Seismic attenuation in Antarctic firn

Stefano Picotti¹, José M. Carcione¹,², and Mauro Pavan³

¹National Institute of Oceanography and Applied Geophysics (OGS), Trieste, Italy.
²School of Earth Sciences and Engineering, Hohai University, Nanjing, China.
³University of Genova, Italy.

Correspondence: Stefano Picotti (spicotti@ogs.it)

Abstract.

We estimate the P- and S-wave seismic attenuation in polar firn from spectral analysis of diving-wave first-breaks of three-component active-source seismic observations carried out in 2010 on the Whillans Ice Stream (WIS), a fast-flowing ice stream in West Antarctica. The resulting quality factors are then successfully modeled using a rock-physics theory of wave propagation which combines White’s mesoscopic attenuation theory of interlayer flow with that of Biot/squirt flow. The first theory describes an equivalent viscoelastic medium of a stack of two thin alternating porous layers of thickness much larger than the pore size but smaller than the wavelength. On the other hand, in the so-called Biot/squirt-flow model, there are two loss mechanisms, namely the Biot global-flow one and local flow from fluid-filled micro-cracks (or grain contacts) to the pore space and back, where the former is dominant over the latter. The fluid saturating the pores is assumed to be fluidized snow, which is defined as a mixture of snow particles and air, like powder, having zero rigidity modulus.

1 Introduction

The shallow part of polar ice sheets and ice streams, commonly known as firn, is subjected to snow densification, a metamorphic process activated by the pressure gradient due to the accumulation of snow and by the temperature gradient at the near surface (Wilkinson, 1988). As a result, the density of firn increases continuously from the surface to the pore close-off depth, where the material can be considered glacial ice (Herron and Langway, 1980). Below this depth, the compression of englacial bubbles further increases the ice density until the maximum value is reached. In the very cold and dry internal parts of the Antarctic continent, the densification is slow and the firn layer thickness exceed 100 m (van den Broeke, 2008). On the other hand, in the high-strain shear margins of ice streams, this metamorphic process can be enhanced due to the effect of strain softening (Oraschewski and Grinsted, 2022), leading to exceptionally thin firn layers.

Because of its density structure, polar firn is generally laterally homogeneous with the seismic velocity increasing non-linearly with depth. This velocity profile results in a continuous refraction of seismic waves (Greenhalgh and King, 1981), which are also called diving waves. There are several examples in the literature, that used diving waves to resolve the firn velocity-depth structure by picking and inverting the first-break traveltimes (e.g., Kirchner and Bentley, 1979; King and Jarvis, 2007; Picotti et al., 2015). However, to our best knowledge, there are no examples of vertical profiling and modeling of intrinsic seismic attenuation of P and S waves in polar firn, so far.
Intrinsic loss is often quantified using the inverse quality factor $1/Q$, which represents the fraction of wave energy lost to heat in each wave period (e.g., Carcione, 2022; Gurevich and Carcione, 2022). P-wave quality factors (Q_P) in ice have been measured by several authors, from values as low as 5 in temperate ice of mountain glaciers (e.g., Gusmeroli and others, 2010) up to 700 in cold polar ice sheets (e.g., Bentley and Kohnen, 1976). This wide range indicates a strong dependence of the quality factor on temperature, further verified in Peters et al. (2012) by seismic measurements in Greenland, where Q_P decreases with depth due to an increase in temperature. This dependence has also been demonstrated by laboratory experiments (e.g., Kuroiwa, 1964). Regarding the S-wave quality factor (Q_S), Clee et al. (1969) and Carcione et al. (2021) measured Q_S in warm ice of mountain glaciers, reporting values of about 23 and 12, respectively. To the best of our knowledge, no other measurements of Q_S in glacial ice or firn were published in the literature.

While cold polar ice attenuation is very low, this is not the case of polar firn. Bentley and Kohnen (1976) obtained a value of the ice P-wave quality factor from seismic refraction measurements at Byrd Station of about 715 at 136 Hz, between 100 m and 500 m depth and at an average temperature of about -28 °C. Because this value is very high, intrinsic attenuation in polar ice (below the firn) is a minor factor in reducing the signal amplitude, in their case. On the other hand, Albert (1998) performed numerical simulations of seismic waves in firn at the South Pole, Antarctica, between 0 and 300 m, where he neglected seismic attenuation on the basis of Bentley and Kohnen's results. However, as we show in the present work, attenuation in firn cannot be neglected, since the Q_P factor has values between 4 and 50 down to 40 m depth, thus inducing a strong energy loss and velocity dispersion near the surface.

Regarding the attenuation mechanisms, Bentley and Kohnen (1976) assume that their results are "consistent with damping in slightly contaminated ice by a combination of two mechanisms: molecular relaxation at temperatures colder than about -20 °C and grain boundary viscosity at warmer temperatures". However, they do not provide a physical predictive micro-structural model for attenuation. Grain boundary relaxation and melting theories based on the Arrhenius equation can be important at temperatures close to the melting point of ice. In the case of rocks such a model has been applied to describe seismic attenuation at the crust and mantle (Carcione et al., 2018).

