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Abstract  

Hydrologic-land surface models (H-LSMs) provide physically-based understanding and predictions of the current and 

future states of the world’s vast high-latitude permafrost regions. Two major challenges, however, hamper their 

parametrization and validation when concurrently representing hydrology and permafrost. One is the high 20 

computational complexity, exacerbated by the need to include a deep soil profile to adequately capture the freeze/thaw 

cycles and heat storage. The other is that soil-temperature data are severely limited, and traditional model validation, 

based on streamflow, can show the right fit to these data for the wrong reasons. There are few observational sites for 

such vast, heterogeneous regions, and remote sensing provides only limited support. In light of these challenges, we 

develop 16 parametrizations of a Canadian H-LSM, MESH, for the sub-arctic Liard River Basin and validate them 25 

using three data sources: streamflows at multiple gauges, soil temperature profiles from few available boreholes, and 

multiple permafrost maps. The different parametrizations favor different sources of data and it is challenging to 

configure a model faithful to all three data sources, which are at times inconsistent with each other. Overall, the results 

show that: (1) surface insulation through snow-cover primarily regulates permafrost dynamics after model 

initialization effects decay, relatively long time and (2) different parametrizations yield different partitioning patterns 30 

of solid-vs-liquid soil-water and produce different low-flow but similar high-flow regimes. We conclude that, given 

data scarcity, an ensemble of model parametrizations is essential to provide a reliable picture of the current states and 

future spatio-temporal co-evolution of permafrost and hydrology. 

1 Introduction  

Expanding knowledge of Earth system governing processes, the revolution in computing, and the pressing need to 35 

investigate/predict various interrelated facets of Earth systems have collectively led to the development of more 

complex numerical Earth system models. Hydrologic-Land Surface Models (H-LSMs) are one such advancements 

that have significantly improved atmospheric predictions and hydrological flow simulations. H-LSMs have evolved 

from first generation, simple process representations, such as the bucket model for moisture storage with a lumped 

treatment of vegetation and snow (Manabe, 1969), to third generation, state-of-the-art representations that account for 40 

feedback loops, vegetation dynamics, carbon pools, and surface/subsurface flow routing (Pitman, 2003; Prentice et 

al., 2015; Sellers et al., 1997). Yet, model representations of natural Earth system(s) remain limited for several reasons, 

including the limited scalability of small-scale observations of governing processes, the unavailability of validation 

data, process complexity, and the models’ large degrees of freedom. In cold regions, configuring an H-LSM to 

simulate hydrological responses also presents difficulties associated with the limited understanding of water and 45 

energy process interactions. Upscaling process understanding from local-scale to larger domains and evaluating model 

performance adds further complexity to model development and diagnosis (Pomeroy et al., 2007). Perennially frozen 

ground, or permafrost, is an example of a crucial feature of cold regions for which understanding of thermal-

hydrological behaviour is limited; yet, at the same time, this feature dominates the hydrological functionality over 

large areas.  50 

Permafrost is ground material that sustains cryotic conditions (i.e., temperature ≤ 0 °C) for no less than two successive 

years. Around a quarter of the Northern Hemisphere’s land is underlain by permafrost, highlighting its substantial 
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influence on hydrology, climatology, and ecology (Walvoord and Kurylyk, 2016; Woo et al., 1992). Permafrost is 

overlain by a dynamic soil layer prone to seasonal thawing/freezing cycles called the active layer (van Everdingen, 

1998). Permafrost thaw/degradation can happen in a heterogeneous manner, both vertically (upward, downward, or 55 

both) and spatially (Farquharson et al., 2019; Harris et al., 2009; Morse et al., 2016; Romanovsky et al., 2007; Smith 

et al., 2012; Zhao et al., 2010), which in turn affects the partitioning of water/heat stores above and below ground 

surface, hydrologic connectivity of landscape features, and streamflow seasonality. Further, there is strong 

dependency between energy and water fluxes/stores within permafrost (Riseborough et al., 2008; Walvoord and 

Kurylyk, 2016), which necessitates appropriate numerical model formulations to simulate their coevolution (in 60 

addition to carbon). In this regard, Earth System Models (ESMs), particularly the land-surface component (H-LSMs), 

have been employed (and advanced over time) for accurate, robust, and reliable simulation of thermo-hydrological 

processes in permafrost regions (Abdelhamed et al., 2022a; Alexeev et al., 2007; Elshamy et al., 2020; Ji et al., 2022; 

Lawrence and Slater, 2008) and future projections under climate change scenarios (Burke et al., 2020; Lawrence and 

Slater, 2005; Zhao et al., 2022). 65 

Permafrost dynamics are simulated in H-LSMs through the coupled evolution of water and heat (and carbon for some 

H-LSMs) across atmosphere-vegetation-soil interfaces, which can be linked to atmospheric models through online 

(two-way) coupling to represent critical feedback loops related to permafrost state changes (e.g., the carbon pool in 

permafrost). Recently, several improvements have been introduced to enhance the representation of permafrost 

dynamics in H-LSMs. These include deeper soil columns to capture the freeze/thaw cycle and resolve the heat storage 70 

of underlying ground (Alexeev et al., 2007; Hermoso de Mendoza et al., 2020), incorporating the insulation effect of 

snow (using a multi-layer scheme) (Chadburn et al., 2015) and soil organic matter explicitly (Lawrence and Slater, 

2008; Park et al., 2013), carbon pool processes and associated vegetation dynamics (Melton et al., 2019), and 

representation of lateral taliks and micro-topographic processes (Aas et al., 2019; Devoie et al., 2019). However, these 

improvements are not incorporated into all current models due to computational and/or numerical limitations and/or 75 

the absence of upscaling methodologies.  

The paucity of in situ permafrost observations restrains model development, diagnosis, and assessment, amplified by 

the spatial heterogeneity of permafrost and the non-uniformity of the thaw process (pattern and rate), as highlighted 

by Lamontagne-Hallé et al. (2020), Pastick et al. (2014), and Walvoord and Kurylyk (2016). Moreover, current remote 

sensing technologies remain incapable of (directly) detecting permafrost characteristics (e.g., soil temperature, ice 80 

content, and thaw/freeze depth) (Westermann et al., 2015). However some indirect/non-comprehensive permafrost 

indicators are currently detectable and could be used to delineate the presence of permafrost (Hachem et al., 2009; 

Muskett and Romanovsky, 2011), such as land surface temperature (e.g., MODIS LST: Hulley and Hook, 2017), total 

water storage: (TWS: Tapley et al., 2004) and surface topography (e.g., SRTM: Farr and Kobrick, 2000). Building on 

the correlation between permafrost occurrence/status and those indicators, several mapping techniques for permafrost 85 

have been introduced. For instance, Gruber (2012), Chadburn et al. (2017), and Aalto et al. (2018) correlated the 

spatial occurrence of permafrost with the mean annual air temperature (MAAT), elevation, and surficial condition. 

Another practical approach can be found in thermal models (e.g., TTOP: Smith and Riseborough, 1996) that 
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incorporate a transfer function between the MAAT and mean annual ground temperature (MAGT) to locate the 

freeze/thaw front; the work of Obu et al. (2019) is one example that also combines land cover and precipitation as 90 

inputs. Machine learning approaches can be used, but these require a large suite of input data (e.g., soil texture, climate, 

vegetation cover) to compile permafrost variables, such as the gridded product of Ran et al. (2022).  

The significant spatial heterogeneity of permafrost, as well as the scarcity of permafrost data over space/time, has 

hindered the development of a unified upscaling approach for mapping permafrost over large domains. As a result, it 

is challenging for modellers to validate any H-LSM against gridded permafrost products (over large domains) and 95 

localized ground observations (either thermal cables or thaw tubes). Furthermore, modelling the evolution of 

permafrost has historically disregarded information about hydrologic fluxes/states, e.g., streamflow, 

evapotranspiration, and basin storage. By incorporating these aspects, modellers are expected to gain more insights 

into the spatio-temporal evolution of water-energy states and fluxes and identify synergies or trade-offs that could 

inform future efforts for model parameterization and data collection, and eventually minimize the uncertainty in model 100 

projections.    

Here, we aim to assess the capability of an H-LSM to simultaneously replicate observed permafrost dynamics at the 

local/point scale (vs observational sites) and basin scale (vs gridded permafrost products), in addition to the streamflow 

dynamics that integrate various dominant underlying hydrological processes. The MESH H-LSM (Pietroniro et al., 

2007; Wheater et al., 2022) is used; model experiments are configured based on previous studies with the same model. 105 

The assessment is performed on the Canadian Liard River Basin (LRB), which is dominated by sporadic-discontinuous 

permafrost and has a significant streamflow contribution to the sub-continental Mackenzie River Basin (MRB). 

Several gridded permafrost products with different levels of physics, complexity, and spatial/temporal coverage are 

used as additional indicators of simulation quality. The remainder of the article is organized as follows: Section 2 

presents the methods, case study, data sources, and model implementation, Section 3 reports the results of all 110 

experiments, and the article closes with a summary and conclusions in Section 4. 

