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Abstract. Snow is a complex porous material presenting variousa variety of microstructural patterns. This microstructure 7 

largely controls the mechanical properties of snow, and this control still needsalthough the relation between the micro and 8 

macro properties remains to be better understood. Recent numerical developments based on three-dimensional tomographic 9 

data have provided new insights into snow mechanical behaviour. In particular, the the discrete element method combined 10 

with the snow microstructure captured by tomography(DEM) and the mechanical properties of ice has been used to three-11 

dimensional microtomographic data make it possible to reproduce numerically the brittle propertiesmechanical behaviour of 12 

snow. However,  these developments lack experimental evaluation so far. In this study, we evaluate a DEM numerical model 13 

based on the discrete element method withby reproducing cone penetration tests on centimetric snow samples. This test is 14 

commonly used to characterise the snowpack stratigraphy but also brings into play complex mechanical processes and 15 

deformation patterns. We measured the snow microstructure onThe microstructures of different natural snow samples were 16 

captured with X-ray microtomography before and after athe cone penetration test with X-ray tomography. The , from which 17 

the grain displacements induced by the cone test was could be inferred. The tests were conducted with thea modified Snow 18 

MicroPenetrometer (5 mm cone diameter), which recorded the force profile at a high resolution. The initial microstructure 19 

andIn the ice properties fed thenumerical model, which can reproduce the exact same test numerically. We evaluated the model 20 

on the measured force profile and the displacement fieldan elastic brittle cohesive contact law between snow grains was used 21 

to represent the cohesive bonds. The initial positions of the grains and their contacts were directly derived from the difference 22 

between the initial and final microstructures. The model reasonablytomographic images. The numerical model was evaluated 23 

by comparing the measured force profiles and the grain displacement fields. Overall, the model satisfactorily reproduced the 24 

force profiles in terms of averagemean macroscopic force, force standard deviation, and  (mean relative error of about 11%) 25 

and the amplitude of force fluctuations (mean relative error of about 21%), while the correlation length of the force fluctuations. 26 

When the contact law describing ice mechanics is adjusted in the range of reasonable values for ice, the agreement becomes 27 

good on all three parameters. The model also well reproduced was more difficult to reproduce (mean relative error of about 28 

38%). These characteristics were, as expected, highly dependent on the tested sample microstructure, but they were also 29 
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sensitive to the choice of the micro-mechanical parameters describing the contact law. A scaling law was proposed between 30 

the mechanical parameters, the initial microstructure characteristics and the mean macroscopic force obtained with the DEM 31 

numerical model. The model could also reproduce the measured deformation around the cone tip, which is less sensitive (mean 32 

grain displacement relative error of about 57% along the horizontal axis), with a smaller sensitivity to the contact law 33 

parameterization. Overall, the model is capable of distinguishing the different microstructural patterns tested. 34 

Thereforeparametrisation in this confrontation ofcase. These detailed comparisons between numerical results withand 35 

experimental measurements for this configuration givesresults give confidence in the reliability of the numerical modelling 36 

strategy. The model could be further applied with different boundary conditions and usedopens promising prospects to 37 

characteriseimprove the understanding of snow mechanical behaviour of the snow better. 38 

1 Introduction 39 

Snow is a brittle and porous material existing on Earth close to its melting point. The thermodynamical conditions in the clouds 40 

govern the snowflake morphology and, once deposited on the ground, snow continues to evolve via metamorphism. The snow 41 

material is thus characterised by a large variety of microstructural patterns (grain size, grain shape, density) classified into 42 

different snow types (Fierz et al., 2009). It has been established that the snow microstructure controls the properties of sn ow 43 

(Shapiro et al., 1997; Johnson and Schneebeli, 1999; Schneebeli, 2004). For instance, weak layers involved in avalanche 44 

triggering (Schweizer et al., 2003) are usually constituted of specific snow types (depth hoar, surface hoar, precipitation 45 

particle, faceted crystals) characterised by low cohesion and low strength (Jamieson and Johnston, 1992). The link between 46 

the snow microstructure and its properties, especially its mechanical properties, is still not well understood, even if it is crucial 47 

for many applications, such as for avalanche forecasting (Schweizer et al., 2003, Jamieson and Johnston, 1992), snowpack 48 

modelling (Calonne et al. 2014), ice core interpretation (Montagnat et al. 2020) or geotechnics (Shapiro et al., 1997). In 49 

particular, the brittle failure occurring at high shear raterates (> 10-4 s-1) during the release of an avalanche remains represented 50 

by very coarse empirical laws (Brun et al., 1992; Bartelt, et al. 2002; Vionnet et al. 2012) and lacks of relevant microstructural 51 

proxies (Shapiro et al., 1997).2012). In this elastic-brittle regime (rapid and large deformations), the mechanical behaviour of 52 

snow is thought to be mainly controlled by bond failurefailures and grain rearrangements (Narita, 1983). 53 

The snow microstructure and its evolution can be captured at high resolution (tens of micronstypically 10-50 µm) with X-ray 54 

micro tomography imaging (μCT) (Coléou et al., 2001; Freitag et al., 2004; Schneebeli, 2004; Heggli et al., 2011). This non-55 

destructive method preserves the snow microstructure and resolves the shape of snow grains, grain bonds and porosity which 56 

is of primary importance for mechanical studies. In particular structural properties of snow, such as density, specific surface 57 

area (SSA), correlation length, bond characteristics, can be evaluated from tomographic data (e.g. Schneebeli, 2004; 58 

Schneebeli et al., 2004; Hagenmuller et al., 2014a; Calonne et al., 2014; Proksch et al., 2015). The tomographic data are also 59 

used as a basis for numerical modelling (Schneebeli, 2004; Schneebeli et al., 2004; Hagenmuller et al., 2015) or 60 

calibration/validation data of statistical empirical models retrieving grain-scale physical and mechanical properties from other 61 
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measurements (e.g. Proksch et al., 2015; Reuter et al., 2019). However, this methodtomographic imaging is time-expensive 62 

and not adapted to routine measurements in the field. 63 

An objective and relatively easy-to-set-up method to measure theThe mechanical properties of snow is theare commonly 64 

derived from Cone Penetration Test (CPT) measurements, which is an objective and relatively easy-to-set-up method 65 

(Schneebeli and Johnson, 1998). This method has been widely used to characterise soil stratigraphy (Lunne et al., 1997) and 66 

adapted to snowpack stratigraphy (Gubler, 1975; Schaap and Fohn, 1987; Dowd and Brown, 1986; Schneebeli and Johnson, 67 

1998; Mackenzie and Payten, 2002; McCallum, 2014). The CPT provides a force profile by measuring the resisting force 68 

exerted on a conic tip penetrating, at a constant rate, into a material. The development of high-resolution digital penetrometers 69 

dedicated to snow studies (Schneebeli and Johnson, 1998; Mackenzie and Payten, 2002; McCallum, 2014) havehas provided 70 

the possibility to resolve the force profile at a microscopic scale and capture the high-frequency fluctuations of the force signal 71 

up to a metre depth. TheSuch force penetration profile containsprofiles contain valuable information on the snow structural 72 

parameters at macro- and micro-scale (Löwe and van Herwijnen, 2012). 73 

Interpretation of the CPT requires a good comprehensionunderstanding of the interactioninteractions between the cone tip and 74 

the snow grains and bonds. Several studies aimed to investigate the grainsgrain displacement field around the tip. Particle 75 

Image Velocimetry (PIV) imaging was performed along on snow to quantify the 2D displacement field of snow grains while 76 

the tip penetrates into the snowmaterial (Floyer and Jamieson, 2010; Herwijnen, 2013; LeBaron et al., 2014). Peinke et al. 77 

(2020) developed a grain tracking algorithm to reconstruct from μCT the 3D displacement field of snow grains due toinduced 78 

by a CPT. All these studies revealed the development of a compaction zone (CZ) in front of the tip that cannot be neglected 79 

while interpreting force profiles. 80 

MechanicalVarious mechanical or statistical models have been developed to interpret the CPT penetration signal in terms of 81 

mechanical properties. The cavity expansion model (CEM) (Bishop et al., 1945; Yu and Carter, 2002) is commonly used to 82 

interpret CPT measurements and has been applied to snow by Ruiz et al. (2016) and Peinke et al. (2020). The CEMThis model 83 

considers snow as a continuum and describes the elastic-plastic deformation of the material around the tip. Macroscopic in 84 

order to retrieve macroscopic material properties can be retrieved from this model (Ruiz(cohesion, friction, etc.). The 85 

continuum assumption becomes invalid for a ratio between cone diameter and mean grain diameter lower than 20 typically 86 

(Bolton et al., 2016; Peinke et al., 2020). The. 1993), leading to potentially erroneous interpretations of the CPT results. 87 

Alternatively, the shot noise model interprets the force signal and its fluctuations as a superposition of independent elastic–88 

brittle ruptures occurring next to the tip (Schneebeli and Johnson, 1999; Marshall and Johnson, 2009; Löwe and van Herwijnen, 89 

2012).) and retrieves microstructural properties (bond rupture force, etc.) The penetration process is heregenerally modelled 90 

byas a Homogeneous Poisson Process (HPP) with a constant intensity (Löwe and van Herwijnen, 2012). Peinke et al. (2019) 91 

have generalised the HPP method in order to account for the transient statephase of the penetration process, attributed to the 92 

development of the CZ (Peinke et al., 2019). TheyThese authors used a Non-Homogeneous Poisson Process (NHPP) 93 

considering a depth dependency of the intensity, i.e.  (number of bond failures per penetration increment. Both models are 94 

based on different assumptions. First). Yet, the CEM considers snow as a continuum, while the HPP considers the discrete 95 
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nature of bond failures. The continuum assumption reaches its limit for a cone diameter to mean grain ratio lower than 20 96 

(Bolton et al. 1993), leading to a potentially erroneous interpretation of the CPT results. This configuration can be reached  for 97 

CPT measurements in snow (Herwijnen, 2013; Peinke et al. 2020). Second, the force signal is influenced by the CZ (Herwijnen, 98 