Here we consider three attenuation mechanisms based on physical models. We show that wave-induced fluid flow generates enough heat to explain the levels of intrinsic attenuation. This flow occurs at different spatial scales that can broadly be categorized as "macroscopic", "mesoscopic" and "microscopic". The macroscopic flow is the wavelength-scale equilibration occurring between the peaks and troughs of a P wave. This mechanism was first treated by Biot (1956) and is simply called "Biot loss". The microscopic flow occurs when a wave squeezes a porous medium having grain contacts and cracks, which respond with a greater fluid pressure than the main pore space resulting in a flow from crack to pores, named "squirt flow".

Finally, mesoscopic length scales are those much larger than grain sizes but smaller than wavelengths. Heterogeneity across these scales may be due to frame variations or to patches of different immiscible fluids. In our case, because of the seasonal alternation, the firn can be considered a finely layered medium consisting in the deposition of two porous media, one layer snow-like with high porosity and the other ice-like with low porosity (e.g., Greenhalgh and King, 1981). When a compressional wave squeezes such a medium, the effect is similar to squirt with the more compliant portions of the material responding with a greater fluid pressure than the stiffer portions. Then, there is a flow of fluid capable of generating significant loss in the seismic
band. The fluid saturating the pores in this case is assumed to be fluidized snow, a mixture of snow particles and air (Mellor, 1974; Maeno and Nishimura, 1979; Nishimura, 1996). These three mechanisms are described in Pride et al. (2004), Carcione and Picotti (2006), and Carcione (2022).

In the present work, we infer the P- and S-wave quality factor vertical profiles of the firn layer of Whillans Ice Stream (WIS – West Antarctica), using the three-component seismic data recorded on the Subglacial Lake Whillans (SLW), during the active-source experiment described in Horgan et al. (2012) and Picotti et al. (2015). First, we describe the data, the attenuation rock-physics theories and the methodology to extract the Q factor from the seismograms. Then, we analyze the spectral content of the diving-wave first-breaks and compute the Q_P and Q_S factors using the frequency-shift technique. Finally, we fit the two vertical Q profiles using the presented rock-physics theories.

2 Seismic data

In the austral summer of 2010–2011, a comprehensive surface geophysics program surveyed a location on the WIS. The main target of the survey (Horgan et al., 2012; Christianson et al., 2012) was the seismic and radar characterization of the SLW (Fig. 1), an active subglacial lake that is the subject of a subglacial access program (Tulaczyk et al., 2014). Four active-source seismic profiles were acquired during this program: one profile parallel to the ice stream flow direction, following the long axis of the lake, and three transverse profiles across the lake (Fig. 1).

Two types of surveys were undertaken: one to obtain the characteristics of the firm and another for the imaging (Horgan et al., 2012) and to define the anisotropy of the whole ice column (Picotti et al., 2015). For the analysis of the velocity profile within the firm, a shallow-refraction dataset was generated using stacked hammer blows onto a wooden body embedded in the snow. This experiment is located on the longitudinal profile, as shown in Fig. 1. The data were recorded on a 24-channel seismic system using georods spaced 20 m apart and consisting of five 40 Hz geophones wired in series (Voigt et al., 2013). The digital sample interval was 0.25 ms, and the maximum offset was 470 m, which is enough to define the velocity profile of the whole firn layer. To acquire the three components of the ground motion, the georods were rotated through the three mutually perpendicular axes. The horizontal longitudinal and transverse components are parallel and orthogonal to the profile, respectively. In the shallow-refraction survey, the trace spacing was increased with increasing offset to gain better resolution in the shallow part of the firm, which exhibits the strongest velocity gradient. The trace spacing is 1 m, 10 m and 20 m for offsets lower than 10 m, ranging between 10 and 290 m, and larger than 290 m, respectively. For the purposes of this work, generation and acquisition of S waves polarized in the orthogonal direction with respect to the seismic line (i.e., SH waves) is far better, because these are pure S waves, free of P-wave interferences. We also acquired the SV waves, polarized in the longitudinal vertical plane, but these signals are more affected by interferences from diving and multiple-refracted P-waves propagating
in firn. The obtained seismogram ensembles are shown in Fig. 2, where the P and SH diving-wave first breaks picked for the traveltime inversion and for the spectral analysis are indicated.

Figure 2

All the other data, aimed at defining the imaging and the anisotropy of the whole ice column, were generated using 0.4 kg PETN (pentaerythritol tetranitrate) charges buried at 27 m depth using a hot-water drill. The data were recorded on a 48-channel seismic system, and the sensors consisted of alternating 28 Hz single vertical geophones and georods spaced 20 m apart. These data are described in more detail by Horgan et al. (2012) and Picotti et al. (2015).

