
A framework for time-dependent Ice Sheet Uncertainty
Quantification, applied to three West Antarctic ice streams
Beatriz Recinos1, Daniel Goldberg1, James R. Maddison2, and Joe Todd1

1School of GeoSciences, The University of Edinburgh, UK.
2School of Mathematics and Maxwell Institute for Mathematical Sciences, The University of Edinburgh, UK.

Correspondence: B. Recinos (beatriz.recinos@ed.ac.uk)

Abstract. Ice sheet models are the main tool to generate forecasts of ice sheet mass loss; a significant contributor to sea-level

rise, thus knowing the likelihood of such projections is of critical societal importance. However, to capture the complete range

of possible projections of mass loss, ice sheet models need efficient methods to quantify the forecast uncertainty. Uncertainties

originate from the model structure, from the climate and ocean forcing used to run the model and from model calibration. Here

we quantify the latter, applying an error propagation framework to a realistic setting in West Antarctica. As in many other ice-5

sheet modelling studies we use a control method to calibrate grid-scale flow parameters (parameters describing the basal drag

and ice stiffness) with remotely-sensed observations. Yet our framework augments the control method with a Hessian-based

Bayesian approach that estimates the posterior covariance of the inverted parameters. This enables us to quantify the impact

of the calibration uncertainty on forecasts of sea-level rise contribution or volume above flotation (VAF), due to the choice of

different regularisation strengths (prior strengths), sliding laws and velocity inputs. We find that by choosing different satellite10

ice velocity products our model leads to different estimates of VAF after 40 years. We use this difference in model output to

quantify the variance that projections of VAF are expected to have after 40 years and identify prior strengths that can reproduce

that variability. We demonstrate that if we use prior strengths suggested by L-curve analysis, as is typically done in ice-sheet

calibration studies, our uncertainty quantification is not able to reproduce that same variability. The regularisation suggested

by the L-curves is too strong and thus propagating the observational error through to VAF uncertainties under this choice of15

prior leads to errors that are smaller than those suggested by our 2-member “sample” of observed velocity fields.

1 Introduction

Ice sheet models are important tools not only for generating knowledge, but also for operational forecasts. In this way, they are

analogous to weather models and oceanographic models and have emerged as the de facto standard for generating projections

of ice sheet contribution to sea-level rise. However, quantifying the uncertainty in forecasts produced by these models remains20

one of the most challenging goals of scientific inquiry (Aschwanden et al., 2021). Here, we seek to characterise the uncertainty

in model projections of marine ice sheet loss which arises from calibration with data.

The paradigm of ice-sheet projection is the calibration of the model parameters with observations (via control methods e.g.

Macayeal, 1992) followed by running of the calibrated model forward in time forced by future ocean and climate scenarios.
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The process is uncertain due to (i) model/structural uncertainty (i.e. uncertainty in the formulation of the model and its ability to25

represent the physics of the system), (ii) uncertainty in external forcing (e.g. ocean melting of ice shelves), and (iii) calibration

uncertainty (i.e. the uncertainty in calibrated parameters, sometimes referred to as parametric uncertainty). In this study we

use control methods and a Bayesian inference approach to characterise (iii). The Bayesian framework computes posterior

information given the assumed model and external forcing. We do not attempt to quantify (i) and (ii) but we discuss how these

uncertainties can be quantified and incorporated into our error propagation framework.30

The use of control methods ("inverse methods") in ice-sheet modelling dates back to Macayeal (1992). Since then, their

use in estimating basal and internal conditions (hidden properties) of glaciers and ice sheets from measured surface velocities

has become widespread (e.g. Sergienko et al., 2008; Morlighem et al., 2010; Cornford et al., 2015; Hill et al., 2021, to name

a few). This is mostly due to the ability of these methods to perform large-scale inversions via the minimisation of a cost

function, thus allowing a better representation of basal and rheological conditions to which the ice flow is sensitive (Barnes35

et al., 2021). However, these data assimilation techniques may not be well posed (Petra et al., 2014) and a unique solution is

never guaranteed, regardless of the control method used (Barnes et al., 2021). Control methods have regularisation terms which

need to be chosen in order to impose smoothness on the inverted parameters (Koziol et al., 2021). In many studies, the strength

of the regularisation is determined heuristically through L-curve analysis (Gillet-Chaulet et al., 2012; Barnes et al., 2021).

Additionally, control methods do not provide calibration uncertainty. They can be interpreted as methods that return only the40

mode of a posterior probability density function (PDF) of the inverted model parameters, which does not fully characterise

calibration uncertainty (Koziol et al., 2021) nor does it propagate the observational uncertainty onto projections of sea-level

rise.

Previous works attempt to quantify uncertainty by considering the forcing uncertainty (Tsai et al., 2017; Robel et al., 2019;

Levermann et al., 2020) or structural uncertainty (Hill et al., 2021). Others consider calibration uncertainty (Isaac et al., 2015;45

DeConto and Pollard, 2016; Brinkerhoff et al., 2021; Brinkerhoff, 2022) but use low-dimensional parameter sets (i.e. smaller

than ∼20) to describe the ice rheology and basal friction. Here we carry out the first assessment of calibration uncertainty using

a time-dependent marine ice-sheet model (FEniCS_ice, Koziol et al., 2021) in which the calibration of the ice dynamic

parameters scale with the dimension of the numerical grid – i.e. we calibrate each parameter for every element in our mesh of

approximately 100,000 unknowns (see Fig. 1).50

We deal with the problem of estimating the uncertainty in the calibrated parameters (or in the solution of our infinite-

dimensional inverse problem) with the framework of Bayesian inference (Tarantola, 2005; Stuart, 2010), in which prior knowl-

edge is "updated" with observational evidence (Koziol et al., 2021). Given satellite ice velocity observations (and their uncer-

tainty), a forward model that maps parameters to observations (e.g. FEniCS_ice), and a prior probability density on model

parameters that encodes any prior knowledge or assumptions regarding the parameters (e.g. prior covariance of the ice stiff-55

ness parameter in Glen’s ice flow law, Glen and Perutz, 1955; Pattyn, 2010), we find the posterior probability density of the

parameters conditioned on the observational data. This posterior probability density function (PDF) is defined as the Bayesian

solution of our ice sheet inverse problem (Petra et al., 2014). A standard approach to characterise this posterior PDF is based

on sampling via state-of-the-art Markov chain Monte Carlo (MCMC) methods. Yet the use of conventional MCMC approaches
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becomes intractable and prohibitive by computational expense for large-scale ice sheet inverse problems where we would need60

a very large number of realisations of the time-dependent nonlinear Stokes equation (Isaac et al., 2015; Koziol et al., 2021).

However, it can be shown that under certain assumptions, the posterior covariance (a property of the joint posterior PDF)

of the inverted parameters can be characterised by the inverse of the Hessian (the matrix of second derivatives) of the cost

function with respect to the inverted parameters (Thacker, 1989; Kalmikov and Heimbach, 2014; Petra et al., 2014; Isaac et al.,

2015). Our framework augments the control method by using this Hessian-based Bayesian approach that not only inverts for65

the ice dynamic parameters such that model velocities match observations, but characterises the posterior covariance of each

inverted parameter (also referred to as control parameters in this study).

We perform a joint inversion for a basal sliding coefficient and a rheological parameter for describing ice stiffness. Beginning

with a cost function definition which allows for velocity data to be imposed at arbitrary locations (i.e. a point-cloud), we

generate a low-rank update approximation to the posterior covariance of the control parameters via the use of the Hessian of70

the cost function, and find the sensitivities of a time-evolving Quantity of Interest (QoI) to the control parameters. We then

project the covariance on to the resulting linear sensitivity to estimate the growth of the QoI uncertainty over time; here our

QoI is the sea-level rise contribution or volume above flotation (VAF).

We apply for the first time this error propagation framework to a realistic setting (three ice streams in West Antarctica) and

present several model experiments that explore the impact on the uncertainty in forecasts of VAF due to the choice of different75

strengths of priors (regularisation strength), sliding laws and velocity inputs. We find that significant differences in satellite

ice velocity products (particularly at the ice margins) can lead to different projected estimates of sea-level rise contributions

or VAF trajectories. We also find that the choice of regularisation strength or regularisation parameters, suggested by L-curve

analysis – a common means of estimating such parameters – may lead to an overly informative prior. Here the prior information

is sufficiently strong that we gain a false low posterior error estimate.80

We investigate the effect that data density (density of observed velocity data points) has on the resulting inference. This

diagnostic suggests that large amount of data points may be redundant when inverting for the control parameters, with potential

implications for observational velocity error models and how they inform the uncertainty in our projections. Additionally, we

test our inversion results against the numerical framework of a different ice sheet model (i.e. the STREAMICE module of

MITgcm Goldberg and Heimbach, 2013), in order to qualitatively inspect model structural uncertainty and forcing uncertainty.85

2 Methods

The mathematical framework of FEniCS_ice is explained in detail in Koziol et al. (2021). In this section we summarise the

model physics, the data assimilation techniques used for the calibration of two key ice dynamic parameters, and explain how

we quantify calibration uncertainty in projections of sea-level rise contributions or volume above flotation (VAF).
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2.1 Physics90

FEniCS_ice solves the Stokes equation by implementing the well-known Shallow Shelf Approximation (SSA; MacAyeal,

1989; Schoof, 2006; Shapero et al., 2021; Hill et al., 2021). The ice velocity u is vertically integrated and has two components:

internal deformation and basal sliding (see Sect. 3 from Koziol et al., 2021, for details). The model uses data assimilation

methods to optimise these velocity components based on observations by estimating two “hidden” properties of the ice; i) the

basal friction coefficient (α) in the sliding law, and ii) the rheological parameter for describing ice stiffness (β) in Glen’s flow95

law (both properties are referred to as control parameters in this study). In this section we define the control parameters and the

time-dependent SSA whereas the details of the inverse methodology are explained in Sect. 2.4.