2013; LeBaron et al., 2014; Peinke et al. 2020), which is considered in the CEM approach but not in the HPP approach. This 99 

may lead to diverging estimations of the absolute value of some macroscopic snow properties (Ruiz et al., 2017). Despite the 100 

NHPP can retrieve snow microstructural properties from transient force profiles (Herwijnen, 2013; Peinke et al., 2019), the 101 

interpretation of the force profiles, resulting of independent contributions of elastic-brittle failure, neglectingrupture events 102 

essentially neglects the development of a CZ remains challenging (Johnson and Schneebeli, 1999; Schneebeli, 2001; 103 

Herwijnen, 2013; LeBaron et al., 2014; Ruiz et al. 2017). Therefore, none of thethese two methodsmodels appear to fully 104 

satisfyaccount for the specificity of snow deformation induced by CPT. Additional investigations are required to better 105 

understand the tip interaction with snow and the meaning of the derived structural proxiesbetter interpret the force 106 

measurements. 107 

The snow properties and its strong dependence on environmental conditions make it difficult to study it experimentally (in the 108 

laboratory and in situ) in a systematic and controlled manner. Recently, numerical approaches have been developed to study 109 

the mechanical response of snow by explicitly accounting for the microstructure (Johnson and Hopkins, 2005; Gaume et al., 110 

2015, 2017; Hagenmuller et al., 2015; Wautier et al., 2015; Mede et al. 2018b, 2020; Bobillier et al., 2020, 2021). Snow is 111 

described as a granular material for which the mechanical behaviour can beand modelled by the discrete element method 112 

(DEM) in a high shear rate regime (Hansen and Brown, 1988).. The complexity of the snow microstructure can be 113 

consideredtaken into account by feeding the DEM simulations with high-resolution 3D reconstructions of the snow sample 114 

obtained with μCT. These simulations have provided new insights into the snow mechanical behaviour, such as the dependence 115 

of snow strength to microstructure properties (Hagenmuller et al., 2015) or the identification of different failure modes in shear 116 

loading (Mede et al., 2018b, 2020). The downside of this method is that it is time-consuming, and simulations can only be 117 

performed on small samples (up to a few centimetres). These simulations have nevertheless provided new insights on the snow 118 

mechanical behaviour, such as distinct resistance to confined compression for different microstructure properties (Hagenmuller 119 

et al., 2015) or identification of failures mode in a mixed mode loading (Mede et al., 2018b, 2020). Although these models 120 

appear capable of accounting for the role of the microstructure on the mechanical response, they still lack experimental 121 

confrontationFurthermore, these numerical models still lack direct experimental evaluation. 122 

ThisIn this context, the aim of this study aimedwas to evaluate a microstructure-based DEM model with using recent CPT 123 

experimental data of cone penetration tests. To address this goal, we modelled CPT onperformed in a realistic 124 

representationcontrolled environment (Peinke et al., 2020). The dataset includes µCT images of the snow samples with DEM 125 

numerical simulations. The acquired before and after the tests. The deformation induced by the CPT configuration (strain rate 126 

of about 102 s-1, Reuter et al., 2019) belongs to the elastic-brittle regime (Narita, 1983; Floyer and Jamieson, 2010) and is 127 

therefore suitable for DEM simulation. The model has been designed to account for the snow properties and the snow 128 

microstructure acquired by μCT (Hagenmuller et al., 2015; Mede et al., 2018b, 2020). The results of the numerical model are 129 
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confronted to results performed experimentally on snow samples (Peinke et al., 2020). Wedirectly compared to experimental 130 

data in terms of (1) the macroscopic force profile with relevant structural parametersand associated statistical indicators and 131 

(2) the grain displacements induced by the cone penetration. A systematic sensitivity analysis to DEM mechanical parameters 132 

of the contact law, including Young’s modulus, the cohesion and the friction anglecoefficient, was also performed with DEM 133 

to evaluate their influence on the mechanical behaviour and find the combinations of parameters that best combination of 134 

mechanical parameters to reproduce experimental results. Finally, the role of the microstructure iswas also investigated by 135 

performing the DEM simulations withfor different snow types. The evaluation of the numerical model provides the opportunity 136 

to better understand the mechanisms at workplay during the snow deformation in an elastic-brittle regime and better interpret 137 

CPT profiles.   138 

We first present the experimental data setdataset and the numerical model used to perform CPTmethods. The data processing 139 

used to compare experimental and numerical results is also explained. The results of the DEM, the sensitivity analysis to 140 

mechanical parameters and the comparison to experimental results are then presented. The relevance of the DEM model and 141 

the limits of our approach are eventually discussed before concluding. 142 

2 Methods 143 

2.1 ExperimentsExperimental measurements 144 

The experimental data setdataset used in this study has been acquired by Peinke et al. (2020) and is only briefly presented in 145 

this paper. The methodology comprises collection and preparation of snow samples, acquisition of high -resolution micro-146 

tomographic images and cone penetration tests (CPT). 147 

2.1.1 Snow sample preparation 148 

Blocks of natural snow were sampled in the French Alps near Grenoble and stored at -20°C in a cold room. The materials 149 

collected arewere representative of the variety of seasonal snow types (Table 1), namely rounded grains (RG), large rounded 150 

grains (RGlr), depth hoar (DH) and precipitation particles (PP), with distinct bulk densities and specific surface areas (SSA). 151 

The samples were then prepared in a cold room at -10°C by sieving the different snow types into  aluminium cylinders, suitable 152 

for X-ray tomography (high thermal conductivity and relatively low X-ray absorption), of 2 cm20 mm height and 2 cm20 mm 153 

diameter. All samples were prepared at least 24 hours before the measurements in order for the bonds between grains to rebuild 154 

after sieving. 155 

2.1.2 Micro-Tomography (μCT) 156 

Tomographic scans of each sample were acquired before and after performing the CPT to capture, respectively, the initial and 157 

final microstructure of the snow, respectively. An X-ray tomograph (DeskTom130, RX Solutions) operating at a pixel size of 158 

15 μm pix-1, a voltage of 80 kV and a current of 100 µA was used. During tomographic scanning, the samples were maintained 159 
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at a constant and uniform temperature of -10°C in a cryogenic cell (CellDyM, Calonne et al. (2015)). Each scan, consisting of 160 

1440 2D radiographs, was reconstructed to obtain 3D grayscale images representing the attenuation coefficients of the different 161 

materials composing the samples. The grayscale images were then transformed into binary (ice matrix – pore space) segmented 162 

images using an energy-based segmentation algorithm (Hagenmuller et al., 2013). 163 

2.1.3 Cone Penetration Test (CPT) 164 

Posterior toAfter the initial micro-tomography scan, a CPT was performed on the snow samples using a modified 165 

SnowMicroPenetrometer (SMP version 4, Schneebeli and Johnson, 1998). The specific rod used by Peinke et al. (2020) 166 

displays a conic tip with an apex angle a of 60° and a maximum cone radius equal to the rod radius R of 2.5 mm. The rod was 167 

inserted vertically into the snow sample at a constant penetration speed v of 20 mm s-1. The resisting force applied on the 168 

penetrometer (cone and rod) was recorded at every 4 μm of penetration increment (i.e.., 5 kHz frequency). The SMP sensor (169 

Kistler sensor type 9207) measurescan measure forces up to 40 N with a resolution of 0.01 N. The tip was stopped at depths 170 

between 7 and 15 mm, i.e..,  5- to 13 mm above the sample bottom, to avoid boundary effects (Peinke et al., 2020). The 171 

experimental force profiles are presented in Figure S26.  172 

2.2 Numerical modelling 173 

Snow is here considered as a granular cohesive material. Indeed, theThe high strain rate (> 10-4 s-1) induced by the tip 174 

penetration in the snow sample leadsis considered to lead to brittle deformations, with inter-granular damage and grain 175 

rearrangements (Narita, 1983; Johnson and Hopkins 2005; Hagenmuller et al., 2015). We adopted an approach based on the 176 

discrete element method (DEM) to simulate the cone penetration tests in the measured snow samples. The mechanical model 177 

is, based uponon YADE software (Šmilauer et al., 2015), is adapted from the work of Hagenmuller et al. (2015) and Mede et 178 

al.,. (2018a, b and 2019) and is performed with YADE solver (Šmilauer et al., 2015). 179 

This modelling approach is composedThe setting-up of three mainthe simulations involves different steps:, namely the 180 

generation of the initial conditions based on the measured snow microstructures, the definition of the contact lawlaws between 181 

the snow grains, and the setting of the boundary conditions to reproduce the  CPT configuration. 182 

2.2.1 Grain segmentation and grain shape representation 183 

The DEM model was fed by the 3D ice-air images obtained with X-ray tomography.derived from µCT. The continuous ice 184 

matrix was first segmented into individual grains based on geometrical criteria, as described by  Hagenmuller et al. (2013). 185 

The main idea of the approach is to  detect potential mechanical weakness zones (i.e., the bonds) based on the principal minimal 186 

curvature κT and thea contiguity parameter between the grains cT. The threshold on curvature κT was set atto 1.0 for RG, RGlr 187 

and DH samples and to 0.7 for PP sample (see Hagenmuller et al., 2013 for details). The; the contiguity parameter was set to 188 

0.1 for all the samples (see Hagenmuller et al. (., 2013) for details).   189 
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TheTo construct the DEM sample, the irregular shape of the grains was approximated by filling the grain volume with a 190 

population of overlapping spheres (Fig. 1). The position of these spheres werewas derived from the medial axis of the structure 191 