3 Theory and Methodology

3.1 Theory overview

The theory of wave propagation in firn combines White’s mesoscopic attenuation theory of interlayer flow (White et al., 1975; Carcione and Picotti, 2006; Carcione, 2022) and that of Biot/squirt flow (Gurevich et al., 2010; Carcione and Gurevich, 2011; Carcione, 2022). The first theory describes an equivalent viscoelastic medium of a stack of two thin alternating porous layers of thickness \(d_1 \) and \(d_2 \), such that the period of the stratification is \(d = d_1 + d_2 \). The theory gives the complex and frequency dependent stiffness \(E \), equivalent to the P-wave modulus. The complex velocity is given in Appendix A. On the other hand, in the so-called Biot/squirt-flow model, there are two loss mechanisms, namely the Biot global-flow one (Biot, 1956) and local flow from fluid-filled micro-cracks (or grain contacts) to the pore space and back. Fig. 3 shows a sketch, where two sandstone grains in contact are shown.

Figure 3

Gurevich et al. (2010) assumed that a compliant pore forms a disk shaped gap between two grains and its edge opens into a toroidal stiff pore, where \(R \) is the radius of the contact (or crack) and \(h \) is its thickness. The model assumes that the material becomes stiffer when the fluid pressure does not have enough time to equilibrate between the stiff and compliant pores (grain contacts and main voids, respectively). To obtain the frequency dependency of the stiffness moduli, the complex velocity is given in Appendix B.

3.2 Phase velocity and quality factor

Denoting with 1 and 2 the subscripts corresponding to the mesoscopic and Biot/squirt-flow loss models, the global P-wave complex velocity and dissipation factor are

\[
v_{P1} \approx v_{P2P} \tag{1}
\]
and

\[\frac{1}{Q_P} = \frac{1}{Q_1} + \frac{1}{Q_{2P}}, \quad (2) \]

respectively, where

\[v_{p2P} = \left[\Re \left(\frac{1}{v_{2P}} \right) \right]^{-1} \quad (3) \]

and

\[Q_1 = \frac{\Re (v_{1}^2)}{\Im (v_{1}^2)}, \quad Q_{2P} = \frac{\Re (v_{2P}^2)}{\Im (v_{2P}^2)}. \quad (4) \]

Since the dominant mechanism is the Biot/squirt-flow one, we assume as a first approximation that the P-wave phase velocity is that of this loss mechanism. Alternatively, the phase velocity \((1), v_{p1}(\omega)\), can be obtained from \(Q_P(\omega)\) by using the Kramers-Kronig relations as given in Eq. 8 of Carcione et al. (2020) (see also Eq. (2.141) of Carcione, 2022).

Equation (2) can be demonstrated if we consider that the decay factor along a distance \(r\) of a plane wave, due to the effect of the two attenuation mechanisms, is

\[\exp(-\alpha_1 r) \exp(-\alpha_{2P} r), \quad (5) \]

where \(\alpha\) are attenuation factors given by

\[\alpha_1 = \frac{\pi f}{v_{p1} Q_1}, \quad \alpha_{2P} = \frac{\pi f}{v_{p2P} Q_{2P}}, \quad (6) \]

for low-loss media, \(v_{p1}\) is the mesoscopic-loss phase velocity and \(f\) is the frequency (see Eq. (2.129) in Carcione (2022)).

Substituting (6) into (5), we obtain

\[\exp \left(-\frac{\pi f r}{v_{pP} Q_P} \right), \quad (7) \]

where we have assumed \(v_{p1} \approx v_{p2P}\).

On the other hand, the properties of the S wave is solely described by the Biot/squirt-flow model, such that

\[v_{pS} = \left[\Re \left(\frac{1}{v_{2S}} \right) \right]^{-1} \quad (8) \]

and

\[Q_S = \frac{\Re (v_{2S}^2)}{\Im (v_{2S}^2)}. \quad (9) \]

3.3 Estimation of the quality factor

To estimate the quality factor from the seismograms we adopted the frequency-shift method (e.g., Quan and Harris, 1997; Picotti et al., 2007). Let \(S(f)\) and \(R(f)\) be the amplitude quasi-Gaussian spectrums observed at the source and at a receiver,
respectively, located at a mutual distance d in an homogeneous and isotropic medium. The frequency-shift approach is based on the property that, as the wave propagates through the medium, the high frequency part of the spectrum decreases faster than the low frequency part (Quan and Harris, 1997). This effect may be quantified by measuring the resulting downshift $\Delta f = f_S - f_R$, where f_S and f_R are the frequency centroids of $S(f)$ and $R(f)$, respectively. Then, if we approximate the spectrum $S(f)$ by a Gaussian with variance σ^2_S, we have

$$Q = \frac{\pi d \sigma^2_S}{v \Delta f} = \frac{\pi \Delta t \sigma^2_S}{\Delta f},$$