2.1.1 Ice rheology and basal sliding

We define the ice viscosity ν, which depends on εe, the second invariant of the strain-rate tensor, as

ν =
1

2
Bε

1−n
2n

e .100

B is generally referred to as the "stiffness" of the ice and is thought to depend on ice temperature (Pattyn, 2010). Here we

define the control parameter β as the square root of that stiffness where β =
√
B =

√
A−1/n. A in this definition is the rate

factor commonly known as the ice creep parameter in Glen’s ice flow law (Glen and Perutz, 1955) and n is the exponent of

Glen’s flow law with the widely accepted value of 3 (Cuffey and Paterson, 2010).

Basal sliding is considered the dominant component of surface velocities in fast-flowing ice streams (Hill et al., 2021),105

making the time-dependent part of the ice sheet model sensitive to the choice of sliding law (Brondex et al., 2019; Barnes and

Gudmundsson, 2022) thus, we consider two different sliding laws. The first is the Weertman–Budd sliding law (Weertman,

1957; Budd et al., 1979; Budd and Jenssen, 1987) defined here as

τb = α2N1/3u−2/3u (1)

where τb is basal stress, α is the scalar, spatially varying sliding coefficient, u is ice speed, and N is the effective pressure.110

Here N is defined as

N = ρigH +min(0,R)ρwg (2)

where ρi and ρw are ice and ocean densities, g is the magnitude of the gravitational acceleration, H is the ice thickness

and R is the bed elevation (Koziol et al., 2021). Furthermore basal stress is nonzero only where ice is grounded, i.e. where

ρigH + ρwR> 0. The second sliding law considered is often referred to as the Cornford sliding law (Asay-Davis et al., 2016;115

Cornford et al., 2020) and is defined as

τb =
µα2Nu

1−m
m

[α2mu+(µN)m]1/m
u (3)
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where µ= 1
2 and m= 3. A key property of both sliding laws is that as the grounding line is approached, effective pressure

becomes small, leading to a smoother transition across the grounding line in terms of the basal drag from floating to grounded

conditions.120

While additional sliding laws have been proposed and are now implemented within a number of existing ice flow models

(Hill et al., 2021), in this study we use the Weertman–Budd sliding law for most of our experiments, as it is one of the most

commonly used. However, we trial our error model framework using the Cornford sliding law (Asay-Davis et al., 2016) and

compare the results of both sliding laws in Sect. 5.3.

2.1.2 Time-dependent ice sheet model125

The resulting calibrated fields of α and β (see Sect. 2.4 for details regarding the parameters calibration) are then input into our

forward-in-time simulations where the continuity equation is solved:

Ht +∇ · (Hu) = b. (4)

b represents localised changes in mass at the surface and/or the base of the ice sheet, i.e. accumulation due to snow-fall or basal

melting of the ice-shelf by the ocean. We assume a constant and uniform surface mass balance field in time and space (i.e.130

surface mass balance of 0.38 mm of sea level equivalent based in Arthern et al., 2006) and implement a simple depth-dependent

parameterisation of ocean melt rate m, which gives the melt rate as a function of ice-shelf draft only. Such parameterisations

have been used previously to examine the response of marine ice sheets to ice-shelf melting (e.g., Favier et al., 2014; Seroussi

et al., 2017; Lilien et al., 2019; Robel et al., 2019). The form we use is

m(zb) =
Mmax

2

(
1+ tanh

[
2

(
zb − zth
zth

)])
(5)135

where zb is ice-shelf depth, Mmax is the maximum melt rate and zth represents the depth of the ocean thermocline. m is

nonzero only where ice-shelf thickness H is below flotation, and is also set to zero where thickness H is below 10 m.

We use such a parameterisation because our aim is to study glaciers which are strongly forced by modified Circumpolar

Deep Water (CDW), which is present on certain parts of the Antarctic continental shelf as a warm deep layer overlain by cold

surface-modified waters (e.g., Jacobs et al., 2011; Dutrieux et al., 2014; Jenkins, 2016; Jenkins et al., 2018). The form of (5) is140

chosen because the melt profile transitions from low melt rates above the thermocline depth zth to strong melting at depth, and

saturates at Mmax rather than growing without bound. Defining the parameterisation in this way rather than a piecewise-linear

function helps maintain differentiability which aids the later application of algorithmic differentiation (Section 2.5). We discuss

our particular choice of Mmax and zth below in Sect. 3.

The continuity equation is solved with the purpose of finding the loss of ice volume above flotation (VAF), the volume of145

ice that can contribute to sea level at a certain time T (e.g. T = 40 years) which is defined as

QT =

∫
Ω

(
H(T )−Hf

)+
dA, (6)
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where Hf is the flotation thickness defined by max(0,−R
(
ρw

ρi

)
), Ω is the computational domain (see Sect. 2.2 and Sect. 3 for

details), and the + refers to the positive part of the bracketed quantity. Note that we have simplified the ice sheet surface mass

balance and the basal melting of the ice shelf thus calculations of future VAF loss estimates presented here do not constitute150

realistic projections. However, equations (4) and (6) are convenient to calculate such projections and sufficiently nontrivial and

nonlinear that the effect of uncertainty arising from the calibration of α and β with observations can be seen.

2.2 Discretisation

We solve the Shallow-Shelf Approximation (SSA) momentum balance as well as (4) using the FEniCS finite-element software

library (Alnæs et al., 2015). We discretise velocity u, bathymetry R, and drag and stiffness parameters α and β using first-order155

continuous Lagrange elements on a triangular finite element mesh. Thickness is defined to be constant within elements (a DG(0)

discretisation). The only non-standard aspect of the formulation is in the weak definition of the driving stress ρgH∇zsurface,

which is written as F +W∇R (see Sect. 3 in Koziol et al., 2021, for F and W definitions and the SSA formulation). This

formulation is equivalent to the more standard form of driving stress when H is discretised using continuous finite elements, but

with this form H can be discretised using zero-order discrete-galerkin (DG(0)) elements as well. The continuity equation (4)160

is solved using a simple first-order upwind scheme, which is found to be more stable when using a DG(0) thickness function.

Details of the mesh generation are explained in Sect. 3 when we discuss the study area.

2.3 Notation

To facilitate readability of this and subsequent sections we adopt formatting conventions for different mathematical objects.

Coefficient vectors corresponding to finite-element functions appear as c; other vectors and vector-valued functions as d̆ ∈ Rq;165

and matrices as E.

2.4 Cost function Jc

To calibrate the basal sliding coefficient (α) and the rheological parameter for describing ice stiffness (β) we apply data

assimilation techniques typically used in glaciology (Morlighem et al., 2010; Joughin et al., 2010; Cornford et al., 2015),

where the aim is to find the parameter sets which gives the best fit to ice velocity observations. Our approach augments such170

data assimilation techniques by using a Hessian-based Bayesian approach to characterise uncertainty of α and β. In Sect. 2.5

we describe how we propagate the errors that result from this calibration into projections of VAF. Here we describe how we

invert for the control parameters via the minimisation of a scalar cost function which takes the general form

Jc = Jc
mis + Jc

reg. (7)

Jc
mis, the misfit cost, is half the square-integral of the misfit between the surface velocity of the ice model and remotely-175

sensed observations, normalised by the observational variance. These terms are discretised to implement the control method
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(as described in Sect. 2.2). The misfit cost can be written as

Jc
mis =

1

2
∥ŭobs − ŭ∥2

Γ−1
obs

. (8)

Here ŭobs is the observed velocity given as cloud point data (location and velocity value); ŭ is the velocity estimated via the

SSA approximation, interpolated at ŭobs coordinates; and the norm ∥ · ∥Γ−1
obs

is defined by180

∥x̆∥Γ−1
obs

=
√
x̆TΓ−1

obsx̆, (9)

where Γobs is the observational covariance. As non-diagonal error covariance is not given for the considered observational

datasets, Γobs is a diagonal matrix containing the variance of the observations – note that this neglects observational covariance

(see Sect. 3.1.3 and Sect. 6.4 where we discuss observational error covariance).

Jc
reg , the regularisation cost, is imposed to prevent instabilities, and is typically chosen as a Tikhonov operator which pe-185

nalises the square-integral of the gradient of the parameter field (e.g., Morlighem et al., 2010; Cornford et al., 2015). It is

defined as

Jc
reg =

1

2
∥c− c0∥2Γ−1

prior

, (10)

where c is our hidden field, which depends on both control parameters c= (α,β). c0 is the prior mean and the symmetric

positive definite Γprior is the prior covariance matrix of the control parameters. The terminology “prior” is used because, even190

though Eq. 10 can be interpreted as a regularisation cost in the context of a deterministic control method inversion, it can be

interpreted in terms of a prior PDF in a Bayesian context as discussed in Sections 2.5 and 2.6.

Γprior is block-diagonal, with blocks corresponding to each of α and β. Following from Koziol et al. (2021), each block is

defined as

L−1ML−1, (11)195

where M is the finite element mass matrix, and L is the stiffness matrix that arises from a finite-element discretisation of the

differential operator

L(·)≡ γ∇2(·)− δ(·), (12)

where depending on the parameter in question (sliding α or ice stiffness β coefficient) γ is either γα or γβ , and δ is either δα

or δβ . Jc
reg determines the degree of smoothness of the inverted parameters (determined by γα,β) and deviation from the prior200

mean (determined by δα,β). α0, the prior mean of α, is zero. The prior mean of β is given by

β0 =

(
I − γ

δ
∇2

)−1

βbgd, (13)

where βbgd is the initial guess, described in Section 3.

Previous assimilations of satellite velocities also considered ice bed and surface elevations as control parameters (MacAyeal

et al., 1995), because available elevation products at the time did not capture small-scale features that could drive variations in205
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velocity. We consider this to be less of an issue with current elevation products (e.g. BedMachine Antarctica v2.0 Morlighem

et al., 2020), though future studies with our framework could consider topographic uncertainty and how it covaries with the

uncertainty of other parameters.

2.5 Error propagation framework

Our goal is to find the posterior probability density function (PDF) of the control parameters (c) given the observational210

data (ŭobs); p(c|ŭobs), and propagate forward the associated uncertainty in projections of VAF (QT ). The error propagation

framework used here follows from Isaac et al. (2015) and similar studies (Bui-Thanh et al., 2013; Petra et al., 2014), and has

been described in detail by Koziol et al. (2021) – here the key elements are summarised.