(Coeurjolly and Montanvert, 2017et al., 2007; Mede et al., 2018a) and redundant spheres were discarded based on a power 192 

diagram filter (Coeurjolly et al., 2007). and Montanvert, 2017). TheThis grain shape representation by a multitude of spheres 193 

preserves the capability of YADE to handle sphere-sphere contact detection. However, a high number of spheres slows the 194 

numerical simulation down the simulations. We thus further decimated the number of spheres by approximating the grain 195 

volumeshape. We only selected the spheres with a radius larger than  Ra threshold L (voxel) and covering (in the sense of with 196 

a relative coverage larger than S (i.e., the ice volume associated with the sphere according to the power diagram) a large 197 

proportion of the grain should be larger than S times the sphere volume (parameter S).Coeurjolly et al., 2007). A trade-off must 198 

be found between the error of thethis grain shape approximation, influencing the mechanical behaviour simulation accuracy, 199 

and the number of spheres influencing the numerical cost of the simulations. . Eventually, the spheres belonging to the same 200 

grain were clumped together in rigid aggregates constituting single discrete elements (DE). A detailed sensitivity analysis to 201 

this grain representation was conducted (see supplementary material, Table S1, and Fig. S1) to determine the optimal Rvalues 202 

of L and S parameters. TheNote that this grain shape approximation might also lead to delete the smallest grains in the 203 

numerical samples, as they cannot be covered with the chosen Rparameters L and S. The grain number difference and shape 204 

approximation of the numerical sample compared to initial the segmented μCT image can be quantified by computing the 205 

volumetric error EV. The final chosen L and S values for each snow type, with the associated with the volumetric EV and 206 

mechanical EM errors, (defined in Sect. S1.1), can be found in Table 1. Eventually, the spheres belonging to the same grain 207 

were clumped together in rigid aggregate and constitute a single discrete element (DE). 208 

 209 

Sample 

name 

Snow 

type 

Sieve 

size 

(mm) 

Bulk 

density 

 (kg m-3) 

SSA 

   

(m² kg-1) 

R 

L 

(vx) 

S 
Number of 

spheres 

Number 

 of 

clumpsgrai

ns 

Number of 

initial 

cohesive 

interactioni

nteractions 

between 

clumpsgrain

s 

Initial 

contact 

density 

𝜈 

Ev 

 (%) 

EM 

(%) 

RG 
Rounded 

Grains 
1.6 289 23.0 5 0.3 514917 27560 47736 0.55 42.3 

18.0

5.3 

RGlr 

Large 

Rounded 

Grains 

1 530 10.1 5 0.3 270143 8488 24005 1.63 14.6 94.2 

DH 
Depth 

Hoar 
1.6 364 15.9 5 0.2 743546 11211 24258 0.86 24.7 

12.7

14.3 

PP 

Precipitat

ion 

Particle 

1.6 91.3 53.5 2 0.5 1797567 95022 125805 0.13 32.2 
9.61

0.3 

Table 1: Overview of the snow samples analysed in this study and the respectiveparameters of DEM grain shape representation 210 
chosen. The sample. Sample names were given according to the snow type classification (Fierz et al., 2009). The sample density and 211 
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specific surface area (SSA) were derived from the micro-tomographic images (Peinke et al., 2020). The initial contact density was 212 
computed according to Eq. 10. The minimum radius of the sphere RL and the minimum sphere coverage S were determined 213 
bythrough a sensitivity analysis presented in Sect. S1.1. The associatedresulting number of spheres, grains and cohesive grain-grain 214 
interactioninteractions are indicated. Finally, as well as the volumetric error EV and the mechanical error EM forassociated with 215 
each grain shape representation were calculated. 216 

 217 

2.2.2 Interactions and contact law 218 

The contacts between adjacent grains were identified during the grain segmentation phase. In the DEM simulations, theeach 219 

grain contacts werecontact is represented by several sphere-sphere interactions. The interactions between spheres wereare 220 

described by an elastic brittle cohesive contact law. The adhesion A, Eq. (1), characterised by four parameters, namely the 221 

normal contact stiffness KN, Eq. (2) and the shear contact stiffness KN and KS, Eq. (3) were initially setthe adhesion A, and the 222 

friction angle φ. The normal force FN between two spheres is computed as: proportional to the distance between the two sphere 223 

surfaces xN , and limited by the adhesion value in the tensile regime (xN  > 0): 224 

𝐹𝑁𝐴 = 𝐷 × 𝐶 ,  =  𝐾𝑁 𝑥𝑁 ≤  𝐴.           225 

 (1) 226 

𝐾𝑁 = 
𝐷 × 𝐸

𝑟𝑚𝑒𝑎𝑛
,            (2) 227 

The shear force FS𝐾𝑆 = 𝜈 × 𝐾𝑁 ,          228 

  (3) 229 

with D the contact area between two spheres (m2), weighting the bond magnitude between grains according to the spheres size, 230 

C the cohesion (Pa) of ice, E Young’s modulus (Pa) of ice, rmean (mm) the mean sphere radius of the numerical sample, which 231 

constitute a characteristic length of the grain shape representation of the sample and is used to scale the normal stiffness in 232 

order that all the sphere-sphere interactions between two grains fails at the same moment, and finally, ν the Poisson’s ratio of 233 

the material.  234 

The forces acting on the spheres in contact depend on the stiffness of the material (Mede et al., 2020). The tensile force FN, 235 

Eq. (4), is proportional to the distance between two considered spheres xN: 236 

shear 𝐹𝑁 = 𝐾𝑁𝑥𝑁  ≤ 𝐴 ,           (4) 237 

The contact between spheres exists as long as FN remains below the adhesion value A. Once the cohesion is broken in tension, 238 

the bond is not cohesive anymore also in the shear direction. The shear force FS, Eq. (5), display a linear dependency to the 239 

relative displacement of the sphere to the considered neighbouring sphere between the spheres xS,, with a maximal shear force 240 

limitedvalue given by the sum of adhesion and Mohr-Coulomb friction:  241 

𝐹𝑆 = 𝐾𝑆𝑥𝑆  ≤ 𝐴 + 𝐹𝑁 ×𝑡𝑎𝑛 𝑡𝑎𝑛  𝑡𝑎𝑛(𝜑   ,         242 

 (5) .           (2) 243 
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where φ is the friction angle.If the force exceeds the threshold, either in tension or in shear, the cohesive bond is broken.  As 244 

long as the spheres remain in contact after the cohesion has been bond is broken, Mohr-Coulomb friction remains active in 245 

shear. 246 

The contact force, stiffness and adhesion of grains in contact correspond to the sum of the respective values of all the spheres 247 

in contact. At  In the initial step of the simulation, all contactsstate, all interactions in the numerical sample are considered 248 

cohesive. While the numerical sample deforms, new clumps positions are computed with the momentum conservation 249 

equation. Grain motion can potentiallygrain displacements lead to progressive breakage of the initial cohesive interactions 250 

failure and the potential creation of new contacts. These new interactions. New interactions created during the computation  251 

are frictional only (no cohesion).), meaning that sintering mechanisms are not considered in this study. 252 

The force of a given intergranular cohesive contact corresponds to the sum of all the associated sphere-sphere interactions. 253 

Based on the total contact surface between two grains (obtained from the µCT image) and the number of associated sphere -254 

sphere interactions, each sphere-sphere interaction i can be associated with a representative contact surface Di. In order to 255 

recover the correct cohesion strength between two grains, the adhesion parameter A was defined for each sphere-sphere 256 

interaction as: 257 

𝐴𝑖  =  𝐷𝑖  𝐶,            (3) 258 

with C (Pa) the cohesion of ice. In YADE, by default, the contact stiffnesses are computed based on the radii of the spheres in 259 

interaction and two elastic material parameters, namely the Young’s modulus E and the Poisson ratio ν. For our computations, 260 

to ensure that all cohesive sphere-sphere interactions between two grains break at the same separation distance, the computation 261 

of the normal stiffness was redefined as:   262 

𝐾𝑁,𝑖 = 
𝐷𝑖 𝐸

𝑟𝑚𝑒𝑎𝑛
,            (4) 263 

where rmean (m) is a characteristic length constant for all the interactions in the numerical sample, taken as the mean sphere 264 

radius. The shear stiffness is then defined as: 265 

𝐾𝑆  =  𝜈 ×  𝐾𝑁 .            (5) 266 

Note that due to the rather arbitrary characteristic length considered in the definition of the normal stiffness [Eq. (4)], which 267 

depends on the grain shape approximation, as well as to the simple linear relation considered for the normal force [Eq. (1)],  268 

the contact-level YADE Young’s modulus E should not be regarded as the “true” Young’s modulus of the material, but rather 269 

as a representative parameter of the elastic properties at the contacts. 270 

 271 
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2.2.3 Boundary conditionsSimulation setup and critical time step 272 

In order to evaluate the DEM model, we have implemented a CPT configuration similar to the experimental set-upsetup used 273 

by Peinke et al. (2020) (Fig. 1). The snow sample is contained in a rectangular box openedopen at the top. The box displays 274 

the following dimensions, is about 12.4 mm along the x- and y -axis and about 15 mm along the z -axis. The box size along 275 

thevertical and horizontal plane W has beenbox sizes were reduced compared to the 20 mm height and 20 mm diameter 276 

respectively of the sample holder used by Peinke et al. (2020). This choice has been motivated first to simplifyby (1) 277 

simplifying the geometry with a rectangular numerical sample, (2) matching the sample height imaged with μCT and second 278 

to reduce the number of spheres decreasing(3) reducing the computational time. A sample size sensitivity analysis has been 279 

performed to ensure that border effects are not introduced by reducing the sample size (Fig. S2). The penetrometer tip displays 280 

a maximal radius rR of 2.5 mm and an apex angle a of 60°. The tip, initiallyInitially in a centredcentered position at the box 281 

surface, it is travelling downward,displaced downwards through the sample, at a constant speed of 20 mm s-1. The simulation 282 

stops when the tip reaches the bottom of the box. The walls (box and tip) are represented by facets with rigid boundary 283 

conditions. The gravity is set to 9.81 m s-2.  284 

 285 
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 287 
Figure 1: VisualisationIllustration of DEM CPT modelling with DEM model for the RGlr sample. The tippenetrometer is 288 
travellingmoving downward at a constant speed of 20 mm s-1. GrainsSnow grains (represented with different colours) are composed 289 
ofmodelled by overlapping spheres clumped together (single colour).. The zoomed window focuses on DEM grains. Black lines 290 
correspond toshows the initial cohesive interactions between the spheres of adjacent grains. (white lines). 291 

 292 

The stability of the explicit integration scheme of the continuum equations is ensured by estimating the critical time step, Eq. 293 

