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Abstract 22 

As the permafrost region warms and permafrost soils thaw, vast stores of soil organic 23 

carbon (C) become vulnerable to enhanced microbial decomposition and lateral transport into 24 

aquatic ecosystems as dissolved organic carbon (DOC). The mobilization of permafrost soil C 25 

can drastically alter the net northern permafrost C budget. DOC entering aquatic ecosystems 26 

becomes biological available for degradation as well as other types of aquatic processing. 27 

However, it currently remains unclear which landscape characteristics are most relevant to 28 

consider in terms of predicting DOC concentrations entering aquatic systems from permafrost 29 

regions. Here, we conducted a systematic review of 111 studies relating to, or including, 30 

concentrations of DOC in terrestrial permafrost ecosystems in the northern circumpolar region 31 

published between 2000 – 2022. We present a new permafrost DOC dataset consisting of 2,276 32 

DOC concentrations, collected from the top 3 m in permafrost soils across the northern 33 

circumpolar region. Concentrations of DOC ranged from 0.1 – 500 mg L-1 (median = 41 mg L-1) 34 

across all permafrost zones, ecoregions, soil types, and thermal horizons. Across permafrost 35 

zones the highest median DOC concentrations were in the sporadic permafrost zone (101 mg L-1) 36 

while lower concentrations were found in the discontinuous (60 mg L-1) and continuous (59 mg 37 

L-1) permafrost zones. However, median DOC concentrations varied in these zones across 38 

ecosystem type, with the highest median DOC concentrations in each ecosystem type of 66 mg 39 

L-1 and 63 mg L-1 found in coastal tundra and permafrost bog ecosystems, respectively. Coastal 40 

tundra (130 mg L-1), permafrost bogs (78 mg L-1), and permafrost wetlands (57 mg L-1) had the 41 

highest median DOC concentrations in the permafrost lens, representing a potentially long-term 42 

store of DOC. Other than in Yedoma ecosystems, DOC concentrations were found to increase 43 

following permafrost thaw and were highly constrained by total dissolved nitrogen 44 

concentrations. This systematic review highlights how DOC concentrations differ between 45 

organic- or mineral-rich deposits across the circumpolar permafrost region and identifies coastal 46 

tundra regions as areas of potentially important DOC mobilization. The quantity of permafrost-47 

derived DOC exported laterally to aquatic ecosystems is an important step for predicting its 48 

vulnerability to decomposition.  49 

 50 
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1. Introduction 51 

Persistent freezing temperatures since the late Pleistocene and Holocene has led to the 52 

accumulation and preservation of 1,460 – 1,600 Pg of organic carbon (C) in northern 53 

circumpolar permafrost soils (Hugelius et al., 2014; Schuur et al., 2018). However, in recent 54 

decades, there has been an amplified level of warming at high latitudes, occurring at four-times 55 

the speed of the global average (Rantanen et al., 2021). This is leading to widespread and rapid 56 

permafrost thawing which is predicted to continue under various future climate scenarios 57 

(Olefeldt et al., 2016). Under the high C emissions representative concentration pathway 58 

(RCP8.5), 90% loss of near-surface permafrost is projected to occur by 2300, with the majority 59 

of loss occurring by 2100 (McGuire et al., 2018). Increasing temperatures and widespread thaw 60 

exposes permafrost C to heterotrophic decomposition, potentially leading to enhanced emissions 61 

of greenhouse gases to the atmosphere in the form of carbon dioxide (CO2; Schuur et al., 2021) 62 

and methane (CH4; Turetsky et al., 2020). Additionally, previously frozen soil organic carbon 63 

may be mobilized into the aquatic network as dissolved organic carbon (DOC), the quantity and 64 

quality of which will likely depend on local and regional hydrology, and landscape 65 

characteristics (Tank et al., 2012; Vonk et al., 2015). At high latitudes (>50°N), lakes and rivers 66 

of various sizes cover 5.6% and 0.47% of the total area, respectively (Olefeldt et al., 2021), and 67 

the landscape C balance at these high latitudes is highly dependent on aquatic C processing 68 

(Vonk & Gustafsson, 2013). The increased leaching of recently thawed DOC from permafrost 69 

soils will  increase the currently estimated 25 – 36 Tg DOC year-1 exported into the freshwater 70 

system, and subsequently into the Arctic Ocean (Holmes et al., 2012; Raymond et al., 2007). It 71 

may also lead to enhanced greenhouse gas emissions from freshwater ecosystems (Dean et al., 72 