The cost function (7) can be interpreted in a Bayesian sense. The misfit term of the cost function, Jc
mis, is commonly used

in ice-sheet data assimilation, but also is (up to a normalisation term) the negative logarithm of a multivariate Gaussian PDF215

with mean ŭ and covariance matrix Γobs, and Jc
reg has a similar property. This means that Eq. 7 is actually an expression of

Bayes’ theorem (Stuart, 2010):

p(c|ŭobs) =
p(ŭobs|c)p(c)

p(ŭobs)
. (14)

The relationship states that the PDF of the inverted parameters conditioned on the data is determined by both; the likelihood of

observing the data conditioned on the modelled velocity values, and the prior distribution of sliding and stiffness parameters220

– which is not conditioned on data. The connection with Eq. 7, can be seen by taking the negative logarithm of both sides and

ignoring p(ŭobs) which is essentially a normalisation constant. Thus, minimising the cost function is equivalent to finding the

maximum (or mode) of the posterior – often referred to as the maximum a posteriori, or MAP, estimate.

In the case of a linear model, the posterior inverse covariance, denoted Γ−1
post, is given by the Hessian matrix (here referred

to as the ‘Hessian’) of Jc evaluated at the MAP point. In the general case the Hessian defines a Gaussian approximation225

for the posterior PDF (as the second order approximation for its negative logarithm at the MAP point) and thus defines an

approximation for the inverse posterior covariance. Thus, even if the posterior is non-Gaussian, we can learn about its shape in

the vicinity of the MAP point, giving more information than if we simply minimised Jc.

If we have estimates of VAF at a given time (6), which depend linearly on the control parameters, and if the posterior (Γpost)

is Gaussian, then the posterior variance of VAF at a time T , is given by230

σ2(QT ) =

(
∂QT

∂c

)T

Γpost

(
∂QT

∂c

)
. (15)

Essentially, the posterior parameter uncertainty is projected onto the VAF projection. If for example sliding coefficients in a

certain region have high uncertainty due to error-prone data but have little influence on VAF, this will not contribute greatly to

VAF uncertainty. In the case that Γpost is not Gaussian, or estimates of VAF depend non-linearly on the control parameters,

(15) yields an approximation of that posterior variance σ2(QT ). We discuss in Sect. 6 the limitations of these assumptions.235

We use the time-dependent adjoint capabilities of FEniCS_ice to find the sensitivities of VAF to the control parameters

(∂QT

∂c ), for discrete values of T over 40 years. The Hessian itself, which is a good approximation for Γ−1
post, is in general a
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large, dense matrix which is difficult to invert – and so Γpost is approximated using a low-rank update to the prior covariance

matrix,

Γpost ≈ Γprior −CrΛr (Ir +Λr)
−1

CT
r , (16)240

where Λr and Cr, respectively, represent the leading r eigenvalues and eigenvectors of the prior-preconditioned misfit Hessian:

H̃mis = Γprior

(
∂2Jc

mis

∂c2

)
. (17)

Notably, this decomposition has the quality that the leading eigenvectors (those with the largest eigenvalues) are those most

informed by the data. The leading eigenvectors define the components of the control parameters for which the observations245

change the estimated posterior uncertainty, relative to the prior uncertainty, by the largest factor. Thus the retained eigenvectors

of the Hessian, inform in which space of our mesh the model inversion gained the most information from the observations and

the prior (see Fig. 9 and Sect. 2.6 and 5.1 for details).

Computationally the key ingredients to compute σ2(QT ) are the ability to find a minimiser of Jc, the ability to compute

the derivatives of VAF with respect to the control parameters (∂QT

∂c ), and the ability to compute Hessian information. The250

minimisation of Jc can be accelerated using gradient-based methods, if Jc can itself be differentiated with respect to c. Here the

required first and second derivative information is obtained using tlm_adjoint (Maddison et al., 2019), with L-BFGS (Zhu

et al., 1997; Morales and Nocedal, 2011) used to perform the minimisation of Jc and SLEPc (Hernandez et al., 2005, 2007)

used to calculate the eigendecomposition. Important points to make are that the eigenproblem requires only the action of the

misfit Hessian, which would be computationally infeasible to form in full. Additionally, the Hessian takes account of the full255

nonlinearity of the ice-sheet model, in contrast with the Gauss-Newton approximation to the Hessian (Shapero et al., 2021). In

Koziol et al. (2021) a comparison was made between the two in the context of an idealised problem, and results were minimal.

For more details on the error propagation framework, see Koziol et al. (2021).

For all the experiments presented in this study, we calculate up to 104 (out of 105) eigenvalues and eigenvectors to ensure

the convergence of σ2(QT ) against the number of eigenvalues (see results in Sect. 5). The uncertainty of VAF at discrete times260

σ2(QT ) is then found using (15), which can then be linearly interpolated to find a "trajectory" of uncertainty.

2.6 Prior distribution of parameters

As mentioned above, the regularisation cost Jc
reg can be interpreted in the Bayesian sense in terms of a prior PDF. This prior

expresses knowledge of our parameter fields before any data constraints are applied (Arthern, 2015). We model the prior as

Gaussian, meaning it is completely defined by its covariance Γprior and its mean. Although Γprior is determined by the scalars265

γ and δ (Section 2.4), their meanings are not intuitive. In some of our experiments we therefore make use of the following

expressions for a characteristic pointwise variance σ2
c(0) and auto-covariance length scale lc(0) of each control parameter (see
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Sect. 2.2 in Lindgren et al., 2011, for details):

σ2
c(0) =

1

(4πγδ)
(18)

lc(0) =

√
γ

δ
. (19)270

For example, if lα(0) and σ2
α(0) (the auto-covariance scale and pointwise variance of α, respectively) are both large, then

samples of α from the prior are likely to deviate strongly from 0 but show little variation over short length scales. Meanwhile,

if lβ(0) and σ2
β(0) are both small, then samples of β are likely to vary at small scales but with small deviations from β0. We

consider prior distributions of α and β to be independent.

We note that our form of Jc
reg differs from the square-gradient regularisation sometimes used in control methods (e.g.,275

Morlighem et al., 2010; Cornford et al., 2015) – but it is used because the associated prior distribution avoids infinite pointwise

variance as the mesh is refined (Bui-Thanh et al., 2013). In Sect. 5.1, we show the impact on the VAF projection uncertainty

due to the choice of prior properties.

3 Study area, model domain and data sources

Our study area, shown in Fig. 1, covers part of the Amundsen Sea Embayment (ASE) in West Antarctica and includes three ice280

streams: Pope, Smith and Kohler Glaciers (PSK), as well as, the Dotson and Crosson ice shelves. PSK glaciers have exhibited

some of the highest retreat rates in Antarctica throughout the satellite observing record, with their grounding lines receding

over 30 km in recent decades (Scheuchl et al., 2016; Goldberg and Holland, 2022). Their catchment can potentially contribute

up to 6 cm to the global mean sea level (Morlighem et al., 2020), double the global mean sea level contribution of the inventory

of Earth’s mountain glaciers (when excluding the Antarctic and Greenland periphery, Hock et al., 2023). A complete collapse285

of the ice shelves in this area would likely lead to accelerated mass loss from adjacent ice streams, including Thwaites Glacier

(Goldberg and Holland, 2022). Previous modelling studies have shown that past and future retreat of these glaciers is strongly

tied to ocean-forced melting, but that the method of calibration may affect projected rates of ice loss as well (Lilien et al., 2019;

Goldberg and Holland, 2022). As such, and due to the vast quantity of data available for this region, we choose this area to test

our model error framework in a realistic setting.290

The domain is set up by generating an unstructured finite element mesh using time-averaged strain rates computed from

satellite velocity observations (MEaSUREs v1.0 1996 - 2012, Rignot et al., 2014). Additionally, BedMachine Antarctica v2.0

(Morlighem et al., 2020) is used to provide geometry field information and the raster mask from which we define our boundary

conditions; ice/ocean (calving) and ice/ice (edge of domain) boundaries in Fig. 1. The mesh generation occurs in two phases,

first by generating an initial uniform-resolution mesh of 1000 elements with the mesh generator Gmsh (v.4.8.4 Geuzaine and295

Remacle, 2009) and second by refining that mesh with the calculated strain metric in the MMG software (v5.5.2 Dobrzynski,

2012). This generates a finer triangular mesh in the areas of the domain where high resolution is needed (e.g. close the calving

front and in areas where velocities are higher in Fig. 2). The mesh resolution is highly heterogeneous and depends on the

observed strain rates, with a minimum resolution of approx. 200 m and a final mesh size of 102,852 elements. BedMachine
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Antarctica v2.0 (Morlighem et al., 2020) is also used to define the model’s bed, ice thickness and surface elevation fields.300

The initial guess for β, βbgd, is generated from the temperature dataset of Pattyn (2010). Based on coupled ice sheet-ocean

modelling for the region (Goldberg and Holland, 2022), spatially uniform melt parameters of Mmax = 30 m yr−1 and zth =

600 m were chosen.

3.1 Velocity input data sources

In the last two decades, ice velocity mapping at the continental scale (Rignot et al., 2011; Gardner et al., 2019, 2018) has305

allowed major advances in the study of polar regions by providing complete observations of the complex flow pattern of ice

sheets and glaciers (Mouginot et al., 2017). Much emphasis has been put on the fast processing of large data volumes and

products with complete spatial coverage. However the metadata of such measurements is often highly simplified regarding the

measurements precision and uncertainty (Altena et al., 2022). Moreover, the methods used to estimate errors in the observed

velocities tend to often produce errors that are unrealistically small (see Fig. 2 or Gardner et al., 2019). A quantification of the310

error estimation or dispersion (standard deviation) for each individual velocity measurement can be important for the inversion

of unknown ice dynamic parameters (e.g. the basal friction coefficient α). Errors in the velocity data can propagate into derived

results in a complex way, making model outcomes very sensitive to velocity noise and outliers (Altena et al., 2022). Therefore,

we use two satellite velocity products to carry out inversion experiments and calibration uncertainty propagation; MEaSUREs

InSAR-Based Antarctica Ice Velocity Map (MEaSUREs v2.0. Rignot et al., 2017; Mouginot et al., 2017) and ITS_LIVE315

surface velocities (Gardner et al., 2019, 2018). To avoid large data gaps in the observations we focus on data acquired between

2013 and 2014 (see Fig 2). MEaSUREs provides surface velocities from July 2013 to July 2014 and ITS_LIVE from January to

December 2014, thus we investigated the effect of the 6 month offset between both products, which turned out to be negligible

(see Fig. A1 of Appendix A). In this section, we describe the acquisition sensors and standard deviation (STD) of each data-set,

as this is relevant to understanding the differences between each product, our experimental design and our results (see Sect. 4.2320

and 5.2).

