3.2 

-12.2/-4.2 ± 
3.2 

Lake Vanda VAAM 2.87 1994-12-08 - 
2018-12-07 -19.58 ± 0.7 -25.1/-17.4 ± 

0.4 
-29.2/-16.1 ± 

0.5 
-5.5/-2.2 ± 

1.2 
-9.6/3.5 ± 

1.1 

Lake Vida VIAM 2.47 1995-12-08 - 
2018-11-14 -26.68 ± 1.0 -24.1/-19.2 ± 

0.5 
-29.3/-16.7 ± 

0.5 2.6/7.5 ± 1.5 -2.6/10.0 ± 
1.5 
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Table 2. List of comparison results between the temperatures recorded at the AWS and the closest ERA5 231 

and BCR nodes. For each of the reanalysis datasets, we show the reported 2 m air temperature and the 232 

altitude-corrected (ac) value and their comparison to the average temperature at the AWS. 233 