2020). However, uncertainty remains as to which terrestrial ecosystems contain the highest 73 

concentrations of DOC, laterally transport the greatest quantities of DOC, and represent the store 74 

of DOC most vulnerable to mineralization. 75 

Globally, DOC concentrations have been shown to vary across biomes, and spatial and 76 

temporal scales (Guo et al., 2020; Langeveld et al., 2020). It has been suggested that at such 77 

macro scales hydrology, climate, vegetation type, and soil type are important drivers of DOC 78 

concentrations (Langeveld et al., 2020). Hydrology and climate are important factors shaping 79 

ecosystem structure and function in permafrost regions (Andresen et al., 2020; Wang et al., 80 
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2019), which in turn influences the spatial distribution of vegetation and soil types. Vegetation 81 

type has been shown to be the most important driver of DOC concentrations in Arctic lakes 82 

(Stolpmann et al., 2021). Carbon uptake by vegetation, via gross primary production, and SOC 83 

stocks in the permafrost region have both been shown to vary across vegetation and soil types 84 

(Ma et al., 2023; Hugelius et al., 2014). This variability across vegetation and soil types has 85 

important implications for DOC production, which is associated with plant inputs (Moore & 86 

Dalva, 2001) and the decomposition and solubilization of SOC due to soil microbial activity 87 

(Guggenberger & Zech, 1993). In permafrost soils, the majority of this production is likely to 88 

occur near the soil surface as the microbial production of DOC via input of plant-derived labile 89 

substrates has been shown to decrease with depth (Hultman et al., 2015; Monteux et al., 2018; 90 

Wild et al., 2016) and 65 – 70 % of the SOC store is found in the top 3 m (Hugelius et al., 2014). 91 

The spatial distribution discrepancies observed in DOC concentrations from global assessment 92 

efforts (Guo et al., 2020; Langeveld et al., 2020) may be reduced for the circumpolar permafrost 93 

region by improving understanding of DOC concentrations in the top 3 m across ecosystem 94 

types.    95 

Previous studies have highlighted that the mineralization and lateral transport of DOC, i.e., 96 

mobilization, represents a source of terrestrial permafrost C that can potentially play an 97 

important role in both terrestrial and aquatic biogeochemical cycles (Hugelius et al., 2020; 98 

Parmentier et al., 2017; Schuur et al., 2022). However, none have quantified DOC mobilization 99 

across the permafrost region. Inclusion of DOC mobilization in attempts to determine the 100 

permafrost climate feedback (Schaefer et al., 2014), may reduce current uncertainty in the 101 

magnitude and location of permafrost C losses (Miner et al., 2022), particularly as permafrost 102 

thaws. Warming of near surface permafrost causes widespread thawing (Camill, 2005; Jorgenson 103 

et al., 2006), which can lead to drastic changes in hydrology, vegetation, and soil carbon 104 

dynamics (Liljedahl et al., 2016; Pries et al., 2012; Varner et al., 2022), thus impacting both 105 

DOC production and mobilization. Several studies have demonstrated that DOC has the potential 106 

to be rapidly degraded and mineralized following thermokarst formation (Burd et al., 2020; 107 

Payandi-Rolland et al., 2020; Wickland et al., 2018), particularly in higher latitude ecosystems 108 

(Ernakovich et al., 2017; Vonk et al., 2013). However, few have compared this lability across 109 

ecosystems (Abbot et al., 2014; Fouche et al., 2020; Textor et al., 2019) and less have done so 110 
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across the permafrost region (Vonk et al., 2015). Determining the ecosystems with the greatest 111 

store of DOC that is readily mineralized upon thermokarst formation represents a potentially 112 

important step in reducing uncertainty in the permafrost climate feedback.  113 

Here, we conduct a systematic review of the literature and compiled 111 studies published 114 

between 2000 – 2022 on DOC concentrations in the top 3 m of soil in terrestrial ecosystems 115 

found in the northern circumpolar permafrost region. Our aim was to build a database to assess 116 

the concentration and mobilization of DOC across terrestrial permafrost ecosystems. We used 117 

this database to address the following hypotheses; (i) the highest DOC concentrations would be 118 

found in organic rich wetland ecosystems; (ii) disturbance would lead to increased export and 119 

biodegradability of DOC; and (iii) the most biodegradable DOC would be found in Yedoma and 120 

tundra ecosystems. A quantitative assessment of studies pertaining to DOC concentrations in 121 