2 Models, datasets, and methods  

 Study area  

The Liard River Basin (LRB) is a large basin (area 275,000 km2, elevation range 140–2,700 m; Fig. 1) in subarctic 

Canada underlain by discontinuous and sporadic permafrost that is sensitive to the effects of climatic warming 115 

(DeBeer et al., 2016; Hayashi et al., 2004; Woo, 2012). The LRB is a mostly natural river system with insignificant 

surface water storage (i.e., no large lakes) or water management (Fig. 1). The basin has a high runoff coefficient 

(around 0.55) and contributes more than one quarter of the annual flow to the 1.8 million km2 Mackenzie River Basin 

(MRB) (Woo, 2012). The LRB has received attention from researchers in various hydrological and Earth system-

related studies, including peatland hydrology in discontinuous permafrost (Connon et al., 2014; Hayashi et al., 2004; 120 

Quinton et al., 2009), the role of the mountain snow accumulation/melt on simulated discharge (Woo and Thorne, 

2006), the improvement in streamflow and snow water equivalent simulation from assimilating terrestrial water 

storage data (Bahrami et al., 2020), the hydrologic implications of climate changes under general circulation model 
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(GCM) and scenario uncertainties (Shrestha et al., 2019; Thorne, 2011), and the surface water balance closure for the 

MRB and its sub-basins (Louie et al., 2002; MacKay et al., 2003).  125 

The Liard River headwaters lie in the Yukon, British Colombia, Alberta, and the Northwest Territories. Short, cool 

summers and long, cold winters describe the climate of the basin (Jacques and Sauchyn, 2009), which has a mean 

annual temperature of approximately –2.9 °C and mean annual total precipitation of around 490 mm (40% as 

snowfall). The LRB can be divided into five distinct sub-basins (i.e., Upper Liard, Central Liard, Lower Liard, Fort 

Nelson, and Petitot), as shown in Fig. 1F. Boreal forest (with alpine tundra) dominates the Upper and Central Liard 130 

sub-basins (Fig. 1C), while sub-arctic forest and alpine tundra cover the Lower Liard sub-basin. Boreal forest and 

wetlands dominate the Petitot and Fort Nelson sub-basins, and small agricultural areas exist near Fort Nelson (Burn 

et al., 2004b).    

Fig. 1D shows the permafrost extent and categories for the LRB based on the Canadian Permafrost Map 

(Hegginbottom et al., 1995; Brown et al., 1998) in addition to the available permafrost monitoring sites (see 135 

Section2.4). About 57% of the basin is underlain by sporadic permafrost (the southern part of the basin), while 

discontinuous permafrost underlies the northern 33% of the basin. Hydrologically, the basin is characterized by low 

flows in winter months and a rising hydrograph starting in late April and May with a peak occurring in June, followed 

by a gradual decline to winter low-flow conditions in December (Burn et al., 2004a). The annual minimum flow occurs 

in late March or early April due to snowmelt and the mean annual flow at the outlet from 2000 to 2016 was 2600 m3/s. 140 

River flow is supplied mostly by snowmelt and rainfall, with a slight contribution from small glaciers, and groundwater 

is the primary source of low flows in winter (Woo, 2012). The Upper and Central Liard catchments contribute around 

one-half of the flow at the outlet from 38% of the basin’s contributing area. 
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 Model description  

The Modélisation Environmenntale communautaire – Surface et Hydrology (MESH) (Pietroniro et al., 2007; Wheater 

et al., 2022) is the model utilized in this study. MESH has a semi-/fully distributed grid-based modelling architecture 

encompassing a land surface component that quantifies vertical energy and water fluxes in cold regions (CLASS: 150 

Verseghy, 1991, 2000) or (SVS: Husain et al., 2016), an algorithm for lateral movement of surface and subsurface 

flow (WATROF: Soulis et al., 2000) and/or (PDMROF: Mekonnen et al., 2014), and a grid-to-grid hydrologic river 

routing scheme (WATFLOOD: Kouwen et al., 1993a). The spatial heterogeneity within each grid is conserved by 

using the Grouped Response Unit (GRU) concept (Kouwen et al., 1993b). Fluxes/states are calculated by default at a 

half-hour time step at the tile level (GRUs mapped onto grids) and then aggregated to grids. Seven meteorological 155 

forcing variables drive the land surface component: precipitation, air temperature, shortwave radiation, longwave 

radiation, specific humidity, air pressure, and wind speed. 

Organic matter can be configured in MESH following two approaches: (1) fully organic soil (FOS hereafter) using 

three predefined organic peat types (i.e., fibric, hemic, and sapric) based on the work of Letts et al. (2000), and (2) 

mineral soil with organic content (MSO hereafter), allowing the coexistence of mineral and organic matter. Thermal 160 

properties are the same for all peat sub-types, noting that peat has higher heat capacity (2.5×106 Jm-3 K-1), and lower 

thermal conductivity (0.25 Wm-1 K-1) than mineral soils. Further, peat has higher porosity (0.93, 0.88, 0.83 for the 

three sub-types, respectively, compared to 0.49 for clay and 0.36 for sand), higher retention capacity (0.275, 0.62, and 

0.705, respectively), and higher residual water content (0.04, 0.15, and 0.22, respectively) compared to mineral soils. 

MESH has been under continuous development by Environment and Climate Change Canada (ECCC) and several 165 

Canadian universities as an investigative and predictive model for various application scales and regions. 

Developments include simulation of blowing snow transport and sublimation within grids via the Prairie Blowing 

Snow Model (PBSM, MacDonald et al., 2009), and improved representation of base-flow routing (Luo et al., 2012) 

and reservoir operations (Yassin et al., 2019). MESH has been widely used in Canada at various scales of applications: 

small-scale watersheds (< 100 km2) such as Pelly’s lake (Berry et al., 2017), Bosworth Creek (Sapriza-Azuri et al., 170 

2018), and Jean Marie Creek (Abdelhamed et al., 2022a); medium-scale watersheds (>100 to < 1000 km2) such as 

Bright Water Creek (Budhathoki et al., 2020) and White Gull Creek (Davison et al., 2016; Razavi and Gupta, 2016); 

and large-scale river basins (> 1000 km2), such as the Liard River Basin (0.275 million km2; Bahrami et al., 2020), 

the Canadian portion of the Yukon River Basin (0.288 million km2; Elshamy et al., 2022), the Saskatchewan River 

Basin (0.40 million km2; Yassin et al., 2017, 2019), the Great lakes (1.0 million km2; Deacu et al., 2012; Haghnegahdar 175 

et al., 2014), and the Mackenzie River Basin (1.78 million km2; Elshamy et al., in preparation). Interested readers are 

referred to Wheater et al. (2022) for a comprehensive list of developments and applications. 

For the current study, CLASS version 3.6 is used as the underlying LSM and WATROF as the underlying runoff 

generation algorithm. CLASS solves the coupled water and energy balances for a user-specified soil column, noting 

that the default system has three layers with thicknesses of 0.1, 0.25, and 3.75 m, respectively, generalized across the 180 

modelled basin. A deeper soil column with a power-function layer discretization is used in the current study 

(Supplement Table S1). Descriptive soil parameters (defining the thermal and hydraulic regimes) are tied to soil 
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texture percentages of sand, clay, and organic matter. For each soil layer, temperature and moisture content (liquid 

and frozen) evolve during each time step based on the solution of coupled water-energy balance equations. Boundary 

conditions are the surface exchanges of heat and moisture with the atmosphere, no lateral movement of heat or 185 

moisture between adjacent grids, and no heat flux at the bottom of the soil column. Spatial heterogeneity is 

incorporated by subdividing each grid into tiles based on land cover. Further details are provided in the CLASS manual 

(Verseghy, 2012).  

 Climate forcing  

The meteorological variables needed to force MESH were obtained from version 2 of the W5E5 dataset (Lange et al., 190 

2021), a merged dataset that combines the water and global change forcing data (WFD) with the ERA5 reanalysis 

(WFDE5: Cucchi et al., 2020) data over land and the ERA5 reanalysis (Hersbach et al., 2020) over the ocean, in 

addition to precipitation data from version 2.3 of the Global Precipitation Climatology Project (GPCP). W5E5 V2 

covers the entire globe at 0.5° (~55 km) spatial and daily temporal resolution and is available from 1979 to 2019. 

W5E5 V2 was selected for two reasons: 1) it overlaps with data for the selected permafrost observational sites (i.e., 195 

Petitot River sites have been functional since 1985 (see Fig. 3 and Table 1) and 2) it was used for bias correcting 

climate model data for climate change impact assessments carried out in phase 3b of the Inter-Sectoral Impact Model 

Intercomparison Project (ISIMIP3b: Lange, 2019), from which we utilized the bias-corrected and downscaled future 

projection for 10 CMIP6 models to assess the concurrent temporal/spatial evolution of permafrost and hydrology for 

the same study area in a forthcoming paper (Abdelhamed et al., in preparation). W5E5 V2 was remapped to the same 200 

grid as the LRB setup (0.125°×0.125°) using bilinear interpolation.  

