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Abstract. Glacier velocity measurements are essential to understand ice flow mechanics, monitor natural hazards, and make

accurate projections of future sea-level rise. Despite these important applications, the method most commonly used to derive

glacier velocity maps, feature tracking, relies on empirical parameter choices that rarely account for glacier physics or uncer-

tainty. Here we test two statistics- and physics-based metrics to evaluate velocity maps derived from optical satellite images

of Kaskawulsh Glacier, Yukon, Canada using a range of existing feature-tracking workflows. Based on inter-comparisons5

with ground-truth data, velocity maps with metrics falling within our recommended ranges contain fewer erroneous measure-

ments and more spatially correlated noise than velocity maps with metrics that deviate from those ranges. Thus, these metric

ranges are suitable for refining feature-tracking workflows and evaluating the resulting velocity products. We have released an

open-source software package for computing and visualizing these metrics, the GLAcier Feature Tracking testkit (GLAFT).

1 Introduction10

Accurate measurements of glacier surface velocity are fundamental to answering some of the most societally relevant issues in

the cryospheric sciences. Glacier flow speeds underpin many projections of future sea level rise (Moon et al., 2012; Mouginot

et al., 2019; Shepherd et al., 2020), and they are essential for models used to understand the processes that control ice sheet

behavior – ice creep, basal sliding, and ice-ocean interactions (Holland et al., 2008; Burgess et al., 2013; Sundal et al., 2013;

Zheng, 2022; Van Wyk de Vries et al., 2022). As a sensitive indicator of change, glacier velocities can be used to understand15

and monitor dangerous glacier surges and detachments (Evans et al., 2009; Shangguan et al., 2021; Van Wyk de Vries et al.,
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2022), and quantify freshwater storage volumes in regions reliant on glacier melt as a water resource (Millan et al., 2022;

Van Wyk de Vries et al., 2022). In each of these cases, accurate maps of ice velocity with rigorous uncertainty propagation

are needed to quantify the total uncertainty envelope of high-impact projections of future change. However, current methods

for assessing ice-velocity map quality and uncertainty vary in different workflows, and are commonly derived from arbitrary20

thresholds or measurements over ice-free areas. The workflows and processing software may be easy to use, but the quality

assessments for the resulting velocity maps, despite their many applications, rely on researchers who specialize in glacier

dynamics. This technical limitation discourages other research and education communities from using glacier velocity data or

creates other concerns, such as a risk of over-interpretation during a time-sensitive hazard event.

The most widely used method for deriving glacier velocity at regional or global scales is feature tracking, which is also25

known as offset tracking, pixel tracking, speckle tracking, template matching, and particle image velocimetry (Bindschadler

and Scambos, 1991; Strozzi et al., 2002; Moon et al., 2012; Dehecq et al., 2015; Fahnestock et al., 2016; Friedl et al., 2021).

This technique tracks the movement of coherent patterns on the glacier surface (e.g., crevasses, medial moraines, or other

optical patterns or radar scatterers) between two satellite image acquisitions. To compute feature displacement, a 2D cross-

correlation algorithm is used to prepare a correlation score "surface" for small image chips from the two images. The position30

of the highest peak in this correlation score surface then corresponds, in an ideal scenario, to the feature displacement between

two images. Finally, this process is repeated for each image chip, producing the spatially continuous displacement field, which

is used to prepare the velocity map with appropriate scaling based on the pixel dimensions and time offset.

Both optical and synthetic aperture radar (SAR) images with a wide range of specifications are suitable for deriving feature-

tracked ice velocity, as evidenced by applications using numerous earth-observing satellite data sets (e.g., Armstrong et al.,35

2016; Strozzi et al., 2017; Van Wychen et al., 2018; Altena et al., 2019; Millan et al., 2019). To date, all of the publicly available

ice velocity datasets with a global extent have been created using feature tracking (Gardner et al., 2019; Friedl et al., 2021;

Millan et al., 2022). Despite its popularity, the feature tracking technique faces challenges involving optimization and ease

of use. A feature-tracking workflow contains several adjustable parameters and options, such as image preprocessing methods

(typically high-pass or edge filters) and interpolation methods to locate a correlation peak with high precision. Researchers have40

explored this parameter space, offered recommended settings (Heid and Kääb, 2012; Fahnestock et al., 2016), and released

public data sets with extensive documentation such as the NASA ITS_LIVE project (Gardner et al., 2019; Lei et al., 2022).

Still, the full parameter space has not been quantitatively studied for a range of different ice flow conditions. Several challenges

prohibit further optimization. First, there is no benchmarking test suitable for inter-comparing velocity maps generated with

different software packages and parameters. Second, it is challenging to validate the derived velocity maps due to a lack of45

contemporaneous in situ and satellite observations (Paul et al., 2017).

To lower the threshold of using and assessing feature-tracked glacier velocity maps for various applications, we set out to

develop new methods and create a user-friendly, open-source package that can be used to prepare, evaluate and improve glacier

velocity products for a range of science applications. We present the GLAcier Feature Tracking testkit (GLAFT) package,

which can easily benchmark the quality of ice velocity maps using two statistics- and physics-based metrics . The first metric50
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identifies correct feature matches over static ground surfaces and their uncertainty. The second metric analyzes the velocity

spatial coherence and evaluates how much the strain rate field reflects the ice flow dynamics.

To demonstrate how the metrics indicate the quality of ice velocity measurements, we use different parameter settings of

various software packages to derive 172 glacier velocity maps for Kaskawulsh Glacier, Canada, from two Landsat 8 and two

Sentinel-2 image pairs (Section 3.1.1). To evaluate these metrics, the derived velocity maps are compared with simultaneous55

in situ Global Navigation Satellite System (GNSS) data (Section 3.1.2), velocity products from the ITS_LIVE project (Sec-

tion 3.1.3), and a feature-tracking map with an arbitrary, synthetic velocity field (Section 3.1.4). Finally, we review current

approaches for estimating uncertainty and suggest a new framework for quality assessment of derived glacier velocity maps.