permafrost soils can identify evidence-based recommendations for future topics, standardisation 122 

of methods, and areas of research to improve our understanding on terrestrial and aquatic 123 

biogeochemical cycling in northern permafrost regions. Our database contains ancillary data 124 

describing the geographical and ecological conditions associated with each DOC concentration, 125 

allowing us to reveal patterns in DOC concentrations and lability measures for 562 sampling 126 

sites across multiple ecosystem types and under varying disturbance regimes. This study 127 

represents the first systematic review of DOC concentrations within terrestrial permafrost 128 

ecosystems found in the circumpolar north. As such, it provides unique and valuable insights into 129 

identifying ecosystems associated with the highest DOC concentrations, and thus ecosystems 130 

with the greatest potential for DOC mobilization. 131 

2. Methods 132 

This systematic review used a methodological framework proposed by Arksey & 133 

O’Malley (2005) and follows five steps: 1) develop research questions and a search query; 2) 134 

identify relevant studies; 3) study selection; 4) data extraction; and 5) data analysis, summary, 135 

and reporting. The literature search was guided by four research questions: 1) what are the 136 

concentrations of DOC found in terrestrial ecosystems across the northern circumpolar 137 

permafrost region?; 2) what are the rates of export and/or degradation (mobilization) of DOC 138 

within these ecosystems?; 3) What are the major controls on DOC concentrations and rates of 139 

mobilization?; and 4) how are concentrations and mobilization rates impacted by thermokarst 140 
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formation? Mobilization rates represent DOC loss and include specific discharge of DOC (g 141 

DOC m-2), export rate of DOC per day (g C m-2 day-1) and per year (g C m-2 year-1), and 142 

biodegradable DOC (BDOC; %). 143 

2.1 Literature Search  144 

Based on a priori tests, we used the following search query string to find papers using 145 

information found in their title, abstract, and keywords: (”dissolved organic carbon”) AND 146 

(permafrost OR thermokarst OR "thaw slump") AND (soil OR peat) AND (export OR degrad* 147 

OR decomposition OR mineralization). We used Web of Science, Science Direct, Scopus, 148 

PubMed, and Google Scholar to generate a database of tier 1, peer-reviewed articles published 149 

between 2000 – 2022. The search function on Science Direct does not support the use of 150 

wildcards such as “*”, so “degrad*” was changed to “degradation”. We removed duplicate 151 

references found across multiple databases using Mendeley© referencing software (v1.17.1, 152 

Mendeley Ltd. 2016).  153 

2.2 Systematic Screening of Peer-Reviewed Publications 154 

 The selection of relevant studies was comprised of inclusion criteria and relevance 155 

screening in three steps. In the first step we placed limits on initial study searches in the 156 

electronic databases mentioned above. Studies were included in the review if they were primary 157 

research, published in English, and published between 2000 – 2022 (Table 1). Only quantitative 158 

studies conducted in terrestrial ecosystems within the northern circumpolar permafrost region, as 159 

defined by Brown et al., (1997), and reporting DOC concentration and mobilization rates were 160 

included. Studies not meeting these criteria were eliminated and the remaining studies proceeded 161 

to the second screening step. 162 

Table 1. Summary of criteria used to identify suitable studies in the preliminary screening 
stage 
 

Inclusion criteria Exclusion criteria 

Timeline Study published between 2000 – 
2022 

Study published prior to 2000 
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Study type Primary research article published in 
peer-reviewed journal using 
quantitative methods 

Thesis/dissertations and secondary 
research studies (reviews, 
commentaries, editorials) 

Language Published in English Studies published in other languages 

Region Conducted within the northern 
circumpolar permafrost region 

Conducted outside of the northern 
circumpolar permafrost region 

Outcome Studies on DOC concentration, 
export or degradation in permafrost 
environments 

Studies not on DOC concentration, 
export or degradation in permafrost 
environments 

 163 

 In the second step, the primary relevance of articles was screened, based on article titles, 164 

abstracts, and keywords, and the eligibility criteria provided in Table 2. Studies deemed 165 

irrelevant were eliminated and the remaining studies proceeded to the third and final screening 166 

step, or secondary screening stage, which was based on was based on more specific eligibility 167 

criteria (Table 2) applied to the full text. 168 

 

Table 2. Primary and secondary relevance screening tools. Primary screening tool used in the 
article title, abstract, and keyword screening stage. Secondary screening tool used in full-text 
screening stage 

Screening 
stage 

Screening questions Response details 

Primary Does the study involve 
quantitative data 
collected from a 
permafrost 
environment? 