(10)

where v is the velocity (P- or S-wave velocity), and Δt is the traveltime. Although this method is applicable under the hypothesis of constant-Q in the bandwidth of interest (Dasgupta and Clark, 1998; Quan and Harris, 1997), it can be applied with good reliability also to frequency-dependent Q media. For example, Picotti et al. (2007) estimated the frequency-dependent Q from numerically simulated seismograms by using the spectral-ratio and frequency-shift methods, finding values in very good agreement with the synthetic theoretical models. Moreover, they found that the classical spectral-ratio method is more sensitive to this problem, resulting in noticeable departures of the logarithm of the spectral ratio from the linear trend. On the other hand, the frequency-shift method is less sensitive to this problem when the spectrum of the signal is Gaussian, because generally the variation of the quality factor is weak in the seismic frequency band, and becomes important only at very high and low frequencies. In these zones, the amplitude of the Gaussian signal is very low, resulting in small contributions in the integrals for the computation of variances and frequency centroids.

In the more general case of inhomogeneous media, the frequency shift along a raypath can be expressed as

$$\Delta f = \sigma^2_S \int_{ray} \alpha_0 dl,$$

(Quan and Harris, 1997), where the integral is taken along the raypath and $\alpha_0 = \pi/Q v$ is the attenuation factor, i.e., the attenuation coefficient is linearly proportional to frequency and defined as $\alpha = \alpha_0 f$. To infer the vertical Q profile of firn, we consider the whole firn column as a sequence of homogeneous-Q layers. The Q of each individual layer is obtained adopting a layer-stripping method that considers the cumulative attenuation of all the overlying layers and exploits the monotonically increase of the firm’s P- and S-wave velocities. The layer-stripping method is a well established technique both in traveltime and attenuation tomography (e.g., Yilmaz, 2001; Böhm et al., 2006; Rossi et al., 2007). The P- and S-wave velocity fields (Fig. 4a) were previously computed in Picotti et al. (2015) by the traveltime inversion of first arrivals, following the method of Herglotz and Wiechert (Herglotz, 1907; Wiechert, 1910; Nowack, 1990). This technique, applied for the first time to Antarctic seismic data by Kirchner and Bentley (1979), calculates the velocity-depth function from traveltime-offset picked first-breaks. It is well suited to situations where the velocity increases monotonically with depth and for this reason it was successfully applied to firn by several authors (e.g., King and Jarvis, 2007). The resulting diving-wave paths in the velocity gradient (Fig. 4b) are obtained using an optimized ray-tracing algorithm based on the shooting method, described in Picotti et al. (2015).
Let's consider a layer \(N \) in this succession, and assume the value of \(Q \) in the overlying \(N - 1 \) layers to be already known. In our plane-layered model, the depth of each layer coincides with the depth of maximum penetration of each ray at increasing offsets. The ray corresponding to this layer reaches a receiver at the surface, whose recorded first-break frequency centroid is \(f_R \). Under our hypothesis, and accordingly with equation (11), the total frequency-shift occurred in the overlying \(N - 1 \) layers is

\[
\Delta f_{N-1} = 2 \sum_{i=1}^{N-1} \frac{\pi d_i \sigma_S^2}{v_i Q_i},
\]

(12)

where \(d_i \) are the lengths of the ray segments in each layer, and the factor 2 accounts for both the downgoing and the upgoing wave. Then, the quality factor of the layer \(N \) is simply obtained by equation (10), where \(d = d_N, v = v_N \) and the frequency-shift in the layer \(N \) is given by \(\Delta f = \Delta f_N = f_S - f_R - \Delta f_{N-1} \).

The layer-stripping method requires that the quality factor of the shallowest layer is known a priori. Moreover, the frequency centroid \(f_S \) and variance \(\sigma_S \) of the source must be known as well. These two values can be determined using the first-breaks recorded by the receivers placed close to the source. To this purpose, it is necessary that the acquisition geometry is properly set to have a sufficient number of traces at very short offsets. Then, particular care must be devoted to acquire the first-breaks with a high-quality of the signal, e.g., the wavelets must be free of interference effects and their amplitudes not clipped. If such type of signals are available, the following considerations allow to compute the above required spectral properties. It is convenient in this case to use equation (10) to obtain the difference in frequency content of propagating wavelets at different receivers. We consider the closest available signal to the source as reference wavelet, to be compared with the first breaks recorded at increasing offsets. In other words, we compare the spectrum \(R_1(f) \) of the reference wavelet to that of another wavelet \(R_2(f) \), which propagated for an additional traveltime \(\Delta t \) in the same shallow layer. If the traces are sufficiently closer to each other and to the source, it is possible to characterize the the quality factor of the uppermost layer as average of all calculated values, and the variance \(\sigma_S \) can be approximated to that of the reference wavelet. Finally, the dominant frequency of the source \(f_S \) follows from equation (10) by using the reference first-break traveltme.

