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Abstract. Ice sheet models are the main tool to generate forecasts of ice sheet mass loss; a significant contributor to sea-level

rise, thus knowing the likelihood of such projections is of critical societal importance. However, to capture the complete range

of possible projections of mass loss, ice sheet models need efficient methods to quantify the forecast uncertainty. Uncertainties

originate from the model structure, from the climate and ocean forcing used to run the model and from model calibration. Here

we quantify the latter, applying an error propagation framework to a realistic setting in West Antarctica. As in many other ice-5

sheet modelling studies we use a control method to calibrate grid-scale flow parameters (parameters describing the basal drag

and ice stiffness) with remotely-sensed observations. Yet our framework augments the control method with a Hessian-based

Bayesian approach that estimates the posterior covariance of the inverted parameters. This enables us to quantify the impact

of the calibration uncertainty on forecasts of sea-level rise contribution or volume above flotation (VAF), due to the choice of

different regularisation strengths (prior strengths), sliding laws and velocity inputs. We find that by choosing different satellite10

ice velocity products our model leads to different estimates of VAF after 40 years. We use this difference in model output to

quantify the variance that projections of VAF are expected to have after 40 years and identify prior strengths that can reproduce

that variability. We demonstrate that if we use prior strengths suggested by L-curve analysis, as is typically done in ice-sheet

calibration studies, our uncertainty quantification is not able to reproduce that same variability. The regularisation suggested by

the L-curves is too strong and thus propagating the observational error through to VAF uncertainties under this choice of prior15

leads to errors that are smaller than those suggested by our 2-member “sample” of observed velocity fields. Additionally, our

experiments suggest that large amounts of data points may be redundant, with implications for the error propagation of VAF.

1 Introduction

Ice sheet models are important tools not only for generating knowledge, but also for operational forecasts. In this way, they are

analogous to weather models and oceanographic models and have emerged as the de facto standard for generating projections20

of ice sheet contribution to sea-level rise. However, quantifying the uncertainty in forecasts produced by these models remain

one of the most challenging goals of scientific inquiry (Aschwanden et al., 2021). Here, we seek to characterise the uncertainty

in model projections of marine ice sheet loss which arises from calibration with data.
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The paradigm of ice-sheet projection is the calibration of the model parameters with observations (via control methods e.g.

Macayeal, 1992) followed by running of the calibrated model forward in time forced by future ocean and climate scenarios.25

The process is uncertain due to (i) model/structural uncertainty (i.e. uncertainty in the formulation of the model and its ability to

represent the physics of the system), (ii) uncertainty in external forcing (e.g. ocean melting of ice shelves), and (iii) calibration

uncertainty (i.e. the uncertainty in calibrated parameters, sometimes referred to as parametric uncertainty). In this study we

use control methods and a Bayesian inference approach to characterise (iii). The Bayesian framework computes posterior

information given the assumed model and external forcing. We do not attempt to quantify (i) and (ii) but we discuss how these30

uncertainties can be quantified and incorporated into our error propagation framework.

The use of control methods ("inverse methods") in ice-sheet modelling dates back to Macayeal (1992). Since then, their

use in estimating basal and internal conditions (hidden properties) of glaciers and ice sheets from measured surface velocities

has become widespread (e.g. Sergienko et al., 2008; Morlighem et al., 2010; Cornford et al., 2015; Hill et al., 2021, to name

a few). This is mostly due to the ability of these methods to perform large-scale inversions via the minimisation of a cost35

function, thus allowing a better representation of basal and rheological conditions to which the ice flow is sensitive (Barnes

et al., 2021). However, these data assimilation techniques are not well posed (Petra et al., 2014) and a unique solution is never

guaranteed, regardless of the control method used (Barnes et al., 2021). Control methods have regularisation terms which need

to be chosen in order to impose smoothness on the inverted parameters (Koziol et al., 2021). In many studies, the strength

of the regularisation is determined heuristically through L-curve analysis (Gillet-Chaulet et al., 2012; Barnes et al., 2021).40

Additionally, control methods do not provide calibration uncertainty. They can be interpreted as methods that return only the

mode of a posterior probability density function (PDF) of the inverted model parameters, which does not fully characterise

calibration uncertainty (Koziol et al., 2021) nor does it propagate the observational uncertainty onto projections of sea-level

rise.

Previous works attempt to quantify uncertainty by considering the forcing uncertainty (Tsai et al., 2017; Robel et al., 2019;45

Levermann et al., 2020) or structural uncertainty (Hill et al., 2021). Others consider calibration uncertainty (Isaac et al., 2015;

DeConto and Pollard, 2016; Brinkerhoff et al., 2021; Brinkerhoff, 2022) but use low-dimensional parameter sets to describe

the ice rheology and basal friction. Here we carry out the first assessment of calibration uncertainty using a time-dependent

marine ice-sheet model in which the calibration of the ice dynamic parameters scale with the dimension of the numerical grid

(see Fig. 1).50

The uncertainty associated with ice-sheet model calibration in this sense can be quantified through Bayesian inference

(Tarantola, 2005; Stuart, 2010), in which prior knowledge is "updated" with observational evidence (Koziol et al., 2021).

The solution of the Bayesian inference problem in our framework hence takes the form of a very high-dimensional posterior

PDF. The calculation of covariances from integration using this PDF, due to the complexity of the Stokes partial differential

equations and our domain, is not possible via state-of-the-art Markov chain Monte Carlo (MCMC) methods and prohibited55

by computational expense (Isaac et al., 2015; Koziol et al., 2021). However, it can be shown that under certain assumptions,

the posterior covariance of the inverted parameters can be characterised by the inverse of the Hessian (the matrix of second

derivatives) of the cost function with respect to the inverted parameters (Thacker, 1989; Kalmikov and Heimbach, 2014; Petra
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et al., 2014; Isaac et al., 2015). Our framework augments the control method by using this Hessian-based Bayesian approach

that not only inverts for the ice dynamic parameters such that model velocities match observations, but characterises the60

posterior covariance of each inverted parameter (also referred to as control parameters in this study).

We perform a joint inversion for the basal sliding coefficient and the rheological parameter for describing ice stiffness.

Beginning with a cost function definition which allows for velocity data to be imposed at arbitrary locations (i.e. a point-

cloud), we generate a low-rank update approximation to the posterior covariance of the control parameters via the use of the

Hessian of the cost function, and find the sensitivities of a time-evolving Quantity of Interest (QoI) to the control parameters.65

We then project the covariance on to the resulting linear sensitivity to estimate the growth of the QoI uncertainty over time;

here our QoI is the sea-level rise contribution or volume above flotation (VAF).

We apply for the first time this error propagation framework to a realistic setting (three ice streams in West Antarctica) and

present several model experiments that explore the impact on the uncertainty in forecasts of VAF due to the choice of different

strengths of priors, sliding laws and velocity inputs. We find that significant differences in satellite ice velocity products70

(particularly at the ice margins) can lead to different projected estimates of sea-level rise contributions or VAF trajectories. We

also find that the choice of regularisation strength or regularisation parameters, suggested by L-curve analysis – a common

means of estimating such parameters – may lead to an overly informative prior and hence underestimate the variability in such

projections.

We investigate the effect that data density (density of observed velocity data points) has on the resulting inference. This75

diagnostic suggests that large amount of data points may be redundant when inverting for the control parameters, with potential

implications for observational velocity error models and how they inform the uncertainty in our projections. Additionally, we

test our inversion results against the numerical framework of a different ice sheet model (i.e. STREAMICE module of MITgcm

Goldberg and Heimbach, 2013), in order to qualitatively inspect model structural uncertainty and forcing uncertainty.

2 Methods80

The mathematical framework of FEniCS_ice is explained in detail in Koziol et al. (2021). In this section we summarise the

model physics, the data assimilation techniques used for the calibration of two key ice dynamic parameters, and explain how

we quantify calibration uncertainty in projections of sea-level rise contributions or volume above flotation (VAF).

2.1 Physics

FEniCS_ice solves the Stokes equation by implementing the well-known Shallow Shelf Approximation (SSA; MacAyeal,85

1989; Schoof, 2006; Shapero et al., 2021; Hill et al., 2021). The ice velocity u is vertically integrated and has two components:

internal deformation and basal sliding (see Sect. 3 from Koziol et al., 2021, for details). The model uses data assimilation

methods to optimise these velocity components based on observations by estimating two “hidden” properties of the ice; i) the

basal friction coefficient (α) in the sliding law, and ii) the rheological parameter for describing ice stiffness (β) in Glen’s flow
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law (both properties are referred to as control parameters in this study). In this section we define the control parameters and the90

time-dependent SSA whereas the details of the inverse methodology are explained in Sect. 2.4.

2.1.1 Ice rheology and basal sliding

We define the ice viscosity ν, which depends on the strain-rate tensor εe as

ν =
1
2
Bε

1−n
2n

e .

B is generally referred to as the "stiffness" of the ice and is thought to depend on ice temperature (Pattyn, 2010). Here we95

define the control parameter β as the square root of that stiffness where β =
√

B =
√

A−1/n. A in this definition is the rate

factor commonly known as the ice creep parameter in Glen’s ice flow law (Glen and Perutz, 1955) and n is the exponent of

Glen’s flow law with the widely accepted value of 3 (Cuffey and Paterson, 2010).

Basal sliding is considered the dominant component of surface velocities in fast-flowing ice streams (Hill et al., 2021),

making the time-dependent part of the ice sheet model sensitive to the choice of sliding law (Brondex et al., 2019; Barnes and100

Gudmundsson, 2022) thus, we consider two different sliding laws. The first is the Weertman–Budd sliding law (Weertman,

1957; Budd et al., 1979; Budd and Jenssen, 1987) defined here as

τb = α2N1/3u−2/3u (1)

where τb is basal stress, α is the scalar, spatially varying sliding coefficient, u is ice speed, and N is the effective pressure.