Yes – reports on quantitative data collected from a 
permafrost environment 

No – does not report on the above 

Primary 
and 

Secondary 

Is the study region 
within the northern 
circumpolar 
permafrost region? 

Yes – reports on quantitative data (including field 
observations and lab data) collected from the 
circumpolar permafrost environment. 

No – study region is not in the northern circumpolar 
permafrost regions; other examples could be 
mountainous permafrost or Tibetan plateau 

Primary 
and 

Secondary 

Is the article in English 
and NOT a review, 
book chapter, 
commentary, 
correspondence, 

Yes – study is in English and is a primary research 

article that includes quantitative studies (field and 
lab based), including model-based research as it 
relies on observational data.* 
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letter, editorial, case 
report, or reflection? 

No – study is not in English and/or is a review, book, 
editorial, working paper, commentary, conference 
proceeding, supplementary text, or qualitative 
study which does not address outcomes relevant 
to this review 

Primary 
and 

Secondary 

Does the study involve 
the concentration, 
export or degradation 
of terrestrially derived 
DOC? 

Yes – reports on terrestrial DOC concentration, export, 
or degradation, including concentrations and 
characterization   

No – does not report on terrestrial DOC concentration, 
export, or degradation 

Secondary Is the article in 
English, longer than 
500 words, and 
published between 
2000 - 2022? 

Yes – study is published between 2000 – 2022  

No – study is published prior to 2000 

*For model-based studies, the original field/lab data used to parametrise or develop the model 169 

was used. If this data was taken from previously published work, then those studies were used 170 

and the model-based study removed. 171 

2.3 Database compilation 172 

 A database with reported DOC concentrations and mobilization rates i.e., rates of either 173 

DOC export or degradation, was compiled using data from all studies that were deemed relevant 174 

following the study selection phase. The database was compiled to compare DOC concentrations 175 

and mobilization rates between different sites. We define a site as an area where either soil, 176 

water, or ice samples were taken from that has similar vegetation composition, water table 177 

position, permafrost regime, and was either disturbed or pristine. Site descriptions were derived 178 

from the text of each study. Where possible, individual daily measurements of DOC 179 

concentrations and mobilization rates were taken. When replicates of the same daily 180 

measurement were provided, we used the mean of those replicates, which was relevant for 10 181 

studies within the database, representing 72 DOC concentrations. All data was extracted from 182 

data tables, text, supplementary material, or extracted from data figures using WebPlotDigitizer 183 

(https://automeris.io/WebPlotDigitizer).  184 

All studies reported measuring DOC concentrations collected from either open-water, pore 185 

water, ice, or soil using a median filter pore size of 0.45 μm with first and third quartiles pore 186 

size of 0.45 and 0.7 μm. Measurements from all 12 months of the year were included in the 187 
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database with the majority occurring during the growing season (May – August), a small portion 188 

during the non-growing season, and the remaining sampling times were either not reported or are 189 

averages over multiple sampling occasions. We included data from studies that were both field 190 

and lab based. However, any data where a treatment was applied was excluded, except for 191 

temperature treatments during incubation experiments when assessing the biodegradability of 192 

DOC. When lab-based studies included an incubation, only Day 0 DOC concentrations were 193 

used when comparing DOC concentrations across studies. We chose to remove any DOC 194 

concentrations from samples taken below 3 m depth, which represented 3% of all DOC 195 

measurements. These measurements were removed for better comparability with the current best 196 

estimation of soil organic carbon stocks within the northern circumpolar permafrost zone 197 

(Hugelius et al., 2014). We also removed any DOC concentrations greater than 500 mg L-1, 198 

which represented 2% of all DOC concentrations. Samples that were above 500 mg L-1 and were 199 

sampled below 3 m represented 1% of all DOC concentrations.  200 

Site averaged daily DOC concentrations (mg L-1) and mobilization rates were estimated from 201 

the average concentration and mobilization rates measured within a single day or sampling 202 

occasion. Repeated measurements at a site, either over the growing season or multiyear 203 

measurements, were treated as an individual estimate of DOC concentrations and mobilization 204 

rates. Other continuous variables that were similarly estimated include soil moisture, water table 205 

position, organic layer depth, active layer depth, bulk density of soil, soil carbon content (%), 206 

soil nitrogen content (%), soil carbon:nitrogen (C:N), pH, electrical conductivity (μS cm-1), 207 

specific UV absorbance at 254 nm (SUVA; L mg C-1 m-1), total dissolved nitrogen (mg L-1), 208 

nitrate (mg L-1), ammonium (mg L-1), chloride (mg L-1), calcium (mg L-1), and magnesium (mg 209 