(6) based on the propagation speed of elastic waves in the sample (Zhao, 2017): 294 
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∆𝑡𝑐𝑟 = 𝑚𝑖𝑛 (
𝑚𝑖

𝐾𝑁,𝑖
)
0.5

   ,           (6) 295 

with mi and KiKN,i the mass and normal stiffness of the discrete elementDE i. The grain mass mi or, equivalently the material 296 

density ρ, can be artificially increased to increase the time step (Hagenmuller et al., 2015). A numerical sensitivity analysis 297 

(Fig. S3) has shown that increasing the massdensity by a factor f ofequal to 100 does not affect the simulation results., while 298 

significantly reducing the computing time. Finally, a Cundall’s non -viscous damping coefficient 𝛬 was applied to the particle 299 

acceleration to dissipate kinetic energy and avoid numerical instabilities (Šmilauer et al. 2015). A value of 0.05 was 300 

appliedchosen according to the results of a numerical sensitivity analysis (Fig. S4). 301 

2.2.4 Input parameters 302 

TheIn view of the preceding paragraph, the density of the ice grains was set to ρ = f x 917 kg m-3. The contact law parameters 303 

were derived from typical values measured on ice. The Poisson coefficient νP was set to 0.3 (Schulson and Duval, 2009). The 304 

typical Young’s modulus E, the cohesion strength C and the friction anglecoefficient tan(φ) values for the ice are usually 305 

evaluated respectively around 1 x 1010 Pa, 1 x 106 Pa and 0.2 , respectively (Gammon et al., 1983; Schulson and Duval, 2009). 306 

For this study, we performed a sensitivity analysis of the simulation to the values of these parameters was performed to get 307 

insights into the model behaviour. The mechanical parameters were either directly derived from the values obtained on ice or 308 

adjusted to fit their influence and best adjust simulation results to the experimental measurements. We performed the analysis 309 

overThe considered ranges ofwere 1 x 108-1 x 1010 Pa for E, 5 x 105-5 x 106 Pa for C  and 0.2-0.5 for tan(φ), respectively. Note 310 

that the range of Youngthe Young’s modulus E ensures small grain overlap, which satisfiesoverlaps, i.e. compliance with the 311 

rigid grain assumption (Fig. S5). We must mention that, due to longer computing times, fewer parameter values could be 312 

explored for large Young’s modulus values. For the PP sample, no numerical simulations could be performed for a Young’s 313 

modulus of 1 x 1010 Pa, as computing times were unreasonable (E = 1 x 108 Pa, t ~ 4 months and E = 1 x 109  Pa, t ~ 10 months 314 

on a 72 cores machine with 2.6 GHz Intel Xeon processors (2.6 GHz) and 500 GB RAM. YADE scripts enable parallelisation 315 

on up to 5 cores). 316 

 317 

Boundary conditionsSimulation setup 

Sample width W 13 mm 

Sample height H 15 mm 

Tip radius R 2.5 mm 

Cone apex a 60° 

Tip velocity v 20 mm s-1 

Gravity g 9.81 m s-2 

Numerical parameters 

Time step dt ~ 1 x 10-6-1 x 10-8 s 

Mass factor f 100 

Non-viscous damping coefficient 𝞴𝛬 0.05 

Material properties 

Grain density 𝞺ρ 917 x 102 kg m-3 
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Poisson coefficient 𝞶P 0.3 

Friction anglecoefficient tan(φ) 0.2–0.5 (default value 0.2) 

Young’s modulus E 1 x 108–1 x 1010 (default value 1 x 109) Pa 

Cohesion C 5 x 105–5 x 106 (default value 12 x 106) Pa 

Table 2: Input parameters used for the simulationsimulations presented in this paper. 318 

 319 

2.3 Data processing 320 

The main outputs of the DEM simulations are the resisting force exerted by the grains on the penetrometerpenetrating rod and 321 

the displacement of the grains induced by the cone penetration.. These results can be directly compared to the experimental 322 

measurements to evaluate the DEM model.  323 

2.3.1 Force sampling 324 

The sum of the forces along the z-axis applied on all the facets constituting the tippenetrometer (cone and rod) is recorded at 325 

each time step. To match the sampling frequencyThe characteristics of the SMP (i.e., 4 μm), theraw numerical values force 326 

profiles depend on the numerical parameters (notably the time step), and are not necessarily suited for direct comparison with 327 

experimental results. To obtain numerical profiles that can be compared to their experimental counterparts, the simulated force 328 

values were averaged over windows corresponding to displacement increments of 4 μm., thus matching the sampling frequency 329 

of the SMP. This smoothingaveraging is also useful to avoidsmooth out high-frequency fluctuations linked to the very small 330 

time stepsteps used in DEM. To ensure a relevant comparisonFinally, numerical and experimental force profiles are then re-331 

sampled by linear interpolation over a regular grid with a step of 4 μm over the same depth. The profiles span from a depth of 332 

0 mm (initial contact between the cone and the sample surface) to the chosen maximum depth, which, in our study, is set to 7 333 

mm (i.e., 1750 points). This value corresponds to the minimum depth reached by the penetrometer during the experimental 334 

CPT tests for the selected samples. 335 

2.3.2 Statistical indicators 336 

Quantitatively, the DEM numerical model is evaluated by a comparisoncomparisons with experimental force profiles  in terms 337 

of three statistical indicators: the mean macroscopic force F,�̅� (N), the standard deviation σamplitude of the force fluctuations, 338 

σ (N), and the correlation length l. (mm).  The standard deviationindicator σ is calculated on a as the variance of the detrended 339 

force profile obtained by subtracting  the mean force valueas follows: 340 

𝜎 = �̅̃�² ,  𝐹   =  
𝐹 − 𝐹𝑠𝑚

𝐹𝑠𝑚
            (7) 341 

with F̃ ([Eq. (5)], Peinke et al. 2019), the detrended force profile, F, the force profile and Fsm, the averaged force profile 342 

calculated over a rolling window Δz = 3 mm, to take only into account the force fluctuations and not the global trend of the 343 

profile.. The correlation length l (mm) is also computed on the detrended force profiles.profile (Peinke et al. 2019). In our 344 
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study, the snow samples exhibit a rather homogeneous structure allowing us to consider that l is constant over the depth (Peinke 345 

et al., 2019). These three statistical indicators have been chosen because they are easily quantifiable and commonly used to 346 

describe force profiles obtained by CPT in snow (Johnsson and Schneebeli, 1999; Löwe and van Herwijnen, 2012; Peinke et 347 

al. 2019). TheyIn addition, they constitute key parameters to derive additional microstructural properties based on Poisson 348 

shot noise models (Löwe and van Herwijnen, 2012; Peinke et al. 2019). 349 

To select the set of model mechanical parameters (E, C and tan(φ)) providing the best fit to the experimental measurements 350 

among the tested values (Table 2), the total, a  global error REtot is computed as the root square of the addition according to: 351 

𝑅𝐸𝑡𝑜𝑡 =  √ 2  𝑅𝐸𝐹
2 + 𝑅𝐸𝜎

2 + 𝑅𝐸𝑙
2          (8) 352 

with REk the relative error calculated for the three statistical indicators,  k = (F, σ, l), as: 353 

𝑅𝐸𝑘  =
𝑙𝑜𝑔(𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑘− 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑘)

𝑙𝑜𝑔(𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑘)
               (9) 354 

Given the difficulties in reproducing the correlation length with the DEM model for two out of four samples and the fact that 355 

the values of the squared statistical indicators vary over several orders of magnitude (see Section 3.2), the relative errors of the 356 

structural parameters obtained with numerical modelling compared to the ones obtained for experimental measurements.REk 357 

were computed with the log of the considered values. We attributehave attributed a weight factor of 2 to the relative error REF 358 

related to the mean macroscopic force relative error as we assume it is the main parameter to reproduce. The , to put more 359 

emphasis on the correct reproduction of this quantity. Hence, for each snow sample, the set of mechanical parameters for which 360 

the lowest value of total error is obtained, is considered as the most representative of the physical characteristics of the different 361 

types of snow samples. minimising the total error REtot was determined. 362 

2.3.3 Grain displacement analysis 363 

The grain position isof all grains was recorded every ~0.4 mm of penetration in the DEM simulations. The total 364 

displacementdisplacements and the displacement pathtrajectories can therefore be reconstructed for each grain. Due to the 365 

thermodynamically active nature of the snow, the incremental record of the snow sample state during theinterrupted 366 

experimental CPT wastests were not possible. Therefore wefeasible and only measured the initial (before CPT) and the final 367 

statestates (after CPT) of the snow sample could be imaged by µCT. Grain tracking, applied to the micro-tomographic images, 368 

has been performed by Peinke et al. (2020)), providing the total displacement of the identified grains. We thus compared the 369 

total displacement between the CPT experiments and the DEM simulations at the same penetration depth, i.e.., at the maximal 370 

penetration measured experimentally. Note that grain tracking could not be performed for the PP sample due to the small size 371 

of the grains. 372 

The profiles of vertical and radial displacements were averaged around the cone axis and onover the height of an area located 373 

between the top section of the cone and the sample surface. A displacement threshold of 0.03 mm iswas set to define the 374 

deformation zone (DZ)CZ (Peinke et al., 2020). Only the radial profiles were compared to the experimental results, as we 375 

suspect the vertical profiles derived from μCT scans might be misleading (Peinke et al. 2020). Indeed, before acquiring the 376 

Formatted: Font: Italic

Formatted: Font colour: Auto

Formatted: Font: Italic

Formatted: Font: Italic

Formatted: Font: Italic

Formatted: Font colour: Auto

Formatted: Font colour: Auto

Formatted: Font colour: Auto

Formatted: Font colour: Auto

Formatted: Font colour: Auto

Formatted: Font colour: Auto

Formatted: Font colour: Auto

Formatted: Font colour: Auto

Formatted: Font colour: Auto



 

16 

 

post-CPT μCT scans, the tip was removed from the snow. This procedure iswas performed about one hour after the tip 377 

penetration in order, to allow for the bonds between ice grains to re-form by sintering toand limit the grains displacement while 378 

thegrain displacements during tip is removed. Despiteremoval. However, despite this precaution, some grains in contact with 379 

the tip might behave been dragged upward due to the tip-grain friction. with the tip. Therefore, the grain trajectory observed 380 

on the pre- and post CPT μCT scans could enhance the upward component of the vertical displacement formight have been 381 

overestimated in the experimental results, especially for the larger grains.  382 