Here N is defined as105

N = ρigH + min(0,R)ρwg (2)

where ρi and ρw are ice and ocean densities, g is the magnitude of the gravitational acceleration, H is the ice thickness

and R is the bed elevation (Koziol et al., 2021). Furthermore basal stress is nonzero only where ice is grounded, i.e. where

ρigH + ρwR > 0. The second sliding law considered is often referred to as the Cornford sliding law (Asay-Davis et al., 2016;

Cornford et al., 2020) and is defined as110

τb =
µα2Nu

1−m
m

[α2mu + (µN)m]1/m
u (3)

where µ = 1
2 and m = 3. A key property of both sliding laws is that as the grounding line is approached, effective pressure

becomes small, leading to a smoother transition across the grounding line in terms of the basal drag from floating to grounded

conditions.

While additional sliding laws have been proposed and are now implemented within a number of existing ice flow models115

(Hill et al., 2021), in this study we use the Weertman–Budd sliding law for most of our experiments, as it is one of the most

commonly used. However, we trial our error model framework using the Cornford sliding law (Asay-Davis et al., 2016) and

compare the results of both sliding laws in Sect. 5.3.
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2.1.2 Time-dependent ice sheet model

The resulting calibrated fields of α and β (see Sect. 2.4 for details regarding the parameters calibration) are then input into our120

forward-in-time simulations where the continuity equation is solved:

Ht +∇ · (Hu) = b. (4)

b represents localised changes in mass at the surface and/or the base of the ice sheet, i.e. accumulation due to snow-fall or

basal melting of the ice-shelf by the ocean. We assume a constant surface mass balance field (i.e. surface mass balance of 0.38

mm of sea level equivalent based in Arthern et al., 2006) and implement a simple depth-dependent parameterisation of ocean125

melt rate m, which gives the melt rate as a function of ice-shelf draft only. Such parameterisations have been used previously

to examine the response of marine ice sheets to ice-shelf melting (e.g., Favier et al., 2014; Seroussi et al., 2017; Lilien et al.,

2019; Robel et al., 2019). The form we use is

m(zb) =
Mmax

2

(
1 + tanh

[
2
(

zb− zth

zth

)])
(5)

where zb is ice-shelf depth, Mmax is the maximum melt rate and zth represents the depth of the ocean thermocline. m is130

nonzero only where ice-shelf thickness H is below floatation, and is also set to zero where thickness H is below 10 m.

We use such a parameterisation because our aim is to study glaciers which are strongly forced by modified Circumpolar

Deep Water (CDW), which is present on certain parts of the Antarctic continental shelf as a warm deep layer overlain by cold

surface-modified waters (e.g., Jacobs et al., 2011; Dutrieux et al., 2014; Jenkins, 2016; Jenkins et al., 2018). The form of (5) is

chosen because the melt profile transitions from low melt rates above the thermocline depth zth to strong melting at depth, and135

saturates at Mmax rather than growing without bound. Defining the parameterisation in this way rather than a piecewise-linear

function helps maintain differentiability which aids the later application of algorithmic differentiation (Section 2.5). We discuss

our particular choice of Mmax and zth below in Sect. 3.

The continuity equation is solved with the purpose of finding the loss of ice volume above flotation (VAF), the volume of

ice that can contribute to sea level at a certain time T (e.g. T = 40 years) which is defined as140

QV AF
T = ∫

Ω
(H −Hf )+dA. (6)

where Hf is the floatation thickness defined by −R
(

ρw

ρi

)
, and Ω is the computational domain (see Sect. 2.2 and Sect. 3 for

details). Note that we have simplified the ice sheet surface mass balance and the basal melting of the ice shelf thus calculations

of future VAF estimates presented here do not constitute realistic projections. However, equations (4) and (6) are convenient to

calculate such projections and sufficiently nontrivial and nonlinear that the effect of uncertainty arising from the calibration of145

α and β with observations can be seen.

2.2 Discretisation

We solve the Shallow-Shelf Approximation (SSA) momentum balance as well as (4) using the FEniCS finite-element software

library (Alnæs et al., 2015). We discretise velocity u, bathymetry R, and drag and stiffness parameters α and β using first-order
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continuous Lagrange elements on a triangular finite element mesh. Thickness is defined to be constant within elements (a DG(0)150

discretisation). The only non-standard aspect of the formulation is in the weak definition of the driving stress ρgH∇zsurface,

which is written as F +W∇R (see Sect. 3 in Koziol et al., 2021, for F and W definitions and the SSA formulation). This

formulation is equivalent to the more standard form of driving stress when H is discretised using continuous finite elements, but

with this form H can be discretised using zero-order discrete-galerkin (DG(0)) elements as well. The continuity equation (4)

is solved using a simple first-order upwind scheme, which is found to be more stable when using a DG(0) thickness function.155

Details of the mesh generation are explained in Sect. 3 when we discuss the study area.

2.3 Notation

To facilitate readability of this and subsequent sections we adopt formatting conventions for different mathematical objects.

Coefficient vectors corresponding to finite-element functions appear as c; other vectors and vector-valued functions as d̆ ∈ Rq;

and matrices as E.160

2.4 Cost function Jc

To calibrate the basal sliding coefficient (α) and the rheological parameter for describing ice stiffness (β) we apply data

assimilation techniques usually used in glaciology (Morlighem et al., 2010; Joughin et al., 2010; Cornford et al., 2015), where

the aim is to find the parameter sets which gives the best fit to ice velocity observations. Our approach augments such data

assimilation techniques by using a Hessian-based Bayesian approach to characterise uncertainty of α and β. In Sect. 2.5 we165

describe how we propagate the errors that result from this calibration into projections of VAF. Here we describe how we invert

for the control parameters via the minimisation of a scalar cost function which takes the general form

Jc = Jc
mis + Jc

reg. (7)

Jc
mis, the misfit cost, is half the square-integral of the misfit between the surface velocity of the ice model and remotely-

sensed observations, normalised by the observational standard deviation. These terms are discretised to implement the control170

method (as described in Sect. 2.2). The misfit cost is

Jc
mis =

1
2
∥ŭobs− ŭ∥2

Γ−1
obs

(8)

Here ŭobs is the observed velocity given as cloud point data (location and velocity value) and ŭ is the velocity estimated via

the SSA approximation, interpolated at ŭobs coordinates. As error covariance is not given, Γobs is a diagonal matrix containing

the standard deviation (STD) of the observations – note that this neglects observational covariance (see Sect. 3.1.3 and Sect.175

6.4 where we discuss observational error covariance).

Jc
reg , the regularisation cost, is imposed to prevent instabilities, and is typically chosen as a Tikhonov operator which pe-

nalises the square-integral of the gradient of the parameter field (e.g., Morlighem et al., 2010; Cornford et al., 2015). It is

defined as

Jc
reg =

1
2
∥c− c0∥2Γ−1

prior

, (9)180
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where c is our hidden field, which depends on both control parameters c = (α,β). c0 is the prior mean and the symmetric

positive definite Γprior is the prior covariance of the control parameters, the construction of which is described below.

2.4.1 Prior distribution of parameters

The prior covariance between α and β is set to zero and, following from Koziol et al. (2021), we define a prior covariance for

each of α and β185

Γprior = L−1ML−1, (10)

where M is the finite element mass matrix, and L is the matrix arising from the finite-element discretisation of the differential

operator

L(·)≡ γ∇2(·)− δ(·). (11)

α0, the prior mean of α, is zero. The prior mean of β is given by190

β0 =
(

I − γ

δ
∇2

)−1

βbgd, (12)

where βbgd is the initial guess, described in Section 3. Our form differs from the square-gradient regularisation sometimes

used in control methods (e.g., Morlighem et al., 2010; Cornford et al., 2015), but avoids infinite variance as the mesh is refined

(Bui-Thanh et al., 2013).

An important aspect of implementing a prior is to choose the strength with which it is imposed. Here γ and δ in (11)195

determine the strength of our prior. If the prior is strong (e.g. γ is very small) it will force the posterior to match the prior;

dragging the posterior PDF away from the control parameter values which the data suggests are more likely (see Sect. 2.5 for the

definition of the posterior PDF of the control parameters). A weak prior imposes only weak restrictions on the plausible range

of parameters – potentially beyond the physically plausible range expected a priori. A weak prior can also present practical

difficulties, as the posterior maximiser can contain undesirable and nonphysical features that lead to non-stable solutions of200

the time-dependent SSA. As γ and δ are nonintuitive, we make use of the following expressions for a characteristic pointwise

variance σ2
c(0) and auto-covariance length scale l0 of each control parameter (see Sect. 2.2 in Lindgren et al., 2011, for details):

σ2
c(0) =

1
(4πγδ)

(13)

lc(0) =
√

γ

δ
(14)

In in Sect. 5.1, we show the impact on the VAF projection uncertainty due to the choice of different prior strengths.205

2.5 Error propagation framework

Finally, our goal is to find the posterior probability density function (PDF) of the control parameters (c) given the observa-

tional data (ŭobs); p(c|ŭobs), and propagate forward the associated uncertainty in time-dependent VAF (denoted here as just
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QT for short). The error propagation framework used here follows from Isaac et al. (2015) and similar studies (Bui-Thanh

et al., 2013; Petra et al., 2014), and has been described in detail by Koziol et al. (2021) – here the key elements are summarised.210

The cost function (7) can be interpreted in a Bayesian sense, with Jc
reg being the negative logarithm of the prior density,

and Jc
mis being the negative logarithm of the likelihood density (each up to a normalisation term). Jc is then the negative

logarithm of the posterior PDF of the control parameters conditioned on the data. The mode of the posterior PDF (i.e. the

maximum a posteriori, or MAP, estimate, assumed here to be unique) is given by the value of the parameters at which Jc

obtains its minimum. In the case of a linear model, the posterior inverse covariance, denoted Γ−1
post, is given by the Hessian215

matrix (here referred to as the ‘Hessian’) of Jc evaluated at the MAP point. In the general case the Hessian defines a Gaussian

approximation for the posterior PDF (as the second order approximation for its negative logarithm at the MAP point) and thus

defines an approximation for the inverse posterior covariance.