4 Results

4.1 Quality factor vertical profiling

As previously described, a requirement for the layer-stripping technique is the knowledge of the quality factor of the shallowest layer, as well as the dominant frequency and variance of the source. We determined these properties, both for P and S waves, by using the first breaks recorded at short offsets. Fig. 5 shows the wavelets (a) and the corresponding spectra (b) of the P-wave first breaks recorded between 7 and 10 m.
Unfortunately, the first breaks recorded at offsets lower than 7 m are contaminated by the SV waves, and the amplitudes very close to the source are clipped. Taking the signal recorded at 7 m offset as reference wavelet, we computed the frequency shifts and using equation (10) we estimated the average P-wave quality factor of the shallowest layer to be $Q_P = 4.1 \pm 2.6$. Calculating the maximum penetration depth of the ray emerging at 10 m offset, we estimated the thickness of this layer to be about 2.7 m thick. Moreover, the estimated source dominant frequency and variance are $f_S = 574$ Hz and $\sigma_S = 171$ Hz, respectively. Fig. 6 shows the wavelets (a) and the corresponding spectra (b) of the S-wave first breaks recorded between 2 and 6 m.

$$\langle\langle \text{Figure 6}\rangle\rangle$$

Because of the amplitudes of the first break recorded at 1 m offset are clipped, the near trace cannot be used. Taking the signal recorded at 2 m offset as reference wavelet, we computed the frequency shifts and using equation (10) we estimated the average S-wave quality factor of the shallowest layer to be $Q_S = 1.9 \pm 0.5$. Considering the very short offsets, the thickness of this layer is set equal to the wavelength, which is very short because of the low velocity and high frequency. The estimated source dominant frequency and variance are $f_S = 496$ Hz and $\sigma_S = 146$ Hz, respectively. Therefore, the estimated thickness of the shallowest layer is of about 0.2 m.

$$\langle\langle \text{Figure 7}\rangle\rangle$$

These two frequency datasets, as well as the spectral source characteristics and Q_P and Q_S of the shallowest layer, are used to compute the P- and S-wave quality factor profiles of the whole firn column using the layer-stripping procedure. As described in the previous section the P- and S-wave velocity fields (Fig. 4a) were previously computed in Picotti et al. (2015) by the traveltime inversion of first arrivals, following the method of Herglotz and Wiechert (Herglotz, 1907; Wiechert, 1910; Nowack, 1990). The maximum P- and S-wave velocities, verified using the refracted first arrivals at the far offsets on the seismograms acquired using the explosive source, are 3864 ± 15 m/s and 1947 ± 20 m/s at 60 ± 5 m depth, respectively (Picotti et al., 2015). The errors increase to about ± 40 m/s at short offsets, because of the very steep gradient close to the surface. Fig. 8 and 9 display the resulting Q_P and Q_S profiles for the whole firn column, from the surface to the ice, together with the dominant frequency computed at the maximum penetration depth of each diving raypath.

$$\langle\langle \text{Figure 8}\rangle\rangle$$
The first plot (Fig. 8) shows a gradual increase of Q_P from the previously computed minimum value of 4.1±2.6 close to the surface, to a value of 100±40 at about 50 m depth. Then, it increases sharply to over 290±160 at about 58 m depth. The second plot (Fig. 9) exhibit a moderate increase of Q_S, from the previously computed minimum value of 1.9±0.5 close to the surface, to an average maximum value of about 280±130, which remains almost constant at depths larger than 35 m.

Since the offset range is not sufficient to appreciate where the Q_P factor stabilizes at the maximum value in the ice, we used the dataset acquired with the explosive charges placed at 27 m depth, to analyze the refracted first breaks recorded at very long offsets. Fig. 10 shows the wavelets (b) and the corresponding spectra (c), together with a reference wavelet recorded at 670 m offset (a,c). All these signals travel along very similar raypaths in the firn, while their paths in the underlying ice have different length. Following the same principle adopted for the computation of the Q factor in the shallowest layer, we compare the spectrum of the reference wavelet to those of other wavelets that propagated for additional traveltimes in the deep ice. Since these paths in the ice are very long, from 1120 to 1240 m, it is possible to appreciate a difference in the spectrum centroids and to compute the quality factors with a sufficient reliability. In this case, the average ice P-wave quality factor is of $Q_P = 378±108$ at 60±5 m depth, where the measured average temperature is approximately -24°C (Engelhardt and Kamb, 1993).