3.1.1 MEaSUREs v2.0

The grid spacing of this data set is 450 m. According to the product metadata (Rignot et al., 2017; Mouginot et al., 2017),

the 2013–2014 year is a result of the data gathered by several instruments: RADARSAT-2 (CSA, 2012-2016), Sentinel-1

(Copernicus/ESA/EU, 2014-2016) and Landsat-8 (2013-2016). Landsat-8 is an optical sensor and it has mapped most of the325

ice sheet interior and the Antarctic coast, whereas RADARSAT-2 and Sentinel-1, are C-band synthetic aperture radar (SAR)

instruments and have mostly captured velocities in the coast. Mouginot et al. (2017) notice that along the Antarctic coast,

large differences (≥50 m.yr−1) between Landsat-8 and SAR based velocities are found, which can be due to stronger weather,

ionospheric noise, and ongoing velocity changes.
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3.1.2 ITS_LIVE330

The grid spacing of this data set is 240 m. Surface velocities are derived only from optical sensor imagery (Landsat 4, 5,

7, and 8) using the auto-RIFT feature tracking processing chain described in Gardner et al. (2018). Data scarcity and/or low

radiometric quality are significant limiting factors for many regions in the earlier product years. However annual coverage is

nearly complete for the years following the Landsat 8 launch in 2013 (Gardner et al., 2019).

3.1.3 Observational Error model335

The construction of Γobs based on reported errors deserves attention. Neither velocity product reports information on spatial

error covariance, so Γobs is diagonal for both products. We interpret the likelihood PDF, p(ŭ|c), as the density associated with

the likelihood for a single outcome of an observation, as opposed to the distribution of the average outcome over an ensemble

of observations. Essentially, we consider the standard deviation of observations, as opposed to the standard error of a sample

mean.340

The MEaSUREs product reports both error and standard deviation (STD), and we use the latter to construct Γobs. The

ITS_LIVE product does not report standard deviation, but gives the number (count) of measurements for each data point, and

expresses error variance as an inverse weighted sum of individual measurement variances (Gardner et al., 2019). We therefore

express standard deviation of each velocity component as

STDITS = count
1
2 × errITS . (20)345

Note this formula assumes uniform variance over all measurements contributing to a data point, which is not likely to be true.

In Koziol et al. (2021) it is shown for an idealised problem that the diagonality of Γobs leads to ever-decreasing posterior

uncertainty as data density is increased. This is only an issue if errors correlate over the scale of separation of data points, but

assessing error covariance is beyond the scope of this study. Still, this deficiency guides our investigation of the impacts of data

density, described below in Section 4.350

4 Experimental design and rationale

All inversion methods contain regularisation parameters which must be chosen (Barnes et al., 2021) and L-curve analysis (e.g.

Fürst et al., 2015; Jay-Allemand et al., 2011; Gillet-Chaulet et al., 2012; Barnes et al., 2021) is a commonly used technique to

make an informative guess regarding the value of these parameters – although there are alternative approaches (see Sect. 2.6

or Waddington et al., 2007; Habermann et al., 2013). Another common aspect of inversions in ice sheet modelling, due to data355

availability, is to use only one type of remotely-sensed ice velocity product for the calibration of the control parameters. In

this section we study how these ongoing practices can impact the forecast of VAF and its uncertainty (see Sect. 4.1 and 4.2).

Additionally, we assess the effect that data density (i.e. decreasing the number of observations) has on the inference (see Sect.

4.3). The experiments described in this section lay the groundwork for the model configurations used in Sect. 5.
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4.1 L-curve analysis on the control parameters360

The L-curve criterion often used in the ice-sheet modelling literature (Jay-Allemand et al., 2011; Gillet-Chaulet et al., 2012;

Seddik et al., 2017; Barnes et al., 2021) is based on Hansen (1992, 2001), and is used to visualise the trade-off between the

magnitude of the regularisation term (how much the control parameters should vary) and the quality of the fit (how well can

we reproduce observations). L-curves are generally created by plotting the regularisation terms against the misfit in a log-log

scale, the right regularisation term is chosen by locating the “corner" of the L-curve. However, there is a large variability in the365

application of this criterion among studies (e.g. compare Seddik et al., 2017; Barnes et al., 2021) and finding the “corner" or

“best trade-off" is often chosen heuristically. Here we aim to pick parameters (γ and δ) whose values lie near the corner of the

L, where neither Jc or Jc
reg take high values, following Barnes et al. (2021) approach.

We generate L-curves by varying the smoothing parameters γ and δ, rather than the variance and length scale arising from a

physical interpretation of the prior (Sect. 2.6). Both L-curves in figures 3e and f are computed independently from each other370

– i.e. varying one parameter over several orders of magnitude while the other three parameters remain fixed (L-curves model

configurations are shown in Table A1). To shorten this analysis we show only L-curves for γ in Fig. 3, L-curves for δ can be

found in Appendix A2. The L-curves presented in figures 3e and f are created by using ITS_LIVE surface velocities to find the

misfit Jc
mis (7) and by plotting the regularisation terms against the cost function value Jc, as the regularisation terms γα and

γβ (12) vary over several orders of magnitude (104 to 10−4).375

In order to understand the effect that the strength of the regularisation (or prior strength) has on the control parameters, we

show α and β spatial distributions computed using the extreme values of the L-curves (see figures 3a to d). If the prior strength

is strong (i.e. a large γα) the inverted parameter field (in this case the sliding coefficient) is relatively smooth (see Fig. 3b) and

Jc generally small. The L-curve for γα in Fig. 3e suggests a γα = 100.0 as a reasonable trade-off between the cost function

value and the regularisation term. For γβ this value is one order of magnitude smaller (γβ = 10.0, see Fig. 3f). For δα,β the380

L-curve analysis suggests a value of 1 ×10−5 (see Table A1 for all parameters statistics and units). We used those values to

conduct the rest of the experiments presented in Sect. 4.2 and 4.3.

4.2 Model output computed with different ice velocity observations

We use the regularisation parameters found in the previous section and run all stages of the error model framework (all methods

in Sect. 2) twice using different satellite velocity products for each run; MEaSUREs and ITS_LIVE. We compare the observed385

ice velocity from both products in Fig. 4b and find significant differences (≥100 m.yr−1), especially at the ice margins.

The assimilated states of FEniCS_ice reproduce these differences as shown in Fig. 4a, where we show modelled velocity

differences between the two runs. Consequently, the inverted parameters from both runs are also different (see figures 4c and

d). Differences in the output from both inversions are particularly large at the ice margins, and in the case of the ice stiffness

parameter β, the largest differences are found at the Crosson and Dotson ice shelves (see Fig 4d). The projections of VAF differ390

as well: after 40 years, the difference in VAF is approximately 3.9 × 1011 m3, or 390 km3 – nearly 15% of overall VAF loss

(Fig 5a).
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Fig. 5b shows estimated posterior uncertainty of VAF loss after 40 years from our Hessian-based framework in our L-curve

informed workflows. The uncertainty estimates are on the order of 10 km3 (10 km3 for the ITS_LIVE-constrained inversion

and 16 km3 for MEaSUREs) – an order of magnitude smaller than the observed difference. These results are seemingly at odds.395

In other words, our error propagation framework suggests a forecast uncertainty that is one order of magnitude smaller than the

variability in VAF found when using two different satellite velocity products. This leads to a contradiction, as it suggests that

our observed variability in VAF loss is extremely unlikely (see Discussion). This contradiction could arise from one or more

of the following: i) the regularisation suggested by the L-curve analysis is too strong, i.e. the prior is overly informative; ii)

the observational error covariance matrix used for ITS_LIVE does not capture the true variability of the velocity field shown400

in Fig. 4b (see Sect. 3.1.3); and/or iii) there are too many data points informing our cost function. We address point (iii) in the

next section whereas points (i) and (ii) are addressed in sections 5.2 and 5.1.

4.3 Effect of observational data subsampling

In this section we develop a metric to evaluate the quality of the model’s inversions if we decrease the number of observations.

In other words, we study the effect that different data densities have on the cost function performance. Similar techniques405

have been used to gather information on cross-correlations between two different sets of observations (e.g. covariance between

winds speed observations in Desroziers et al., 2005), here we apply a similar diagnostic test to study the covariance between

adjacent velocity observations from the same product. Additionally, Koziol et al. (2021) show that data density affects the

posterior covariance of the control parameters for an idealised experiment, thus we use the results of this metric to test in Sect.

5.2, how data density affects the posterior uncertainty of VAF. The test has the following steps:410

1. Produce several training data-sets of observed ice velocity by retaining different percentages of data points from a given

set of observations (e.g. ITS_LIVE).

2. Use those training sets to compute inversions of α and β using our L-curve informed prior configuration.

3. Use the α and β results from step 2 to evaluate Jc
mis (Eq. 8) on velocity points that were not used to compute the

inversions (i.e. using a validation data-set; observations from a different product such as MEaSUREs).415

Based on both products metadata (see Sect. 3.1), we consider MEaSUREs and ITS_LIVE velocities to be two independent

realisations of the state of the ice sheet at a given time and location. Hence, we use ITS_LIVE velocities for training and

MEaSUREs for validation.