If we have estimates of VAF at a given time (6), which depend linearly on the control parameters, and if the posterior (Γpost)

is Gaussian, then the posterior variance of VAF at a time T , is given by220

σ2(QT ) =
(

∂QT

∂c

)T

Γpost

(
∂QT

∂c

)
(15)

with derivatives evaluated at the minimiser of Jc. In the case that Γpost is not Gaussian, or estimates of VAF depend non-

linearly on the control parameters, (15) yields to an approximation of that posterior variance σ2(QT ). We discuss in Sect. 6 the

limitations of these assumptions.

We use the time-dependent adjoint capabilities of FEniCS_ice to find the sensitivities of VAF to the control parameters225

(∂QT

∂c ), for discrete values of T over 40 years. The inverse Hessian Γpost is itself approximated using a low-rank update to the

prior covariance,

Γpost ≈ Γprior −CrΛr (Ir +Λr)
−1CT

r , (16)

where Λr and Cr, respectively, represent the leading r eigenvalues and eigenvectors of the prior-preconditioned misfit Hessian:

230

H̃mis = Γprior

(
∂2Jc

mis

∂c2

)
. (17)

Notably, this decomposition has the quality that the leading eigenvectors (those with the largest eigenvalues) are those most

informed by the data. The leading eigenvectors define the components of the control parameters for which the observations

change the estimated posterior uncertainty, relative to the prior uncertainty, by the largest factor. Thus the retained eigenvectors

of the Hessian, inform in which space of our mesh the model inversion gained the most information from the observations and235

the prior (see Fig. 9 and Sect. 5.1 for details).

Computationally the key ingredients to compute σ2(QT ) are the ability to find a minimiser of Jc, the ability to compute

the derivatives of VAF with respect to the control parameters (∂QT

∂c ), and the ability to compute Hessian information. The

minimisation of Jc can be accelerated using gradient-based methods, if Jc can itself be differentiated with respect to c. Here the

required first and second derivative information is obtained using tlm_adjoint (Maddison et al., 2019), with L-BFGS (Zhu240
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et al., 1997; Morales and Nocedal, 2011) used to perform the minimisation of Jc and SLEPc (Hernandez et al., 2005, 2007)

used to calculate the eigendecomposition. Important points to make are that the eigenproblem requires only the action of the

misfit Hessian, which would be computationally infeasible to form in full. Additionally, the Hessian takes account of the full

nonlinearity of the ice-sheet model, in contrast with the Gauss-Newton approximation to the Hessian (Shapero et al., 2021). In

Koziol et al. (2021) a comparison was made between the two in the context of an idealised problem, and results were minimal.245

For more details on the error propagation framework, see Koziol et al. (2021).

For all the experiments presented in this study, we calculate up to 104 (out of 105) eigenvalues and eigenvectors to ensure

the convergence of σ2(QT ) against the number of eigenvalues (see results in Sect. 5). The uncertainty of VAF at discrete times

σ2(QT ) is then found using (15), which can then be linearly interpolated to find a "trajectory" of uncertainty.

3 Study area, model domain and data sources250

Our study area, shown in Fig. 1, covers part of the Amundsen Sea Embayment (ASE) in West Antarctica and includes three ice

streams: Pope, Smith and Kohler Glaciers (PSK), as well as, the Dotson and Crosson ice shelves. PSK glaciers have exhibited

some of the highest retreat rates in Antarctica throughout the satellite observing record, with their grounding lines receding

over 30 km in recent decades (Scheuchl et al., 2016; Goldberg and Holland, 2022). Their catchment can potentially contribute

up to 6 cm to the global mean sea level (Morlighem et al., 2020), double the global mean sea level contribution of the inventory255

of Earth’s mountain glaciers (when excluding the Antarctic and Greenland periphery, Hock et al., 2023). A complete collapse

of the ice shelves in this area would likely lead to accelerated mass loss from adjacent ice streams, including Thwaites Glacier

(Goldberg and Holland, 2022). Previous modelling studies have shown that past and future retreat of these glaciers is strongly

tied to ocean-forced melting, but that the method of calibration may affect projected rates of ice loss as well (Lilien et al., 2019;

Goldberg and Holland, 2022). As such, and due to the vast quantity of data available for this region, we choose this area to test260

our model error framework in a realistic setting.

The domain is set up by generating an unstructured finite element mesh using time-averaged strain rates computed from

satellite velocity observations (MEaSUREs v1.0 1996 - 2012, Rignot et al., 2014). Additionally, BedMachine Antarctica v2.0

(Morlighem et al., 2020) is used to provide geometry field information and the raster mask from which we define our boundary

conditions; ice/ocean (calving) and ice/ice (edge of domain) boundaries in Fig. 1. The mesh generation occurs in two phases,265

first by generating an initial uniform-resolution mesh of 1000 elements with the mesh generator Gmsh (v.4.8.4 Geuzaine and

Remacle, 2009) and second by refining that mesh with the calculated strain metric in the MMG software (v5.5.2 Dobrzynski,

2012). This generates a finer triangular mesh in the areas of the domain where high resolution is needed (e.g. close the calving

front and in areas where velocities are higher in Fig. 2). The mesh resolution is highly heterogeneous and depends on the

observed strain rates, with a minimum resolution of approx. 200 m. BedMachine Antarctica v2.0 (Morlighem et al., 2020) is270

also used to define the model’s bed, ice thickness and surface elevation fields. The initial guess for β, βbgd, is generated from

the temperature dataset of Pattyn (2010). Based on coupled ice sheet-ocean modelling for the region (Goldberg and Holland,

2022), spatially uniform melt parameters of Mmax = 30 m yr−1 and zth = 600 m were chosen.
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3.1 Velocity input data sources

In the last two decades, ice velocity mapping at the continental scale (Rignot et al., 2011; Gardner et al., 2019, 2018) has275

allowed major advances in the study of polar regions by providing complete observations of the complex flow pattern of ice

sheets and glaciers (Mouginot et al., 2017). Much emphasis has been put on the fast processing of large data volumes and

products with complete spatial coverage. However the metadata of such measurements is often highly simplified regarding the

measurements precision and uncertainty (Altena et al., 2022). Moreover, the methods used to estimate errors in the observed

velocities tend to often produce errors that are unrealistically small (see Fig. 2 or Gardner et al., 2019). A quantification of the280

error estimation or dispersion (standard deviation) for each individual velocity measurement can be important for the inversion

of unknown ice dynamic parameters (e.g. the basal friction coefficient α). Errors in the velocity data can propagate into derived

results in a complex way, making model outcomes very sensitive to velocity noise and outliers (Altena et al., 2022). Therefore,

we use two satellite velocity products to carry out inversion experiments and calibration uncertainty propagation; MEaSUREs

InSAR-Based Antarctica Ice Velocity Map (MEaSUREs v2.0. Rignot et al., 2017; Mouginot et al., 2017) and ITS_LIVE285

surface velocities (Gardner et al., 2019, 2018). To avoid large data gaps in the observations we focus on data acquired between

2013 and 2014 (see Fig 2). MEaSUREs provides surface velocities from July 2013 to July 2014 and ITS_LIVE from January to

December 2014, thus we investigated the effect of the 6 month offset between both products, which turned out to be negligible

(see Fig. A1 of Appendix A). In this section, we describe the acquisition sensors and standard deviation (STD) of each data-set,

as this is relevant to understanding the differences between each product, our experimental design and our results (see Sect. 4.2290

and 5.2).

3.1.1 MEaSUREs v2.0

The grid spacing of this data set is 450 m. According to the product metadata (Rignot et al., 2017; Mouginot et al., 2017),

the 2013–2014 year is a result of the data gathered by several instruments: RADARSAT-2 (CSA, 2012-2016), Sentinel-1

(Copernicus/ESA/EU, 2014-2016) and Landsat-8 (2013-2016). Landsat-8 is an optical sensor and it has mapped most of the295

ice sheet interior and the Antarctic coast, whereas RADARSAT-2 and Sentinel-1, are C-band synthetic aperture radar (SAR)

instruments and have mostly captured velocities in the coast. Mouginot et al. (2017) notice that along the Antarctic coast,

large differences (≥50 m.yr−1) between Landsat-8 and SAR based velocities are found, which can be due to stronger weather,

ionospheric noise, and ongoing velocity changes.

3.1.2 ITS_LIVE300

The grid spacing of this data set is 240 m. Surface velocities are derived only from optical sensor imagery (Landsat 4, 5,

7, and 8) using the auto-RIFT feature tracking processing chain described in Gardner et al. (2018). Data scarcity and/or low

radiometric quality are significant limiting factors for many regions in the earlier product years. However annual coverage is

nearly complete for the years following the Landsat 8 launch in 2013 (Gardner et al., 2019).
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3.1.3 Observational Error model305

The construction of Γobs based on reported errors deserves attention. Neither velocity product reports information on spatial

error covariance, so Γobs is diagonal for both products. We interpret the likelihood PDF, p(ŭ|c), as the density associated with

the likelihood for a single outcome of an observation, as opposed to the distribution of the average outcome over an ensemble

of observations. Essentially, we consider the standard deviation of observations, as opposed to the standard error of a sample

mean.310

The MEaSUREs product reports both error and standard deviation (STD), and we use the latter to construct Γobs. The

ITS_LIVE product does not report standard deviation, but gives the number (count) of measurements for each data point, and

expresses error variance as an inverse weighted sum of individual measurement variances (Gardner et al., 2019). We therefore

express standard deviation of each velocity component as

STDITS = count
1
2 × errITS . (18)315

Note this formula assumes uniform variance over all measurements contributing to a data point, which is not likely to be true.

In Koziol et al. (2021) it is shown for an idealised problem that the diagonality of Γobs leads to ever-decreasing posterior

uncertainty as data density is increased. This is only an issue if errors correlate over the scale of separation of data points, but

assessing error covariance is beyond the scope of this study. Still, this deficiency guides our investigation of the impacts of data

density, described below in Section 4.320

4 Experimental design and rationale

All inversion methods contain regularisation parameters which must be chosen (Barnes et al., 2021) and L-curve analysis (e.g.