4.2 Modeling of firn seismic properties

Firn is assumed to be a deposition of two porous media, one layer snow-like with high porosity and the other ice-like with low porosity. The grains (ice) have the properties $K_s = 10$ GPa, $\mu_s = 5$ GPa (shear modulus) and $\rho_s = 917$ kg/m3 in both layers. The fluid saturating the pores is assumed to be fluidized snow, which is defined as a mixture of snow particles and air, like powder, having zero rigidity modulus. The properties of this material have been investigated by Mellor (1974), Maeno and Nishimura (1979) and Nishimura (1996). We consider $K_f = 571$ MPa, $\rho_f = 200$ kg/m3 and $\eta = 0.1$ Pa s.

For each layer, the dry-rock bulk modulus which best fits the data of Johnson (1982) is

$$K_m = K_s (1 - \phi)^{30.85/(7.76 - \phi)}.$$ \hfill (13)

The dry-rock shear modulus is

$$\mu = \frac{3}{2} \frac{1 - 2\nu}{1 + \nu} K_m, \quad \nu = 0.38 - 0.36\phi,$$ \hfill (14)

where ν is the Poisson ratio.

The permeability is

$$\kappa = C \frac{\phi^3}{\rho_s^2 (1 - \phi)^2}$$ \hfill (15)

https://doi.org/10.5194/tc-2023-19
Preprint. Discussion started: 24 February 2023
© Author(s) 2023. CC BY 4.0 License.
(Sidler, 2015; Gurevich and Carcione, 2023), where C is a constant. The local period of the stratification is $d = 0.1$ m with $p_1 = 0.5$.

The density profile as a function of depth $\rho(z)$ is obtained by using the following empirical relationship

$$\rho(z) = 0.917 \left[1 + \left(\frac{V_{P,ice} - V_P(z)}{2250} \right)^{1.22} \right]^{-1},$$

Kohnen (1972), where $V_P(z)$ is the vertical P-wave velocity displayed in Fig. 4 (a), and $V_{P,ice} = 3864$ m/s is the ice P-wave velocity, which we assume equal to the maximum computed P-wave velocity.

The porosity obtained from the experimental density (16) is

$$\phi(z) = \frac{\rho_s - \rho(z)}{\rho_s - \rho_f}.$$ \hspace{1cm} (17)

Fig. 11 shows the experimental density (a) and porosity (b) as a function of depth. These quantities increase monotonically versus depth mainly due to compaction.

For the mesoscopic-loss model, we assume $\phi_1(z) \approx \phi(z)$, $p_1 = p_2 = 0.5$ and $\phi_2 = \gamma \phi_1$, where γ is small, i.e., layer 2 has a much lower porosity than layer 1. Here we assume $\gamma = 0.1$.

On the other hand, the squirt-flow model has the following values of the parameters: $h/R = 0.015$, $\phi_c = 0.0002$, $K_h = 1.38 K_m$, where K_m is the bulk modulus with the grain contacts and cracks open, $C = 0.012$ kg/cm4, and we consider that the porosity ϕ is obtained from the experimental velocities and density as given by equation (17). The attenuation is due to the softer layer with much higher porosity, since the cracks are open and the global-flow loss (Biot) mechanism is effective. The contribution of the stiff layer is negligible.

Fig. 12 shows the P- and S-wave velocity and dissipation factor as a function of frequency close to the surface, where $\phi_1 = 0.744$, $\phi_2 = 0.0744$, and the solid and fluid properties of the two layers are the same. We can see that the dominant mechanism is the Biot (global-flow) one (Biot, 1956), with a strong peak and velocity dispersion. The squirt-flow peak is weaker and located at lower frequencies, while the mesoscopic loss contributes only to the P wave. The P- and S-wave dissipation peaks occur at a frequency of approximately 282 Hz. On the other hand, the model predicts that below a given depth (from 40 to 50 m) the squirt-flow loss predominates over the Biot global one.

Let us now study the dependence of attenuation as a function of depth. We consider a frequency of 282 Hz, corresponding to the dissipation peaks in Fig. 12. Fig. 13a shows the comparison between the experimental and theoretical quality factor profiles.
as a function of depth, while Fig. 13b shows the Q_P and Q_S experimental errors. As expected, the experimental errors increase with increasing quality factor, in agreement with the fact that the attenuation effects weakens with increasing Q, and can be observed with high accuracy only over large distances. The differences between the theoretical quality factor models and the profiled Q are within the experimental errors for all the firn column.

5 Conclusions

A physical explanation of the seismic attenuation (quality factor) in polar firn, as well as that of the underlying ice, is essential to obtain information about the ice cap and deeper geological formations. In particular, the proposed model is useful to perform data processing and amplitude-versus-offset (AVO) inversions to extract the petrophysical basal properties from multichannel active-source seismic data. In this work we estimate the P- and S-wave attenuation profiles in the firn of Whillans Ice Stream (West Antarctica) from spectral analysis of diving-wave first-breaks of three-component active-source seismic data. The resulting experimental quality factors range from values as low as 5 at the surface to approximately 300 at about 60 m depth. Then, the P-wave quality factor further increases until a maximum value of about 378 in the underlying ice. The model of wave propagation in firn combines White’s mesoscopic attenuation theory of interlayer flow and that of Biot/squirt flow, and the fluid saturating the pores is assumed to be fluidized snow. It is found that the dominant attenuation mechanism is the Biot global flow one, with the theory showing a good agreement with the experimental values for the whole firn column. The model also predicts that below a given depth (from 40 to 50 m) the squirt-flow loss predominates over the Biot global one.