2 Defining good performance for glacier feature tracking

To evaluate the success of velocity maps derived from pairs of satellite images, it is necessary to identify the uncertainty of60

the feature-tracking algorithm used to create them. Since each velocity measurement is derived from the peak location of the

cross-correlation surface (in units of pixels along two image axes), the primary source of error depends on the significance

of the peak. If the correlation peak has a high signal-to-noise ratio (SNR), we can reasonably assume that the algorithm has

found the correct match (i.e., the algorithm identified the same feature in both input images). In this instance, the uncertainty

of the resulting pixel offset values (used to derive velocity) is determined by several factors, including the resolution of the65

input images, uncertainty of image co-registration (Kääb et al., 2016), shape of the correlation peak (Altena et al., 2022), and

sub-pixel resampling errors (Sciacchitano, 2019). Based on simulations, the aggregated inherited uncertainty (2-sigma) for

correct matches falls between 0.02 and 0.4 pixels (Sciacchitano, 2019). On the other hand, if the correlation peak is absent,

has a low signal-to-noise ratio, or appears more than once on the correlation surface, the peak-finding algorithm can return an

incorrect local maximum, producing an incorrect match and a biased velocity measurement.70

Since SNR correlates to the matching correctness and provides a good pixel-based quality assessment, many feature tracking

tools generate a SNR map as part of the standard output along with the velocity grid, such as CARST (Zheng et al., 2019, 2021)

and GIV (Van Wyk de Vries and Wickert, 2021). Ideally, we want to exclude incorrect matches so that biased measurements

do not affect the propagated uncertainty of the derived velocity map . Some published algorithms mask these pixels based on a

threshold of SNR (Willis et al., 2012; Dehecq et al., 2015), while others use local coherence (Heid and Kääb, 2012; Lei et al.,75

2021) or absolute velocity thresholds (Heid and Kääb, 2012) to identify and remove incorrect matches. However, it may be

impossible to identify all incorrect matches due to limited a priori knowledge of correct velocity ranges and a lack of ground

truth data. Even with a carefully designed mask applied, both correct and incorrect matches are still likely to be present in

the velocity map (e.g., Figure 3 in Heid and Kääb, 2012). As a result, the estimated a posteriori uncertainty (2-sigma) of the

best-filtered feature displacement map is usually about 0.6 to 1.0 pixels (Strozzi et al., 2017; Zheng et al., 2019), 2–3x larger80

than the theoretical uncertainty.

In this study we designed global (i.e., image-wide) metrics by considering the arguments above and the computational

efficiency, flexibility, and compatibility for existing and emerging workflows that use advanced tracking techniques, such as
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Altena and Kääb (2020). Along with relevant qualitative assessments (e.g., spatial distribution of incorrect matches), these

metrics evaluate how incorrect matches and variation of correct matches alter the true glacier velocity indicated by ice flow85

physics.

2.1 Metric 1: velocity measurements over static terrain

The first metric is rooted in a traditional approach for calibrating and estimating uncertainty of feature-tracked ice velocity.

The central idea is to assume that adjacent ice-free terrain is static without horizontal or vertical movement, implying that any

non-zero velocity values in these locations are measurement errors. This approach requires well-distributed control surfaces90

that cover a large enough area so that the velocity measurements are not heavily influenced by isolated hillslope movements

(e.g., Brencher et al., 2021) or landslides (e.g., Shugar et al., 2021; Van Wyk de Vries et al., 2022), which are common

in high-mountain environments. The central tendency (mean, median, etc.) of measured velocity components (Vx and Vy ,

where x and y are defined by the input image axes) over static terrain is traditionally used to calibrate the entire velocity

product; see Section 3.1.2 for an example. The value of this central tendency can be regarded as the accuracy of the measured95

feature offset and is controlled by many factors, such as image misalignment, geolocation errors, and atmospheric disturbances

(from clouds and ionosphere for optical and SAR images, respectively). In addition to the accuracy-based calibration, the

residual variability (standard deviation or other similar metrics) of measured velocity components is conventionally used to

assign velocity uncertainty (precision) for the entire product (Heid and Kääb, 2012; Willis et al., 2012; Burgess et al., 2013;

Dehecq et al., 2015; Waechter et al., 2015; Paul et al., 2017; Millan et al., 2019). However, this variability is practically an100

aggregated measurement of correct and incorrect matches and other terrain-dependent errors, and it is challenging to isolate

these individual contributions to total observed uncertainty.

Here, we propose a way to better characterize the noise of only the correct matches for the first metric. We use non-

parametric, multivariate kernel density estimation (KDE; Silverman, 1986) to differentiate correct and incorrect matches and

estimate the variability of the former population. Let Vx,i and Vy,i, i= 1, ...N be horizontal velocity components from the105

selected static area containing N measurements (i.e., N pixels). We calculate the kernel density distribution ρK at every

possible velocity value using the following equation:

ρK(u,v) =
1

Nh

N∑
i=1

K

(
u−Vx,i

h
,
v−Vy,i

h

)
, (1)

where (u,v) indicates independent variables along the x and y directions (i.e., two axes in the velocity domain), K is the

selected multivariate kernel, and h is the kernel bandwidth. In other words, ρK resembles the histogram of the measurements110

or the sum of individual density distributions centered at (Vx,i,Vy,i). Since the choice of kernel does not affect the density

estimation as much as bandwidth does, we select the Epanechnikov (parabolic) kernel to achieve computational efficiency due

to its finite support compared to the Gaussian kernel. We use the rule-of-thumb method (Silverman, 1986; Henderson and