As noted above, MESH is driven by seven meteorological variables at a sub-daily time step, necessitating temporal 

disaggregation of W5E5 V2 climate data from the original daily time-step into a 3-hour time step, following Melton 

and Arora (2016). Linear interpolation is utilized for surface pressure, specific humidity, and wind speed. For 

radiation, longwave radiation is uniformly distributed throughout the day, while shortwave radiation is distributed 205 

diurnally over the day based on the grid’s latitude and the day of the year. Similar to shortwave radiation, disaggregated 

air temperature preserves the diurnal cycle. Lastly, total daily precipitation is stochastically disaggregated into a 3-

hour time step. However, because this approach does not preserve the diurnal cycle of specific humidity, it can lead 

to unrealistic sub-daily values, resulting in more frequent oversaturation (i.e., relative humidity exceeding 100%) and 

persistent negative evapotranspiration (condensation) events. To rectify this problem and knowing that specific 210 

humidity, relative humidity, and air temperature are related, we assumed a constant relative humidity throughout the 

day (i.e., at the daily value provided by W5E5 V2) and used its value along with the disaggregated sub-daily air 

pressure and temperature to modify the specific humidity and synthetically impose the diurnal cycle (Supplement 

Section S2).  
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 Permafrost variables, ground observations, and gridded datasets  215 

We focused on three permafrost variables to evaluate the simulated permafrost using ground observations (Fig. 3), 

namely the two annual temperature envelopes (Tmin and Tmax) and the active layer thickness (ALT), as shown in Fig. 

2. These variables can be extracted from the continuously simulated soil temperature for each tile in each grid in 

MESH. Temperature envelopes provide a comprehensive measure of simulation quality and are used to derive all 

other permafrost variables. ALT is deemed the most important factor used by both hydrologists and meteorologists to 220 

describe permafrost evolution over time in terms of aggradation/degradation (Farquharson et al., 2019; Park et al., 

2013; Zhang et al., 2005).  

  

Fig. 2. Schematic of the soil column showing variables used to represent permafrost dynamics, modified after Abdelhamed et al. 
(2022a). 225 

However, these variables are limited with respect to describing the vertical distribution of permafrost and are of 

secondary importance when it comes to assessing the spatial distribution of permafrost in grid-based models. In this 

regard, two interrelated variables are widely used: 1) permafrost extent (PE), defined as the proportion of an area (grid 

pixel) underlain by permafrost (also called permafrost probability), and 2) permafrost area (PA), defined as PE 

multiplied by grid pixel area. Another subjective indicator, known as the permafrost region (PR), can be used, defined 230 

as the area of a grid pixel with a PE larger than a predefined probability threshold (e.g., ≥0.02 as in Gruber (2012) and 

≥0.50 as in Burke et al. (2020)). In the current study, we opted for PE and PA, in addition to ALT, to assess the spatio-
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temporal evolution of permafrost, noting these three variables are averaged based on the fractional coverage area of 

GRUs in each grid. Furthermore, we assumed permafrost would exist underneath any tile if at least two soil layers 

(out of the 25-layer soil column) are cryotic through each simulation year; the one-year cycle was adopted to facilitate 235 

the evaluation of model simulations against annual temperature envelopes and annual active layer thickness 

observations. We opted for two soil layers, instead of one, to circumvent uncertainties of having 1) warm permafrost 

(i.e., negative temperatures but very close to zero) in a single thin layer, which could be a numerical error, and 2) 

permafrost only existing in the very thin topsoil layer (between 0.1 and 0.2 m). Alternatively, we can limit our search 

to a specific depth (e.g., 2 m as in Burke et al. (2020)), but this approach is subjective and does not account for deep 240 

permafrost, as indicated by the observed temperature envelopes in the LRB (Fig. 3). 

Permafrost ground observations in Canada are limited to experimental sites and/or boreholes made during (and after) 

the construction of large-scale infrastructure for maintenance and monitoring purposes. In this study, seven sites within 

the LRB are available (Fig. 3 and Table 1); six provide a continuous time series of the annual soil temperature 

envelopes (Tmin and Tmax), while the Manners Creek site (two boreholes) offers thaw-tube-based annual ALT. Notably, 245 

the selected sites vary in surficial vegetation cover, permafrost zonation, and temporal coverage. Regarding vegetation 

cover, sites with complex land cover (e.g., Wrigley Highway) will be compared to GRUs with the corresponding land 

cover characteristics (as possible) in the corresponding grid cell. It is noteworthy that the available sites are 

concentrated near the outlet of the basin and thus are not representative of the continuous permafrost region in the 

basin’s far north nor the isolated patches in the southeastern part of the basin. 250 

Table 1. Summary of permafrost monitoring sites§.  

Site name Borehole Latitude Longitude Data Vegetation Cover Permafrost Zone 

Scotty Creek Fen 61.306 -121.301 2012-2015 Graminoid (grasses), live moss over peatland Sporadic 

Petitot River North A 84-5A-T4 59.759 -119.516 1985-2000 Recovering burn (burned 2004), originally black 
spruce, shrubs, moss woodland (peat plateau) 

Sporadic 
Petitot River North B 84-5B-T4 59.759 -119.516 1985-1995 

Petitot River S 84-6-T6 59.460 -119.24 1985-2000 Peat plateau preceded by unfrozen fen Sporadic 

Wrigley Highway 
(Open black spruce) 

99TC03 61.657 -121.344 2007-2015 
Small black spruce thicket with willow shrub, 100% 

cover of moss with lichen and boreal heath 
Discontinuous 

Liard Spruce 97TC04 61.545 -121.394 2007-2015 Boreal, wetland shrub and sedge Discontinuous 

Manners Creek* 
92TT-5 61.767 -121.185 1993-2005 

Poplar, aspen Discontinuous 
92TT-4 61.770 -121.193 1993-2007 

§Scotty Creek is an experimental site operated by Wilfrid Laurier University (Quinton and Marsh, 1999), and the other six sites are 
part of the Norman Wells-Zama pipeline monitoring program (Smith et al., 2004), 
*denotes sites that provide only active layer thickness measurement using a thaw tube. 
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 255 

Fig. 3. Observed temperature envelopes at A) Scotty Creek (Fen), B) Petitot River North (84-5A-T4), C) Petitot River North (84-
5B-T4), D) Petitot River South (84-6-T6), E) Wrigley Highway (99TC03), and F) Liard Spruce (97TC04) sites. 

As highlighted earlier, the absence of a unified understanding of permafrost spatial heterogeneity has resulted in a 

wide range of mapping techniques for permafrost. Here, we explore several feasible permafrost products that can aid 

in quantitatively assessing the quality of permafrost simulations. Five gridded products that provide different 260 

permafrost variables were utilized in our study (Table 2). These can be classified into three groups: 1) statistical 

approaches (i.e., Aalto et al. (2018), Chadburn et al. (2017), and Gruber (2012)) based on the relationship between 

MAAT and the occurrence/extent of permafrost while accounting for variability in snow cover, vegetation, and 

subsurface properties (and terrain ruggedness for the last two datasets); 2) thermal/equilibrium models (i.e., Obu et al. 
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(2019)) that employ a transfer function between air and ground temperatures to locate the freeze/thaw front; and 3) a 265 

machine learning approach (i.e., Ran et al. (2022)) that requires a comprehensive set of inputs on soil density, organic 

content, precipitation, solar radiation, leaf area index, and snow cover duration. Further, we incorporated the 

International Permafrost Association (IPA) dataset, which provides permafrost zonation/distribution originally in a 

1:10,000,000 paper map for the 1960-1990 period (Brown et al., 1998). This dataset was used to assess the simulated 

PA, not PE, as it only provides the zonation boundaries, without further information on the variability within each 270 

zone. All datasets are remapped for the LRB extent using 0.125°×0.125° resolution and the first-order conservative 

scheme (Jones, 1999) for interpolation, except Chadburn et al. (2017), which is remapped using bilinear interpolation 

due to its coarser resolution (~0.5°×0.5°) than the LRB model setup (0.125°×0.125°).
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Fig. 4 compares PA and the associated zonation for all gridded datasets; PE is shown in Fig. 8. These comparisons 

shed light on the discrepancies/commonalities among the datasets in terms of spatial patterns, zonation and total area. 

We employed the intermediate (“most-likely” as per the authors) permafrost extent map of Chadburn et al. (2017) to 

produce the PE map; the maximum and minimum values of each zone incorporated the calculations of PA for the 280 

Chadburn et al. (2017) and Brown et al. (1998) datasets. The total area underlain by permafrost (i.e., permafrost 

fraction/probability per grid multiplied by grid area) was comparable for Gruber (2012), Chadburn et al. (2017), and 

Obu et al. (2019), varying between 87,000 and 90,000 km2. However, the partitioning of each product’s area into 

zones varies among these three products, as shown in Fig. 4, except for the continuous permafrost zone (i.e., 5-10%). 