To construct the training sets, we divide the domain into cells of different sizes (different grid-spacing) and systematically

drop observations by iterating over the x and y directions of the ITS_LIVE grid. We select sub-samples of the data by retaining420

corner and center observations from each cell per iteration – i.e. upper and middle cell-points. An example of a training data

set is shown in Fig. 6a, where we retain only 1.6% of the velocity observations. To construct the validation set, we downscale

MEaSUREs to the ITS_LIVE resolution and drop problematic data points (see figures 6d to f), i.e. locations where MEaSUREs

and ITS_LIVE present velocity differences higher than 50 m.yr−1 (as shown in Fig. 4b).
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Results of the test (see Fig. 7) demonstrate that our framework provides robust inversions for the drag and stiffness param-425

eters α and β. Additionally, these results reveal that the value of Jc
mis does not change significantly even when we retain only

1.6% of the data, which suggests that a large amount of data points may be redundant when inverting for the control parameters,

with potential implications for the error propagation of VAF (see the results from Sect. 5.2). However, observations are needed

to inform the model in critical areas of the domain (i.e. at the grounding line or calving fronts) and if we drop observations in

a random manner the performance of Jc
mis may decrease.430

5 Results

Results from Sect. 4.2 show that if we use the prior strength suggested by the L-curves and the original ITS_LIVE velocity

and standard deviation (STD), our framework underestimates the posterior uncertainty of VAF loss after 40 years by one order

of magnitude (see Fig. 5b). More precisely, we calculate a posterior uncertainty which suggests that the difference in projected

VAF (estimated by using two velocity products that nominally observe the same physical properties to calibrate our model), is435

extremely unlikely (see Fig. 5a). To achieve a posterior uncertainty that reflects the same order of magnitude – i.e. ∼ O(1011

m3), we carry out two more experiments aiming to understand how the uncertainty in forecast of VAF is affected by the use

of different strengths of prior (Sect. 5.1) and different versions of the ITS_LIVE data (Sect. 5.2). Additionally, we study the

impact of using different sliding laws on the posterior uncertainty of VAF (Sect. 5.3).

5.1 Impact of using different prior strengths on the posterior uncertainty of VAF440

We keep the same velocity input for all model configurations trialed in this section (i.e. retaining only 1.6% of the ITS_LIVE

data and adjusting the observations STD, as explained in Sect. 5.2), but vary the strengths of the prior. We experiment with the

variance σ2
c(0) and auto-covariance length scale lc(0) of each control parameter instead of using priors suggested by L-curve

analysis, as these definitions (see Sect. 2.6) have a more physical meaning. We calculate prior strengths using (18) and by

making an informed guess on σ2
c(0) and lc(0) based on existing prior knowledge and physical concepts that define each control445

parameter.

From the literature (Pattyn, 2010; Khazendar et al., 2011; Still et al., 2022) we know that the spatial pattern of the ice stiffness

is not uncorrelated. The advection of colder tributary glacier ice onto the ice shelf is well represented by the vast expanses of

stiffer ice originating at the grounding line and extending downstream for tens of kilometers (see panels c and d of Fig. 3),

whereas observed deformation patterns at the shear margins (Khazendar et al., 2011; Still et al., 2022) suggest the presence of450

weaker deformable ice, where the prominent formation of crevasses occur. Thus we keep an auto-covariance length scale lβ(0)
for β equal to 1 km in all prior configurations, as crevasses can be present within that length scale. In future studies this length

scale could be set by conducting a detailed spatial statistical analysis of crevasse maps derived from remote sensing, which is

beyond the scope of this study. For σ2
β(0) we trial variance values computed from the STD of the ice stiffness (B) initial guess

(see details in Sect. 3).455
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For the sliding parameter we define auto-covariance length scales lα(0), that are slightly larger than those assumed for β

(i.e. 2 to 3 km); as observations from airborne radar over the ice sheet (De Rydt et al., 2013) verify that for fast-flowing ice

streams, the surface topography carries important information about the bed with wavelengths between 1 and 20 times the

mean ice thickness (≥ 1 km) thus controlling basal sliding at similar scales. Additionally, model experiments described in

Gudmundsson (2008) show that the SSA overestimates the effects of bed slipperiness perturbations on the surface profile for460

wavelengths less than about 5 to 10 times the mean ice thicknesses, the exact number depending on values of surface slope

and slip ratio. Variance values are less intuitive, thus we trial σ2
α(0) values over several orders of magnitude in order to vary the

prior strength imposed on α.

The resultant prior strengths are shown in Table 1 and the estimated posterior uncertainty of VAF for each prior configuration

is shown in Fig.8a (solid lines), both are ordered from weak to strong. For the weakest prior we find an uncertainty of approx-465

imately 160 km3 – an order or magnitude larger than the estimates found previously. This suggests that a strong prior on the

sliding parameter (such as the one suggested by the L-curve analysis), suppresses the error propagation from the satellite data

onto projections of VAF. Most of our prior experiments focus on α however, we also trial our error propagation framework

changing the variance of β (see Table 1). Compared to prior experiments run on α, changing β priors show little influence

in the posterior uncertainty of VAF. We also test weaker priors for both parameters, but these experiments lead to non-stable470

solutions of the time-dependent SSA as the parameters present undesirable and nonphysical features (not shown).

Our low-rank approximation to the Hessian (16) makes the assumption that if additional eigenvectors were retained (i.e. if r

were larger) the estimated posterior uncertainty σ(QT ) would not change considerably. To test this we examine the marginal

change in σ(QT ) for each r (see Fig. 8c), which exhibits an approximately exponential decay with r. To estimate the effect of

the low-rank approximation we assume that the decay rate holds up to r =N , where N is the full problem size, and that all475

neglected terms in (16) make a negative contribution to σ(QT ) – i.e. we estimate the “worst case” where every extra eigen-

vector/eigenvalue calculated decreases the uncertainty (See Appendix B for details of this estimate). The resulting estimated

STD’s of VAF for an infinite number of eigenvalues σest
full are shown in the captions of Fig. 8c, and indicate that for all prior

strengths, even in the worst case, posterior uncertainties decrease by a small proportion and more importantly are not as small

as those values seen in our L-curve investigations. We perform this same check in all remaining experiments and observe480

similar results (see Fig 8d and Fig. 10f).

Finally, the retained eigenvectors from the Hessian can be interpreted as those modes in the parameter space that change

the approximated posterior uncertainty relative to the prior uncertainty. We show in Fig. 9 the leading eigenvectors (see panels

a to f) for the prior configuration highlighted in Table 1. The dominant eigenvectors of the ice stiffness parameter field β

(panels b, d, and f), suggest that we gained more information regarding this parameter at the grounding line. The eigenvector485

corresponding to the smallest eigenvalue (Fig. 9h), is increasingly more oscillatory (and thus informs at a smaller length scales

in the parameter space) and is increasingly relatively less informed by the velocity observations; such patterns are also present

in similar studies (e.g. Isaac et al., 2015).
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5.2 Impact of using different ice velocity observations on the posterior uncertainty of VAF

Contrary to the previous section, here we keep the same prior strength for all the experiments but modify the velocity input.490

We modify the original ITS_LIVE data by decreasing the amount of observations and by adjusting the STD of each velocity

component to match the following condition:

vxstd →max(vxstd, abs(vxI − vxM )), (21)

vystd →max(vystd, abs(vyI − vyM )). (22)

where vxstd and vystd are standard deviations of velocity components, and I and M subscripts refer to ITS _LIVE and495

MEaSUREs, respectively. In other words, where the original uncertainty of the data is small, we replace those coordinates

STD with the absolute difference between MEaSUREs and ITS _LIVE velocities at that same location. Figures 6b and c show

this error adjustment for each velocity component. We generate three versions of the ITS _LIVE data by; i) retaining all data

points but adjusting the STD, ii) retaining only 1.6% of the data (inline with the results from the observational data subsampling

test) and adjusting the STD and iii) retaining only 1.6% of the data but keeping the original STD.500

We run our error propagation framework using these three data sets (and the weak prior configuration highlighted in Table 1)

and compute VAF posterior uncertainties as shown in Fig. 8b (see solid lines); uncertainties in this figure are plotted from high

to low (from dark to light blue) and represent a 95% confidence interval. The effect of retaining only 1.6% of the observational

data leads to a slight decrease in posterior VAF uncertainty – which is counterintuitive as one would expect fewer observations

to give a larger posterior calibration uncertainty. However, the VAF uncertainty (15) is derived from both calibration uncertainty505

and VAF sensitivity. The latter differs between the experiments, as can be seen from the projection of prior uncertainty on to

VAF sensitivity (blue dashed lines). The adjustment of observational STD increases VAF uncertainty at approximately 5 to 15

years, but has less impact after. Importantly however, the overall impact on the posterior uncertainty of VAF loss after 40 years

is small relative to the effect of changing the prior strength (see solid line differences between panels a and b of Fig. 8).

5.3 Impact of using different sliding laws on the posterior uncertainty of VAF510

In previous configurations we use the Weertman-Budd sliding law, but due to the sensitivity of the time-dependent ice sheet

model to the choice of sliding law (Brondex et al., 2019; Kazmierczak et al., 2022; Barnes and Gudmundsson, 2022) we trial

our error propagation framework using the Cornford law and compare qualitative differences from both laws in Fig 10. We use

the same velocity constraints (i.e. same as in Sect. 5.2) and consider only a single prior distribution. Ideally, we would need to

investigate a range of priors for the Cornford law (as we did for Weertman-Budd in Sect. 5.1); but this is beyond the scope of515

our study. The prior distribution used is similar to the highlighted parameters in Table 1, but with a modified σ2
α(0) – since in

the interior the basal stress is independent of the effective stress (Cornford et al., 2020), and thus we expect variations of α to

have a different scale (see last configuration in Table 1).

Using the inverse of the low rank update approximation for the cost function Hessian (Γpost) we can estimate the posterior

standard deviation (STD) of α and β. We divide the mesh into ‘patches’ of approximately 1 km in diameter, and for each patch520
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we compute the mean of each control parameter. We treat this mean as a new quantity of interest (QoI) and compute its STD

via the same framework as projections of VAF loss (see Sect. 2.5). Essentially, we visualise in panels a to c of Fig. 10 the

posterior of a ‘local average’ of α and β.

For both sliding laws the sliding parameter α is more uncertain close to the grounding line and at the Bear Peninsula (see Fig.