3 Results 383 

3.1 Simulated Cone Penetration Tests on numerical samples with DEM 384 

This section showspresents an example of CPT simulation results obtained for a DEM simulation the case of the CPT on the 385 

numericalRG snow sample RG with the following mechanical parameters: E = 1 x 109 Pa, C = 5 x 106 Pa and tan(φ) = 0.2 386 

(Table 3). The results for the other snow samples are shown in Sect.Section S2.1. 387 

 388 

 389 

 390 
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 391 
Figure 2: (a) Force F as a function of penetration depth (light line) obtained for the RG sample. The superposed smoothed profile 392 
(bold line) Fsm corresponds to the averaged force value averaged over a rolling window of 3 mm. (b) Cumulative percentageRate of 393 
cohesive bonds broken asper unit penetration depth and cumulative proportion of cohesive bonds broken (%) as a function of tip 394 
penetration depth. The initial number of cohesive bonds is indicated in Table 1. ResultsThe results are obtained with the mechanical 395 
parameters givenindicated in Table 3. 396 

 397 

The simulated penetration force globally increases with depth, with  and is characterised by high-frequency  fluctuations whose 398 

amplitude also tends to increase with depth (Fig. 2 (a)). The force profile displays aan ‘S’ shape with three stages: 1) up to ~ 399 

3.5 mm depth, the profile is convex, 2) between ~ 3.5 and ~ 6 mm depth, the increase of force with depth is almost linear, and 400 

3) for depths larger depthsthan 6 mm, the force reaches a nearly constant value. A similar behaviour is observable for all the 401 

RGlr and PP samples (FigsFig. S6 (a), S8 (a),) and S10 (a)), with slight changesvariations in the transition depths between the 402 

different stages. For the DH sample, the macroscopic force profile also displays stages 1 and 2, but the stabilisation at a nearly 403 

constant value is less evident for the results presented in Fig. S (a). Stage 3 might be reached at greater depths for this sample. 404 

The penetration of the tip induces bond failures in the simulated samples. The number of bond failures globally increases at a 405 

constant rate with penetration depth (Fig. 2 (b)). Overall, for the RG sample, about 15% of the cohesive interactions broke 406 

over 10 mm of penetration, corresponding to an average rate of ~710650 bond failures mm-1. This average bond failure rate is 407 

variable among the samples, reaching  1200up to 1400 bond failurefailures mm-1 for RGlr sample (Figs. S6 (b), S8 (b), S10 408 

(b)).  In detail, for the RG sample, we notice an increase ofin the bond failure intensityrate at around 3.5 mm of penetration 409 

depth (Fig. 2 (b)) )), coinciding with the transition  between the first and second stages observed in the force signal (Fig. 2 (a)). 410 
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Bond failure intensity then remains unchangednearly constant as the macroscopic force reaches its steady-state value. Similar 411 

characteristics are observed for the other snow types (Figs. S6, S8, S10).S6, S10) except for the DH sample, for which the 412 

slope change between the first and second stages is less clear (Fig. S8 (b)). 413 

 414 

 415 
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 416 

Figure 3: (a) Simulated grain displacement map offor the RG sample. The red arrows indicate the grain trajectories while the tip is 417 
penetrating (sampling = 0.4 mm). White grains correspond to grains that are not represented in the DEM simulation. The final tip 418 
position is indicated by the black solid lines. The horizontal black dashed line indicates the cone top. (b) Radial (upper panel) and 419 
vertical (lower panel) displacement profiles (red curves) for the RG sample. These profiles represent averages computed from the 420 
sample surface to the cone top. By convention, downward (respectively upward) movement corresponds to positive (respectively 421 
negative) values of vertical displacement. ResultsThe shadowed areas around the solid lines represent the standard deviation of 422 
grain displacements. The results are obtained with the mechanical parameters givenindicated in Table 3. 423 

 424 

DEM simulations also allow tracking grain positions while the tip is penetrating into the numerical sample. Figure 3a 3 (a) 425 

shows the total displacement of the grains and their respective as well as grain trajectories for the RG sample.. The largest 426 

displacements (up to several mm) are observed for grains initially located on the trajectorypath of the tip. Around the tip, the 427 

displacements are < 1 mm and are mainly localised close to the tip. Grain trajectories indicate that grains are pushed downward 428 
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from each side of the tip. Grains initially located on the penetrometertip axis display a quasi-straight vertical 429 

trajectorytrajectories. The trajectories become more radial and curved away from the tip medial axis,  with the grains also 430 

being also pushed aside. Around the cone, grain trajectories are predominantly straight, with an almost radial orientation at the 431 

cone top and a more vertical orientation near the tip. Both radial and vertical displacement profiles show a pronounced 432 

decreasing trend, and reach almost zero values at a radial position of about 1.7R7-1.8R (Fig. 3 (b)). The vertical profile attests 433 

of a dominant downward movement of the grains close to the tip. Similar observations are made for  the DH sample (Fig. S9).) 434 

and PP (Fig. S11) samples. In contrast,  for the RGlr sample, vertical displacements are smaller and oriented slightly 435 

upwardsupward on average, for the mechanical parameters chosen here (Fig. S7). 436 

3.2 Sensitivity to mechanical parameters 437 

The influence of the mechanical parameters (Young’s modulus, cohesion, friction angle) describingcoefficient) involved in 438 

the contact law, on the simulations has been systematically explored. TheFor the RG sample, the force profiles obtained for 439 

the different values of the parameters within the explored ranges (Table 2) are presented for the RG sample in Figure 4, and a 440 

synthetic plotplots of the sensitivity of the statistical indicators to these parameters isare presented in Figure 5. The results for 441 

the other snow samples as well ascan be found in Sect. S2.3. Table S2 summarising all S3 also summarises the values of 442 

statistical indicators obtained, can be found in Sect. S2.3in all cases. 443 

 444 

 445 
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 446 
Figure 4 : Influence of mechanical parameters on the simulated force profile. The sensitivity analysis has been performed on (a) 447 
Young’s modulus E (Pa) (for C = 2.0 x 106 Pa and tan(φ) = 0.2), (b) the cohesion C (Pa) (for E = 1.0 x 109 Pa and tan(φ) = 0.2)), and 448 
(c) the friction coefficient tan(φ) (for E = 1.0 x 109 Pa  and C = 2.0 x 106 Pa). ResultsThe results presented here correspond to the RG 449 
sample. 450 

 451 

First, we observeit can be observed that increasing Young’s modulus decreases the mean macroscopic force (Figs. 4 (a) and 5 452 

(a)) and the correlation length (Fig. 5 (ac)). The influence of Young’s modulus on the standard deviationamplitude of force 453 

fluctuations is more complex and displays a co-dependency with the cohesion values (Fig. 45 (b)). FromFor low to(respectively 454 

high) cohesion values, the standard deviation evolves fromamplitude of force fluctuations shows a decreasing to 455 

an(respectively increasing) trend with Young’s modulus, respectively. The influence of Young’s modulus on the correlation 456 

length is weak (Fig. 4 (c)), as we observe mainly quasi-constant values over Young’s modulus values. However, we notice a 457 

decreasing trend for large Young’s modulus and low cohesion.. Regarding the influence of the cohesion and friction angle,, it 458 

is observed that increasing these parametersthis parameter increases the three statistical indicators.  459 

Aside fromFinally, increasing the friction coefficient, generally also leads to an increase of the three statistical indicators. Note 460 

however that, over the range of explored friction coefficient values (0.2-0.5), the sensitivity to this parameter is less important 461 

than for the other two mechanical parameters (where E is varied over two orders of magnitude and C is varied over one order 462 

of magnitude). Despite changes in absolute force values, the evolution of the force profiles (Figs. S14, S18 and S22) and 463 

statistical indicators (Figs. S15, S19 and S23) with the mechanical parameters follow similar trends for all the samples, attesting 464 

to a moderate influence of the snow type. Nevertheless, it has to be noticed that the influence of Young’s modulus on the 465 

correlation length is more pronounced for the RGlr (Figs. S14, S15) and the DH (Figs. S18, S19) samples. We must highlight 466 

that due to large computing times, fewer parameter values have been explored for large Young’s modulus. It is the case 467 

especially for the PP sample for which no numerical simulations for a Young’s modulus of 1 x 1010 Pa has been performed as 468 

computing times were too long (E = 1 x 108 Pa, t ~ 4 months and E = 1 x 109  Pa, t ~ 10 months) to be achieved..  469 

 470 
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 471 

 472 

Figure 5: Evolution of statistical indicators as functionfunctions of Young’s modulus, cohesion and friction anglecoefficient: (a) 473 
Mean macroscopic force, �̅�, (b) standard deviationamplitude of the force fluctuations σ, and (c) correlation length l. The 474 
experimental results (black diamonds) have been added toare also represented in the plots. ResultsThe results presented here 475 
correspond to the RG sample. 476 

 477 

The number of broken bonds with per increment of tip penetration depth appears rather insensitive to Young’s modulus (Figs. 478 

S12 (a), S16 (a), S20 (a), S24 (a)) and is only slightly reduced when cohesion increases (Figs. S12 (b), S16 (b), S20 (b), S24 479 

(b)). Conversely, this quantity is significantly affected by the friction angle shows a pronounced influencecoefficient, with an 480 

increase in of the average bond failuresfailure rate when this parametertan(φ) increases  (Figs. S12 (c), S16 (c), S20 (c), S24 481 

(c)).  482 

Finally, it is observed that the influence of all the mechanical parameters on the radial grain displacement profiles is negligible 483 

(Figs. S13, S17, S21, S25). Young’s modulus hasshows no influence on the vertical grain displacement either. Cohesion only 484 

playsappears to play a role onin the vertical displacement profile for the RGlr sample, by enhancing upward movements. 485 

Larger friction anglescoefficients tend to increase the downward movement of the grains close to the tip for all the snow types. 486 