The digitized version of Brown et al. (1998) had the largest total area of permafrost at ~112,000 km2, and the machine-285 

learning product of Ran et al. (2022) had the smallest at ~64,000 km2; however, the two products have dissimilar 

partitioning of the permafrost zones. Additional analysis on permafrost zonation is provided in Supplement Section 

S5.1.  

  

Fig. 4. Permafrost area for the LRB (total and partitioned per zonation) and the associated range of variability (error bars) based 290 
on the employed gridded products.  

 Modelling experiments - design and implementation  

Experiments were designed to assess the capability of the MESH model to concurrently simulate the dynamics of 

permafrost, both spatially and vertically, in addition to the hydrology, considering the uncertainty of the most 

influential model parameters for the LRB. The model configuration was extracted from a larger MRB model (Elshamy 295 

et al., in preparation) that could replicate the observed streamflow (at different gauges, including the outlet of the 

LRB), different hydrological fluxes/states (including evapotranspiration and snowpack), and permafrost. The MRB 

model was configured with a deep soil column to 51.24 m using a power-function-based layer discretization 

(Supplement Table S1), with a regular grid size of 0.125°×0.125°. However, parameter estimation for the MRB model 

was based on a combined product of the Global Environmental Model (GEM) (Côté et al., 1998) atmospheric forecasts 300 

and the Canadian Precipitation Analysis (CaPA) (Mahfouf et al., 2007), or GEM-CaPA in short, which is a different 

forcing dataset from that used in the current study. We note that GEM-CaPA could not be used in the current study 

due to its short record length (not available before 2002) and the fact that it was not employed in the bias correction 

and downscaling of ISIMIP3b GCMs; refer to Section 2.3 for further discussion.  
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Thus, the first step was to assess the compatibility of the estimated parameter values (based on GEM-CaPA) to the 305 

W5E5 V2 dataset. Fig. 5 shows the simulated streamflow at the basin outlet (station 10ED002), forced with W5E5 

V2 and GEM-CaPA meteorological products. The two simulated hydrographs are similar (KGE ≈ 0.8) and reasonably 

capture both the high and low flow events; still, the W5E5 V2 hydrograph depicts minor/modest differences for the 

volumetric bias (−16% ‘underestimation’ compared to −11% for GEM-CaPA) and the low flows (NSE-Log of 0.48 

compared to 0.65 for GEM-CaPA). The assessment was executed for the three other stations (Fig. 1F) and showed 310 

similar patterns (Supplement Section S3). Likewise, the daily basin-average water-balance states/fluxes were 

comparable for the same model configuration under W5E5 V2 and GEM-CaPA forcings, in terms of quantities, trend, 

and variability (Supplement Section S3). These preliminary checks could not be extended to permafrost thermal 

profiles as the original model (MRB) was evaluated against three sub-watersheds outside the LRB; however, all of 

the new experimental configurations (based on W5E5 V2) are evaluated against the available permafrost sites and 315 

datasets (Table 2).  

 

Fig. 5. Measured and simulated daily discharge of the LRB outlet (10ED002) under W5E5 V2 (left column) and GEM-CaPA (right 
column), for the original model configuration from 2006 to 2016, are compared using (A/A*) hydrographs, (B/B*) the long-term 
mean daily discharge, and scatter plots for (C/C*) normal values and (D/D*) logarithmic values. Performance metrics are calculated 320 
for the whole period and are provided above subplots (B/B*) in red font.    
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The second step was to configure several experiments to incorporate the uncertainty in model parameters. In this 

regard, we followed a progressive approach (one-factor-at-a-time) to develop the experiments, with emphasis on the 

aspects of model configuration most sensitive to permafrost simulation, ending up with 16 model experiments, 

summarized in Table 3. Based on a previous global sensitivity analysis (Abdelhamed et al., 2022b), permafrost 325 

simulation was found to be highly sensitive to two sets of parameters, representing surface insulation by snow cover 

(represented by the minimum snow depth to consider 100% ground snow cover, ZSNL) and soil texture, especially 

related to organic matter (type, vertical distribution, and depth of organic soil ‘ODEP’), which collectively contribute 

≥50% of the total sensitivity of permafrost simulation. The remaining parameters are either entirely insensitive (eight 

parameters with <1% contribution) or have low-to-moderate sensitivity (15 parameters with 1-10% contribution). 330 

Further, these parameters (i.e., snow cover and soil texture) were also among the most sensitive in the simulation of 

streamflow, as shown by Haghnegahdar et al. (2017).  

The ZSNL parameter was perturbed for the dominant GRUs (i.e., needleleaf forest (NLF), broadleaf forest (BLF), 

grass, and shrubs that collectively represent 84% of the LRB area; Supplement Table S2). Further, organic matter 

parameters were perturbed over each grid cell of the LRB setup; all tiles within a grid cell are assigned the same soil 335 

texture value. As highlighted earlier in Section 2.1, the organic soil can be configured following two distinct methods 

that were assessed in the configured experiments. The depth of organic soil was also represented as either a fixed 

depth (top six layers, 0.85 m) or a ‘spatially’ varying depth based on the relationship between ODEP and the soil 

organic content (Supplement Fig. S1 and Table S3). The vertical distribution of organic soil was configured using 

either uniform values, values decaying with depth, or values decaying with soil layer number. All model setups were 340 

spun up to initialize state variables (e.g., soil temperature, liquid/frozen soil content) by looping over a single 

hydrological year of climate record (hydrological year: October 1 to September 30) for 200 cycles for each setup, as 

recommended by Abdelhamed et al. (2022a). In this regard, two different single years were incorporated into our 

assessment (i.e., 1979-1980 and 1980-1981), where the two years had almost the same total annual precipitation (~540 

mm) and differed in terms of MAAT, at −1.5 and −3°C for 1979-1980 and 1980-1981, respectively. Computationally, 345 

running a single year of the LRB H-LSM took 20 mins on a full high-performance computing node (with 32 Xeon 

Gold Quad-Core CPU and a total memory of 326 GB), and hence each experiment required around three days of 

continuous running.  
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Table 3. Proposed model configurations, with the original model configuration denoted by *.  

Exp ID 
Snow Cover (ZSNL) Organic Matter Spin-up 

year Grass Shrubs NLF BLF Type Distribution ODEP 

1* 0.26 0.10 0.60 0.60 FOS Uniform Fixed 1979-1980 

2 0.26 0.10 0.60 0.60 MSO Uniform Fixed 1979-1980 

3 0.26 0.10 0.60 0.60 MSO By Layer Fixed 1979-1980 

4 0.26 0.10 0.60 0.60 MSO By Depth Fixed 1979-1980 

5 0.26 0.10 0.30 0.30 MSO By Depth Fixed 1979-1980 

6 0.26 0.10 0.15 0.30 MSO By Depth Fixed 1979-1980 

7 0.13 0.05 0.15 0.15 MSO By Depth Fixed 1979-1980 

8 0.13 0.05 0.15 0.15 MSO By Depth Fixed 1980-1981 

9 0.13 0.05 0.15 0.15 MSO Uniform Fixed 1980-1981 

10 0.13 0.05 0.15 0.15 MSO Uniform Fixed 1979-1980 

11 0.13 0.05 0.15 0.15 FOS Uniform Fixed 1979-1980 

12 0.13 0.05 0.15 0.15 FOS Uniform Fixed 1980-1981 

13 0.13 0.05 0.15 0.15 MSO Uniform Varying 1980-1981 

14 0.13 0.05 0.15 0.15 MSO Uniform Varying 1979-1980 

15 0.13 0.05 0.15 0.15 MSO By Depth Varying 1979-1980 

16 0.13 0.05 0.15 0.15 MSO By Depth Varying 1980-1981 

 350 

As highlighted earlier, the assessment also focuses on the quality of simulated hydrology in the LRB in terms of the 

main water-balance states/fluxes, and the generated streamflow at four gauge stations (Fig. 1F). The selected stations 

are located on the main stem of the Liard River and correspond to different zones in the basin, including a headwaters 

station (10AA001), two intermediate stations (10BE001 and 10ED001), and the outlet station (10ED002) (Supplement 

Table S4). Four performance metrics are utilized to assess different aspects of the simulated hydrographs for 2000-355 

2016: the Nash-Sutcliffe efficiency (NSE), Nash-Sutcliffe efficiency of log-transformed flow (NSE-Log), Kling-

Gupta efficiency (KGE), and percentage bias (PB). We also investigated the range of variability introduced to the 

basin-averaged evapotranspiration, change of storage, and surface runoff in response to the various proposed model 

parameterizations.   