Parmeter, 2012) to determine the bandwidth without prior knowledge about the velocity distribution. Assuming that all the
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correct matches have an identical, independent, and normally distributed noise term with the same variance in u and v, the115

rule-of-thumb bandwidth for a multivariate Epanechnikov kernel is calculated as follows:

h= 2.1991
√
σVx

σVy
N− 1

6 , (2)

where σVx
and σVy

are the standard deviation of Vx and Vy , respectively. Once a kernel density distribution is found, we locate

its main peak value and location on the u-v plane. This peak is assumed to be related to the distribution of the correct matches,

and we can design a thresholding method based on peak value to differentiate correct and incorrect matches:120

ρKt =
max(ρK)

e
z2

2

, (3)

where z is the pre-selected z score (always positive). Measurements with ρK(Vx,Vy)≥ ρKt are considered as correct matches,

and measurements with ρK(Vx,Vy) lower than the same threshold value are classified as incorrect matches. The half ranges of

Vx and Vy from correct matches, denoted as δu = zσu and δv = zσv , are thus considered as z-sigma uncertainty. In this study,

we set z = 2 and report two-sigma uncertainties for the convenience of comparing previously published results and our results.125

The variance of the correct matches is also defined as σ2
u =

(
δu
z

)2

and σ2
v =

(
δv
z

)2

.

To summarize, while statistics computed over static terrain have previously been used to assess the uncertainty of glacier

velocity maps, this study attempts to separate correct and incorrect feature matches over static terrain, and derive uncertainty

only from the correct matches. The calculated uncertainty of correct matches can be compared with the theoretical uncertainty

(Sciacchitano, 2019). Ideally, the former should approach the latter for optimized measurement precision. In addition, the130

number of incorrect matches over static terrain and their corresponding velocity distribution can serve as an auxiliary indicator

of the accuracy of the velocity map, along with the correct-match uncertainty.

2.2 Metric 2: along-flow strain rates

For computational simplicity, our previous metric overlooks the covariance of the correct matches. However, glacier motion

is spatially coherent, and the covariance of neighboring correct matches controls the quality of the measured flow pattern.135

Hence, the second metric aims to estimate the co-variability of pixels on a glacier using the physics of glacier flow (Cuffey and

Paterson, 2010). We start by analyzing the horizontal (2-D) strain rate tensor ϵ̇x′x′ , ϵ̇y′y′ , and ϵ̇x′y′ , where the prime notations

of x′ and y′ denote along-flow and across-flow directions, respectively. To obtain this tensor, we first calculate the strain rates

along the image axes x and y:

ϵ̇xx =
∂Vx

∂x

ϵ̇yy =
∂Vy

∂y

ϵ̇xy =
1

2

(∂Vx

∂y
+

∂Vy

∂x

) (4)140
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In GLAFT, these partial derivatives are computed using 3-by-3 Sobel operators. Next, we compute arctan2(Vx/Vy) and

smooth the results with a 2D median filter with a large window size of 10–35 pixels (depending on the pixel spacing) for the

bulk flow direction angle θ (counterclockwise from the x-axis). The strain rate tensor is then rotated by θ and projected into

the along-flow direction as follows:

ϵ̇x′x′ = ϵ̇xx cos
2 θ+ ϵ̇yy sin

2 θ+ ϵ̇xy sin2θ

ϵ̇y′y′ = ϵ̇xx sin
2 θ+ ϵ̇yy cos

2 θ− ϵ̇xy sin2θ

ϵ̇x′y′ =
1

2
(ϵ̇yy − ϵ̇xx)sin2θ+ ϵ̇xy cos2θ

(5)145

By replacing Vx and Vy with ϵ̇x′x′ and ϵ̇x′y′ in Equation 1, we can calculate the KDE in the strain rate domain and char-

acterize the distribution. We follow the same steps in Equations 2–3 and find the variance of the strain rate distribution under

a pre-selected z value. To be consistent with the first metric, in this study we report the z-σ uncertainty for ϵ̇x′x′ and ϵ̇x′y′ as

δx′x′ and δx′y′ , respectively.

Unlike the case of the previous metric, which indicates the variability from the zero ground truth, the strain rates along a150

flowing glacier are not zero, but we can still infer a reasonable range based on fundamental physical relationships. Consider

a rectangular region on a glacier with one side running across the channel half-width Y and the other side along the flow

direction (length X). The average driving stress (τ̄d) over the rectangular area is balanced with the basal drag (τ̄b), side drag,

and longitudinal stress gradient (see Equation 8.60 of Cuffey and Paterson, 2010, for details):

τ̄d = τ̄b +
1

Y
∆(Hτ̄x′y′)+

1

X
∆[H(2τ̄x′x′ + τ̄y′y′)], (6)155

where H is average ice thickness. τ̄x′y′ , τ̄x′x′ , and τ̄y′y′ represent average shear stress and normal stresses, respectively. Suppose

half of the driving stress is balanced by basal drag, and the other half is balanced by side drag, and the longitudinal stress

gradient is negligible (cf. Table 8.3 of Cuffey and Paterson, 2010), Equation 6 becomes

τ̄b =
1

Y
τ̄x′y′∆H. (7)

For the right-hand side of Equation 7, we let ∆H ≈H , indicating the maximum possible ice thickness change within the160

rectangular region. Moreover, we can express the average side drag as a function of the average strain rate, assuming glacier

ice can be modeled as a viscous non-Newtonian fluid with the following creep relation (Equation 3.23 of Cuffey and Paterson,

2010):

τjk = 2ηϵ̇jk, (8)

where η is ice viscosity, and the subscripted j and k denote any two of the three dimensions. Thus, Equation 7 becomes165
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τ̄b =
1

Y
2η¯̇ϵx′y′H, (9)

where ¯̇ϵx′y′ is the average shear strain rate.