Fürst et al., 2015; Jay-Allemand et al., 2011; Gillet-Chaulet et al., 2012; Barnes et al., 2021) is a commonly used technique to

make an informative guess regarding the value of these parameters – although there are alternative approaches (see Sect. 2.4.1

or Waddington et al., 2007; Habermann et al., 2013). Another common aspect of inversions in ice sheet modelling, due to data325

availability, is to use only one type of remotely-sensed ice velocity product for the calibration of the control parameters. In

this section we study how these ongoing practices can impact the forecast of VAF and its uncertainty (see Sect. 4.1 and 4.2).

Additionally, we assess the effect that data density (i.e. decreasing the number of observations) has on the inference (see Sect.

4.3). The experiments described in this section lay the groundwork for the model configurations used in Sect. 5.

4.1 L-curve analysis on the control parameters330

L-curves are used to visualise the trade-off between the magnitude of the regularisation term (how much the control parameters

should vary) and the quality of the fit (how well can we reproduce observations) and are generally created by plotting the

regularisation terms against the misfit. However, there are several ways to construct an L-curve as it depends on the cost

function definition. For consistency with control-method applications in the ice-sheet modelling literature (e.g. Barnes et al.,

2021), we generate L-curves by varying the smoothing parameters γ and δ, rather than the variance and length scale arising335
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from a physical interpretation of the prior (Sect. 2.4.1). To shorten this analysis we show only L-curves for γ in Fig. 3. The

L-curves presented in figures 3e and f are created by using ITS_LIVE surface velocities to find the misfit Jc
mis (7) and by

plotting the regularisation terms against the cost function value Jc, as the regularisation terms γα and γβ (11) vary over several

orders of magnitude (104 to 10−4).

In order to understand the effect that the strength of the regularisation (or prior strength) has on the control parameters, we340

show α and β spatial distributions computed using the extreme values of the L-curves (see figures 3a to d). If the prior strength

is strong (i.e. a large γα) the inverted parameter field (in this case the sliding coefficient) is relatively smooth (see Fig. 3b) and

Jc generally small. The L-curve for γα in Fig. 3e suggests a γα = 100.0 as a reasonable trade-off between the cost function

value and the regularization term. For γβ this value is one order of magnitude smaller (γβ = 10.0, see Fig. 3f). For δγ and δβ

the L-curve analysis (not shown) suggests a value of 1 ×10−5.1 We used those values to conduct the rest of the experiments345

presented in Sect. 4.2 and 4.3.

4.2 Model output computed with different ice velocity observations

We use the regularisation parameters found in the previous section and run all stages of the error model framework (all methods

in Sect. 2) twice using different satellite velocity products for each run; MEaSUREs and ITS_LIVE. We compare the observed

ice velocity from both products in Fig. 4b and find significant differences (≥100 m.yr−1), especially at the ice margins.350

The assimilated states of FEniCS_ice reproduce these differences as shown in Fig. 4a, were we show modelled velocity

differences between the two runs. Consequently; the inverted parameters from both runs are also different (see figures 4c and

d) and thus are the projections of VAF (see Fig 5a). Differences in the output from both inversions are particularly large at the

ice margins, and in the case of the ice stiffness parameter β, the largest differences are found at the Crosson and Dotson ice

shelves (see Fig 4d).355

Fig. 5b shows estimated posterior uncertainty of VAF loss after 40 years from our Hessian-based framework in our L-curve

informed workflows. The uncertainty estimates are on the order of 1010 m3, or 10 km3. Meanwhile, the difference in VAF

loss between the MEaSUREs- and ITS_LIVE-based trajectories is ∼O(1011 m3), i.e. an order of magnitude larger. These

results are seemingly at odds. In other words, our error propagation framework suggests a forecast uncertainty that is one

order of magnitude smaller than the variability in VAF found when using two different satellite velocity products. This leads360

to a contradiction, as it suggests that our observed variability in VAF loss is extremely unlikely. This contradiction could arise

from one or more of the following: i) the regularisation suggested by the L-curve analysis is too strong, i.e. the prior is overly

informative; ii) the observational error covariance matrix used for ITS_LIVE does not capture the true variability of the velocity

field shown in Fig. 4b (see Sect. 3.1.3); and/or iii) there are too many data points informing our cost function. We address point

(iii) in the next section whereas points (i) and (ii) are addressed in sections 5.2 and 5.1.365

1For each regularisation parameter units please refer to Table 1.
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4.3 Effect of observational data subsampling

In this section we develop a metric to evaluate the quality of the model’s inversions if we decrease the number of observations.

In other words, we study the effect that different data densities have on the cost function performance. Similar techniques

have been used to gather information on cross-correlations between two different sets of observations (e.g. covariance between

winds speed observations in Desroziers et al., 2005), here we apply a similar diagnostic test to study the covariance between370

adjacent velocity observations from the same product. Additionally, Koziol et al. (2021) show that data density affects the

posterior covariance of the control parameters for an idealised experiment, thus we use the results of this metric to test in Sect.

5.2, how data density affects the posterior uncertainty of VAF. The test has the following steps:

1. Produce several training data-sets of observed ice velocity by retaining different percentages of data points from a given

set of observations (e.g. ITS_LIVE).375

2. Use those training sets to compute inversions of α and β using our L-curve informed prior configuration.

3. Use the α and β results from step 2 to evaluate the cost function on velocity points that were not used to compute the

inversions (i.e. using a validation data-set; observations from a different product such as MEaSUREs).

Based on both products metadata (see Sect. 3.1), we consider MEaSUREs and ITS_LIVE velocities to be two independent

realisations of the state of the ice sheet at a given time and location. Hence, we use ITS_LIVE velocities for training and380

MEaSUREs for validation.

To construct the training sets, we divide the domain into cells of different sizes (different grid-spacing) and systematically

drop observations by iterating over the x and y directions of the ITS_LIVE grid. We select sub-samples of the data by retaining

corner and center observations from each cell per iteration – i.e. upper and middle cell-points. An example of a training data

set is shown in Fig. 6a, where we retain only 1.6% of the velocity observations. To construct the validation set, we downscale385

MEaSUREs to the ITS_LIVE resolution and drop problematic data points (see figures 6d to f), i.e. locations where MEaSUREs

and ITS_LIVE present velocity differences higher than 50 m.yr−1 (as shown in Fig. 4b).

Results of the test (see Fig. 7) demonstrate that our framework provides robust inversions for the drag and stiffness param-

eters α and β. Additionally, these results reveal that the value of the cost function Jc does not change significantly even when

we retain only 1.6% of the data, which suggests that a large amount of data points may be redundant when inverting for the390

control parameters, with potential implications for the error propagation of VAF (see the results from Sect. 5.2). However,

observations are needed to inform the model in critical areas of the domain (i.e. at the grounding line or calving fronts) and if

we drop observations in a random manner the performance of the cost function may decrease.

5 Results

Results from Sect. 4.2 show that if we use the prior strength suggested by the L-curves and the original ITS_LIVE velocity395

and standard deviation (STD), our framework underestimates the posterior uncertainty of VAF loss after 40 years by one order
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of magnitude (see Fig. 5b). More precisely, we calculate a posterior uncertainty which suggests that the difference in projected

VAF (estimated by using two velocity products that nominally observe the same physical properties to calibrate our model), is

extremely unlikely (see Fig. 5a). To achieve a posterior uncertainty that reflects the same order of magnitude – i.e. ∼ O(1011

m3), we carry out two more experiments aiming to understand how the uncertainty in forecast of VAF is affected by the use400

of different strengths of prior (Sect. 5.1) and different versions of the ITS_LIVE data (Sect. 5.2). Additionally, we study the

impact of using different sliding laws on the posterior uncertainty of VAF (Sect. 5.3).

5.1 Impact of using different prior strengths on the posterior uncertainty of VAF

We keep the same velocity input for all model configurations trialed in this section (i.e. retaining only 1.6% of the ITS_LIVE

data and adjusting the observations STD, as explained in Sect. 5.2), but vary the strengths of the prior. We experiment with the405

variance σ2
c(0) and auto-covariance length scale lc(0) of each control parameter instead of using priors suggested by L-curve

analysis, as these definitions (see Sect. 2.4.1) have a more physical meaning. We calculate prior strengths using (13) and by

making an informed guess on σ2
c(0) and lc(0) based on existing prior knowledge and physical concepts that define each control

parameter.

From the literature (Pattyn, 2010; Khazendar et al., 2011; Still et al., 2022) we know that the spatial pattern of the ice stiffness410

is not uncorrelated. The advection of colder tributary glacier ice onto the ice shelf is well represented by the vast expanses of

stiffer ice originating at the grounding line and extending downstream for tens of kilometers (see panels c and d of Fig. 3),

whereas observed deformation patterns at the shear margins (Khazendar et al., 2011; Still et al., 2022) suggest the presence of

weaker deformable ice, where the prominent formation of crevasses occur. Thus we keep an auto-covariance length scale lβ(0)

for β equal to 1 km in all prior configurations, as crevasses can be present within that length scale. In future studies this length415

scale could be set by conducting a detailed spatial statistical analysis of crevasse maps derived from remote sensing, which is

beyond the scope of this study. For σ2
β(0) we trial variance values computed from the STD of the ice stiffness (B) initial guess

(see details in Sect. 3).

For the sliding parameter we define auto-covariance length scales lα(0), that are slightly larger than those assumed for β

(i.e. 2 to 3 km); as observations from airborne radar over the ice sheet (De Rydt et al., 2013) verify that for fast-flowing ice420

streams, the surface topography carries important information about the bed with wavelengths between 1 and 20 times the

mean ice thickness (≥ 1 km) thus controlling basal sliding at similar scales. Additionally, model experiments described in

Gudmundsson (2008) show that the SSA overestimates the effects of bed slipperiness perturbations on the surface profile for

wavelengths less than about 5 to 10 times the mean ice thicknesses, the exact number depending on values of surface slope

and slip ratio. Variance values are less intuitive, thus we trial σ2
α(0) values over several orders of magnitude in order to vary the425

prior strength imposed on α.