L-1). The aromatic content of organic matter is positively correlated with SUVA (Weishaar et al., 210 

2003), with high SUVA values being used as an indication of high aromatic content (Hansen et 211 

al., 2016). Ratios of soil C:N have been shown to be a good proxy for decomposition (Biester et 212 

al., 2014), where high C:N values indicate higher decomposition has previously occurred. Mean 213 

annual temperatures and precipitation, sampling depth, filter size, the number of days over which 214 

sampling took place, how many years following disturbance measurements were taken were also 215 

recorded. Several continuous variables other than those mentioned above were also recorded in 216 

the database, but not used for analysis if they represented < 20% of the database. We chose 20% 217 
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as the cut-off point for use in comparison of the relationship between DOC concentrations and 218 

mobilization with other site continuous variables. 219 

Categorical variables included in the database (Table S1) were site location within the 220 

permafrost zone (continuous, discontinuous, sporadic; Brown et al., 1997) and ecoregion (arctic 221 

tundra, sub-arctic tundra, sub-arctic boreal, and continental boreal; Olson et al., 2001). We 222 

included site surface permafrost conditions (present or absent), the thermal horizon layer 223 

sampled (active layer, permafrost lens, permafrost free, water, and thaw stream), and if present 224 

what type of disturbance occurred at the site (fire, active layer thickening, thermokarst terrestrial, 225 

or thermokarst aquatic). Active layer represents the seasonally unfrozen soil layer above the 226 

permafrost layer. Permafrost lens represents the permanently frozen (below 0 °C) layer. 227 

Permafrost lens DOC concentrations are determined from soil and pore water within the 228 

permafrost layer and extracted via frozen cores, whereas active layer samples are taken from soil 229 

cores or porewater that are unfrozen at the time of sampling. Thaw Stream represents flowing 230 

surface waters following permafrost thaw. Permafrost Free represents areas that are not underlain 231 

by permafrost. We also included the soil class found at the site (Histel, Histosol, Orthel, and 232 

Turbel; USDA, 1999) and whether the DOC was from the organic or mineral soil. Histosols are 233 

organic rich, non-permafrost soils. Histels, Orthels, and Turbels are permafrost-affected soils 234 

(Gelisol order). Histels are organic rich, Orthels are non cryoturbated affected mineral soils, and 235 

Turbels are cryoturbated permafrost soils. Organic rich Histel and Histosol soils have been 236 

previously shown to contain greater SOC stocks in the top 3 m of soil than the mineral rich 237 

Orthel and Histel soils (Hugelius et al., 2014).  To assess the influence of sampling approach and 238 

method of analysis, we included method of DOC extraction (centrifugation of soil sample, 239 

leaching and dry leaching of soil, dialysis, grab sample, ice core extraction, potassium sulphate 240 

extraction, lysimeter, piezometer, pump, rhizons) and DOC measurement method (combustion, 241 

persulphate, photometric, or solid-phase extraction).  242 

Sites were classified according to ecosystem type, and these included coastal tundra, forest, 243 

peatland, permafrost bog, permafrost wetland, retrogressive thaw slump, upland tundra, and 244 

Yedoma. Ecosystem classification is based on the general site description in the article, the 245 

provided ecosystem classification within the article, and site data including vegetation 246 

composition, permafrost conditions, and ecoregion. Coastal tundra sites includes typical 247 
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polygonal tundra features found along the coastline in the permafrost region (Lantuit et al., 248 

2012). Forests include any forested ecosystem, such as a black spruce forest (Kane et al., 2006) 249 

or larch forest (Kawahigashi et al., 2011) where the soil is not a wetland soil. Peatlands are sites 250 

classified as either fens (Olefeldt and Roulet 2012) or bogs (Olsrund and Christensen 2011) that 251 

are within the permafrost domain but are not underlain by permafrost. Permafrost bogs are sites 252 

that are bogs and are either underlain by permafrost (O'Donnel et al., 2016) or are thermokarst 253 

bogs (Burd et al., 2020) that were previously underlain by permafrost prior to thawing. 254 