10 panels a and b) where uncertainties from the ITS_LIVE product are higher (see Fig 2 panels b and c). The large uncertainty525

just at the grounding line in the Cornford results (relative to that of Weertman-Budd) is due to the insensitivity of basal stress

to α when the ice is near flotation (see sensitivity analysis below). For the ice stiffness parameter β the most uncertain areas of

our domain are the grounding lines of the PSK glaciers and the Crosson ice shelf (see panel c of Fig. 10) – these are the areas

where the speed from the two satellite products show significant differences (see Fig. 4b).

For both sliding laws, VAF uncertainty reaches a similar order of magnitude ∼O(1011) m3 at year 40 (Fig 10e). However,530

a quantitative comparison is somewhat misleading, as the impact of prior strength is is not investigated for the Cornford law.

There are qualitative differences however: the posterior uncertainty of VAF for each sliding law saturates at a different rate,

with the posterior uncertainty of the Cornford law configuration growing at a faster rate after year 10. We compare sensitivity

maps of the model’s VAF estimates to the basal friction coefficient α2 at year 10 and 40, normalised to year 40 sensitivities

for the respective experiment (see Fig. 11). VAF sensitivities at year 10 computed using the Weertman-Budd law have a higher535

sensitivity to the basal friction coefficient relative to those computed using the Cornford law – particularly at the grounding

line of Kohler Glacier (see panels a and c of Fig. 11). Additionally, Fig. 11 shows that at year 40 both sliding laws have similar

sensitivities. In this section we only show sensitivity maps for α2, sensitivities to the ice stiffness are shown in Fig. A3 of

Appendix A.

6 Discussion540

The efficiency of our error propagation framework allows us to explore how different prior strengths, velocity inputs and sliding

laws affect the uncertainty of VAF projections. We find that by choosing different satellite ice velocity products (that nominally

observed the same physical properties to calibrate FEniCS_ice) our model leads to different estimates of VAF loss after 40

years (see Sect. 4.2). This effect may be less important for ice streams strongly coupled to ocean forcing (Lilien et al., 2019;

Goldberg and Holland, 2022), but could be more influential for unstable margins (Joughin et al., 2014).545

The differences in VAF trajectories (shown in Fig. 5a) computed using the different velocity products, allow us to additionally

identify issues in our initial prior probability densities computed using the L-curve criteria. The observed differences are

extremely unlikely to be seen under the posterior densities informed by L-curve analysis, whereas they are far more likely

under the posterior informed by physically-motivated priors. The regularisation suggested by the L-curves is thus too strong

and thus suppresses the error propagation from the satellite data into the QoI, resulting in VAF projections with quantified550

uncertainties that are too low.
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Our analysis also suggests that the error provided with the velocity products cannot fully explain the variability in ice veloc-

ities observed in Fig. 4b and that large amounts of data points may be redundant, with implications for the error propagation

of the QoI.

Our ice sheet flow model described in Sect. 2 can be thought of as a (nonlinear) mapping from a set of input fields, which555

might be unobservable or poorly known (α and β fields), to a set of output fields, which might correspond to observable

quantities (e.g. satellite surface velocity observations). In FEniCS_ice, the parameter-to-observable map f̆ is a composition

of two functions: the solution of the SSA equations (see Sect. 3 of Koziol et al., 2021, for details) and the misfit term Jc
mis (8).

Our error propagation framework considers the ice sheet inverse problem as a linearised inverse problem; by linearisation

we mean that f̆ is linearised about the MAP point. Thus the framework relies on a number of key assumptions related to this560

and other issues:

1. (i) The observational errors and prior distributions are defined as Gaussian distributions, (ii) the parameter-to-observable

map f̆ is linear (or close to linear), and (iii) the Quantity of interest (i.e. VAF) at a given time depends linearly (or nearly

linearly) on the control parameters – in other words, the parameter-to-QoI map is close to linear.

2. The difference between velocities predicted by the model and the observations is due only to measurement errors (we565

assume zero model error see Sect. 2.4 – or more precisely consider conditional posterior information given the model).

3. The observational error covariance matrix is diagonal, i.e. errors in observations do not correlate spatially.

4. The posterior covariance of the control parameters Γpost is fully sampled with the number of eigenvectors and eigenval-

ues that we retain from the Hessian.

Note (1).(i,ii) above implies a Gaussian posterior. We already test (4) in Sect. 5.1 and address (1)-(3) in the following570

subsections.

6.1 Linear dependence of parameter-to-observable and Quantity of Interest maps with respect to the control

parameters.

FEniCS_ice computes a second-order approximation to the posterior covariance of the control parameters Γpost (via the

eigendecomposition of the cost function Hessian evaluated at the MAP point, see 2.5) and propagates forward the associated575

calibration uncertainty in time-dependent estimates of VAF loss (our QoI). The posterior PDF of c is not guaranteed to be

Gaussian due to the nonlinearity of the Stokes equations that describe f̆ . Furthermore, the propagation step (Eq. 15) is based

on a linear transformation of a Gaussian random variable, and assumes that QT (c), the parameter-to-QoI map, is well-described

by linear sensitivities.

Petra et al. (2014) test the Gaussianity of the parameter-to-observable map by sampling from the posterior PDF of the hidden580

field c via different Markov chain Monte Carlo (MCMC) sampling methods (Tierney, 1994); including a new stochastic Newton

method with a MAP-based Hessian. They solve a two-dimensional flow-line ice sheet inverse problem with a moderate number

of parameters (∼ 100). It is suggested that for control parameter directions which are more strongly informed by observations,
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and in the weak observational noise limit, the posterior may be closer to Gaussian, due to the weaker influence of the non-

linearity of f̆ . It is further suggested that for directions which are weakly informed by observations, and hence for which the585

Gaussian prior dominates, the posterior may again be closer to Gaussian. Therefore, a Hessian-based approximation (such as

the one describe in Sect. 2.5) to the posterior covariance of the parameters may be useful despite the nonlinearity of f̆ .

Koziol et al. (2021) test the linearity of the FEniCS_ice parameter-to-QoI map for an idealised ice sheet flow problem

(Pattyn et al., 2008) through a simple Monte Carlo sampling of the posterior PDF of c. The study finds strong agreement with

the linearly propagated posterior covariance when there is a moderately strong prior, but slightly poorer agreement with a weak590

prior.

Unfortunately, due to the size of our parameter space, testing the Gaussianity of the posterior PDF of c is beyond the scope

of our study. Similarly, sampling the posterior PDF to validate the propagation of calibration uncertainty to the QoI as in Koziol

et al. (2021) would be intractable for our more realistic setting. Instead, we develop a simple test to check the linearity of the

parameter-to-QoI map and how this linearity is affected when we impose different strengths of prior. We test the linearity of595

the parameter-to-QoI mapping by using data from Sect. 4.2 to compute the following dot products:

∂QI
T

∂αI
· (αI −αM ), (23)

∂QI
T

∂βI
· (βI −βM ). (24)

Here I and M indicate model output computed by either using ITS_LIVE or MEaSUREs velocities. We visualise the

linearity of the VAF operator by plotting each dot product together with the absolute difference between VAF trajectories600

computed using ITS_LIVE and MEaSUREs. Additionally, we repeat this test for a stronger prior configuration by imposing a

strong regularisation on β (stronger than the one suggested by the L-curve analysis, γβ = 100.0).

Results from both tests are shown in Fig 12 and verify that VAF estimates over time are highly dependent on α and that the

linearity of the parameter-to-QoI map depends on the strength of the regularisation (as in Fig. 12b and in Koziol et al., 2021).

The main objective of this study is to propagate calibration uncertainty into projections of VAF loss. We find that in order to do605

so, we must impose a weaker prior on the control parameters than widely-used methods (i.e. L-curve analysis) would suggest.

But as shown above, in doing so we might need to compromise on the linearity of the parameter-to-QoI map. Moreover, as

shown in Koziol et al. (2021), a weaker prior means a weaker spectral decay of the prior-preconditioned Hessian spectrum,

requiring to retain more of its eigenvectors (see also Sect. 5.1).

In other words, to avoid the prior probability from overwhelming the likelihood in our Bayesian inversion, we are required610

to examine a regime where we compromise the linearity of the time-dependent model in certain areas of the domain. Still,

we expect that the framework can provide an “order-of-magnitude” estimate of the contribution of calibration uncertainty

to QoI uncertainty. Although not previously applied to a problem as large as the present study, Stochastic Newton MCMC

(Martin et al., 2012; Petra et al., 2014), which does not rely on a Gaussian assumption, may provide a more robust estimate

in such regimes. Importantly, to be tractable this method requires a reasonable estimate of the posterior density (the “proposal615

density”) – and such an estimate can be provided using the low-rank Hessian approximation generated within our framework.

Thus Stochastic Newton MCMC may be a viable approach for non-Gaussian uncertainty quantification in future studies.
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6.2 Qualitative inspection of the model’s structural and forcing uncertainty

We only quantify calibration (parametric) uncertainty in projections of marine ice sheet loss. We do not quantify structural

or model uncertainty, i.e. errors that arise from the discretisation of the inverse problem (Barnes et al., 2021) or from the620

formulation of the model and its ability to represent the physics of the system (Hill et al., 2021). In Sect. 5.3 we trial our error

propagation framework with different sliding laws and examine the implications for projections of VAF loss (see Fig. 10);

though quantifying the likelihood of various sliding-law formulations is beyond the scope of our study.

In this section we look at uncertainty due to the use of different physics and discretisation to solve the ice-sheet momentum

balance. We do this by using a second ice sheet model: the STREAMICE module of MITgcm (Goldberg and Heimbach, 2013),625

which solves a depth-integrated balance that accounts for vertical shearing (absent from the shallow ice-stream approximation;

Goldberg, 2011). STREAMICE solves the momentum balance on a regular rectangular grid, a distinct discretisation from

FEniCS_ice. With a uniform 500 m grid, we simulate with STREAMICE an instantaneous velocity field (without time

evolution), using the inverted parameter fields of FEniCS_ice (interpolated to the STREAMICE grid) and the same geometry

and boundary conditions described in Sect. 3. The particular fields of α and β are from our L-curve analysis (Sect. 4.1). We630

compare both models’ surface velocities and find differences on the order of 100-200 myr−1, particularly in the fastest-flowing

ice areas and on the ice shelves (see Fig. A4). FEniCS_ice and STREAMICE have different approximations to Stokes flow,

employ different treatments of the grounding line in their equations, and have very different resolution, which may lead to

this disagreement. Barnes et al. (2021) find similar results, when two other adaptive mesh, finite-element SSA models are

compared to STREAMICE through the same diagnostic experiment. The authors show that these diagnostic calculations are635

not indicative of the performance of the models in time-dependent simulations (see Fig. 6 of Barnes et al., 2021, where all

models reach similar projections of VAF).