The resultant prior strengths are shown in Table 1 and the estimated posterior uncertainty of VAF for each prior configuration

is shown in Fig.8a (solid lines), both are ordered from weak to strong. We find that a strong prior on the sliding parameter (such

as the one suggested by the L-curve analysis), suppresses the error propagation from the satellite data onto projections of VAF.

Most of our prior experiments focus on α however, we also trial our error propagation framework changing the variance of β430
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(see Table 1). Compared to prior experiments run on α, changing β priors show little influence in the posterior uncertainty of

VAF. We also test weaker priors for both parameters, but these experiments lead to non-stable solutions of the time-dependent

SSA as the parameters present undesirable and nonphysical features (not shown).

Our low-rank approximation to the Hessian (16) makes the assumption that if additional eigenvectors were retained (i.e. if r

were larger) the estimated posterior uncertainty σ(QT ) would not change considerably. To test this we examine the marginal435

change in σ(QT ) for each r (see Fig. 8c), which exhibits an approximately exponential decay with r. To estimate the effect of

the low-rank approximation we assume that the decay rate holds up to r = N , where N is the full problem size, and that all

neglected terms in (16) make a negative contribution to σ(QT ) – i.e. we estimate the “worst case” where every extra eigen-

vector/eigenvalue calculated decreases the uncertainty (See Appendix B for details of this estimate). The resulting estimated

STD’s of VAF for an infinite number of eigenvalues σest
full are shown in the captions of Fig. 8c, and indicate that for all prior440

strengths, even in the worst case, posterior uncertainties decrease by a small proportion and more importantly are not as small

as those values seen in our L-curve investigations. We perform this same check in all remaining experiments and observe

similar results (see Fig 8d and Fig. 10f).

Finally, the retained eigenvectors from the Hessian can be interpreted as those modes in the parameter space that change

the approximated posterior uncertainty relative to the prior uncertainty. We show in Fig. 9 the leading eigenvectors (see panels445

a to f) for the prior configuration highlighted in Table 1. The dominant eigenvectors of the ice stiffness parameter field β

(panels b, d, and f), suggest that we gained more information regarding this parameter at the grounding line. The eigenvector

corresponding to the smallest eigenvalue (Fig. 9h), is increasingly more oscillatory (and thus informs at a smaller length scales

in the parameter space) and is increasingly relatively less informed by the velocity observations; such patterns are also present

in similar studies (e.g. Isaac et al., 2015).450

5.2 Impact of using different ice velocity observations on the posterior uncertainty of VAF

Contrary to the previous section, here we keep the same prior strength for all the experiments but modify the velocity input.

We modify the original ITS_LIVE data by decreasing the amount of observations and by adjusting the STD of each velocity

component to match the following condition:

vxstd →max(vxstd, abs(vxI − vxM )), (19)455

vystd →max(vystd, abs(vyI − vyM )). (20)

where vxstd and vystd are standard deviations of velocity components, and I and M subscripts refer to ITS _LIVE and

MEaSUREs, respectively. In other words, where the original uncertainty of the data is small, we replace those coordinates

STD with the absolute difference between MEaSUREs and ITS _LIVE velocities at that same location. Figures 6b and c show

this error adjustment for each velocity component. We generate three versions of the ITS _LIVE data by; i) retaining all data460

points but adjusting the STD, ii) retaining only 1.6% of the data (inline with the results from the observational data subsampling

test) and adjusting the STD and iii) retaining only 1.6% of the data but keeping the original STD.
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We run our error propagation framework using these three data sets (and the weak prior configuration highlighted in Table 1)

and compute VAF posterior uncertainties as shown in Fig. 8b (see solid lines); uncertainties in this figure are plotted from high

to low (from dark to light blue) and represent a 95% confidence interval. The effect of retaining only 1.6% of the observational465

data leads to a slight decrease in posterior VAF uncertainty – which is counterintuitive as one would expect fewer observations

to give a larger posterior calibration uncertainty. However, the VAF uncertainty (15) is derived from both calibration uncertainty

and VAF sensitivity. The latter differs between the experiments, as can be seen from the projection of prior uncertainty on to

VAF sensitivity (blue dashed lines). The adjustment of observational STD increases VAF uncertainty at approximately 5 to 15

years, but has less impact after. Importantly however, the overall impact on the posterior uncertainty of VAF loss after 40 years470

is small relative to the effect of changing the prior strength (see solid line differences between panels a and b of Fig. 8).

5.3 Impact of using different sliding laws on the posterior uncertainty of VAF

In previous configurations we use the Weertman-Budd sliding law, but due to the sensitivity of the time-dependent ice sheet

model to the choice of sliding law (Brondex et al., 2019; Kazmierczak et al., 2022; Barnes and Gudmundsson, 2022) we trial

our error propagation framework using the Cornford law and compare qualitative differences from both laws in Fig 10. We use475

the same velocity constraints (i.e. same as in Sect. 5.2) and consider only a single prior distribution (the highlighted parameters

in Table 1) but modifying σ2
α(0) as basal stress does not scale with effective stress in the interior.

Using the inverse of the low rank update approximation for the cost function Hessian (Γpost) we can estimate the posterior

standard deviation (STD) of α and β. We divide the mesh into ‘patches’ of approximately 1 km in diameter, and for each patch

we compute the mean of each control parameter. We treat this mean as a new quantity of interest (QoI) and compute its STD480

via the same framework as projections of VAF loss (see Sect. 2.5). Essentially, we visualise in panels a to c of Fig. 10 the

posterior of a ‘local average’ of α and β.

For both sliding laws the sliding parameter α is more uncertain close to the grounding line and at the Bear Peninsula (see Fig.

10 panels a and b) where uncertainties from the ITS_LIVE product are higher (see Fig 2 panels b and c). The large uncertainty

just at the grounding line in the Cornford results is due to the insensitivity of basal stress to α when the ice is near floatation485

(see sensitivity analysis below). For the ice stiffness parameter β the most uncertain areas of our domain are the grounding

lines of the PSK glaciers and the Crosson ice shelf (see panel c of Fig. 10) – these are the areas where the speed from the two

satellite products show significant differences (see Fig. 4b).

For both sliding laws, VAF uncertainty reaches a similar order of magnitude ∼O(1011) m3 at year 40 (Fig 10e). However,

a quantitative comparison is somewhat misleading, as the impact of prior strength is is not investigated for the Cornford law.490

There are qualitative differences however: the posterior uncertainty of VAF for each sliding law saturates at a different rate,

with the posterior uncertainty of the Cornford law configuration growing at a faster rate after year 10. We compare sensitivity

maps of the model’s VAF estimates to the basal friction coefficient α2 at year 10 and 40, normalised to year 40 sensitivities

for the respective experiment (see Fig. 11). VAF sensitivities at year 10 computed using the Weertman-Budd law have a higher

sensitivity to the basal friction coefficient relative to those computed using the Cornford law – particularly at the grounding495

line of Kohler Glacier (see panels a and c of Fig. 11). Additionally, Fig. 11 shows that at year 40 both sliding laws have similar
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sensitivities. In this section we only show sensitivity maps for α2, sensitivities to the ice stiffness are shown in Fig. A2 of

Appendix A.

6 Discussion

The efficiency of our error propagation framework allows us to explore how different prior strengths, velocity inputs and sliding500

laws affect the uncertainty of VAF projections. We find that by choosing different satellite ice velocity products (that nominally

observed the same physical properties to calibrate FEniCS_ice) our model leads to different estimates of VAF loss after 40

years (see Sect. 4.2). This effect may be less important for ice streams strongly coupled to ocean forcing (Lilien et al., 2019;

Goldberg and Holland, 2022), but could be more influential for unstable margins (Joughin et al., 2014). We use such difference

to quantify (in a robust way) the variance that projections of VAF are expected to have after 40 years and identify prior strengths505

that can reproduce this expected variability (see Sect. 5.1). We demonstrate that if we use prior strengths suggested by the L-

curve analysis, as is typically done in ice-sheet calibration studies, our uncertainty quantification is not able to reproduce this

level of variability. The regularisation suggested by the L-curves is too strong and thus suppresses the error propagation from

the satellite data into the QoI, resulting in VAF projections with quantified uncertainties that are smaller than those suggested

by our 2-member “sample” of observed velocity fields. Additionally, our analysis suggests that the error given by the velocity510

data cannot fully explain the variability in ice velocities observed in Fig. 4b and that large amounts of data points may be

redundant, with implications for the error propagation of the QoI.

Our ice sheet flow model described in Sect. 2 can be thought of as a (nonlinear) mapping from a set of input fields, which

might be unobservable or poorly known (α and β fields), to a set of output fields, which might correspond to observable

quantities (e.g. satellite surface velocity observations). In FEniCS_ice, the parameter-to-observable map f̆ is a composition515

of two functions: the solution of the SSA equations (see Sect. 3 of Koziol et al., 2021, for details) and the misfit term Jc
mis (8).

Our error propagation framework considers the ice sheet inverse problem as a linearised inverse problem; by linearisation

we mean that f̆ is linearised about the MAP point. Thus the framework relies on a number of key assumptions related to this

and other issues:

1. (i) The observational errors and prior distributions are defined as Gaussian distributions, (ii) the parameter-to-observable520

map f̆ is linear (or close to linear), and (iii) the Quantity of interest (i.e. VAF) at a given time depends linearly (or nearly

linearly) on the control parameters – in other words, the parameter-to-QoI map is close to linear.

2. The difference between velocities predicted by the model and the observations is due only to measurement errors (we

assume zero model error see Sect. 2.4 – or more precisely consider conditional posterior information given the model).

3. The observational error covariance matrix is diagonal, i.e. errors in observations do not correlate spatially.525

4. The posterior covariance of the control parameters Γpost is fully sampled with the number of eigenvectors and eigenval-

ues that we retain from the Hessian.

17

https://doi.org/10.5194/tc-2023-27
Preprint. Discussion started: 3 March 2023
c© Author(s) 2023. CC BY 4.0 License.



Note (1).(i,ii) above implies a Gaussian posterior. We already test (4) in Sect. 5.1 and address (1)-(3) in the following

subsections.