Permafrost wetlands sites include saturated soils that are underlain by permafrost, or were 255 

previously underlain by permafrost prior to permafrost thaw. They contain sampling locations 256 

typical of moist acidic tundra (Trusiak et al., 2018), tundra meadows (Tanski et al., 2017), and 257 

high-latitude fens (Nielsen et al., 2017). Retrogressive thaw slumps are areas where substantial 258 

ground ice degradation leads to thermokarst and the resulting feature contains a retreating 259 

headwall (Abbott et al., 2015). Upland tundra sites are high-latitude, non-wetland, mineral soils 260 

that include tundra heath (Stutter and Billett 2003) and meadows (Hirst et al., 2022). Yedoma 261 

sites include pristine forest, upland tundra, and coastal tundra, as well as retrogressive thaw 262 

slumps and other thermokarst features found within the Yedoma permafrost domain (Strauss et 263 

al., 2021). The ecosystem classification retrogressive thaw slump only includes these 264 

thermokarst features found outside the Yedoma permafrost domain. Each ecosystem type was 265 

further classified based on the type of permafrost thaw or thermokarst formation that occurred 266 

there. These thaw or thermokarst types included thermokarst bog, thermokarst wetland, active 267 

layer thickening, retrogressive thaw slump, exposure, thermo-erosion gully, and active layer 268 

detachment.  269 

2.4 Database analysis 270 

All statistical analyses were carried out in R (Version 3.4.4, R Core Team, 2015). We aimed 271 

to assess how DOC concentrations differed across study regions and ecosystems. To do this we 272 

used Kruskal-Wallis analysis to test for differences in median DOC concentrations among the 273 

various study regions and areas that included permafrost zones, ecoregions, soil class, thermal 274 

horizon, and ecosystems. Post-hoc comparisons of median DOC concentrations among these 275 

categories were performed using pairwise Wilcox test. Within and between each ecosystem type 276 

we assessed the differences in DOC concentrations found in different thermal horizons (i.e., 277 
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active layer and permafrost lens). To do this, data was first transformed using a Box Cox 278 

transformation and the optimal λ using the MASS package (Ripley et al., 2019). We then 279 

performed analysis of covariance (ANCOVA) to test for differences in DOC concentrations in 280 

different thermal horizons between ecosystem types, while controlling for seasonal effects by 281 

including the month in which sampling occurred as the covariate.  282 

Following the assessment of differences in DOC concentrations across these study regions 283 

and ecosystems we aimed to assess the influence of extraction and analysis method on DOC 284 

concentrations. The aim of this was to determine if extraction and analysis method was having a 285 

greater effect on DOC concentrations than study region or ecosystem. To do so we first used 286 

ANOVAs and Bonferroni post-hoc tests on linear mixed effects models, that include either 287 

extraction method, filter size, or analysis method as a fixed effect and ecosystem type as a 288 

random factor, to evaluate significant differences in DOC concentrations between DOC 289 

extraction and measurement methods. We then performed Kruskal-Wallis analysis to test for 290 

differences in median DOC concentrations among the extraction method, filter size, and analysis 291 

method in each permafrost zone, ecoregion, soil class, thermal horizon, and ecosystem. Post-hoc 292 

comparisons of median DOC concentrations among these categories were performed using 293 

pairwise Wilcox test. 294 

We used partial least squares regression (PLS) when assessing the relationship of DOC 295 

concentrations with continuous and categorical variables. We performed this analysis to 296 

determine how the drivers of DOC concentrations across ecosystems may explain the variability 297 

in DOC concentrations. Predictor variables were categorized based on their Variable Importance 298 

in Projections (VIP) method in the plsVarSel package (Mehmood et al., 2012), whereby variables 299 

with a score > 0.6 – 1 are deemed to be significant (Chong and Jun 2005). We ran several PLS 300 

including predictor variables with a VIP of > 0.6, 0.7, 0.8, 0.9, and 1. The most parsimonious 301 

PLS model contained predictor variables with a VIP > 1 and was selected based on the 302 

proportion of variability in the predictors explained by the model, significant PLS components, 303 

Q2, and background correlation (Andersen and Bro 2010). PLS was performed using the pls 304 

package (Mevik & Wehrens, 2007) and we chose to use PLS as it is tolerant of co-correlation of 305 

predictor variable, deviations from normality, and missing values, all of which were found within 306 

the database. In the PLS ecosystem classes were subdivided into pristine or disturbed (i.e., 307 
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impacted by permafrost thaw). Pristine sites were further subdivided by the thermal horizon in 308 

which the DOC concentrations were measured (active layer and permafrost lens). Sites were split 309 

into disturbed and pristine to assess whether disturbances has an impact on DOC concentrations. 310 