We emphasise this comparison cannot quantify structural uncertainty, but can inform us (qualitatively) of the effects of

implementing different discretisations and grounding line formulations in the model numerics.

6.3 Relevance of calibration uncertainty versus structural and forcing uncertainty640

As previously mentioned, structural uncertainty is neglected in our study and we use a very simple ocean forcing parameter-

isation, for which uncertainties are not considered. We make clear that our aim is to quantify calibration uncertainty alone;

however, it is only worth doing so if the contribution of calibration uncertainty to forecast uncertainty is non-negligible, and/or

the framework represents nontrivial steps toward incorporating these other sources of uncertainty. Regarding the former, the

existing literature provides some clues as to whether calibration uncertainty is important. Goldberg and Holland (2022) carry645

out coupled ice sheet-ocean modelling experiments for the PSK glaciers region, and show that the type of calibration of ice

model parameters (i.e. whether fit to observed thinning is accounted for) strongly determines ice loss over 20-30 years; beyond

this point, ice loss depends on far-field ocean conditions. For other catchments, this “crossover time” could be shorter, or longer

– meaning that uncertainty in calibration could inform projection uncertainty on the multidecadal scale before it is overtaken

by climate uncertainty. The short-term persistence of calibration errors is echoed in other types of cryospheric modelling: As-650
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chwanden and Brinkerhoff (2022) showed that the introduction of satellite-based information strongly reduced uncertainty in

short-term projections of Greenland ice loss, but that this relative information gain was greatly reduced by 2100, particularly

under strong climate forcing scenarios. Still, calibration uncertainties should not be dismissed even if they are overwhelmed

by climate forcing on long time scales: there are strong reasons why short-term (multidecadal) projections of ice loss are key

for planning and mitigation (Bassis, 2022).655

Moreover, our framework of estimating calibration uncertainty can easily be expanded to account for forcing uncertainty.

Provided that forcing uncertainty is independent of parameter uncertainty, the contribution of forcing to projection uncertainty

is additive, and can be found using an expression similar to Eq. 15. Importantly, such a calculation is independent from the

estimation of posterior parameter uncertainty through eigendecomposition of the Hessian – which is by far the most costly

component. This is not true of model uncertainty: our likelihood PDF p(ŭ|c), which gives the probability of observable ve-660

locity conditioned on parameters and the model, and hence neglects model uncertainty. A potential way to incorporate model

uncertainty – once it is quantified – is to adjust the observational error covariance used in the likelihood. A similar approach

has been used in the Bayesian Error Approximation method of Babaniyi et al. (2021).

6.4 Accuracy of observational error model

We draw the tentative conclusion that, for our study area, the choice of prior distribution informed by L-curve analysis is overly665

informative and underestimates calibration uncertainty. This is based on the fact that, with such a prior, the posterior VAF is

an order of magnitude smaller than the variability in VAF between two widely used velocity products as constraining data.

Essentially, the two products are treated as a 2-member sample from a distribution describing the true surface velocities. While

this is a very small sample size, our assessment makes the assumption that (i) the posterior VAF distribution is Gaussian (which

is explored above) and (ii) the two members are likely sampling outcomes under our observational error model – and therefore670

that the variation of ∼O(1011 m3) is not a statistical outlier – thus our Hessian-based assessment must be too small.

A further assumption in our assessment is that our observational error model is accurate. As described in Sect. 3.1.3, we use

reported errors and standard deviations to define diagonal terms in Γobs and assume zero spatial error covariance. Error magni-

tudes may be underestimated – although we somewhat account for this by adjusting observational errors based on differences

between the products (Sect. 5.2). Additionally, not accounting for spatial error correlation could underestimate calibration675

uncertainty, as shown in the idealised experiments of Koziol et al. (2021). It is possible that improved assessments of spatial

observational error covariance may be needed to accurately quantify calibration uncertainty when calibrating ice-sheet models

with satellite-based data. Such approaches have been used in weather data assimilation (Tabeart et al., 2020).

7 Conclusions

This study set out to apply FEniCS_ice error propagation framework to a realistic setting in West Antarctica (which includes680

three ice streams: Pope, Smith and Kohler Glaciers) and infer from satellite velocity observations two important unknown

parameters in ice dynamics and its uncertainties; the basal sliding friction coefficient (α) and the rheological parameter for
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describing ice stiffness (β). As in many other ice-sheet modelling studies we use a control method to calibrate grid-scale flow

parameters. However, our framework augments the control method with a Hessian-based Bayesian inference approach, which

characterises the posterior covariance of the inverted parameters. We project calibration uncertainty forward in time and onto685

projections of volume above flotation (VAF).

We find that by choosing different satellite ice velocity products (that nominally observed the same physical properties to

calibrate FEniCS_ice) our model leads to different estimates of VAF after 40 years or to different projections of sea-level rise

contribution. We use this difference in model output as an order-of-magnitude estimate of the variance that projections of VAF

should have after 40 years and identify prior strengths that can reproduce that variability. We demonstrate that if we use prior690

strengths suggested by L-curves, as is typically done in ice-sheet calibration studies, our uncertainty quantification is not able

to reproduce that same variability. The regularisation suggested by the L-curves is too strong (i.e. the information contained in

the prior distribution computed via L-curve analysis dominates over the information contained in ice velocity observations) and

thus suppresses the error propagation from the satellite data into VAF projections with quantified uncertainties that are smaller

than those suggested by our 2-member “sample” of observed velocity fields. Therefore, we recommend to use the variance695

and length scale arising from a physical interpretation of the prior to define regularisation parameters; as these definitions (see

Sect. 2.6) will inform the ice sheet model with a more realistic spatial variability regarding the basal sliding and ice stiffness

parameters. Additionally, our experiments suggest that large amounts of data points may be redundant, with implications for

the error propagation of VAF.

We inspect qualitatively one aspect of structural uncertainty by trialing our error propagation framework with two different700

sliding laws (Weertman-Budd and Cornford laws). The posterior uncertainty of VAF evolves differently for the two parameter-

isations, with the Weertman-Budd uncertainty saturating relatively quickly while that of Cornford steadily increases. This may

be due to differing patterns of sensitivity of VAF to the sliding parameters, particularly near the grounding line.

Finally, our framework alone does not fully quantify sea-level rise forecast uncertainty, but represents an important step.

Further improvements to our method could be to (i) quantify calibration uncertainty through Stochastic Newton Markov chain705

Monte Carlo (MCMC) using our Hessian eigendecomposition as the proposal density, (ii) take into account model error in the

likelihood probability density function and (iii) take into account forcing uncertainty in the error propagation framework.

Code availability. The version of tlm_adjoint used in this manuscript is available in a permanent DOI repository (https://zenodo.

org/badge/latestdoi/452296839). The FEniCS_ice software together with the application of the code to a real domain are coded in the

Python language and licensed under the GPL-3.0 license. The latest version of the FEniCS_ice code is available on Github (https:710

//github.com/EdiGlacUQ/fenics_ice), the documentation website of the model is under construction but a user guide is provided (https:

//github.com/EdiGlacUQ/fenics_ice/tree/main/user_guide). The code used to generate all figures and analyses of this study is available in a

permanent DOI repository (https://doi.org/10.5281/zenodo.7615259) and on Github (https://github.com/bearecinos/smith_glacier) as well as

the FEniCS_ice version used for this study (https://zenodo.org/badge/latestdoi/101511241). We have constructed a documentation website

for the application of the model to the PSK Glaciers domain (https://github.com/bearecinos/smith_glacier/wiki) where we explain in detail715

the installation of the code, the preparation of input data and how to run and visualise the experiments presented in this study.
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Data availability. The output data of the model is available in the following permanent DOI repository https://doi.org/10.5281/zenodo.

7612243. Information about how to read and plot the data can be found in the Smith repository wiki, see: https://github.com/bearecinos/

smith_glacier/wiki.

Appendix A: Extra figures and tables720

A1 ITS_LIVE 6 month offset speed change

To study the 6 month offset between ITS_LIVE and MEaSUREs velocities – i.e. from July 2014 to December 2014, we subtract

from the 2018 ITS_LIVE velocity mosaic, data acquired in 2014 and divide this by 8 in order get the monthly changes (see

Fig. A1a). The effect of the 6 month offset between both products is negligible compared to the difference observed in Fig. 4b

and to the speed ratio shown in Fig. A1b. However, there are significant differences (over a small area) at the calving front of725

the Crosson Ice shelf (see Fig. A1a).

A2 δα L-curve

In addition to the experiments shown in Sect. 4.1, we constructed a L-curve only for δα and use the same result for δβ . Results

are shown in Fig. A2 and suggest a value for δα of 1 ×10−4 compared to values in Table 1, any δα ≥ 1× 10−7 will result in a

stronger prior thus we choose δα = 1 ×10−5 for the error propagation experiments shown in Fig. 3 e and f.730

A3 Sensitivity of VAF to the ice stiffness (B)

We compare sensitivity maps of the model’s VAF estimates to the ice stiffness B (or β2) at year 10 and 40 (see Fig. A3). VAF

projections are more sensitive to the ice stiffness at the grounding line of the PSK Glaciers and at the Crosson Ice shelf. In

future studies, these sensitivity maps and the ice stiffness spatial distribution could be correlated to detailed spatial maps of

crevasses in the area.735

Appendix B: Convergence of the estimated posterior uncertainty σ(QT ) with the number of eigenvectors

For each successive eigenvalue-eigenvector pair (λr, Cr) we construct the low-rank approximation to the posterior covariance

using Eq. 16, and find the associated approximation to σ(QT ) by projecting the estimated covariance on to the QoI (Eq. 15).