The creep relation (Equation 8) can also be expressed inversely, known as Glen’s flow law:

ϵ̇jk =Aτnjk, (10)

where n and A are two empirical parameters. Combining Equations 8 and 10 leads to the expression of viscosity in terms of170

the flow-law parameters:

η =
1

2Aτn−1
jk

. (11)

The along-flow ice speed at the surface (ux′ ) can be calculated by integrating Glen’s flow law (Equation 10) along the vertical

direction of the ice flow plus the basal slip speed (ub), assuming a linearly increasing shear stress with depth (see Equations

8.32 to 8.35 of Cuffey and Paterson, 2010, for details):175

ux′ = ub +
2A

n+1
τnb H. (12)

Combining Equations 11 and 12 with τjk set to τb leads to the expression of average basal drag as a function of average

surface along-flow speed ūx′ and average basal slip speed ūb:

τ̄b ≈ (ūx′ − ūb)η
n+1

H
. (13)

Finally, combining Equations 9 and 13 leads to the following equation:180

¯̇ϵx′y′

ūx′ − ūb
=

(n+1)Y

2H2
, (14)

which can be further reduced to 2Y/H2 if assuming n= 3.

Equation 14 provides a range of plausible ϵ̇x′y′ values based on glacier speed, channel width, and average ice thickness.

Ideally, observed δx′y′ should be as close to ¯̇ϵx′y′ as possible. If the former is much larger, the glacier velocity likely contains

errors, as the observed spatial variability is not physically achievable. On the other hand, if ¯̇ϵx′y′ is much larger than δx′y′ , it is185

likely that the flow pattern is smoothed too much and has lost real dynamic signals.
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Table 1. Optical images used to derive glacier velocities in this study.

Satellite Band Image 1 date Image 2 date Duration (days) Pixel spacing (m)

Landsat 8 8 (500-680 nm) 2018-03-04 2018-04-05 32 15

Landsat 8 8 (500-680 nm) 2018-08-02 2018-08-18 16 15

Sentinel-2 4 (665 nm) 2018-03-04 2018-03-14 10 10

Sentinel-2 4 (665 nm) 2018-05-08 2018-06-27 50 10

3 Tests at Kaskawulsh Glacier

Kaskawulsh Glacier, Yukon, Canada (60◦48′N, 138◦36′W; Figure 1) is an ideal location for demonstrating how these metrics

relate to the performance of feature-tracking workflows because it has a nearly continuous GNSS record since 2007, is a wide

and long glacier with relatively consistent velocities, and does not surge (Clarke et al., 1986). Kaskawulsh Glacier has an area190

of 1054 km2, stretches ∼90 km from the terminus to the farthest ice divide (RGI Consortium, 2017), and has velocities along

the main trunk of the glacier ranging from 70 m yr-1 near the terminus to 180 m yr-1 near the confluence of the two main

tributaries (Waechter et al., 2015; Gardner et al., 2019). The recent terminus retreat of Kaskawulsh Glacier changed the local

hydrology, resulting in a drop in water level at Łù’àn Män (Kluane Lake), which has impacted indigenous people in the area

(Shugar et al., 2017).195

Kaskawulsh Glacier has been a research site for decades with a history of velocity observations dating back to the 1960s.

The Icefield Ranges Research Project set up a network of markers to track glacier motion during the 1960s, which concluded

there were limited short-term variations in ice velocity (Holdsworth, 1969; Clarke, 2014). More recent work has focused on

regional velocity patterns (Burgess et al., 2013; Abe and Furuya, 2015; Waechter et al., 2015; Van Wychen et al., 2018; Altena

et al., 2019) and found a multi-year acceleration near Kaskawulsh Glacier’s terminus as a terminal lake grew from 2000–2015,200

followed by a slowdown over the following five years after it drained in 2016 (Main et al., 2022).

3.1 Methods

3.1.1 Deriving glacier velocities

We selected four optical satellite image pairs (Figure 1, Table 1), each of which has a different time separation and surface

conditions. We downloaded the Level-2 orthorectified images from the USGS EarthExplorer (https://earthexplorer.usgs.gov/)205

and clipped them to the extent of Kaskawulsh Glacier for processing efficiency. We used four different packages to derive

glacier velocity maps, each of which has a distinct method for processing velocity fields, briefly described as follows:

– autoRIFT (autonomous Repeat Image Feature Tracking; Lei et al., 2021): an open-source feature tracking toolbox

developed at NASA JPL, written in Python and C++, autoRIFT performs normalized cross-correlation (NCC) in the

spatial domain using either a fixed or adaptive size of matching template. The software can perform pre-processing to210
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Figure 1. Kaskawulsh Glacier and satellite images used to derive velocity testing maps. (a) Time-averaged glacier velocity (Millan et al.,

2022) plotted on a Landsat 8 natural color composite from June 9, 2016. Areas for deriving the proposed metrics are labeled with two types

of polygons: static areas in hashed yellow, and flow areas in red. Triangles indicate GNSS station positions in 2018. Rectangles show extents

of the clipped Landsat 8 (purple) and Sentinel-2 (yellow) images used in this study. (b) Context map for panel a. Other panels show the

clipped images with labels specifying their respective tile numbers and acquisition dates.

enhance image contrast and improve feature details prior to feature tracking. For post-tracking processes, autoRIFT uses

a novel Normalized Displacement Coherence (NDC) filter to remove pixels whose displacement is inconsistent with

neighboring pixels. OpenCV’s Laplacian pyramid method (abbreviated as pyrUP in Table S1; Bradski, 2000) is used

to upsample the results for subpixel precision. A specially curated parameter set is used with autoRIFT to generate

ITS_LIVE, the largest open data set for glacier velocity (Gardner et al., 2019).215

– vmap (Shean and Bhushan, 2023): an open-source feature tracking software package written in Python that wraps the

C++ based NASA Ames Stereo Pipeline (ASP) pyramidal correlator (Beyer et al., 2018) to perform NCC in the spatial

domain. Images can be pre-processed using a Gaussian or Laplacian of Gaussian operator, and results are filtered to

remove spurious measurements. Vmap supports three methods for calculating displacements with sub-pixel precision,

defined as parabolic (Argyriou and Vlachos, 2005), affine, and affine adaptive (Nefian et al., 2009; Baker and Matthews,220
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2004; Broxton et al., 2009) . We refer readers to the official ASP documentation (https://stereopipeline.readthedocs.io/

en/latest/index.html) for additional details on the correlation and sub-pixel refinement options.