Pristine sites were divided by their thermal horizon to assess whether DOC concentrations were 311 

more positively related to the active layer exposed to both microbial decomposition and fresh 312 

annual carbon inputs from surface vegetation, or the permafrost lens.  313 

To evaluate the change in ecosystem DOC concentrations following thermokarst formation, 314 

based on all studies from the systematic review, we calculated the response ratio using the 315 

SingleCaseES package (Pustejovsky et al., 2021). We define thermokarst as the process by which 316 

ice-rich permafrost deposits undergo complete thaw, resulting in surface subsidence and the 317 

formation of a new, thermokarst feature that is ecological different regarding water table 318 

position, redox conditions, and vegetation type, from the preceding pristine ecosystem. Very few 319 

studies in our database report DOC concentrations for both pristine and thermokarst affected 320 

ecosystem (< 20 %). To include as much data as possible we chose an effect size metric that is 321 

unlikely to be influenced by studies with large sample number and variance. The response ratio 322 

is;  323 

𝑃𝑟𝑖𝑠𝑡𝑖𝑛𝑒 𝑡𝑜 𝑇ℎ𝑒𝑟𝑚𝑜𝑘𝑎𝑟𝑠𝑡 𝐸𝑓𝑓𝑒𝑐𝑡 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑟𝑎𝑡𝑖𝑜 =  ln(
𝑋𝑃

𝑋𝑇
)    Eqn. 1 324 

where XP = mean DOC concertation of pristine ecosystems and XT = mean DOC concertation of 325 

thermokarst effected ecosystems (Lajeunesse, 2011). This represents the log proportional 326 

difference in mean DOC concentrations between thermokarst and pristine ecosystems, where a 327 

positive response ratio indicates a decrease in DOC concentrations following thermokarst.  328 

The distribution of the data was inspected visually and with the Shapiro–Wilk test. We tested 329 

homogeneity of variances using the car package and Levene’s test (Fox and Weisberg, 2011). 330 

We report DOC concentrations as the median value with uncertainty as ± the interquartile range, 331 

except for response ratios which we report as ± 95% confidence intervals. We here define the 332 

statistical significance level at 5%. 333 
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3. Results 334 

3.1 Database generation 335 

Our initial search using Web of Knowledge, Science Direct, Scopus, PubMed, and 336 

Google Scholar returned a total of 577 unique papers published between 2000 – 2022 that assess 337 

the concentrations and rates of mobilization of DOC in terrestrial ecosystems within the northern 338 

circumpolar permafrost region. Of these initial 577 studies, 111 remained after the systematic 339 

screening process (Table 1 & 2). From these 111 studies we generated our database. The final 340 

database of 111 studies contained a total of 3,340 DOC concentrations (mg L-1), with 2,845 DOC 341 

concentrations between 0 – 500 mg L-1, found within the top 3 m of permafrost soils from field 342 

and lab-based studies (using only Day 0 lab-based DOC concentrations). These concentrations 343 

were taken from 562 different sampling locations, representing 8 different ecosystem types 344 

(Figure 1; Table S2) across the northern circumpolar permafrost region. All studies except, for 345 

one (Olefeldt et al., 2012), reported DOC concentrations. 346 

 347 
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Figure 1. Map of sampling locations where DOC measurements (n = 562) from the top 3 m for 348 

each ecosystem type. In many cases, the same sampling location was used in multiple studies 349 

leading to some overlap, therefore the number of sampling sites included in the data set (562) 350 
are not all clearly identifiable from this map. Similarly, several points overlay others even when 351 

the ecosystems differ. For a full list of site coordinates please see the database (repository link).  352 

Retro Thaw Slump = Retrogressive Thaw Slump. Blue shading represents permafrost zonation 353 
(Brown et al., 1997).  354 

 355 

The final database contained a considerably lower number of DOC mobilization 356 

measurements. The database includes 16 measurements of specific discharge of DOC (g DOC m-357 