3 Results and discussion  360 

 Permafrost evaluation  

3.1.1 Ground observations  

The primary indicator of permafrost simulation quality can be inferred from the reproducibility of the observed 

temperature envelopes (i.e., Tmax and Tmin), comparing the ground observation time series to that of corresponding 

model grid cell and land cover. For example, Fig. 6 shows the observed and simulated temperature envelopes for the 365 

Wrigley Highway site (99TC03) in 2014; the site is covered by evergreen shrubs (amongst other vegetation) and, thus, 

the simulated values are extracted for the shrubs GRU of the corresponding model cell.    
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Overlaying all simulated envelopes facilitates visual comparison of the performance of model experiments to the 

observations, quantifies the range of variability associated with all experiments, and highlights any odd model 

response. In this regard, 10 experiments (i.e., 3, 4, 5, 6, 7, 8, 9, 13, 15, and 16) form no permafrost at all, which is seen 370 

from the positive Tmin envelope of these experiments (below the active layer), which is shifted to the right by 1.0 to 

3.0 °C. On the other hand, two experiments (i.e., 1 and 11) yield cooler permafrost conditions than the observations; 

the envelope is shifted to the left by -1.8 and -1.4 °C, respectively. The remaining four experiments are ranked as 

follows: Exp. 12 provides the best performance for temperature envelopes and ALT, followed by Exp. 2, and the third-

best performance is equally achieved by Exps. 14 and 10 that have a relatively deeper ALT with a warm-biased Tmax 375 

compared to Exps. 12 and 2.  

However, the Wrigley Highway site, as many of the other sites (Table 1), has a complex canopy, which necessitate 

comparison of the observed temperature envelopes against multiple modelled GRUs because CLASS does not allow 

the overlaying of different canopy types. The relevant single-year envelopes and associated performance metrics for 

the needleleaf forest tile of the Wrigley Highway site are provided in Fig. S15 and Table S12 in the Supplement. The 380 

best-performing experiments are as follows: Exp. 15 has the best match to ground observations, followed by Exps. 6 

and 9. Obviously, the ranking based on the needleleaf forest GRU is completely different from that of the shrubs GRU, 

highlighting that one model configuration does not always work for all GRUs, particularly for sites with a complex 

canopy.   

For a quantitative assessment, three statistical performance metrics are calculated for Tmax and Tmin for all experiments. 385 

These metrics are the root mean square error (RMSE), mean absolute error (MAE), and the BIAS, whenever 

observations were available. The error metrics were averaged over space (soil column) and time (whole record length). 

This approach was selected due to its generality, simplicity, and suitability to assess different aspects of the whole soil 

column. Table 4 provides these statistics for the Wrigley Highway site for the shrubs GRU. Excluding experiments 

that did not form permafrost and using the provided statistics in Table 4, the overall ranking of model experiments 390 

can be obtained: Exps. 10 and 14 have the best agreement to ground observations, followed by Exp. 12, and then Exp. 

2; such ranking differs from the single-year approach. For the remaining sites with observed temperature profiles, a 

similar comparison of the 16 model configurations versus ground observations and the associated statistical measures 

are provided in Section S4 in the Supplement.  
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 395 

Fig. 6. Observed and simulated temperature profiles at the Wrigley Highway site for the shrubs GRU for the 16 model experiments. 
The profiles correspond to the same year (2014) for all of the experiments. 

 

Table 4. Summary of performance metrics for temperature profiles at the Wrigley Highway site for the shrubs GRU for the 16 
model experiments. Each metric is averaged over the whole observation period. Refer to Table 3 for further information about the 400 
configured experiments.  

Exp. 
ID 

Tmin Tmax 

RMSE BIAS MAE RMSE BIAS MAE 

1 5.71 5.09 5.09 3.68 -1.50 3.49 

2 2.08 1.60 1.80 5.09 -4.04 4.31 

3 2.03 0.81 1.85 6.29 -5.28 5.35 

4 2.18 0.47 2.05 6.61 -5.76 5.76 

5 2.24 0.39 2.12 6.65 -5.85 5.85 

6 2.01 0.75 1.83 6.44 -5.41 5.47 

7 2.34 0.12 2.21 6.90 -6.14 6.14 

8 2.85 -0.26 2.63 7.35 -6.79 6.79 

9 2.57 0.39 2.45 6.36 -5.79 5.79 

10 1.91 1.30 1.74 5.55 -4.45 4.71 

11 5.10 4.44 4.44 3.46 -1.66 3.27 

12 2.88 2.44 2.60 3.01 -1.83 2.72 

13 2.57 0.39 2.45 6.36 -5.79 5.79 

14 1.91 1.30 1.74 5.55 -4.45 4.71 

15 2.39 0.05 2.25 6.89 -6.19 6.19 

16 2.85 -0.28 2.62 7.32 -6.79 6.79 
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The thaw-tube-based ALT data from the Manners Creek site were also used, where two observational tubes in close 

proximity (i.e., 92TT-5 and 921TT-4) were active between 1993 and 2007. The two sites are located within the same 

model grid cell and have the same vegetation cover, hence their time series of observed ALT are compared against 405 

the same simulated ALT for the needleleaf forest GRU. Fig. 7 shows the observed and simulated ALT while Table 

S14 (in the Supplement) shows the statistical metrics for each experiment. However, because the difference in 

observed ALT is quite significant (0.35 to 0.83 m), the ranking of experiments depicts a trade-off between the two 

tubes, which highlights the spatial heterogeneity of permafrost over short distances. The best-performing experiments 

for the 92TT-5 site are Exps. 5 and 9, while the best for the 92TT-4 site are Exps. 2, 10, and 14. However, we opted 410 

to give a higher weight to the 92TT-4 site in our subsequent analysis due to the consistency of its observations (no 

odd shift in the observed values as occurs in 1999) and completeness of the data (the record at 92TT-5 is shorter by 2 

years than at 92TT-4).  

  

Fig. 7. Simulated and observed ALT for Manners Creek sites (92TT-5 and 92TT-4) for the needleleaf forest GRU.  415 

To summarize the results for all sites, associated GRUs per site, and observed variables, the overall ranking of 

experiments is provided in Table 5. A lower ranking value corresponds to higher simulation quality (i.e., 1 is the best 

and 16 is the worst). We excluded the experiments that did not form permafrost (denoted by x in Table 5) for more 

straightforward interpretation. The table confirms the complexity of permafrost-based H-LSM evaluation and the 

difficulty of finding a single configuration that can replicate the observed permafrost for sites with complex canopy 420 

types.   
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Table 5. Average ranking of experiments based on performance against different permafrost sites and the associated GRU. Lower 
ranking values denote better simulation quality (e.g., 1 is best and 16 is worst). x denotes the failure to form permafrost for a given 
model experiment (unlike the observation) and exclusion from the ranking. NLF: Needleleaf Forest and BLF: Broadleaf Forest. 
Refer to Table 3 for further information about the experimental configurations.  425 

Exp. 
ID 

Scotty Creek 
Petitot River 

South  
Petitot River North 

Wrigley 
Highway  

Liard 
Spruce  

Manners Creek 

Fen  84-6-T6 84-5A-T4 84-5B-T4 99TC03 97TC04 92TT-5 92TT-4 
Wetland NLF BLF  Wetland Shrubs Wetland Wetland Shrubs NLF Wetland NLF NLF 

1 3.3 14.8 9.2 3.3 5.5 12.0 11.2 5.0 14.0 2.8 9.3 6.7 
2 4.0 14.2 9.5 5.5 3.5 10.5 9.5 3.3 12.8 3.0 8.0 2.0 
3 x 13.0 7.5 4.3 x 5.0 6.3 x 11.7 x 7.0 5.0 
4 x 11.7 6.5 x x 5.8 6.3 x 10.7 x 6.0 8.0 
5 x 7.5 3.2 x x 5.7 6.7 x 5.0 x 4.3 10.3 
6 x 1.7 2.8 x x 7.0 6.0 x 4.0 x 5.3 12.0 
7 x 1.7 x x x 6.7 6.0 x 4.0 x 5.3 12.0 
8 x 4.3 x x x x x x x x 16.0 16.0 
9 x 4.5 x x x 2.2 2.0 x 4.2 x 6.0 6.0 

10 2.0 7.2 2.0 2.5 2.0 5.0 6.0 2.3 5.0 2.5 7.0 3.0 
11 2.7 11.2 7.0 1.8 4.0 9.0 7.7 4.0 10.0 3.2 9.0 6.3 
12 x 10.2 4.3 x 3.0 x x 3.0 8.0 x 9.7 7.7 
13 x 4.5 x x x 2.2 2.0 x 4.2 x 6.0 6.0 
14 2.0 7.2 2.0 2.5 2.0 5.0 6.0 2.3 5.0 2.5 7.0 3.0 
15 x 3.5 x x x x x x 3.5 x 12.0 14.0 
16 x x x x x x x x x x 15.0 15.0 

 

3.1.2 Gridded datasets  

In this section, we compare the simulated PE (and PA) and ALT to different gridded products. The selected datasets 

reflect different mapping techniques, including the level of physics, forcing datasets, spatial resolution, and temporal 

coverage (refer to Table 2 and Section 2.4 for further discussion). Fig. 8 shows the simulated PE versus four gridded 430 

products, where the simulated extent (and associated area) is averaged from 2000-2016, the baseline time period for 

the Obu et al. (2019) and Ran et al. (2022) datasets; the other two datasets correspond to 1960-1990. Several points 

can be observed: 

 The spatial extents of the four gridded products differ, except for the far north, south, and southeast parts of 

the LRB. For instance, the Gruber (2012) and Chadburn et al. (2017) products characterize the finger-shaped 435 

basin outlet by low values (~0.3), while the Obu et al. (2019) and Ran et al. (2022) products yield very high 

(~1) and very low values (~0), respectively.  