Data availability. The data presented in this work is available through the following previous publications: Horgan et al. (2012) and Picotti et al. (2015).

Appendix A: Mesoscopic-loss model

The P-wave modulus is (White et al., 1975; Carcione, 2022)

$$E = \left[\frac{1}{E_0} + \frac{2(r_2 - r_1)^2}{\omega(d_1 + d_2)(I_1 + I_2)} \right]^{-1}. \quad \text{(A1)}$$

where

$$E_0 = \left(\frac{p_1}{E_G_1} + \frac{p_2}{E_G_2} \right)^{-1}. \quad \text{(A2)}$$
with \(p_l = d_l/(d_1 + d_2) \), \(l = 1,2 \),
\[
r = \frac{\alpha M}{E_G} \quad (A3)
\]
\[
I = \frac{\eta}{\kappa a} \coth \left(\frac{ad}{2} \right), \quad a = \sqrt{\frac{i\omega E_G}{\kappa M E_m}}, \quad (A4)
\]
for each single layer, \(\omega \) is the angular frequency and \(i = \sqrt{-1} \).

Moreover, for each layer
\[
E_m = K_m + \frac{4}{3}\mu \quad (A5)
\]
is the dry-rock P-wave modulus, being \(K_m \) and \(\mu \) the respective bulk and shear moduli,
\[
E_G = E_m + \alpha^2 M \quad (A6)
\]
is Gassmann’s P-wave modulus,
\[
K_G = K_m + \alpha^2 M, \quad (A7)
\]
is Gassmann’s bulk modulus,
\[
\alpha = 1 - \frac{K_m}{K_s}, \quad M = \left(\frac{\alpha - \phi}{K_s} + \frac{\phi}{K_f} \right)^{-1}, \quad (A8)
\]
where \(\phi \), \(K_s \) and \(K_f \) denote the porosity, and the bulk moduli of the grains and saturant fluid, respectively. The coefficient \(\alpha \) is known as the effective stress coefficient of the bulk material. Finally, \(\eta \) is the fluid viscosity and \(\kappa \) is the frame permeability.

Let \(\rho_s \) and \(\rho_f \) denote the mass densities of the grains and fluid, respectively, and let
\[
\rho = (1 - \phi)\rho_s + \phi\rho_f \quad (A9)
\]
denote the mass density of the bulk material.

The complex velocity is
\[
v_1 = \frac{\sqrt{E}}{\rho}. \quad (A10)
\]
This model considers only the P-wave attenuation, since the shear modulus \(\mu \) is real.

Appendix B: Biot/squirt-flow model

The poroelastic coefficients are the Gassmann bulk and shear moduli,
\[
K_G = K_m + \alpha (K_m)^2 M(K_m) \quad \text{and} \quad \mu_G = \mu_m \quad (B1)
\]
where
\[\alpha(K_m) = 1 - \frac{K_m}{K_s} \quad \text{and} \quad M(K_m) = \frac{K_s}{1 - \phi - K_m/K_s + \phi K_s/K_f}, \]
\[\phi \] is the porosity, \(K_m \) and \(\mu_m \) are the bulk and shear moduli of the drained matrix, and \(K_s \) and \(K_f \) are the solid and fluid bulk moduli, respectively. We explicitly indicate the functional form of \(\alpha \) and \(M \) on \(K_m \), since we shall replace this modulus by a modified matrix (or frame) complex modulus \(K \), which includes the squirt-flow mechanism. In the same manner, \(\mu_m \) will be replaced by \(\mu \). The new moduli are complex-valued and frequency-dependent.

In the Biot/squirt-flow model, the bulk and shear moduli of the saturated rock at low frequencies are given by Gassmann’s equations,
\[K_G = \overline{K} + \alpha^2(\overline{K})M(\overline{K}) \quad \text{and} \quad \mu_G = \overline{\mu}, \]
where \(\overline{K} \) and \(\overline{\mu} \) are the bulk and shear moduli of the modified frame including the un-relaxation due to the presence of the squirt-flow mechanism, and \(\alpha \) and \(M \) are given by equation B2 substituting \(K_m \) with \(K \). For simplicity, we keep the same notation for the Gassmann moduli, but now they are complex-valued and frequency-dependent.