3.3 Comparison of DEM results with experimental measurements 487 

The results of the DEM numerical model are compared to the experimental results to evaluate its predictive capability. First,  488 

it can be notedA first noticeable observation is that, for the values of the mechanical parameters tested, the orders of magnitude 489 

of the statistical indicators  obtained numerically and experimentally are similar forare consistent with the experimental results 490 

in most of the cases (Figs. 5, S15, S19, S23, Table S2), proving, Table S3). This demonstrates that the DEM model can 491 

reproduceis indeed capable of reproducing the main characteristics of the CPT force profile characteristics.(Fig. S26, Table 492 
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S2). However, we highlight the difficulty to matchof matching the three statistical indicators at once for a given combination 493 

of the three mechanical parameters studied. Hence, for the RG sample (Fig. 5), the DEM simulations fit well withsimulation 494 

can reproduce the experimental mean macroscopic force and the standard deviation of the measuredamplitude of force 495 

profiles,fluctuations but tendtends to underestimateoverestimate the correlation length. by a factor of 8 for the best combination 496 

of mechanical parameters. For the RGlr and DH samples (Figs. S15, S18), all the experimental statistical indicators can be 497 

reproduced individually, but not for one single combination of the mechanical parameters tested. For the PP sample, the 498 

experimental mean macroscopic force and the amplitude of force fluctuations can be well reproduced numerically, but the 499 

correlation length is underestimated (Fig.systematically overestimated by a factor of at least 8 (Fig. S23). The standard 500 

deviation can be approached for large Young’s modulus and cohesion values. However the dataset is incomplete to provide a 501 

strong insight. 502 

 503 

Sample E (Pa) C (Pa) tan(φ) 
Error 

FREF 

Error 

σREσ 
Error lREl 

Total 

errorREtot 

RG 1 x 109 5 x 106 0.2 
-5.01.2 x 

10-21 
31.2 x 10-1 

-8.05.2 x 

10-1 

85.6 x10x 

10-1 

RGlr 
1 x 

1010109 
21 x 106 0.23 

-2.95.5 x 

10-12 

-5.54.6 x 

10-1 

-1.21 x 10-

1 

7.04.8 x 10-

1 

DH 
1 x 

1091010 
25 x 106 0.32 

1.2.0 x 10-

1 

-3.31.1 x 

10-1 

-6.72.3 

x10-1 

8.03.1 x 10-

1 

PP 
1 x 

108109 
2 x 106 0.25 

4.5-1.3 x 

10-21 

-3.91.6 x 

10-1 

-9.96.5 x 

10-1 

1.16.9 x 

10010-1 

Table 3: Selected combination of mechanical parameters for RG, RGlr, DH and PP samples. The indicated values of Young’s 504 
modulus E, cohesion C and friction anglecoefficient tan(φ)  correspond to the combinationcombinations that yieldsyield the lowest 505 

total error REtot on the statistical indicators (mean force F, standard deviationmacroscopic force �̅�, amplitude of force fluctuations 506 
σ, correlation length l) measured experimentally. Error values for all the mechanical parametersparameter combinations tested are 507 
indicated in Table S2S3. 508 

 509 

Based on the  sensitivity analysis (Sect. 3.2.3.), we selected for each sample the combination of the three mechanical 510 

parameters that minimises the total error for the different samplesREtot (Tables 3, S2S3). The associatedcorresponding 511 

simulated force profiles produced by the DEM simulations (referred to as ‘Numerical simulation 1’) are compared with the 512 

experimental profiles in Fig. 6. From a qualitative point of view, a good matchoverall agreement is obtainedobserved between 513 

these numerical and experimental force profiles. For the RG sample, the experimental mean macroscopic force is well 514 

reproduced but the standard deviation is slightly overestimated by 20% by the numerical result, the amplitude of force 515 

fluctuation is overestimated by ~70% and the correlation length is slightly underestimatedlargely overestimated by a factor of 516 

~8 (Figs. 5, 6 (a), Table 3). Note that the mean force obtained numerically is underestimated in the first 3.5 mm of penetration 517 

compared to the experimental data. The experimental profile appears quasi-linear in this upper section, and does not display 518 

the S-shape observed on the numerical profile (Sect. 3.1.) for the range of depth presented here. However, observing the force 519 

profile over a larger depth range allows us to observe this ‘S’ shape (Fig. S26). Both the experimental and numerical force 520 

profiles then reach a quasi-steady -state value at about the same depth (~ 6 mm, S27). For the RGlr sample, the correlation 521 
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length is well reproduced, while the mean force is slightly underestimated and the standard deviation is underestimated by a 522 

factor of ~ 0.5 (Figs. S15 and 6 (b), Table 3). It appeared difficult to reproduce experimental mean macroscopic force is fairly 523 

reproduced (REF = 5%), the amplitude of force fluctuations visibleis underestimated by ~60% and the correlation length is 524 

overestimated by ~ 35%  (Figs. S15 and 6 (b), Table 3). We note that the slope change between 2.5 and 3 mm penetration 525 

depth is reproduced numerically. However, it appeared difficult to reproduce numerically the amplitude of force fluctuations 526 

in the upper section (from 0 to 4 mm) of the experimental profile. Both experimental and numerical profiles present a ‘S’ shape 527 

with a first slope change at around 3 mm of penetration. The simulations do not reproduce the force decrease after 6 mm 528 

observed in the experiments. For the DH sample, the experimental mean macroscopic force is well reproduced.overestimated 529 

by 25%. The standard deviationexperimental amplitude of force fluctuations is slightly underestimated by 28% and the 530 

correlation length is underestimated by more than 60%about half of the experimental value (Figs. S19, 6 (c), Table 3). The 531 

numerical results missminimise the large force peaks observed in the upper part of the profile. Yet, it appears that the 532 

simulations fairly reproduce the general shape of the experimental profile.experimental profile (above 3 mm) but reproduce 533 

fairly well the main features of the amplitude of force fluctuations, especially the force “jump” at 3 mm depth. Finally, for the 534 

PP sample, the experimental mean macroscopic force is well reproduced, while the standard deviation (underestimated by 535 

~30%, while the experimental amplitude of force fluctuations is underestimated by 60%) and%. In this case, the experimental 536 

correlation length (1 order of magnitude) are underestimatedcould not be reproduced at all, with values overestimated by a 537 

factor of at least 80 (Figs. S23 and 6 (d), Table 3). 538 

 539 
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 541 

Figure 6: Experimental (grey) and numerical (coloured) CPT force profiles obtained  for (a) RG, (b) RGlr, (c) DH, and (d) and PP 542 
samples. The “Numerical simulation 1” profiles correspond to the best fit of the mechanical parameters determined for each sample 543 
(Table 3), while  “Numerical simulation 2” profiles correspond to thean overall best fit of the mechanical  parameters for the four 544 
samples RG, RGlr, DH and PP (E = 1 x 109 Pa, C = 2 x 106 Pa and tan(φ) = 0.2, Table S2S3). 545 

 546 

In additionFor comparison, we also selected the single set of mechanical parameters that minimises the combined total error 547 

REtot on RG, RGlr, DH and PP samples. Corresponding values are:  E = 1 x 109 Pa, C = 2 x 106 Pa and tan(φ) = 0.2. The 548 

respective errors for each sample can be found in Table S2S3. In general, the associatedcorresponding simulated force profiles 549 

computed numerically agree fairly well with the experimental results (‘(referred to as ‘Numerical simulation 2’ in Fig. 6).6) 550 
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also show a fair agreement with the experimental results. For the RG sample, however, the standard deviation is well 551 

reproduced, while the experimental mean macroscopic force and correlation length are is significantly underestimated by 70% 552 

(Figs. 4, 5, 6 (a), Table S2). For RGlr, the agreement S3). The numerical amplitude of force fluctuations reproduces the 553 

experimental value at ~70%, while the correlation length is significantly overestimated by a factor of 5. For the RGlr sample, 554 

the agreement is acceptable for the three statistical indicators (relative errors between 3915% and 4740%). For the DH sample, 555 

the experimental mean macroscopic force is well reproduced, at 90%, while the standard deviationexperimental amplitude of 556 

force fluctuations is slightly underestimated (factor of 0.4)by 60% and the experimental correlation length is underestimated 557 

(by about 80%).overestimated by a factor ~2. Finally, for the PP sample, the experimental mean macroscopic force andis 558 

underestimated by ~80%, the standard deviation are underestimated by about 50amplitude of force fluctuations by 85% and 559 

the experimental correlation length is underestimated by about 100%again strongly overestimated by a factor of 20 (Figs. S23 560 

and 6 (d), Table 3). 561 

 562 

 563 
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 564 

Figure 7: Total displacement maps obtained experimentally with μCT (left panelpanels) and numerically with DEM simulation 565 
(right panelpanels) for the RG, RGlr, DH and PP samples. A displacement threshold atof 0.03 mm has been set to define the 566 
deformation zone (Peinke et al., 2020). White grains correspond to non-trackable grains in μCT scans (Peinke et al., 2020) and 567 
deleted grains not represented in the DEM simulations. The final tip position is indicated with black solid lines. The horizontal black 568 
dashed line indicates the cone top. Displacement profiles shown in Fig. 8 are computed from the sample surface to the cone top. 569 
Numerical results are obtained with the combination of  mechanical parameters indicated in Table 3. NoThe experimental map is 570 
presenteddisplacement field could not be determined for the PP sample due to the difficulties to apply the grain tracking algorithm 571 
for this sample..  572 

 573 

QualitativelyAs shown in Fig. 7, the numerical and DEM simulations also proved capable of reproducing, at least qualitatively, 574 

the experimental grain displacement fields present similar patterns derived from µCT scans for allthe four snow types and 575 

both. Essentially similar results are obtained with the individual best-matching sets of selected mechanical parameters 576 

(Figs.indicated in Table 3 (Fig. 7), and S27with the globally-matching set of parameters introduced in the previous paragraph 577 

(Fig. S28). For the RG sample, the overall shape and size of the deformation zone isare well reproduced by the simulations. 578 