6.1 Linear dependence of parameter-to-observable and Quantity of Interest maps with respect to the control530

parameters.

FEniCS_ice computes a second-order approximation to the posterior covariance of the control parameters Γpost (via the

eigendecomposition of the cost function Hessian evaluated at the MAP point, see 2.5) and propagates forward the associated

calibration uncertainty in time-dependent estimates of VAF loss (our QoI). The posterior PDF of c is not guaranteed to be

Gaussian due to the nonlinearity of the Stokes equations that describe f̆ . Furthermore, the propagation step (Eq. 15) is based535

on a linear transformation of a Gaussian random variable, and assumes that QT (c), the parameter-to-QoI map, is well-described

by linear sensitivities.

Petra et al. (2014) test the Gaussianity of the parameter-to-observable map by sampling from the posterior PDF of the hidden

field c via two different Markov chain Monte Carlo (MCMC) sampling methods (Tierney, 1994); the Newton MCMC method

and a new stochastic Newton method with a MAP-based Hessian. They solve a two-dimensional flow-line ice sheet inverse540

problem with a moderate number of parameters (∼ 100) and conclude that the most non-Gaussian behavior for f̆ occurs in

the directions of the domain with the largest variance in the observations, thus f̆ deviates from a linear approximation in

those directions (Petra et al., 2014; Isaac et al., 2015). Nevertheless, in the directions where the variance is large, the posterior

covariance of the control parameters will be significantly influenced by the prior – which is also defined as Gaussian thus it is

expected that the Gaussianity assumption will hold and f̆ will be weakly linear in such directions. Therefore, a Hessian-based545

approximation (such as the one describe in Sect. 2.5) to the posterior covariance of the parameters may be appropriate despite

the nonlinearity of f̆ (Petra et al., 2014).

Koziol et al. (2021) test the linearity of the FEniCS_ice parameter-to-QoI map for an idealised ice sheet flow problem

(Pattyn et al., 2008) through a simple Monte Carlo sampling of the posterior PDF of c. The study finds strong agreement with

the linearly propagated posterior covariance when there is a moderately strong prior, but slightly poorer agreement with a weak550

prior.

Unfortunately, due to the size of our parameter space, testing the Gaussianity of the posterior PDF of c is beyond the scope

of our study. Similarly, sampling the posterior PDF to validate the propagation of calibration uncertainty to the QoI as in Koziol

et al. (2021) would be intractable for our more realistic setting. Instead, we develop a simple test to check the linearity of the

parameter-to-QoI map and how this linearity is affected when we impose different strengths of prior. We test the linearity of555

the parameter-to-QoI mapping by using data from Sect. 4.2 to compute the following dot products:

∂QI
T

∂αI
· (αI −αM ), (21)

∂QI
T

∂βI
· (βI −βM ). (22)
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Here I and M indicate model output computed by either using ITS_LIVE or MEaSUREs velocities. We visualise the

linearity of the VAF operator by plotting each dot product together with the absolute difference between VAF trajectories560

computed using ITS_LIVE and MEaSUREs. Additionally, we repeat this test for a stronger prior configuration by imposing a

strong regularisation on β (stronger than the one suggested by the L-curve analysis, γβ = 100.0).

Results from both tests are shown in Fig 12 and verify that VAF estimates over time are highly dependent on α and that the

linearity of the parameter-to-QoI map depends on the strength of the regularisation (as in Fig. 12b and in Koziol et al., 2021).

The main objective of this study is to propagate calibration uncertainty into projections of VAF loss. We find that in order to do565

so, we must impose a weaker prior on the control parameters than widely-used methods (i.e. L-curve analysis) would suggest.

But as shown above, in doing so we might need to compromise on the linearity of the parameter-to-QoI map. Moreover, as

shown in Koziol et al. (2021), a weaker prior means a weaker spectral decay of the prior-preconditioned Hessian spectrum,

requiring to retain more of its eigenvectors (see also Sect. 5.1).

In other words, to avoid the prior probability from overwhelming the likelihood in our Bayesian inversion, we are required570

to examine a regime where we compromise the linearity of the time-dependent model in certain areas of the domain. Still,

we expect that the framework can provide an “order-of-magnitude” estimate of the contribution of calibration uncertainty

to QoI uncertainty. Although not previously applied to a problem as large as the present study, Stochastic Newton MCMC

(Martin et al., 2012; Petra et al., 2014), which does not rely on a Gaussian assumption, may provide a more robust estimate

in such regimes. Importantly, to be tractable this method requires a reasonable estimate of the posterior density (the “proposal575

density”) – and such an estimate can be provided using the low-rank Hessian approximation generated within our framework.

Thus Stochastic Newton MCMC may be a viable approach for non-Gaussian uncertainty quantification in future studies.

6.2 Qualitative inspection of the model’s structural and forcing uncertainty

We only quantify calibration (parametric) uncertainty in projections of marine ice sheet loss. We do not quantify structural

or model uncertainty, i.e. errors that arise from the discretisation of the inverse problem (Barnes et al., 2021) or from the580

formulation of the model and its ability to represent the physics of the system (Hill et al., 2021). In Sect. 5.3 we trial our error

propagation framework with different sliding laws and examine the implications for projections of VAF loss (see Fig. 10);

though quantifying the likelihood of various sliding-law formulations is beyond the scope of our study.

In this section we look at uncertainty due to the use of different physics and discretisation to solve the ice-sheet momentum

balance. We do this by using a second ice sheet model: the STREAMICE module of MITgcm (Goldberg and Heimbach, 2013),585

which solves a depth-integrated balance that accounts for vertical shearing (absent from the shallow ice-stream approximation;

Goldberg, 2011). STREAMICE solves the momentum balance on a regular rectangular grid, a distinct discretisation from

FEniCS_ice. With a uniform 500 m grid, we simulate with STREAMICE an instantaneous velocity field (without time

evolution), using the inverted parameter fields of FEniCS_ice (interpolated to the STREAMICE grid) and the same geometry

and boundary conditions described in Sect. 3. The particular fields of α and β are from our L-curve analysis (Sect. 4.1). We590

compare both models’ surface velocities and find differences on the order of 100-200 myr−1, particularly in the fastest-flowing

ice areas and on the ice shelves (see Fig. A3). FEniCS_ice and STREAMICE have different approximations to Stokes flow,
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employ different treatments of the grounding line in their equations, and have very different resolution, which may lead to

this disagreement. Barnes et al. (2021) find similar results, when two other adaptive mesh, finite-element SSA models are

compared to STREAMICE through the same diagnostic experiment. The authors show that these diagnostic calculations are595

not indicative of the performance of the models in time-dependent simulations (see Fig. 6 of Barnes et al., 2021, where all

models reach similar projections of VAF).

We emphasise this comparison cannot quantify structural uncertainty, but can inform us (qualitatively) of the effects of

implementing different discretisations and grounding line formulations in the model numerics.

6.3 Relevance of calibration uncertainty versus structural and forcing uncertainty600

As previously mentioned, structural uncertainty is neglected in our study and we use a very simple ocean forcing parameter-

isation, for which uncertainties are not considered. We make clear that our aim is to quantify calibration uncertainty alone;

however, it is only worth doing so if the contribution of calibration uncertainty to forecast uncertainty is non-negligible, and/or

the framework represents nontrivial steps toward incorporating these other sources of uncertainty. Regarding the former, the

existing literature provides some clues as to whether calibration uncertainty is important. Goldberg and Holland (2022) carry605

out coupled ice sheet-ocean modelling experiments for the PSK glaciers region, and show that the type of calibration of ice

model parameters (i.e. whether fit to observed thinning is accounted for) strongly determines ice loss over 20-30 years; beyond

this point, ice loss depends on far-field ocean conditions. For other catchments, this “crossover time” could be shorter, or longer

– meaning that uncertainty in calibration could inform projection uncertainty on the multidecadal scale before it is overtaken

by climate uncertainty. The short-term persistence of calibration errors is echoed in other types of cryospheric modelling: As-610

chwanden and Brinkerhoff (2022) showed that the introduction of satellite-based information strongly reduced uncertainty in

short-term projections of Greenland ice loss, but that this relative information gain was greatly reduced by 2100, particularly

under strong climate forcing scenarios. Still, calibration uncertainties should not be dismissed even if they are overwhelmed

by climate forcing on long time scales: there are strong reasons why short-term (multidecadal) projections of ice loss are key

for planning and mitigation (Bassis, 2022).615

Moreover, our framework of estimating calibration uncertainty can easily be expanded to account for forcing uncertainty.

Provided that forcing uncertainty is independent of parameter uncertainty, the contribution of forcing to projection uncertainty

is additive, and can be found using an expression similar to Eq. 15. Importantly, such a calculation is independent from the

estimation of posterior parameter uncertainty through eigendecomposition of the Hessian – which is by far the most costly

component. This is not true of model uncertainty: our likelihood PDF p(ŭ|c), which gives the probability of observable ve-620

locity conditioned on parameters and the model, and hence neglects model uncertainty. A potential way to incorporate model

uncertainty – once it is quantified – is to adjust the observational error covariance used in the likelihood. A similar approach

has been used in the Bayesian Error Approximation method of Babaniyi et al. (2021).
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6.4 Accuracy of observational error model

We draw the tentative conclusion that, for our study area, the choice of prior distribution informed by L-curve analysis is overly625

informative and underestimates calibration uncertainty. This is based on the fact that, with such a prior, the posterior VAF is

an order of magnitude smaller than the variability in VAF between two widely used velocity products as constraining data.

Essentially, the two products are treated as a 2-member sample from a distribution describing the true surface velocities. While

this is a very small sample size, our assessment makes the assumption that (i) the posterior VAF distribution is Gaussian (which

is explored above) and (ii) the two members are likely sampling outcomes under our observational error model – and therefore630

that the variation of ∼O(1011 m3) is not a statistical outlier – thus our Hessian-based assessment must be too small.