Gurevich et al. (2010) obtained the modified dry moduli in the following form
\[\frac{1}{\overline{K}} = \frac{1}{K_h} + \left[\left(\frac{1}{K_m} - \frac{1}{K_h} \right)^{-1} + \left(\frac{1}{K_f^*} - \frac{1}{K_s} \right)^{-1} \right]^{-1}, \]
\[\frac{1}{\overline{\mu}} = \frac{1}{\mu_m} - \frac{4}{15} \left(\frac{1}{K_m} - \frac{1}{K_h} \right), \]
where \(K_m \) and \(\mu_m \) are the dry-rock bulk and shear moduli at the confining pressure \(p_c \), \(K_h \) is the dry-rock bulk modulus at a confining pressure where all the compliant pores are closed, i.e., an hypothetical rock without the soft porosity, and \(\phi_c \) is the stiff porosity. This is so small – nearly 0.001 for most rocks – that the total porosity \(\phi \) can be assumed to be equal to the stiff porosity. The key quantity in equations B4 is the effective bulk modulus of the fluid saturating the soft pores:
\[K_f^* = \left[1 - \frac{2J_1(kR)}{kR J_0(kR)} \right] K_f, \quad k = \frac{2}{h} \sqrt{-\frac{3i\omega\eta}{K_f}} = \frac{1}{R} \sqrt{-\frac{8K_f^*}{K_f}}, \]
where \(J_0 \) and \(J_1 \) are Bessel functions.

The complex velocities of the P and S waves are
\[v_{2P}^2 = \sqrt{\frac{\overline{K} + 4\overline{\mu}/3}{\rho}} \]
and
\[v_{2S}^2 = \sqrt{\frac{\overline{\mu}}{\rho}}, \]
respectively.
Author contributions. SP primarily conceived the study, processed and analyzed all the data, produced most of the figures and wrote the manuscript. SP and MP designed the experiment and acquired the seismic data in Antarctica. JMC contributed to the basic ideas of the study, built the theoretical models, produced some of the figures and wrote several parts of the paper. All the authors discussed the results and were involved in editing the manuscript.

Competing interests. The contact author has declared that none of the authors has any competing interests.

Acknowledgements. This work was supported by the Italian National Program of Antarctic Research (PNRA–WISSLAKE Project) and the U.S. National Science Foundation (WISSARD Program–NSF 0944794, 0632198, and 0424589). We would like to thank Huw J. Horgan and Sridhar Anandakrishnan for their support.
References

Johnson, J. B.: On the application of Biot’s theory to acoustic wave propagation in snow, Cold Regions Science and Technology, 6, 49–60, 1982.

Figure 1. Map showing the location of SLW and the survey profile geometry. The location of the shallow-refraction experiment is indicated (modified from Picotti et al., 2015). Polar stereographic projection with true scale at -71°.
Figure 2. Hammer shallow-refraction seismograms as recorded by the georods along the longitudinal profile (modified from Picotti et al., 2015). The vertical component is shown in (a), while the horizontal transverse component is shown in (b), respectively. To acquire the three components, the georods were rotated through the three mutually perpendicular axes. The P and SH diving-wave first breaks are indicated.

Figure 3. Sketch of the squirt-flow model, where two sandstone grains in contact are shown. The soft pores are the grain contacts and the stiff pores constitute the main porosity. The quantity R is the radius of the disk-shaped soft pore (half disk is represented in the plot).
Figure 4. P-wave and S-wave velocity profiles versus depth obtained by Picotti et al. (2015) using the Hergloz-Wiechert traveltime inversion method (a) and P-wave diving waves corresponding to certain picked first-breaks (b).
Figure 5. Wavelets (a) and corresponding spectra (b) of the P-wave first breaks recorded between 7 and 10 m. The label R indicates the reference signal recorded at 7 m offset, while the vertical dashed lines indicate the frequency centroids.

Figure 6. Wavelets (a) and corresponding spectra (b) of the S-wave first breaks recorded between 2 and 10 m. The label R indicates the reference signal recorded at 2 m offset, while the vertical dashed lines indicate the frequency centroids.
Figure 7. Dominant frequency of the P-wave (a) and S-wave (b) diving first-breaks versus offset.

Figure 8. P-wave quality factor and dominant frequency versus depth, obtained from the layer-stripping frequency-shift method.
Figure 9. S-wave quality factor and dominant frequency versus depth, obtained from the layer-stripping frequency-shift method.
Figure 10. Wavelets (b) and corresponding spectra (c) of the P-wave first breaks recorded at long offset, between 1790 and 1910 m. The label R indicates the reference signal (a) recorded at 670 m offset, while the vertical dashed lines indicate the frequency centroids.
Figure 11. Density (a) and porosity (b) as a function of depth.
Figure 12. Analytical P-wave velocity (a) and dissipation factor (b) as a function of frequency close the surface.
Figure 13. Comparison between the experimental (symbols) and theoretical (solid lines) P- and S-wave quality factors (a) as a function of depth. Experimental errors (b) in the computation of Q_P and Q_S from the layer-stripping frequency-shift method.