– CARST (Cryosphere And Remote Sensing Toolkit; Zheng et al., 2021): an open-source glacier remote sensing package

written in Python, its feature tracking functionality is a Python wrapper of ampcor, a Fortran module developed by

NASA JPL as part of the SAR processing package ROI_PAC (Rosen et al., 2004) and its successor ISCE (Rosen et al.,225

2012). Ampcor uses NCC in the spatial domain to perform the tracking and deploys a simple oversampling method for

sub-pixel precision.

– GIV (Glacier Image Velocimetry; Van Wyk de Vries and Wickert, 2021): an open-source package designed for calcu-

lating glacier velocity fields using MATLAB or a standalone app. GIV is optimized for the automated processing of

entire time series of satellite imagery, but can also be used to process single image pairs. Unlike the other packages230

mentioned here, GIV matches features in the frequency domain. Additionally, GIV includes an orientation filter for im-

age pre-processing named “near anisotropic orientation filter” (NAOF), which is used as a pre-processing option for the

source images (Table S1). GIV also uses the “multi-pass” method that matches features multiple times using decreasing

template sizes. In our tests, this multi-pass method uses template sizes of 24 to 6 pixels for Sentinel-2 images and 16 to

4 pixels for Landsat 8 images, which is smaller than the other fixed template sizes tested in this study (32 or 64 pixels).235

We selected a total of 172 distinct combinations of parameters for software tool, pre-filter, matching window size (chip size),

skip size (velocity grid spacing), and sub-pixel mode (Table S1; see supplemental Jupyter Book pages in Data Availability

section). We do not have an equal number of tests for each software tool as this study aims to evaluate our metrics, not to

compare the performance of the different tools. To calculate our metrics, we used resulting velocity map products without

additional corrections such as bias or noise removal. We manually selected static and ice flow regions, as shown in Figure 1.240

See Data Availability for all the corresponding code and scripts.

3.1.2 GNSS data processing

Three GNSS stations have been operating on Kaskawulsh Glacier since 2007 (Figure 1), providing a nearly continuous record

of glacier velocity in three dimensions. These stations consist of a Trimble NetR9 receiver with a Zephyr Geodetic Antenna

(Trimble R7 receiver prior to 2016), large rechargeable sealed lead acid batteries, a solar panel, and solar regulator.245

During the summer (approximately May to September) these stations operate 24 hours per day, recording observables that

can be used to determine the antenna position every 15 seconds. During the winter (approximately September to May) the

stations are set to conserve power and typically only record data every 15 seconds for two to three hours per day starting at

noon local time, providing daily observations of glacier motion.

The GNSS data were recorded in proprietary Trimble format and converted to the open RINEX format during post-250

processing. We used the kinematic precise point positioning (PPP) processing service offered by Natural Resources Canada

(https://webapp.geod.nrcan.gc.ca/geod/tools-outils/ppp.php?locale=en) to obtain refined GNSS positions for this study. We

used a custom python script to derive horizontal velocity from the GNSS positions that most closely match the time of satellite
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image acquisitions. Three-dimensional position uncertainties are approximately 2 cm over a one-hour observation window

(Thomson and Copland, 2017). Typical horizontal velocities at Kaskawulsh Glacier at these stations are ∼0.30 to 0.50 m per255

day.

To compare the 172 velocity maps with GNSS data, the former have to be calibrated to reduce systematic biases due to

image misalignment. This bias correction is achieved by subtracting the KDE peak location of the static terrain velocities (i.e.,

u and v that has value of max(ρK); see Equation 3.) To sample measurements from a velocity map at the location of the GNSS

stations, we used the geoutils package (version 0.0.9, https://pypi.org/project/geoutils/) to extract the nearest-neighbor pixel260

values for the GNSS station locations at the acquisition time of the earlier image in the pair.

3.1.3 Deriving metrics from the ITS_LIVE velocity maps

We downloaded 35 scene-pair velocity maps from the ITS_LIVE data search portal (see Data Availability). These velocity

maps were derived using Landsat 8 or Sentinel-2 source images from the same orbital tracks specified in Figure 1 and Table

1, acquired between March 4 and October 5, 2018. The complete list of the velocity maps is available in Table S3. We use the265

value of the Vx_err flag that comes with each velocity map as the one-sigma error of the Vx velocity component. We follow

the same methods defined in this study (Equations 1–14) and the GLAFT tool to compute δu and δx′y′ using the same static

area and flow outlines defined in Figure 1.

3.1.4 Synthetic offset test

We created two synthetic sub-pixel offset fields with the same dimensions as the Landsat 8 satellite image acquired on March270

4, 2018 (Table 1). Each offset field varies along a single image axis (x or y). We applied these x and y offset fields to the

input satellite image and generate a synthetic satellite image with offset features. Next, we performed feature tracking between

the original image and the synthetically shifted image using the vmap software. For feature tracking parameters, we used a

matching window size of 35 pixels and parabolic subpixel refinement. .