 The PA of the gridded products does not vary as much as the PE, because 31.5 to 32.6% of the LRB is 

underlain by permafrost for all datasets except Ran et al. (2022), which mapped a smaller permafrost 

percentage (23.3%). A comprehensive assessment of the temporal evolution of the PA is provided in Section 440 

S5.2 in the Supplement. 

 Exp. 1 (the original configuration), which had satisfactory performance for streamflow (Fig. 5), 

overestimates the PE over the basin compared to the gridded products. Similar overestimation, to varying 

degrees, is found for Exps. 2, 3, and 4, which were configured using different organic matter types and 

vertical distributions (Table 3).  445 
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 Switching the organic matter type has a minor impact on the PA in Exp. 1 vs. Exp. 2 (reduction of 2,700 

km2), but a more significant impact in Exp. 10 vs. Exp. 11 (reduction of 20,000 km2). The latter pair of 

experiments has a reduced ZSNL value and, hence, the slight change in the organic matter configuration 

could have a greater impact on the simulated permafrost as organic matter is a major driver of insulation in 

this case.  450 

 The impact of the vertical distribution of organic soil is relatively pronounced, as the non-uniform decay of 

organic matter (Exps. 3 and 4) reduces the PA by 15,000 km2.    

 The gradual reduction in ZSNL value, the most sensitive permafrost parameter in the MESH model 

(Abdelhamed et al., 2022b), resulted in a drastic reduction in PE (and PA of ~77,000 km2) in Exp. 4 vs. Exp. 

7. ZSNL describes heat insulation at the soil surface and represents the amount and extent of accumulated 455 

snow; a reduction in ZSNL value means snow cover reaches 100% earlier and thus insulates the soil from 

extreme cold in winter and results in less permafrost.  

 Experiments spun up with a warmer year (1980-1981) had a lower PE (more or less consistent over the basin, 

except for the region near the outlet that had high organic matter content; see Fig. 1E) and smaller PA when 

compared to the experiments spun up with a cooler year (1979-1980).  460 

 The impact of the spin-up year for the LRB can be estimated as a reduction in PA of ~30,000 km2, 

representing 11% of the LRB area. This can be demonstrated by comparing experiment pairs 7 vs. 8, 10 vs. 

9, 11 vs. 12, 14 vs. 13, and 15 vs. 16. 

 Employing a variable (gridded) depth of organic soil, instead of a fixed value (0.85 m), resulted in a slight 

reduction in permafrost extent and total area (~7,000 km2), as shown by comparing Exps. 9 and 13.  465 

 Visually, four experiments (Exps. 8, 9, 13, and 16) have a reasonable agreement with the four gridded 

datasets.  
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ALT sheds light upon the thermal regime and describes permafrost dynamics. Fig. 9 shows the simulated ALT versus 

the Aalto et al. (2018) and Ran et al. (2022) gridded permafrost products; the other datasets used to assess PE do not 

provide ALT (see Table 2) while Aalto et al. (2018) did not provide PE. The simulated ALT is averaged for 2000 to 

2016, which is the representative period for the Ran et al. (2022) dataset; the other dataset corresponds to 2000-2014. 

Several points can be observed: 475 

 The two datasets agree, to a certain level, on the spatial extent of the ALT over the LRB, except for the 

middle of the basin where Ran et al. (2022) has fewer pixels underlain by permafrost. The two datasets also 

agree on the ALT values, for which the basin-average difference is around 10 cm (as shown Supplement Fig. 

S20). 

 The original configuration (Exp. 1) overestimates ALT in the far north and south (red cells in Fig. 9). The 480 

same pattern is produced by Exps. 2, 3, and 4, where the changes in the organic soil configuration did not 

reduce these high ALT values. 

 Similar to the PE analysis, the impact of the spin-up year on the simulated ALT is more pronounced than the 

organic matter configuration (Exps.1-4), where a clear reduction in deep ALT pixels is observed. This is 

shown by comparing experiment pairs 7 vs. 8, 10 vs. 9, 11 vs. 12, 14 vs. 13, and 15 vs. 16. 485 

 Similar to the PE analysis, the utilization of a variable organic depth instead of a constant value has a minor 

impact on the simulated ALT, as depicted by comparing Exps. 13 and 9.    

 Lastly, comparing the two gridded products (Fig. 9) to ground observations (Fig. 3) suggests that gridded 

products tend to underestimate ALT, as four out of six sites used in the current study have ALT with a depth 

between 2 and 4 m, whereas the max estimated ALT value for the two products is 2.2 m.490 
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The visual assessments for PE (Fig. 8) and ALT (Fig. 9) provide a qualitative indicator of simulations but lack an 

explicit quantitative measure. This can be rectified by comparing the cumulative frequency distributions (CDFs) of 495 

the simulated and gridded products and/or performing a grid-to-grid statistical comparison for the simulated and 

observed variables. The CDFs facilitate an additional visual comparison of the distribution of each experiment to the 

gridded-based CDFs in only one figure (Fig. S18 for PE and Fig. S19 for ALT), which also can be assessed statistically 

using the Kolmogorov–Smirnov test. However, this approach offers no information on the spatial pattern/correlation 

or systemic bias. In the latter approach, different statistical measures/tests can be directly applied in a grid-to-grid 500 

manner, including correlation and bias. However, the re-mapping/re-gridding applied for each product introduces 

further uncertainty (Section 2.4) and thus can affect assessment reliability. Nevertheless, we opted to utilize the grid-

to-grid statistical measures to quantitatively assess and systematically rank the experiments.  

A summary of Spearman’s rho, difference (or error/bias), and RMSE for the simulated PE and ALT of all experiments 

is presented in Table S15 in the Supplement, calculated for the representative period for each dataset (see Table 2). 505 

Noting that the Gruber (2012) and Brown et al. (1998) datasets correspond to 1960-1990 and our simulation started 

later (1979 or 1980), we compared these datasets to the average values from the starting year till the end of 1990. For 

PE, Exps. 8 and 16 have the highest correlation to the Gruber (2012), Chadburn et al. (2017), and Ran et al. (2022) 

datasets with correlation values of 0.55, 0.66, and 0.58, respectively, confirmed by visual assessment (Fig. 8). 

However, another pair of experiments, namely Exps. 12 and 13, compare better to the Obu et al. (2019) dataset. Table 510 

S15 (in the Supplement) provides an estimate of the difference and RMSE, which can be used to select the best-

performing configuration for each dataset. For instance, Exp. 13 is better than Exp. 12 when compared to the Obu et 

al. (2019) dataset, with a lower difference (0.06 rather than 0.17) and a lower RMSE (0.72 instead of 0.77). A similar 

assessment can be done for ALT. For instance, Exp. 16 is the best configuration versus the Aalto et al. (2018) and Ran 

et al. (2022) datasets, shown by minimal difference (−0.06 and −0.18) and RMSE (1.5 and 1.5) across all of the 515 

experiments. Nevertheless, all experiments have negative correlations with the gridded products, varying between 

−0.04 and −0.42 for Aalto et al. (2018) and −0.06 and −0.48 for Ran et al. (2022), which brings into question the 

suitability of these datasets for the current study area.   

Lastly, we rank all of the experiments from 1 to 16 based on the calculated statistics in Table S15, where, as above, 1 

corresponds to the best and 16 to the worst experiment. For each experiment, we determine the rank for each individual 520 

metric and then average the rank for the three statistical measures per experiment (Table 6). The averaging ensures 

the final ranking integrates both the spatial correlation and the bias of each simulation. According to Table 6, Exp. 16 

is the best-performing configuration for most gridded permafrost products, except the Obu et al. (2019) dataset for 

which Exp. 13 is relatively better. On the other hand, the worst-performing configuration versus the gridded permafrost 

extent datasets is Exp. 1 (i.e., the original configuration), while Exps. 5 and 6 have the poorest performance against 525 

the Aalto et al. (2018) and Ran et al. (2022) datasets, respectively.  
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Table 6. Average ranking of experiments based on their performance against different permafrost gridded products for the period 
2000-2016. Refer to Table 3 for further information about the configured experiments. 