We refer to this iterate here as σr – the posterior QoI uncertainty using the leading r eigenvectors – and to the difference

σr −σr−1 as ∆σr.740

We observe that, for sufficiently large r, the absolute change with r can be represented reasonably well by an exponential

decay i.e.

|∆σr|= d0b
r (B1)
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for some b smaller than 1 (Fig. 8(c,d)). Assuming this to hold as r becomes large, we can estimate a lower bound for σ(QT ) =

σN (where N is the parameter dimension) with a geometric sum. Specifically, we find the d0 and b that best fit |∆σr| for745

rth ≤ r ≤ rM , where rth is inferred from the decay of |∆σr| and rN is the number of eigenpairs retained (in our case 104).

The relationship given by Eq. B1 then implies for M >N

σM = σN +

M−1∑
r=N+1

∆σr

≤ σN − d0b
N

(
1− bM−N

1− b

)
< σN − d0b

N

1− b
. (B2)750

In Sect. 5 we use this result (with rth = 3000) to estimate a lower bound for the posterior uncertainty of QT without low-rank

approximation. The calculation is done at the final time i.e. for T = 40 a only. We emphasise that this calculation is purely

heuristic, and we are unaware of a theoretical lower bound for σM . Due to the tendency of the shallow-shelf approximation to

filter high spatial frequencies in basal parameters (Gudmundsson, 2008), it is unlikely that |∆σr| will decay more slowly than

predicted by Eq. B1, and it may even decay more quickly. However due to the large size of the parameter space (105) it is not755

tractable to find the full spectrum, so the estimate is not testable for this problem.

Finally, other studies use eigenvalue magnitude as a criterion for truncating the spectrum (e.g., Isaac et al., 2015). More

specifically, eigenvectors are retained up to an index r such that λr

λr+1 ≪ 1. We note this constraint alone does not ensure

that the contribution to QoI uncertainty arising from the truncated part of the spectrum is negligible, even if the marginal

contribution associated with each individual eigenpair is small.760
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Table 1. Prior strength configurations used in Sect. 5.1 and 5.3, based on the pointwise standard deviation σc(0) and auto-covariance length

scale lc(0) of each control parameter, ordered from weak to strong (except for the Cornford sliding law experiment).

Prior configurations σα(0) lα(0) γα δα σβ(0) lβ(0) γβ δβ

weak 1000 3000 0.85 9.40 ×10−8 30 1000 9.4 9.40 ×10−6

510 2000 1.1 2.80 ×10−7 30 1000 9.4 9.40 ×10−6

↓ 500 3000 1.7 1.90 ×10−7 30 1000 9.4 9.40 ×10−6

500 3000 1.7 1.90 ×10−7 60 1000 4.7 4.70 ×10−6

strong 150 3000 5.6 6.20 ×10−7 30 1000 9.4 9.40 ×10−6

Cornford sliding law 3000 3000 0.28 3.1 ×10−8 30 1000 9.4 9.40 ×10−6

The configuration in bold is also used in the experiments of Sect. 5.2 and 5.3. The units of σα(0) are m−1/6 yr1/6 Pa1/2 and

σβ(0) are Pa1/2 yr1/6. The unit of the auto-covariance length scale lc(0) is reported in m. Following (18), the units of γα are

m7/6 yr−1/6 Pa−1/2, γβ are mPa−1/2 yr−1/4, δα are m−5/6 yr−1/6 Pa−1/2 and δα are m−1 Pa−1/2 yr−1/4.
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Figure 1. Variable resolution mesh of the ice streams region. The resolution depends on observed strain rates derived by using satellite

velocity data (MEaSUREs v1.0 1996 - 2012, Rignot et al., 2014) and BedMachine Antarctica v2.0 (Morlighem et al., 2020). The boundaries

to the East and South are entirely ice-ice boundaries, whereas the North and West features calving fronts where ice meets the ocean.
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Figure 2. Observational input data. Satellite surface velocity observations (vector magnitude) and standard deviation (STD) of the velocity

components (vx and vy) from ITS_LIVE (a, b, and c. Gardner et al., 2019, 2018) acquired from January to December 2014, and from

MEaSUREs v2.0 (d, e, and f. Rignot et al., 2017) acquired from July 2013 to July 2014. For details on observational error model (STD

estimates) see Sect. 3.1.3.
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Figure 3. L-curve analysis output. a and b: Sliding parameter (α) computed using extreme γα values (bold values in panel e). c and d: Ice

stiffness parameter (β) computed using extreme γβ values (bold values in panel g). e and g: L-curve analysis for γα and γβ , the optimal

values suggested by the L-curves are highlighted in red.
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Figure 4. Inversion output differences after using two different satellite velocity products (MEaSUREs and ITSlive) to calibrate the ice

dynamic parameters. a: Modelled velocity differences b: Observed velocity differences. c: Sliding parameter (α) differences. d: Ice stiffness

parameter differences (β).
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Figure 5. a Trajectories of change in VAF (i.e. QT −Q0) using different velocity products and the regularisation terms suggested by the L-

curves (γα = 100, γβ = 10). b: Hessian-based prior (dash lines) and posterior (solid line) uncertainties of VAF over time (2σQT , represents

95% confidence interval).
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Figure 6. Overview of the input data used for the observational data subsampling test and for the experiments presented in Sect. 5. a: example

of a training data set from ITS_LIVE where only 1.6% of the data points are retained, b and c: ITS_LIVE uncertainty in the x and y direction

with the same data density as in (a) and with the STD of each component adjusted (see Sect. 5.2 for details). d to f: MEaSUREs validation

data set used for the test.
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Figure 7. Observational data subsampling results. Jc
mis performance if retaining a different number of observations for each training set.
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Figure 8. Hessian-based prior (dash lines) and posterior (solid line) uncertainties of VAF over time (2σQT , represents 95% confidence

interval) computed using; a: different strengths of prior and b: different versions of the ITS_LIVE data (i.e. different data density and STD,

see details in Sect.5.2). c and d: Rate of change for the posterior uncertainty of VAF (δσQT ) against the number of eigenvalues calculated;

statistics are shown in the lower corners, i.e. σest
full the estimated STD of VAF for an infinite number of eigenvalues and the decreasing trend

coefficient of determination (r2).
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Figure 9. Eigenvectors (v) of the Hessian. Each eigenvector has an α component (right column) and a β component (second column). Each

component is scaled to have a maximum magnitude of one. Ordered from large to small (from top to bottom), these v correspond to the 1st,

2nd, 3rd, and 5000th eigenvalues.
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Figure 10. Model output when using two different sliding laws. Point-wise STD of the sliding parameter α for the (a) Weertman-Budd and

(b) Cornford law. c: Point-wise STD of the ice stiffness parameter β (independent of the sliding law). d: Trajectories of change in VAF

(QT −Q0) using the different sliding laws and the highlighted weak prior from Table 1. e: Hessian-based prior (dash lines) and posterior

(solid lines) uncertainties of VAF over time (2σQT , represents 95% confidence interval). f: Rate of change for the posterior uncertainty of

VAF (δσQT ) against the number of eigenvalues calculated; statistics are shown in the lower corners, i.e. σest
full the estimated STD of VAF

for an infinite number of eigenvalues and the decreasing trend coefficient of determination (r2).
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Figure 11. Sensitivity maps of the model’s change in volume above flotation (QT ) to the basal friction coefficient α2; for year 10 and year

40, when using two different sliding laws. Units of α2 are m−1/3 yr1/3 Pa. a and b: Weertman-Budd and c and d: Cornford law. These

visualise the node-wise sensitivity given the choice of mesh and finite element discretisation.
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Figure 12. Linearity test results. Absolute difference of trajectories of VAF (QT ) estimated using different satellite velocity products (red

dotted lines) and dot products results (solid lines) from (23) and (24) plotted in blue and yellow respectively. For this figure we use model

output from Sect. 4.2. a: Linearity test using the regularisation strength suggested by the L-curves and b: Linearity test using a stronger

regularisation on β.
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Table A1. L-curves configurations used in Sect. 4.1. Reference values for β parameters are obtained from variance values computed from

the STD of the ice stiffness (B) initial guess (see details in Sect. 3). Reference values for α parameters (first guess) are chosen heuristically

and looking to maintain the linearity of the VAF operator and stable solutions of the time-dependent SSA.

Prior configurations σα(0) lα(0) γα δα σβ(0) lβ(0) γβ δβ

γα L-curves - - - 1.9 ×10−7 30 1000 9.4 9.4 ×10−6

γβ L-curves 65 23000 100 1.9 ×10−7 - - - 9.4 ×10−6

δα L-curves - - 100 - 30 1000 9.4 9.4 ×10−6

ITS_LIVE and MEaSUREs L-curve workflow 8.9 3200 100 1 ×10−5 28 1000 10 1 ×10−5

The “-" indicates that those parameters were vary by several orders of magnitude while constructing the L-curves. The units of σα(0) are m−1/6 yr1/6 Pa1/2

and σβ(0) are Pa1/2 yr1/6. The unit of the auto-covariance length scale lc(0) is reported in m. Following (18), the units of γα are m7/6 yr−1/6 Pa−1/2, γβ

are mPa−1/2 yr−1/4, δα are m−5/6 yr−1/6 Pa−1/2 and δα are m−1 Pa−1/2 yr−1/4.
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Figure A1. Speed comparisons. a: 6 month offset speed change from ITS_LIVE 2014 (Jul-Dec) and b: Speed ratio of the difference between

the two products (ITS_LIVE 2014 - MEaSUREs acquired from July 2013 to July 2014) and ITS_LIVE 2014. Empty pixels in panel b are

due to gaps in the MEaSUREs dataset, which increase when the data is interpolated to the ITS_LIVE grid.
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Figure A2. L-curve for δα.
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Figure A3. Sensitivity maps of the model’s change in volume above flotation (QT ) to the ice stiffness (B or β2). Units of B are Pa yr1/3
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Figure A4. Models surface velocity comparison. Surface velocities are calculated by using FEniCS_ice inversions of α and β calibrated

with ITS_LIVE and the highlighted weak prior configuration from Table 1. a: STREAMICE. b: FEniCS_ice. c: Difference between both

models.
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