3.2 Results275

Our 172 glacier velocity maps (six in Figure 2 and the rest in Figures S1–S8) are similar to the time-averaged speed from Millan

et al. (2022) shown in Figure 1: the average flow speed is around 0.3 m/day (100 m/yr), with small local variations. While it is

common to clip velocity maps to glacier outlines in publications and data sets, we show the full velocity map for each test so

that readers can see the distribution of invalid and incorrect matches over adjacent terrain. For the examples in Figure 2, the bad

matches (empty and unrealistic values in each upper panel) roughly align with the changing illumination and corresponding280

shadow positions during the image acquisition period (March to April 2018). These six maps show δu and δv ranging from 0.06

to 0.64 m/day. For every velocity map, δu and δv are close in value, likely because a square matching template was used to track

features. Therefore, we use δu as Metric 1 to assess the velocity map quality in the rest of the study. Large δu values generally

indicate a noisy velocity map, and small δu corresponds to a smoother velocity field (Figure 2a-c). Besides the magnitude of
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Metric 1, velocity maps generated by different software packages show various clustering characteristics over static terrain .285

For example, maps derived using vmap and autoRIFT often have elongated, off-zero clusters (Figure 2c–d), while maps from

CARST and GIV contain artifacts due to the pixel locking effect (Figure 2e–f), a biased tendency that measurements, including

incorrect matches, favor integer pixel offsets (Shimizu and Okutomi, 2001; Stein et al., 2006). Other results derived from the

rest of the tests are available in Figures S9–S16 and Table S2.

Unlike the static terrain velocities, the along-flow strain rate does not show characteristic spatial variability across most tests;290

these values tend to form a single cluster centered on zero (Figure 3 bottom panels; also Figures S17–S24). The variability

of the normal and shear strain rates is similar, as indicated by similar δx′x′ and δx′y′ values. This suggests that random noise,

not glacier physics, controls such variability. The magnitude of δx′y′ (Metric 2) does not show an obvious correlation to the

velocity map (Figure 3 upper panels), but a closer inspection by plotting the overall strain rate magnitude (
√
ϵ̇2x′x′ + ϵ̇2x′y′ )

shows that δx′y′ relates to the smoothness of the strain rate map (Figure 3 middle panels). Metric 2 is insensitive to correlated295

error over long spatial scales (Figure 3c), but is sensitive to high-frequency spatial variation with small amplitude (Figure 3a).

The δx′y′ and δx′x′ values range from 0.001 to 0.12 day-1 across the 172 velocity maps (Figures S17–S28 and Table S2).

3.2.1 Relationship between the metrics, tracking parameters, and velocity map quality

As expected, the values of Metric 1 (δu) and 2 (δx′y′ ) vary across the 172 tests depending on multiple parameter selections. For

example, when the satellite images are high-pass filtered before computing the cross-correlation surface, the resulting velocity300

maps often display improved quality as represented by a low δu value (Figure 4a). This observation aligns with several past

studies (Dehecq et al., 2015; Fahnestock et al., 2016; Van Wyk de Vries and Wickert, 2021). The δu values also decrease with

increasing matching template size, a classic trade-off between spatial smoothing and noise (Ahn and Howat, 2011, Figure 4b).

We can also see systematic variation in δx′y′ : it generally decreases as output velocity map resolution (pixel size) increases,

with a minimum of ∼0.004 day-1 (Figure 4c). Substituting representative values for Kaskawulsh Glacier into Equation 14 (H305

= 700 m (Foy et al., 2011), Y = 3500 m, ūx′ = 0.3 m/day, and ūb = 0 m/day), we obtain a recommended value of 0.004 day-1

for δx′y′ . Note that we assume no basal slip in this calculation, which may not be physically realistic for Kaskawulsh Glacier

and likely yields an overestimated δx′y′ recommendation. Nevertheless, these two independent computations suggest that, in

our case, velocity maps with an output grid cell size equal to or larger than 8x the input pixel size should have better quality

because the observed strain rate is constrained by glacier physics. On the other hand, the observed strain rate in velocity maps310

with a finer output grid cell size of 1x or 4x the input pixel size should be dominated by large feature matching uncertainty.

A combined analysis of the two metrics offers a more powerful quality indicator for glacier velocity maps. Maps with

higher δu and δx′y′ values tend to have fewer correct matches (Figure 5a). Again, the recommended value of δx′y′ based on

glacier physics (0.004 day-1 for Kaskawulsh, Equation 14) seems to play an important role. All the maps with δx′y′ less

than this threshold value have at least 50% correct matches (Figure 5a). These results strongly support the hypothesis that the315

uncertainty of correct matches depends on the prominence of the cross-correlation peak.

12



Figure 2. Feature tracking results and static area velocities for the Landsat 8 pair 20180304-20180405 using six different parameter sets.

Each subpanel includes a map of the E-W velocity component (Vx) in the top and the distribution of static-terrain velocities (yellow dots) with

their kernel density estimate (KDE) in the bottom. The red box indicates the boundary where KDE drops to 1/e
z2

2 of the peak KDE reading.

Measurements falling outside the red box are labeled as incorrect matches, with the ratio to the total number of static area measurements

shown on the plot. The half-width and height of the box are assigned as δu and δv , respectively, with their value shown in the plot. (a-c)

Sample tests derived using autoRIFT with different pre-filters. (d-f) Sample tests derived using vmap, GIV, and CARST, respectively. See

Table S1 for the full parameters corresponding to each test.