Exp. 
ID 

Permafrost extent  Active layer thickness 
Gruber 
(2012) 

Chadburn 
et al. (2017) 

Obu et 
al. (2019) 

Ran et al. 
(2022) 

Aalto et al. 
(2018) 

Ran 
(2022) 

1 16.0 15.7 14.7 15.7 8.3 7.0 

2 15.0 15.3 14.3 15.3 7.3 6.3 

3 14.0 14.0 14.3 14.0 8.0 8.7 

4 13.0 13.0 14.0 13.0 7.0 8.3 

5 11.0 11.3 12.7 11.7 11.3 10.7 

6 6.7 7.0 8.7 7.0 11.3 11.3 

7 5.0 5.0 8.7 6.0 11.0 10.3 

8 2.0 2.0 4.7 2.0 5.7 5.3 

9 4.7 3.7 3.3 3.7 7.7 7.3 

10 9.0 9.3 7.7 9.3 9.3 9.0 

11 11.7 11.7 8.3 11.3 8.7 10.3 

12 9.3 8.3 5.3 9.3 8.7 8.7 

13 4.3 4.7 1.7 3.3 6.7 7.0 

14 8.7 9.0 6.3 8.3 10.0 10.3 

15 4.7 5.0 7.7 5.0 10.3 10.3 

16 1.0 1.0 3.7 1.0 4.7 5.0 

 

Notably, each of these datasets is characterized by significant uncertainty due to the imperfect representation of 530 

permafrost processes and upscaling issues, and cannot be used solely to assess the quality of permafrost zonation, as 

highlighted by Gruber (2012): “While the dataset presented here can be used as a reference for model evaluation, it 

does then by no means represent reliable ground truth.” Another source of uncertainty with these products is implicitly 

related to our limited knowledge of adequate permafrost representation in ESMs/LSMs (i.e., structural uncertainty), 

from which the modelled air temperature is used as an input to most of these gridded permafrost products. Further, 535 

extending these products into the future (e.g., Aalto et al., 2018; Chadburn et al., 2017) is not free of uncertainty in air 

temperature, which depends on the quality of permafrost representation in ESMs/LSMs, including scenario 

uncertainty, noting that some of the latest ESMs/LSMs still fail to properly represent permafrost dynamics (Burke et 

al., 2020; Lawrence and Slater, 2005). 
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 Hydrologic evaluation  540 

This section presents the simulations of streamflow and the main water-balance components and their implications. 

This analysis is vital due to the interconnection of permafrost status and surface/subsurface hydrologic connectivity 

(Connon et al., 2014), which could be reflected in the resultant streamflow and the partitioning of the water-balance 

components. Table S16 (in the Supplement) summarizes the streamflow performance metrics for all 16 experiments 

at the four selected gauge stations over the period 2000-2016. The variability ranges for the NSE, KGE, and PBias are 545 

relatively small. For instance, PBias variability ranges between 2.5 and 3.1% for each gauge station across all model 

experiments. However, gauges 10AA001 and 10BE001 have the highest PBias (underestimation) of 21.9 to 24.8%, 

which is deemed a satisfactory result as per Moriasi et al. (2007) performance ratings. Another example of the limited 

variability across all experiments can be found for the NSE and KGE, which vary across all stations by 0.14 and 0.16, 

respectively, noting that the minimum/maximum values are 0.62/0.76 and 0.63/0.79, yielding a ‘good’ performance 550 

rating as per Moriasi et al. (2007). On the other hand, NSELog varied significantly, with 10AA001 and 10BE001 gauges 

having negative lower bounds (−0.53 and −0.56) and positive upper bounds (0.64 and 0.61). Further, the other two 

stations (i.e., 10AA001 and 10ED002) had variability ranges that were ‘relatively less’ broad for the NSELog (0.19/0.79 

and 0.19/0.77, respectively), making the performance rating vary from ‘unsatisfactory’ to ‘very good’ as per Moriasi 

et al. (2007).  555 

Such results highlight that the overall streamflow is not sensitive to permafrost status, except for the low flows, which 

is a small component of LRB discharge (Fig. 10). The analysis of the basin-average water balance also accentuates 

the limited impact of permafrost status (represented by the 16 configured experiments) on the partitioning of surface 

fluxes (evapotranspiration (ET) and total runoff), which is not the case for the basin-average soil moisture storage or, 

to be more specific, the partitioning of frozen/liquid soil water content (see Fig. S22 in the Supplement).  560 
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Fig. 10. Daily measured and simulated streamflow for the best performing experiment in terms of streamflow (ID 12) for the 2000-
2016 period at four different gauge stations in the LRB: A) 10AA001 (headwaters), B) 10BE001 (intermediate), C) 10ED001 
(intermediate), and D) 10ED002 (LRB outlet). For each station, the long-term mean daily hydrograph over the year is provided in 
a separate subplot with (*) designation, along with performance metrics (in red font). 565 
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Lastly, Table 7 provides the ranking of all experiments for each gauge station; following the same approach as for 

permafrost (Section 3.1), the ranking for the four performance metrics is averaged for each experiment and for each 

station. Two main remarks can be extracted from Table 7: 1) several experiments can reproduce the observed 

streamflow at the four gauges with ‘slightly’ superior performance when compared to the original configuration (Exp. 570 

1) and 2) Exp. 12 is the best-performing experiment for all gauges.  

Table 7. Average ranking of experiments based on their performance against the observed streamflow at four stations for the 2000-
2016 period. Refer to Table 3 for further information about the configured experiments.  

Exp. ID 10AA001 10BE001 10ED001 10ED002 

1 10.5 11.3 5.0 5.5 

2 13.5 13.8 6.5 6.3 

3 12.5 13.8 7.3 7.0 

4 11.5 13.0 6.3 6.3 

5 9.3 10.8 9.5 9.3 

6 8.5 9.0 10.3 9.5 

7 10.3 10.3 12.5 12.0 

8 4.5 4.0 8.0 8.5 

9 6.8 3.5 7.5 8.3 

10 11.8 11.5 13.3 13.0 

11 5.0 4.3 4.0 4.0 

12 1.3 1.0 1.8 2.0 

13 6.0 5.0 9.3 9.5 

14 10.3 10.0 13.5 13.0 

15 9.0 10.0 12.3 12.3 

16 5.5 5.0 9.3 9.8 

 

 Overall Evaluation and Ranking  575 

Here, the analysis results for permafrost and hydrology are combined, aiming to answer the main research question; 

is it possible to concurrently simulate permafrost dynamics and hydrology over a large domain using an H-LSM? 

This can be achieved by comparing the ranking of the experiments based on the local-scale assessment (Table 5), the 

large-scale gridded products assessment (Table 6), and the streamflow assessment (Table 7). Fig. 11 (and Supplement 

Table S17) provides the average ranking for each criterion, using equal weights for each sub-criterion (e.g., different 580 

gridded products, or sites/stations). As per Fig. 11, Exps. 10 and 14 have the highest rankings (and best performance) 

among the eight observational sites used in the study. However, these two experiments are ranked as the 10th and 9th, 

respectively, based on their performance against the gridded datasets. Further, the same two experiments performed 

the worst for the streamflow simulation, ranked as 16th and 15th, respectively. Similarly, the best-performing 

experiment versus all gridded products is Exp. 16, which is deemed the worst experiment for ground observations 585 

(16th) and with a moderate ranking for streamflow (5th). In the same context, the best experiment regarding streamflow 

simulation (Exp. 12) ranked as 11th for the ground observations and 7th for the gridded permafrost products.  
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Fig. 11. Ranking of experiments based on their performance against permafrost ground observations, permafrost gridded products, 
and streamflow. For each criterion, the ranking is averaged over all of its items (i.e., sites, products, and gauge stations). 590 

This result highlights the difficulty that modellers may encounter when configuring models to simultaneously simulate 

permafrost and hydrology (streamflow). However, it does not provide a concrete answer to our main research question, 

as there might be a trade-off between local- and large-scale permafrost aspects and streamflow simulation quality that 

cannot be fully identified from our work due to the: 1) limited number of experimental configurations (constrained by 

time and computational resources), 2) limited spatial coverage of the available observational sites, 3) large uncertainty 595 

in the gridded permafrost products (as provided and due to the re-gridding/interpolation done for the current study), 

and 4) uncertainty in meteorological forcing variables (inherently and due to the spatial regridding and temporal 

disaggregation done for the current study). Still, we can conclude that the consideration of streamflow is beneficial 

when developing and diagnosing an H-LSM for a permafrost-dominated region. In other words, for study areas 

underlain by permafrost, it is advantageous to concurrently assess the spatio-temporal evolution of both hydrologic 600 

and thermal regimes under different data sources that provide complementary information. One way to address this 

modelling challenge is by building an ensemble of H-LSM setups that account for different hydrologic/thermal 

trajectories/responses, which can then be used for short-term hindcasting or long-term projection.     

4 Summary and conclusions  

Over the past five decades, significant effort has been directed at enhancing the realism, functionality, and fidelity of 605 

H-LSMs. This stems from incorporating state-of-the-art representation of processes and benefiting from the rapid 

advancement in remote sensing technology and ever-growing computational resources. However, the downside of this 

enhancement is the remarkable increase in H-LSM dimensionality and complexity, which complicates parameter 

identification. Moreover, simulating the dynamics of permafrost is further challenged by the limited availability of 

field observations, which, unlike other hydrologic states/fluxes (e.g., snow water equivalent), cannot presently be 610 

remotely sensed. Further, the simulation of permafrost thermal regime has a substantial impact on the partitioning of 

energy/water fluxes, which if not well represented/constrained could produce deceptive trajectories for the present 
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and future climate and hydrology. In this article, we explored the challenges of configuring a MESH model that can 

simultaneously reproduce the observed permafrost and streamflow dynamics in the Liard River Basin (LRB) of 

Canada. The assessment included different hydrologic and permafrost-related variables, for which different data 615 

products were utilized.   