A further assumption in our assessment is that our observational error model is accurate. As described in Sect. 3.1.3, we use

reported errors and standard deviations as diagonal terms in Γobs and assume zero spatial error covariance. Error magnitudes

may be underestimated – although we somewhat account for this by adjusting observational errors based on differences between

the products (Sect. 5.2). Additionally, not accounting for spatial error correlation could underestimate calibration uncertainty,635

as shown in the idealised experiments of Koziol et al. (2021). It is possible that improved assessments of spatial observational

error covariance may be needed to accurately quantify calibration uncertainty when calibrating ice-sheet models with satellite-

based data. Such approaches have been used in weather data assimilation Tabeart et al. (2020).

7 Conclusions

This study set out to apply FEniCS_ice error propagation framework to a realistic setting in West Antarctica (which includes640

three ice streams: Pope, Smith and Kohler Glaciers) and infer from satellite velocity observations two important unknown

parameters in ice dynamics and its uncertainties; the basal sliding friction coefficient (α) and the rheological parameter for

describing ice stiffness (β). As in many other ice-sheet modelling studies we use a control method to calibrate grid-scale flow

parameters. However, our framework augments the control method with a Hessian-based Bayesian inference approach, which

characterises the posterior covariance of the inverted parameters. We project calibration uncertainty forward in time and onto645

projections of volume above flotation (VAF).

We find that by choosing different satellite ice velocity products (that nominally observed the same physical properties to

calibrate FEniCS_ice) our model leads to different estimates of VAF after 40 years or to different projections of sea-level

rise contribution. We use this difference in model output as an order-of-magnitude estimate of the variance that projections of

VAF should have after 40 years and identify prior strengths that can reproduce that variability. We demonstrate that if we use650

prior strengths suggested by L-curves, as is typically done in ice-sheet calibration studies, our uncertainty quantification is not

able to reproduce that same variability. The regularisation suggested by the L-curves is too strong and thus suppresses the error

propagation from the satellite data into VAF projections with quantified uncertainties that are smaller than those suggested by

our 2-member “sample” of observed velocity fields. Additionally, our experiments suggest that large amounts of data points

may be redundant, with implications for the error propagation of VAF.655
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We inspect qualitatively one aspect of structural uncertainty by trialing our error propagation framework with two different

sliding laws (Weertman-Budd and Cornford laws). The posterior uncertainty of VAF evolves differently for the two parameter-

isations, with the Weertman-Budd uncertainty saturating relatively quickly while that of Cornford steadily increases. This may

be due to differing patterns of sensitivity of VAF to the sliding parameters, particularly near the grounding line.

Finally, our framework alone does not fully quantify sea-level rise forecast uncertainty, but represents an important step.660

Further improvements to our method could be to (i) quantify calibration uncertainty through Stochastic Newton Markov chain

Monte Carlo (MCMC) using our Hessian eigendecomposition as the proposal density, (ii) take into account model error in the

likelihood probability density function and (iii) take into account forcing uncertainty in the error propagation framework.

Code availability. The version of tlm_adjoint used in this manuscript is available in a permanent DOI repository (https://zenodo.

org/badge/latestdoi/452296839). The FEniCS_ice software together with the application of the code to a real domain are coded in the665

Python language and licensed under the GPL-3.0 license. The latest version of the FEniCS_ice code is available on Github (https:

//github.com/EdiGlacUQ/fenics_ice), the documentation website of the model is under construction but a user guide is provided (https:

//github.com/EdiGlacUQ/fenics_ice/tree/main/user_guide). The code used to generate all figures and analyses of this study is available in a

permanent DOI repository (https://doi.org/10.5281/zenodo.7615259) and on Github (https://github.com/bearecinos/smith_glacier) as well as

the FEniCS_ice version used for this study (https://zenodo.org/badge/latestdoi/101511241). We have constructed a documentation website670

for the application of the model to the PSK Glaciers domain (https://github.com/bearecinos/smith_glacier/wiki) where we explain in detail

the installation of the code, the preparation of input data and how to run and visualise the experiments presented in this study.

Data availability. The output data of the model is available in the following permanent DOI repository https://doi.org/10.5281/zenodo.

7612243. Information about how to read and plot the data can be found in the Smith repository wiki, see: https://github.com/bearecinos/

smith_glacier/wiki.675

Appendix A: Extra figures

A1 ITS_LIVE 6 month offset speed change

To study the 6 month offset between ITS_LIVE and MEaSUREs velocities – i.e. from July 2014 to December 2014, we subtract

from the 2018 ITS_LIVE velocity mosaic, data acquired in 2014 and divide this by 8 in order get the monthly changes (see

Fig. A1a). The effect of the 6 month offset between both products is negligible compared to the difference observed in Fig. 4b680

and to the speed ratio shown in Fig. A1b. However, there are significant differences (over a small area) at the calving front of

the Crosson Ice shelf (see Fig. A1a).
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A2 Sensitivity of VAF to the ice stiffness (B)

We compare sensitivity maps of the model’s VAF estimates to the ice stiffness B (or β2) at year 10 and 40 (see Fig. A2). VAF

projections are more sensitive to the ice stiffness at the grounding line of the PSK Glaciers and at the Crosson Ice shelf. In685

future studies, these sensitivity maps and the ice stiffness spatial distribution could be correlated to detailed spatial maps of

crevasses in the area.

Appendix B: Convergence of the estimated posterior uncertainty σ(QT ) with the number of eigenvectors

For each successive eigenvalue-eigenvector pair (λr, Cr) we construct the low-rank approximation to the posterior covariance

using Eq. 16, and find the associated approximation to σ(QT ) by projecting the estimated covariance on to the QoI (Eq. 15).690

We refer to this iterate here as σr – the posterior QoI uncertainty using the leading r eigenvectors – and to the difference

σr −σr−1 as ∆σr.

We observe that, for sufficiently large r, the absolute change with r can be represented reasonably well by an exponential

decay i.e.

|∆σr|= d0b
r (B1)695

for some b smaller than 1 (Fig. 8(c,d)). Assuming this to hold as r becomes large, we can estimate a lower bound for σ(QT ) =

σN (where N is the parameter dimension) with a geometric sum. Specifically, we find the d0 and b that best fit |∆σr| for

rth ≤ r ≤ rM , where rth is inferred from the decay of |∆σr| and rN is the number of eigenpairs retained (in our case 104).

The relationship given by Eq. B1 then implies for M > N

σM = σN +
M−1∑

r=N+1

∆σr700

≤ σN − d0b
N

(
1− bM−N

1− b

)

< σN −
d0b

N

1− b
. (B2)

In Sect. 5 we use this result (with rth = 3000) to estimate a lower bound for the posterior uncertainty of QT without low-rank

approximation. The calculation is done at the final time i.e. for T = 40 a only. We emphasise that this calculation is purely

heuristic, and we are unaware of a theoretical lower bound for σM . Due to the tendency of the shallow-shelf approximation to705

filter high spatial frequencies in basal parameters (Gudmundsson, 2008), it is unlikely that |∆σr| will decay more slowly than

predicted by Eq. B1, and it may even decay more quickly. However due to the large size of the parameter space (105) it is not

tractable to find the full spectrum, so the estimate is not testable for this problem.

Finally, other studies use eigenvalue magnitude as a criterion for truncating the spectrum (e.g., Isaac et al., 2015). More

specifically, eigenvectors are retained up to an index r such that λr

λr+1 ≪ 1. We note this constraint alone does not ensure710
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that the contribution to QoI uncertainty arising from the truncated part of the spectrum is negligible, even if the marginal

contribution associated with each individual eigenpair is small.
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S., and Zwinger, T.: Benchmark experiments for higher-order and full-Stokes ice sheet models (ISMIP HOM), The Cryosphere, Volume875

2, Issue 2, 2008, pp.95-108, 2, 95–108, 2008.

Petra, N., Martin, J., Stadler, G., and Ghattas, O.: A Computational Framework for Infinite-Dimensional Bayesian Inverse Problems, Part II:

Stochastic Newton MCMC with Application to Ice Sheet Flow Inverse Problems, SIAM Journal on Scientific Computing, 36, A1525–

A1555, https://doi.org/10.1137/130934805, 2014.

Rignot, E., Mouginot, J., and Scheuchl, B.: Ice Flow of the Antarctic Ice Sheet, Science, 333, 1427–1430,880

https://doi.org/10.1126/science.1208336, 2011.

Rignot, E., Mouginot, J., and Scheuchl, B.: MEaSUREs InSAR-Based Ice Velocity of the Amundsen Sea Embayment, Antarctica, Version

1, https://doi.org/10.5067/MEASURES/CRYOSPHERE/nsidc-0545.001, 2014.

Rignot, E., Mouginot, J., and Scheuchl, B.: MEaSUREs InSAR-Based Antarctica Ice Velocity Map, Version 2,

https://doi.org/10.5067/D7GK8F5J8M8R, 2017.885

Robel, A. A., Seroussi, H., and Roe, G. H.: Marine ice sheet instability amplifies and skews uncertainty in projections of future sea-level rise,

Proceedings of the National Academy of Sciences, 116, 14 887–14 892, https://doi.org/10.1073/pnas.1904822116, 2019.

Scheuchl, B., Mouginot, J., Rignot, E., Morlighem, M., and Khazendar, A.: Grounding line retreat of Pope, Smith, and Kohler

Glaciers, West Antarctica, measured with Sentinel-1a radar interferometry data, Geophysical Research Letters, 43, 8572–8579,

https://doi.org/https://doi.org/10.1002/2016GL069287, 2016.890

Schoof, C.: A variational approach to ice stream flow, Journal of Fluid Mechanics, 556, 227–251,

https://doi.org/10.1017/S0022112006009591, 2006.

Sergienko, O. V., MacAyeal, D. R., and Thom, J. E.: Reconstruction of snow/firn thermal diffusivities from observed

temperature variation: application to iceberg C16, Ross Sea, Antarctica, 2004–07, Annals of Glaciology, 49, 91–95,

https://doi.org/10.3189/172756408787814906, 2008.895

Seroussi, H., Nakayama, Y., Larour, E., Menemenlis, D., Morlighem, M., Rignot, E., and Khazendar, A.: Continued retreat of Thwaites

Glacier, West Antarctica, controlled by bed topography and ocean circulation, Geophysical Research Letters, pp. 6191—-6199,

https://doi.org/10.1002/2017GL072910, 2017.