3.2.2 Comparison with in situ measurements and synthetic offset test

We find that a considerable number of velocity maps (73 out of 172) have speed deviation (in the Vx component) from the

GNSS ground truth data larger than their δu, the two-sigma uncertainty over static terrain (Figure 5b). Maps with higher δx′y′
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Figure 3. Feature tracking results and flow strain rate of the Landsat 8 pair 20180802-20180818 using three different parameter sets. Each

subpanel includes a map of the E-W velocity component (Vx) at the top, map of strain rate magnitude in the middle, and scatterplot showing

the strain rate distribution (yellow dots) with their kernel density estimate (KDE) at the bottom. The red box indicates the boundary where

KDE drops to 1/e
z2

2 of the peak KDE reading. The half-width and height of the box are assigned as δx′x′ and δx′y′ , respectively, with their

value shown in the plot. See Table S1 for the full parameters corresponding to each test number.

are more likely to show this deviation. In fact, the deviation cannot simply be explained by the inclusion of incorrect matches,320

which should only be around 6-24% according to Figure 2 and Table S2. We argue that this deviation is related to the fact that

correct matches on the glacier surface have a different noise distribution than those on the static terrain, potentially related to

differences in the local variance of surface topography (roughness) and reflectance (texture) between static and ice surfaces

(Paul et al., 2017). The synthetic offset test results (Section 3.1.4) support this hypothesis, with more spurious matches and

noise observed on the glacier surface compared to the static terrain (Figure 6). This finding suggests that correct matches on325

the glacier surface inherently have larger uncertainty.

4 Discussion

The correct-match uncertainty (δu and δv) is theoretically smaller than the bulk variability (e.g., standard derivation) computed

from mixed correct and incorrect matches, which is true for the data evaluated in this study. For example, each ITS_LIVE scene-
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Figure 4. Relationship between selected velocity map generation parameters and our velocity map quality metrics. Each panel is a 1-D

scatter plot showing different parameter choices used during the feature tracking process versus the derived metric. Each point represents a

different test result. Vertical bar indicates the median value of each subgroup. (a) Prefilter vs. δu (Metric 1). (b) Matching template size vs.

δu (Metric 1). See the description of GIV in Methods for its different approach regarding the template size. (c) Output resolution vs. δx′y′

(Metric 2).

pair glacier velocity map for Kaskawulsh Glacier during 2018 is distributed with an internally calculated standard deviation330

of static terrain velocities as uncertainty. These two-sigma errors are larger than the corresponding δu or δv values (Figure 7

for Vx; see Section 3.1.3 for details). Since the uncertainty of incorrect matches is large and unpredictable, we argue that only

correct-match uncertainty should be considered when evaluating velocity map quality.

Although δu and δv are good quality indicators, they are not good estimators for the uncertainty of the ice velocity. This is

because (1) ice velocities also contain incorrect matches, and (2) ice velocities have a different noise distribution than static335

terrain velocities (Figure 6). Attempts using static area velocity statistics to assign ice velocity uncertainty are likely to show

many outliers when compared with ground truth data (e.g., Figure 5b in this study and Figure 6 of Redpath et al., 2013).

Nevertheless, minimizing δu and δv is still important because low correct match uncertainty relates to low bulk variability

15



Figure 5. Relationship between our metrics and velocity map quality. (a) Values for δx′y′ (Metric 2) versus δu (Metric 1) for all 172

tests, with point color showing the percentage of invalid (NoData) and incorrect matches in the corresponding output velocity map. Gray

dashed line indicates where δx′y′ = 0.004 day-1 (see text). (b) 1-D scatter plot showing observed flow speed deviation from the ground truth

(GNSS) versus δx′y′ (Metric 2). The deviation is grouped by whether it is larger than the inferred uncertainty of correct matches (δu; Metric

1). Vertical bars represent the median values of the corresponding groups.

(Figure 6) and reduces the chance of an invalid or incorrect match (Figure 5a). It is also worth examining the pattern of

incorrect matches discovered during the same workflow (Figure 2) for efficient mitigation.340

The variability of flow strain rate provides a second way to assess the quality of glacier velocity maps. Larger δx′y′ correlates

to more bad matches (Figure 5a), leading to lower overall accuracy (Figure 5b) and a higher bulk uncertainty (Figure 7). It is

thus essential to ensure that the velocity map has certain spatial coherence to minimize δx′y′ until it decreases to a suggested

value based on ice flow physics (Equation 14). Without spatial smoothing, it may not be possible for δx′y′ to go below that

threshold value (Figure 4c). Velocity maps with δx′y′ near the threshold value theoretically have a coherent, less error-prone,345

and physically meaningful strain rate field, which is critical for glacier modeling.

4.1 Recommended strategy to evaluate velocity map quality

The metrics presented in this paper can be used to assess the quality of glacier velocity maps (Table 2). We suggest that the

correct-match uncertainty of static terrain velocity, δu (and δv if the map is derived using a non-square matching template,

which is common for SAR feature tracking), should be as low as possible until the value reflects the inherent match uncertainty350

only. If the inherent match uncertainty (2-sigma) is 0.2 pixels (Sciacchitano, 2019), the desired range of δu is

δu ≤ 0.2× pixel size of source images
duration of source image pair

. (15)
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Figure 6. Feature tracking tests using synthetic offset fields (Section 3.1.4). (a) The x and y components of the synthetic offset field applied

to a single Landsat 8 image acquired on 20180304 (Table 1). (b) Feature tracking results (vmap, kernel size = 35px, parabolic subpixel

refinement) show a larger deviation on Kaskawulsh Glacier surface (green polygons) than the static areas.

The recommended value for the variability of along-flow shear strain rate, δx′y′ , depends on the flow-law parameter n and

basal sliding velocity ūb (Equation 14), which can be challenging to measure. However, based on the test results presented in

this study, proposing an overestimated value by setting zero basal slip may be acceptable because it is more conservative on355

whether the observed strain rate field links to the actual ice flow dynamics. With the general assumption of n= 3, we suggest

the following guideline for setting a δx′y′ threshold, which relates to the average surface along-flow speed ūx′ , channel half

width Y , and average ice thickness H:

δx′y′ ≈ ūx′
2Y

H2
. (16)

We can apply these metrics and guidelines in various use cases. Users who run feature-tracking workflows can compute360

these metrics for their output velocity maps. If either metric deviates from the recommended range, they can try a different

parameter combination, including prefilters, tracking parameters, subsampling, masking, and other post processing steps until

the metrics fall within the recommended values. In addition to these metrics, the users can analyze the number and spatial

distribution of incorrect matches over the static terrain to identify directions of improvement; see Figure 2 and discussion in

Section 3.2 for an example. These metrics will also serve as a basis for comparing novel feature tracking algorithms (e.g.,365
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Figure 7. Comparison of reported ITS_LIVE Vx error (2× the Vx_err value from original metadata) with our derived correct-match δu

uncertainty (metric 1) for 35 velocity maps. Each point represents a scene pair listed in Table S3, with color showing the corresponding

uncertainty of the glacier shear strain rate (Metric 2). The dashed line indicates the 1:1 ratio of the two axes. Data used to prepare this figure

are available in Table S4.