The largest discrepancies are observed for the RGlr sample, for which the radial and vertical extension and distribution of the 579 

deformation zone differ from the data derived from μCT scans. The radial displacement obtained numerically displays a more 580 
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linear trend compared to the arcuate shape of the experimental radial displacement profile (Fig. 8). For the DH sample, the 581 

radial extension of the deformation zone is well reproduced by the simulations, but the vertical extension tends to be 582 

overestimated. Finally, the numerical results obtained for the PP sample could not be compared to experimental measurements 583 

as the grain tracking algorithm is not applicable on these small grains (Peinke et al., 2020). The numerical results attest of the 584 

accordance of the deformation zone with other numerical profiles obtained for other snow types.The largest discrepancies are 585 

observed for the RGlr sample, for which the radial and vertical extensions of the deformation zone are overestimated compared 586 

to the experimental data.  587 

 588 

 589 
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 590 
Figure 8: Radial displacement profiles (solid lines) obtained experimentally (black) and numerically (coloured) for the RG, RGlr, 591 
DH and PP. Numerical samples. The shadowed areas around the solid lines correspond to the standard deviation of grain 592 
displacement and exhibit the variability of the radial displacement of grains. The numerical results are obtained with the 593 
combination of mechanical parameters indicated in Table 3. 594 

 595 

Radial Similarly, the radial displacement profiles obtained withfrom the DEM numerical modelsimulations are overall in good 596 

agreement with their experimental counterparts (FigFigs. 8 and S29). Consistently with the displacement maps, the largest 597 

discrepancy is observed for the RGlr sample. In particular, the abrupt slope break seen in the experimental profile at a radial 598 

position of about 1.5 is not reproduced in the numerical profile. Note however that, due to a relatively low number of trackable 599 

grains (Fig. 7), the standard deviation of the grain radial displacements is larger in the experimental measurements, which may 600 
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result in a larger uncertainty on the average profile. In contrast, simulations on the RG and DH samples show a very good 601 

agreement with the experiments. The DZ (CZ (defined with displacement threshold set at 0.03 mm) obtained from numerical 602 

simulations extendextends radially up to 1.7R6R, 2.2R, 2.2R0R and 1.8R5R for the RG, RGlr, DH and PP samples, 603 

respectively. The DZ obtainedIn comparison, the CZ derived from CTµCT scans extend upextends radially up to 1.8R7R, 604 

1.7R5R and 2.2R1.9R for the sameRG, RGlr and DH samples., respectively (no measurement for PP sample). 605 

4 Discussion 606 

4.1 Evaluation of the DEM model 607 

We used three mechanical parameters, namely Young’s modulus, the cohesion and the friction anglecoefficient, to adjust the 608 

simulated force profiles to the experimental results. TheOverall, the numerical model could satisfactorily reproduce relatively 609 

well the mechanical response of all studied numerical samples with a single set of mechanical parameters (E = 1 x 109 Pa, C 610 

= 2 x 106 Pa and tan(φ) = 0.2)  (Fig. 6), indicating that the characteristics ofdifferences in the force profiles among the samples 611 

are mainly dependent of the snow microstructure.  612 

It should also be noted that the values of the mechanical parameters obtained by adjusting the model on the experimental data 613 

(either globally for all samples, or for each sample individually, Table 3) are reasonably close to the mechanical properties of 614 

ice. Young’s modulus of ice is measured between 9 x 109 Pa and 10 x 109 Pa (Gammon et al., 1983), while our selected values 615 

range between 1 x 109 Pa and 1 x 1010 Pa (except for PP sample). In practice. Recall that, in YADE, the numerical Young’s 616 

modulus is a numerical parameter used in YADE software to parameterizedefine the normal contact stiffness does, and is not 617 

directlyexpected to necessarily correspond to the physical Young’s modulus of the material. In particular, the numerical 618 

Young’s modulus may depend  on the grain shape representation and/or the choice of the contact law. (Sect. 2.2.2). 619 

Nevertheless, the fact that the numerical value of E is close to thatin the same range of magnitude as the elastic properties of 620 

ice provides good confidence that the DEM model and the used contact law (Eq([Eqs. (1), Eq. (2), Eq. (3)))-(5)]) correctly 621 

capture the physical processes at play. Similarly,  the numerical cohesion values, ranging between  21 x 106 Pa and 5 x 106 Pa, 622 

are in agreement with typical cohesion values measured on ice (in the range 2 x 106 Pa to 6 x 106 Pa, Schulson and Duval, 623 

2009). Finally, numerical friction anglescoefficients appear to be on the order of 0.2 – –0.35, while values  measured 624 

experimentally are generally rangingrange from 0.02 to 1 (Fish and Zaretsky, 1997; Maneno and Arakawa, 2004). All these 625 

results reinforce the confidence in the relevance of the DEM model credibility. 626 

We acknowledge that the mechanical parameters obtained from minimising the errors on the statistical indicators do not 627 

necessarily represent optimal values, in the sense that only a limited number of parameter sets could be tested. In particular, 628 

due to a high computational cost, few simulations performed with E = 1 x 1010 Pa  were achieved for RG, RGlr and DH 629 

samples. Based on the sensitivity analysis, a more proper inversion procedure  could be developed to retrieve true optimal 630 

values of the mechanical parameters. This would certainly provide more robust elements as to determine whether a single set 631 

of mechanical parameters can be used to fitrepresent the experimental results of all snow types, or whether these mechanical 632 
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parameters differ according to the snow types. In ourtype. Our current analysis, the cannot provide a conclusive answer to this 633 

question remains ambiguous.. Note that ice is a polycrystalline material, whose mechanical behaviour can be strongly 634 

anisotropic depending on the ice structure  (Fish and Zaretsky 1997; Thorsteisson, 2001; e.g. Maeno and Arakawa, 2004). 635 

ItTherefore, it is thus not unlikely that ice bonds between grains cancould be characterised by different mechanical properties 636 

depending on the specific conditions of snow formation and evolution. 637 

As further proof of DEM's goodDEM predictive capabilities, we could also observe that the grain displacement fields measured 638 

for the different snow types were overall well reproduced by the simulations (Figs. 7 and 8). In particular, the model captures 639 

the radial extent of the deformation zone, i.e. ofwhich is on the order of 1.5R-2-2.5 R.2R. A discrepancy between the numerical 640 

and experimental profiles of radial displacement profiles was observed for the RGlr sample. It should, however,However, it 641 

can be noted that these experimental radial displacement profiles for the RGlr sample are also those withshow the largest 642 

divergence compared towith the prediction of the cavity expansion model (CEM) (Yu and Carter, 2002), as shown by Peinke 643 

et al. (2020). In fact, the radial profile predicted by the CEM for this sample is similar to the radial profile obtained numerically 644 

in this study. 645 

4.2 Interpretation 646 

4.2.1 MechanicalSensitivity to the mechanical parameters sensitivity 647 

The sensitivity analysis revealed a strong influence of the mechanical parameters on the simulation results. In particular, a  648 

clear dependence of the mean macroscopic force with Young’s modulus E was observed, suggesting that a significant part of 649 

the sample undergoes elastic deformation, while brittle failures are confined in a region close to the tip. Note that a similar 650 

dependence to E with a cohesive contact law has been observed in DEM modelling of soil compression (De Pue et al., 2019) 651 

and snow compression (Bobillier et al., 2020). The larger mean macroscopic force, the amplitude of force fluctuations and the 652 

correlation length all increase with the cohesion C and, to a smaller extent, with the friction angle, also tend to increase the 653 

mean force, the standard deviation and the correlation length.coefficient tan(φ). This can be related to the fact that increasing 654 

cohesion and friction between grains increase bond strength. It iswas also observed that cohesion tends to prevent bond failures, 655 

and to favour the upward movement of grains for samples with the largesta large initial density, such as RGlr. In contrast, 656 

increasing the friction anglecoefficient enhances the bond failure rate and the downward movement of grains (Figs. S12, S16, 657 

S20, S24). When sliding between grains is inhibited, a grain dragged by the tip movement will drag downentrain surrounding 658 

grains more easily, thus enlarging the deformation zone and triggering additional bond failures. Finally, radial grain 659 

displacements and the radius of the deformation zone areappeared to be mostly insensitive to the mechanical parameters, 660 

indicating that thethese features are mainly controlled by CPT configuration and snow type mainly control these 661 

featuresmicrostructure. 662 
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4.2.2 Compaction zone development 663 

For all snow types, the force profiles computed numerically display a ‘S’ shape (Figs. 1, S6, S8, S10). We attribute this shape 664 

to the development of a compaction zone (CZ) in front of the tip during its progressive penetration into the numerical sample. 665 

More specifically, the first stage of the force profiles (slope increase) might beis presumably caused by the progressive entry 666 

of the cone penetration, before the cylindrical part reaches into the sample. The second stage (constant slope) is attributed to 667 

the development of the CZ in front of the tip. The third stage (quasi-constant force value) suggests that a steady-state regime, 668 

with a fully-developed CZ, is reached. Depending on the snow type, the numerical results suggestindicate that full development 669 

of the CZ occurs for 5.56 mm to 8 mm of penetration depth. These results agree with the experimental profiles for the RG, DH 670 

and PP samples. For the RGlr sample, the experimental penetration profile did not reach the steady-state stage. Globally, we 671 

can highlight that the DEM simulations are able to reproduce fairly well the global shape of the experimental profiles, and thus 672 

to correctly capture the development of the DZCZ. 673 

Nevertheless, in another experimental study, the CZ has been reported to be fully developed only for around 40 mm of depth 674 

penetration (Herwijnen, 2013), which is significantly deeper than the experimental and numerical results obtained in this study. 675 

A first hypothesis to explain this observationdiscrepancy is that if since the maximum depth of our CPT force profiles reach a 676 

maximum depth of is 10 mm, we might thus miss information on the full CZ development. A second hypothesisexplanation 677 

could be related to the differences in the experimental set-upsetups. Indeed, Peinke et al. (2020) performed CPT on snow 678 

samples contained in cylinders of 2 cm20 mm diameter and 2 cm20 mm height, which is significantly smaller than the 679 

decimetric snow samples considered by Herwijnen (2013). Boundary effects might thus play a role. in limiting the development 680 

of the CZ. Finally, the tip geometry also differs. between the two studies. Peinke et al. (2020) used a plain tip, while Herwijnen 681 