Building upon previous research, the LRB setup was first extracted from an existing setup for the Mackenzie River 

Basin (MRB) (Elshamy et al., in preparation), which was calibrated/validated for permafrost and streamflow using a 

relatively short forcing dataset (GEM-CaPA: 2002-2016). However, in this work, a longer forcing dataset was used 

(W5E5 V2: 1979-2019) with reasonable temporal coverage for the available permafrost data. This dataset was also 620 

used for bias correcting and downscaling the future projections of different GCMs (ISIMIP3b protocol), which will 

be utilized in a climate change assessment for the LRB in a subsequent manuscript. The LRB model response was 

evaluated under W5E5 V2 to verify the applicability/compatibility of the estimated parameter values (based on GEM-

CaPA). This step included comprehensive assessment of streamflow and water-balance states/fluxes, which showed 

modest/minor changes in the performance under W5E5 V2. However, the model did not perform well for permafrost 625 

and thus some parameters and configuration aspects were revisited to improve permafrost simulation and their impacts 

were then checked for hydrology. 15 additional model setups for the LRB were configured, where the most sensitive 

parameters were progressively perturbed. Each experiment was later evaluated against permafrost and streamflow 

observations.  

In this study, ground observations from seven permafrost sites were utilized to evaluate simulated temperature 630 

envelopes (Tmin and Tmax) and active layer thickness (ALT) using RMSE, BIAS, and MAE metrics. To clarify the 

relative performance of all experiments, a ranking was performed based on the three performance measures for each 

site. The metric-based ranking underlined the difficulty of electing a single configuration with reasonable performance 

against ground observations for all sites simultaneously, which became more problematic for complex-canopy sites. 

The significant spatial heterogeneity of permafrost observations poses a further challenge as sites in close proximity 635 

(falling in the same model pixel) can have different profiles or even different permafrost states (even under the same 

vegetation) due to soil heterogeneity, which cannot be easily captured at large scales. For instance, ALT was monitored 

at Manners Creek (discontinuous permafrost) using two thaw tubes (92TT-4 and 92TT-5) located within 500 m with 

the same vegetation cover; however, the observations depicted a significant difference in ALT (0.5 m on average), 

highlighting the spatial heterogeneity of permafrost over short distances.     640 

Despite the fact that ground observations represent the best available knowledge, their limited spatial coverage hinders 

any comprehensive assessment of permafrost dynamics over large scales. Permafrost mapping can aid in addressing 

the lack of a well-distributed observational network. In this study, we incorporated four gridded permafrost products 

(i.e., Gruber (2012), Chadburn et al. (2017), Obu et al. (2019), and Ran et al. (2022)) that provide estimates of 

permafrost extent (PE) and the associated permafrost area (PA), and two products (i.e., (Aalto et al. (2018) and Ran 645 

et al. (2022)) that offer ALT maps. These datasets were re-gridded to the same resolution as the LRB model for a more 

straightforward comparison and interpretation of simulation results. However, there is no overwhelming consensus 

among the gridded products on the spatial pattern of PE and ALT. Similarly, the derived PAs from these products 
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were highly divergent, varying between 64,000 and 112,000 km2. The same remark is valid for the ALT products 

which had persistent difference of 0.25-0.5 m over the basin, despite depicting similar spatial patterns. This is 650 

understandable (and predictable) because diverse methods are available to map permafrost based on different 

philosophies, definitions, and assumptions, and thus the level of agreement between them can be relatively low. 

However, we considered them as having equal weights to the ground observations in our assessment because the latter 

sites are not well distributed across the LRB.  

To shed light upon the spatial correlation between experiments and gridded products, a grid-to-grid statistical analysis 655 

was performed using Spearman’s rho, the difference (or error if those products are considered quasi-observed), and 

RMSE for PE and ALT. Remarkably, two model experiments (Exps. 8 and 16) had a high correlation and low error 

with respect to all gridded PE datasets, except for Obu et al. (2019) for which another experiment (Exp. 9) yielded 

better performance. The same analysis was performed for the ALT, which showed that no single experiment had a 

positive correlation to the two datasets; two model experiments (Exp. 8 and 16) had the best performance as per their 660 

lowest difference (−0.02 to −0.18 m) and RMSE (+1.5 m) values. However, we reiterate that these products cannot be 

used alone (without any supplementary ground observations) to evaluate permafrost dynamics.  

The study also examined the associated implications on the generated streamflow at four different gauges and the 

partitioning of main water-balance states/fluxes. The performance of streamflow was assessed for each experiment 

using four error metrics: NSE, NSELog, KGE, and PBias over 2000-2016. The study highlighted a small variability 665 

range in the NSE, KGE and PBias for all stations and experiments; for instance, PBias variability was within 2.5 to 

3.1%. Conversely, low flows were more sensitive to perturbations of the LRB setup as NSELog varied between 0.19-

0.77 at the outlet, highlighting the impact of permafrost status on the low flow regime. The metric-based ranking 

showed that Exp. 12 had the best replicability of the observed streamflow at all four stations. For water balance, a 

small-to-negligible impact on the partitioning of surface fluxes (ET and total runoff) was observed, which was not the 670 

case for the soil storage where the partitioning of total soil water into ice/liquid water contents showed significant 

variability on an annual basis. This remark is in line with the changes occurring in the thermal regime, represented by 

the changes in the soil temperature. However, these conclusions could be biased by the weak coupling of permafrost 

and hydrology in the current generation of LSMs, fundamentally due to the absent/limited lateral migration of heat 

and water within model tiles and grids.  675 

The assessment of the different experiments highlighted the significant influence of the amount, and extent of 

accumulated snow (ZSNL parameter) and the timing of reaching full cover. The reduction of ZSNL value across the 

experiments resulted in a drastic decline in PE (PA ~77,000 km2) and increased the simulated high and low flows at 

the LRB outlet by 350 m3/s (equivalent to 4.1% of the long-term mean daily discharge) and 85 m3/s (15.5%), 

respectively. Further, the chosen hydrological year for spin-up had an intermediate impact on the simulated 680 

permafrost; employing a warmer year was shown to lessen PE throughout the basin, leading to a PA reduction of 

~30,000 km2, which on the other hand had negligible impacts on streamflow simulation – an average increase of 50 

m3/s (0.6%) and 10 m3/s (1.8%) for high and low flows at the basin outlet, respectively. The influence of organic soil 

configuration was dependent on the value of ZSNL parameter (i.e., those parameters interacted); mineral soil with 
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organic content with lower ZSNL values (i.e., soil is the major insulator) reduced PA by 20,000 km2, increased high 685 

flows by 500 m3/s (5.9%) and reduced low flows by 80 m3/s (14.5%); fully organic soil with higher ZSNLs (i.e., both 

soil and snow provide insulation) reduced PA by 2,700 km2, increased high flows by 130 m3/s (1.5%) and reduced 

low flows by 50 m3/s (9.1%). The impact of the depth and vertical distribution of organic soil was modest for the 

simulated PA/PE and streamflow. 

Lastly, we investigated the collective experiments’ ranking based on the local-scale (ground observations), large-scale 690 

(gridded products), and streamflow performance to explore the possibility of having a single H-LSM setup that can 

concurrently (and adequately) simulate permafrost dynamics and hydrology for the LRB. The best-performing 

experiments against ground observations had inferior rankings versus gridded products and the worst performance 

against streamflow. The same is the case for the best-performing experiment against gridded products, which had the 

worst ranking for ground observations and a moderate ranking for streamflow. Likewise, the best experiment regarding 695 

the streamflow simulation had an average ranking against ground observations and gridded permafrost products. These 

results highlight the complexities and challenges that modellers may encounter when configuring models to 

simultaneously simulate permafrost and hydrology over large domains characterized by data scarcity. It is noteworthy 

that the fundamental issue with permafrost studies in large regions is the deep uncertainty in the present/historical 

status of permafrost, which in turn complicates model development and evaluation. Accounting for such ignorance 700 

requires a careful interpretation of model results. 

Although the outcomes of this study were specific to the MESH H-LSM and limited to the selected study area, 

evaluation sites, forcing dataset, gauge stations, gridded datasets, and methods, this study contributes practical 

information to advance modelling applications, particularly those related to permafrost. The study highlights the 

importance of considering streamflow when developing and diagnosing an H-LSM for a permafrost-dominated region. 705 

Further, the study highlights the discrepancies among the available gridded products of permafrost, which not only 

stem from the absence of a unifying mapping approach but also from the lack of a well-distributed and representative 

monitoring network; for example, the LRB permafrost observations are aligned with a specific pipeline project. While 

current remote sensing technologies cannot address the paucity of permafrost data over large domains, this will 

hopefully be addressed soon. Finally, future research could be directed toward generalizing the outcomes of this study 710 

to other basins with more ground observations and examining the extension of this work to different H-LSMs with 

various complexities and under different forcing datasets.  
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