Table 2. Summary of using static terrain velocities and along-flow strain rates to assess glacier velocity maps.

Name How to calculate using GLAFT Recommended value

Correct-match uncertainty of static terrain

velocity (δu or δv)

glaft.Velocity.static_terrain_analysis()

(Equations 1–3)

based on the inherent match uncertainty

(Equation 15)

Variability of along-flow shear strain rate

(δx′y′ )

glaft.Velocity.longitudinal_shear_analysis()

(Equations 4–5)
ūx′ 2Y

H2 (Equation 16)

Altena and Kääb, 2020) with traditional algorithms. Glacier modelers can use these metrics to select the best possible velocity

maps to derive physical quantities (such as strain rate) with minimal error propagation. When a velocity map has a δx′y′ much

larger than the suggested value, one can select an appropriate smoothing level for the velocity map and recalculate δx′y′ until it

reaches the suggested value. Finally, we recommend that data producers calculate these metrics (with the help of the GLAFT

package) and include in the metadata associated with each velocity product. This will enable users to assess product quality370

and determine if customized velocity maps are required for their applications.
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To estimate the uncertainty of ice flow velocity, metric 1 (δu or δv) seems to be a plausible option and has been used in many

studies (see Section 2.1). However, on-ice velocities likely have a different noise distribution than off-ice velocities, and the

use of metric 1 as the flow uncertainty will be sub-optimal. Since metric 2 (δx′y′ ) describes the spatial variability of the flow

velocity, it can potentially offer an alternative uncertainty estimator. While the latter is one of the future goals of this project,375

at this time, we suggest that users should treat metric 1 as a very conservative image-wide uncertainty of the ice flow velocity.

Finally, the strategy outlined here is based on our analysis using optical images for one glacier. We expect that these metrics

will also work for SAR feature tracking and different glacier settings, but additional care might be necessary. For example,

SAR images typically have different range and azimuth resolutions, which could result in a significant difference between δu

and δv . Also, it can be difficult to calculate both metrics over an ice sheet where there is no static terrain and limited differential380

velocity within a single scene. We will continue to address these issues in future GLAFT applications.

4.2 Open-source tools for computing quality metrics

The open-source GLAcier Feature Tracking testkit (GLAFT; Zheng et al., 2023) Python package accompanying this manuscript

can be used to compute and evaluate these metrics and associated thresholds for arbitrary input velocity map data. GLAFT

contains modules for deriving and visualizing the two metrics from velocity maps generated by most feature-tracking tools.385

GLAFT is available on Ghub (Sperhac et al., 2021, https://theghub.org/resources/glaft) for cloud access and can be installed lo-

cally via PyPI, Python’s official third-party package repository and manager (https://pypi.org/project/glaft). The GLAFT source

code, Notebook examples, and documentation are hosted on Github (https://github.com/whyjz/GLAFT), with Binder-ready

Jupyter Book pages (Project Jupyter et al., 2018; Executable Books Community, 2020) at https://whyjz.github.io/GLAFT/ as

the supplemental material of this paper.390

5 Conclusions

With the release of GLAFT and the strategy outlined in Table 2 to assess glacier velocity products, we anticipate that the Earth

and Environmental Science community can quickly take advantage of the findings of this study. Our work sets up the first open-

source benchmarking procedure for future large-scale intercomparison exercises (such as Boncori et al., 2018) that comprise

multiple image sources and various feature-tracking workflows. With proper adjustments for the physics-based metrics, these395

methods can be applied to study different physical processes, such as dune migration or fault displacement. The GLAFT

enables the cryospheric sciences and natural hazards communities to leverage the rich glacier velocity data now available,

whether they are sourced from public archives or prepared using one of the excellent open-source feature-tracking packages

featured in this study.

Code and data availability. All the processing scripts, documentation, and other supplemental material (including Tables S1–S4 and Figures400

S1–S28) are available as Jupyter Book pages at https://whyjz.github.io/GLAFT/ (last access: 10 July 2023). The same content is also provided
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as a supplementary PDF file. The raw content of the Jupyter Book pages is hosted in the Github repository “whyjz/GLAFT” (https://github.

com/whyjz/GLAFT, last access: 10 July 2023) and is archived by Zenodo (https://doi.org/10.5281/zenodo.7527956). The Jupyter Book

pages are Binder-ready for full reproducibility. The original Level-1 Landsat 8 and Sentinel-2 images are available from USGS Earth

Explorer (https://earthexplorer.usgs.gov/). The ITS_LIVE glacier velocity data set is available at https://its-live.jpl.nasa.gov/. The clipped405

source images, derived velocity maps, and other data used or generated by this study are hosted on the Open Science Framework (OSF,

https://doi.org/10.17605/OSF.IO/HE7YR).

The GLAFT Python package is available on PyPI (pip installation; https://pypi.org/project/glaft) and Ghub (https://theghub.org/resources/

glaft), and its source code is hosted on Github (https://github.com/whyjz/GLAFT; https://doi.org/10.5281/zenodo.7527956). Relevant docu-

mentation and cloud-executable demos are on its Github pages (https://whyjz.github.io/GLAFT/).410
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