(2013) used the original SMP tip geometry with a cone radius larger than the rod. A sensitivity analysis comparing the two 682 

geometries showed an influence over the upper 12 mm of the force profiles (Peinke, 2020). The plain tip geometry 683 

producedresulted in larger values of the mean macroscopic force and standard deviationthe amplitude of force fluctuations 684 

values. This sensitivityeffect might also influence the characteristics of the CZ development, which could be studied in the 685 

future using the presented numerical model. 686 

4.2.3 Grain-tip interaction 687 

The sensitivity analysis to the grain shape representation (Sect. S1.1) provides interesting insights into the interpretation of 688 

force profiles. In particular, the study highlighted that the grain shape representation could be relatively coarse (high volumetric 689 

error EV) but still produce a force profile with an acceptable mechanical error EM compared to a reference profile obtained for 690 

a fine grain shape representation (EV  < 10%) (Fig. S1, Table S1). This is notably the case for the RG sample, asfor which the 691 

selected grain shape representation (RL = 5, S = 0.3) corresponds to a value of EV of about 40%. LargerLarge values of EV 692 

often imply grain loss, as the smallest grains identified in the μCT scans cannot be represented by the DEM in this case. Despite 693 

this losswith coarse spherical elements. Yet, the similarity of the force profile to the reference force profile indicates the limited 694 
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contribution of these smallest grains to the  macroscopic force, compared to the largest grains with stronger bonds. The loss of 695 

grains and bonds might nevertheless directly affect the force fluctuations, providing a potential explanation foras to why the 696 

DEM model underestimates the correlation length obtained experimentally for the samples with the smallest grain sizes (RG 697 

and PP) (Figs. 5, S23).  698 

4.2.3 Scaling relation for the mean macroscopic force 699 

To try and synthesise the large number of simulation results obtained in this study, scaling relations describing the evoluti on 700 

of the statistical indicators as a function of the main simulation parameters can be looked for. We focused in particular on the 701 

mean macroscopic force �̅�, which was observed to depend both on the mechanical parameters E, C and tan(φ), as well as on 702 

sample microstructure. Since the range of friction coefficient values (between 0.2-0.5) that we could explore remained limited 703 

compared to the ranges of E and C, the parameter tan(φ) was not included in this analysis and the results presented below 704 

correspond to a single value tan(φ) = 0.3.   705 

First, inspection of our results (see Figs. 5 (a), S15 (a), S19 (a), S23 (a)) indicates that the dependencies of the mean 706 

macroscopic force �̅� to the Young’s modulus E and cohesion C appear to be consistent across the four tested samples (see also 707 

Table S4). More precisely, �̅� scales with E according to a power law of the form �̅� ~ 𝐶−𝛼, with an exponent 𝛼 on the order of 708 

1/2. Similarly, �̅� scales with C according to a power law of the form �̅� ~ 𝐶𝛽, with  β on the order of 3/2. 709 

Second, we can expect �̅� to be also related to the rate of cohesive broken bonds per unit penetration depth. In particular, it is 710 

observed (see Figs. S12, S16, S20, S24) that the slope λ of the cumulative proportion of broken bonds as a function of depth 711 

is essentially independent of the Young’s modulus and cohesion. Conversely, as shown in Fig. 9 (a), this slope λ is linearly 712 

related to the initial contact density 𝜈 defined as: 713 

𝜈 = 𝑧𝛷             (10) 714 

with z the coordination number (number of initial cohesive interactions between grains divided by the number of grains, see 715 

Table 1) and Φ the volume fraction of the sample (ice density = 917 kg m-3, see Table 1).  716 

 717 

From these different observations, the following scaling law for the mean macroscopic force �̅� can be proposed: 718 

�̅� =  𝐵 𝑇 𝐶 (
𝐶

𝐸
)
𝛼

 𝑓(𝜈)               (11) 719 

with B a dimensionless constant, T (m²) the surface area of the cone (with a radius R and a cone apex a, Table 2) in contact 720 

with the sample, and f a function to be determined. Figure 9 (b) shows the dimensionless quantity �̅�T-1E1/2C-3/2 plotted against 721 

the initial contact density 𝜈. We observe that all the simulation results for the four snow types and the different values of 722 

Young’s modulus and cohesion nicely merge on a unique logarithmic trend. Note, however, that a relatively larger dispersion 723 

is observed for RGlr (𝜈 = 1.63) compared to the other samples. 724 

Equation (11) encapsulates in a single relation the main physics controlling the mean macroscopic force recorded by 725 

the penetrometer. In particular, this relation indicates that the influence of snow microstructure can be captured, at 726 



 

35 

 

least as a first approximation, by the initial contact density 𝜈. Former studies already showed that this parameter plays 727 

a key role in the mechanical behaviour of cohesive granular materials (Gaume et al. 2017). 4.2.4 Cohesive bond failure 728 

In our DEM simulations, once broken, the cohesive interactions between grains disappear. New interaction between grains 729 

will be frictional only. Hence, we assume that bonds between grains in contact cannot reform at the time scale of the 730 

experiments. Indeed, the measurements last less than 1 s (tip velocity = 20 mm s-1 and sample holder height = 20 mm), while 731 

the mechanisms involved in the sintering process are generally slower (Blackford, 2007). However, subsecond sintering 732 

(millisecond process) caused by the freezing of a thin quasi-liquid layer between two grains in contact has been observed, even 733 

at low temperature (Szabo and Schneebeli,Looking for similar relations describing the other statistical indicators (amplitude 734 

of force fluctuations and correlation length) constitutes an interesting prospect for future analyses, although we can anticipate 735 

these indicators to display more complex dependencies. Further analyses will also be required to explore the influence of the 736 

friction coefficient on these relations. 737 

 738 

 739 

Figure 9: (a) Initial contact density 𝜈 versus the slope λ of the proportion of cohesive bonds broken per unit depth  (mm-1) for each 740 
snow type. The values of initial contact density 𝜈 were computed with Eq. (10) and the values indicated in Table 1. The slopes λ were 741 
computed from the evolution of the cumulative proportion of cohesive bonds broken (Figs. S12, S16, S20, S24) over a window of 7 742 
mm depth. (b) Dimensionless quantity �̅�T-1E1/2C-3/2 (see Eq. (11)) versus the initial contact density 𝜈 for all simulation results. All the 743 
results are provided for a friction coefficient tan(φ) of 0.3.  744 

 2007). Including this subsecond sintering  in the numerical simulations shall be considered in future works to study its 745 

role on the mechanical response of the samples.  746 

5 Conclusion 747 

We have evaluated a numerical model based on DEM that reproduces the mechanical behaviour of snow in the brittle regime. 748 

The DEM model is takingtakes into account the ice properties and the snow microstructure captured by tomography. The 749 
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experimental configuration of the CPT measurements conducted on different snow types by Peinke et al. (2020) has been 750 

reproduced with the DEM model. Three parameters namely, the mean macroscopic force, the standard deviationamplitude of 751 

the force fluctuations and the correlation length, were used to quantify the similitude of the numerical and experimental 752 

profiles. The grains displacement field was computed and compared to the experimental displacement field derived from μCT 753 

scans acquired before and after the CPT.  754 

The DEM model has demonstrated overall a good capability to simulatereproduce the mechanical responses of CPT performed 755 

in different snow types. The computed force profiles satisfactorily reproduce the main characteristics of the experimental force 756 

profiles. The results revealed that the force profilesprofile characteristics are mainlystrongly dependent on the microstructure. 757 

A sensitivity analysis provedalso demonstrated the dependence of the mechanical response to the mechanical parameters of 758 

the contact law. In particular, a simple scaling law could be derived relating the mean macroscopic force computed by the 759 

DEM to the mechanical parameters E (Young’s modulus) and C (cohesion) and to the microstructure characteristics captured 760 

by the initial contact density. The displacement fields are also well reproduced by the model, except for the RGlr sample 761 

showing a larger extent for the numerical results. The agreement in terms of radial displacement profiles is very good. The 762 

grains are mainly travelling downward during the CPT, although for the RGlr sample, the upward movement of the 763 

grainsmovements close to the surface isare not negligible. The CPT implies a complex deformation field with a compression 764 

zone around the apex and an expansion zone close to the surface (Peinke et al., 2020). Therefore being able to reproduce the 765 

force profiles (including high-frequency fluctuations) and displacement profilesfields for this mechanical test 766 

constituteconstitutes a strong validation of the reliability of the DEM model.  767 

The CPT modelling via DEM model brings advantages to reproduce and interpret the snow mechanical behaviour to CPT 768 

compared to others interpretation models as it is able to take into account the high frequency fluctuations and predict the 769 

displacement field and. However, a major downside of the DEM method is theits high computational cost, (simulation times 770 

ranging between 1 week to several months according todepending on the physical and numerical parameters for the chosen 771 

CPT configuration, preventing us from exploring all), which limited the range of mechanical parameters chosenthat could be 772 

explored for all the snow types. Besides, the DEM model could be improved by adding time-dependent parameters in the 773 

contact laws to take into account the sintering process. 774 

The developed DEM model nonetheless constitutes a versatile approach that cancould be applied to various materials and 775 

configurations. in future studies. In particular, it will be possible to use the DEM model can be used to studyto gain more 776 

physical insights into the interaction between the tip and the grains of the numerical sample, in order to better interpret the 777 

CPT force profiles. PertinentSuch analyses will provide ways to test and derive relevant macro- and micromechanical 778 

parameters could be derived to characterise the microstructure properties from the CPT force signal solely. EspeciallyIn 779 

particular, the validity of the assumptions made by the HPP-NHPP method, as well as the influence of the CZ development 780 

will be tested. Critical structural parameters driving the mechanical behaviour, could be identified and a parameterization 781 

developed in order to include the effect of snow microstructure in macroscale numerical models studying snowpack and 782 
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avalanches., will be assessed. Future studies may also consider refining the used contact laws to investigate, e.g. the influence 783 

of sintering processes on CPT results.  784 
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