Shapero, D. R., Badgeley, J. A., Hoffman, A. O., and Joughin, I. R.: icepack: a new glacier flow modeling package in Python, version 1.0,

Geoscientific Model Development, 14, 4593–4616, https://doi.org/10.5194/gmd-14-4593-2021, 2021.900

Still, H., Hulbe, C., Forbes, M., Prior, D. J., Bowman, M. H., Boucinhas, B., Craw, L., Kim, D., Lutz, F., Mulvaney, R., and

Thomas, R. E.: Tidal Modulation of a Lateral Shear Margin: Priestley Glacier, Antarctica, Frontiers in Earth Science, 10,

https://doi.org/10.3389/feart.2022.828313, 2022.

Stuart, A. M.: Inverse problems: A Bayesian perspective, Acta Numerica, 19, 451–559, https://doi.org/10.1017/S0962492910000061, 2010.

Tabeart, J. M., Dance, S. L., Lawless, A. S., Migliorini, S., Nichols, N. K., Smith, F., and Waller, J. A.: The impact of using reconditioned905

correlated observation-error covariance matrices in the Met Office 1D-Var system, Quarterly Journal of the Royal Meteorological Society,

146, 1372–1390, https://doi.org/https://doi.org/10.1002/qj.3741, 2020.

Tarantola, A.: Inverse Problem Theory and Methods for Model Parameter Estimation, Society for Industrial and Applied Mathematics,

https://doi.org/10.1137/1.9780898717921, 2005.

29

https://doi.org/10.5194/tc-2023-27
Preprint. Discussion started: 3 March 2023
c© Author(s) 2023. CC BY 4.0 License.



Thacker, W. C.: The role of the Hessian matrix in fitting models to measurements, J. Geophys. Res., 94, 6177–6196,910

https://doi.org/10.1029/JC094iC05p06177, 1989.

Tierney, L.: Markov Chains for Exploring Posterior Distributions, The Annals of Statistics, 22, 1701 – 1728,

https://doi.org/10.1214/aos/1176325750, 1994.

Tsai, C.-Y., Forest, C. E., and Pollard, D.: Assessing the contribution of internal climate variability to anthropogenic changes in ice sheet

volume, Geophysical Research Letters, 44, 6261–6268, https://doi.org/https://doi.org/10.1002/2017GL073443, 2017.915

Waddington, E. D., Neumann, T. A., Koutnik, M. R., Marshall, H.-P., and Morse, D. L.: Inference of accumulation-rate patterns from deep

layers in glaciers and ice sheets, Journal of Glaciology, 53, 694–712, https://doi.org/10.3189/002214307784409351, 2007.

Weertman, J.: On the Sliding of Glaciers, Journal of Glaciology, 3, 33–38, https://doi.org/10.3189/S0022143000024709, 1957.

Zhu, C., Byrd, R. H., Lu, P., and Nocedal, J.: Algorithm 778: L-BFGS-B: Fortran Subroutines for Large-Scale Bound-Constrained Optimiza-

tion, ACM Trans. Math. Softw., 23, https://doi.org/10.1145/279232.279236, 1997.920

30

https://doi.org/10.5194/tc-2023-27
Preprint. Discussion started: 3 March 2023
c© Author(s) 2023. CC BY 4.0 License.



Table 1. Prior strength configurations used in Sect. 5.1, based on the pointwise standard deviation σc(0) and auto-covariance length scale

lc(0) of each control parameter, ordered from weak to strong.

Prior configurations σα(0) lα(0) γα δα σβ(0) lβ(0) γβ δβ

weak 1000 3000 0.85 9.40 ×10−8 30 1000 9.4 9.40 ×10−6

510 2000 1.1 2.80 ×10−7 30 1000 9.4 9.40 ×10−6

↓ 500 3000 1.7 1.90 ×10−7 30 1000 9.4 9.40 ×10−6

500 3000 1.7 1.90 ×10−7 60 1000 4.7 4.70 ×10−6

strong 150 3000 5.6 6.20 ×10−7 30 1000 9.4 9.40 ×10−6

The configuration in bold is also used in the experiments of Sect. 5.2 and 5.3. The units of σα(0) are m−1/6 yr1/6 Pa1/2 and

σβ(0) are Pa1/2 yr1/6. The unit of the auto-covariance length scale lc(0) is reported in m. Following (13), the units of γα are

m7/6 yr−1/6 Pa−1/2, γβ are m Pa−1/2 yr−1/4, δα are m−5/6 yr−1/6 Pa−1/2 and δα are m−1 Pa−1/2 yr−1/4.
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Figure 1. Variable resolution mesh of the ice streams region. The resolution depends on observed strain rates derived by using satellite

velocity data (MEaSUREs v1.0 1996 - 2012, Rignot et al., 2014) and BedMachine Antarctica v2.0 (Morlighem et al., 2020). The boundaries

to the East and South are entirely ice-ice boundaries, whereas the North and West features calving fronts where ice meets the ocean.
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Figure 2. Observational input data. Satellite surface velocity observations (vector magnitude) and standard deviation (STD) of the velocity

components (vx and vy) from ITS_LIVE (a, b, and c. Gardner et al., 2019, 2018) acquired from January to December 2014, and from

MEaSUREs v2.0 (d, e, and f. Rignot et al., 2017) acquired from July 2013 to July 2014. For details on observational error model (STD

estimates) see Sect. 3.1.3.
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Figure 3. L-curve analysis output. a and b: Sliding parameter (α) computed using extreme γα values (bold values in panel e). c and d: Ice

stiffness parameter (β) computed using extreme γβ values (bold values in panel g). e and g: L-curve analysis for γα and γβ , the optimal

values suggested by the L-curves are highlighted in red.
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Figure 4. Inversion output differences after using two different satellite velocity products (MEaSUREs and ITSlive) to calibrate the ice

dynamic parameters. a: Modelled velocity differences b: Observed velocity differences. c: Sliding parameter (α) differences. d: Ice stiffness

parameter differences (β).
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Figure 5. a VAF trajectories using different velocity products and the regularisation terms suggested by the L-curves (γα = 100, γβ = 10).

b: Hessian-based prior (dash lines) and posterior (solid line) uncertainties of VAF over time (2σQT , represents 95% confidence interval).
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Figure 6. Overview of the input data used for the observational data subsampling test and for the experiments presented in Sect. 5. a: example

of a training data set from ITS_LIVE where only 1.6% of the data points are retained, b and c: ITS_LIVE uncertainty in the x and y direction

with the same data density as in (a) and with the STD of each component adjusted (see Sect. 5.2 for details). d to f: MEaSUREs validation

data set used for the test.
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Figure 7. Observational data subsampling results. Jc performance if retaining a different number of observations for each training set.
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Figure 8. Hessian-based prior (dash lines) and posterior (solid line) uncertainties of VAF over time (2σQT , represents 95% confidence

interval) computed using; a: different strengths of prior and b: different versions of the ITS_LIVE data (i.e. different data density and STD,

see details in Sect.5.2). c and d: Rate of change for the posterior uncertainty of VAF (δσQT ) against the number of eigenvalues calculated;

statistics are shown in the lower corners, i.e. σest
full the estimated STD of VAF for an infinite number of eigenvalues and the decreasing trend

coefficient of determination (r2).
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Figure 9. Eigenvectors (v) of the Hessian. Each eigenvector has an α component (right column) and a β component (second column). Each

component is scaled to have a maximum magnitude of one and the scaling factor is shown in each vector legend. Ordered from large to small

(from top to bottom), these v correspond to the 1st, 2nd, 3rd, and 5000th eigenvalues.
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Figure 10. Model output when using two different sliding laws. Point-wise STD of the sliding parameter α for the (a) Weertman-Budd and

(b) Cornford law. c: Point-wise STD of the ice stiffness parameter β (independent of the sliding law). d: VAF trajectories using the different

sliding laws and the highlighted weak prior from Table 1. e: Hessian-based prior (dash lines) and posterior (solid lines) uncertainties of VAF

over time (2σQT , represents 95% confidence interval). f: Rate of change for the posterior uncertainty of VAF (δσQT ) against the number of

eigenvalues calculated; statistics are shown in the lower corners, i.e. σest
full the estimated STD of VAF for an infinite number of eigenvalues

and the decreasing trend coefficient of determination (r2).
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Figure 11. Sensitivity maps of the model’s volume above flotation to the basal friction coefficient α2; for year 10 and year 40, when using

two different sliding laws. Units of α2 are m−1/3 yr1/3 Pa. a and b: Weertman-Budd and c and d: Cornford law. These visualise the

node-wise sensitivity given the choice of mesh and finite element discretisation.
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Figure 12. Linearity test results. Absolute difference of VAF trajectories estimated using different satellite velocity products (red dotted lines)

and dot products results (solid lines) from (21) and (22) plotted in blue and yellow respectively. For this figure we use model output from

Sect. 4.2. a: Linearity test using the regularisation strength suggested by the L-curves and b: Linearity test using a stronger regularisation on

β.
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Figure A1. Speed comparisons. a: 6 month offset speed change from ITS_LIVE 2014 (Jul-Dec) and b: Speed ratio of the difference between

the two products (ITS_LIVE 2014 - MEaSUREs acquired from July 2013 to July 2014) and ITS_LIVE 2014. Empty pixels in panel b are

due to gaps in the MEaSUREs dataset, which increase when the data is interpolated to the ITS_LIVE grid.
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Figure A2. Sensitivity maps of the model’s volume above flotation (VAF) to the ice stiffness (B or β2). Units of B are Pa yr1/3
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Figure A3. Models surface velocity comparison. Surface velocities are calculated by using FEniCS_ice inversions of α and β calibrated

with ITS_LIVE and the highlighted weak prior configuration from Table 1. a: STREAMICE. b: FEniCS_ice. c: Difference between both

models.
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