2) from 3 studies, 9 export rate of DOC per day (g C m-2 day-1) and per year (g C m-2 year-1) 358 

measurements were each found in 2 studies. The number of specific discharge, export of DOC 359 

per day, and export of DOC per year measurements combined were <1% of the number of DOC 360 

concentration measurements. As such they were not considered for analysis of DOC 361 

mobilization. A total of 146 BDOC (%) measurements, 4% of the total number of DOC 362 

concentration measurements, were found in 14 studies. These measurements of BDOC were 363 

from Yedoma (30:5, number of measurements:studies), Upland Tundra (55:5), Forest (18:3), 364 

Permafrost Wetland (12:2), and Permafrost Bog (31:5) ecosystems. Given the low number of 365 

other forms of DOC mobilization and relatively comparable spread of BDOC measurements 366 

across ecosystem types, we chose to include BDOC measurements in our analysis despite a low 367 

total number of measurements compared to DOC concentrations, and we consider this lower 368 

sample size during our interpretation of results.  369 

Filter size used in studies ranged from 0.15 – 0.7 μm. The majority of DOC 370 

concentrations reported were determined using a filter size of 0.45 μm (58%), 0.7 μm was the 371 

second most common filter size (21%), followed by 0.22 μm (14%). We identified eleven 372 

different DOC extraction methods in total from both soils and water that are broadly grouped 373 

into the following six extraction types; leaching, suction, grab, centrifuged, dialysis, and 374 

potassium sulphate (K2SO4) extraction. Leaching includes the leaching and dry leaching of soil; 375 

suction includes lysimeter, piezometer, pump, and rhizons; grab includes grab samples and ice 376 

core extraction; and centrifuged, dialysis, and (K2SO4) extraction remain on their own. Suction 377 

(42%), leaching (37%), and grab (14%) were the three most common extraction methods across 378 

all samples. Leaching and suction extraction methods were used for 66% and 24%, respectively, 379 
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for all soil samples. For water samples, suction (65%) and grab (31%) were the most common 380 

extraction methods. The most common measurement method to determine DOC concentrations 381 

was by the combustion method (89%), followed by the persulphate (9%) and photometric (1%) 382 

methods.  383 

3.2 DOC concentrations and study regions 384 

 Upon inspection of DOC concentrations in the database, we determined that the data was 385 

non-normally distributed. The DOC concentrations were skewed toward the lower end of our 0 – 386 

500 mg L-1 range; thus, we report median, upper, and lower quartiles below. Across all studies, 387 

within the top 3 m of soil, the median DOC concentration was 41 ± 74 mg L-1. DOC 388 

concentrations were found to differ among the three permafrost zones (chi-square = 32, df = 2, p 389 

< 0.001; Figure 2a). The highest median DOC concentrations were found within the sporadic 390 

permafrost zone (n = 83; 62 ± 144 mg L-1). The lowest median of 33 ± 77 mg L-1 was found in 391 

the continuous permafrost zone (n = 1,648), with the greatest density of samples having lower 392 

DOC concentrations than observed in the violin plots of both the discontinuous and sporadic 393 

(Figure 2a). This change in DOC concertation’s along the latitudinal gradient of the permafrost 394 

zonation was also seen in the latitudinal gradient associated with ecoregion, where Arctic Tundra 395 

and Sub-Arctic Tundra are found at higher latitudes than both boreal ecoregions (chi-square = 396 

78, df = 3, p < 0.001; Figure 2b). The highest DOC concentrations were found in the continental 397 

boreal (n = 389; 56 ± 56 mg L-1) and Sub-Arctic Boreal (n = 442; 58 ± 97 mg L-1) ecoregions, 398 

and lowest in the Arctic Tundra (n = 1,209; 25 ± 75 mg L-1) and Sub-Arctic Tundra (n = 493; 43 399 

± 61 mg L-1) ecoregions. Inspection of the distribution of DOC concentrations across the 400 

ecoregions highlights that the Arctic Tundra ecoregion had the highest density of samples at the 401 

lowest DOC concentration (Figure 2b). 402 

These latitudinal differences are also reflected in the observed differences (chi-square = 403 

20, df = 3, p < 0.001) in DOC concentrations found within different soil classes. The highest 404 

DOC concentrations are found within organic rich Histosol (n = 37; 61 ± 39 mg L-1) and Histel 405 

soils (n = 935; 53 ± 72 mg L-1; Figure 2c), with the distribution of the data from these soils types 406 

having a higher density at greater DOC concentrations (Figure 2c). Histel and Histosol soils are 407 

the main type of permafrost soil found within the sporadic and discontinuous permafrost zone 408 
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and both boreal ecoregions (Hugelius et al., 2014). Mineral rich Orthels (n = 741; 38 ± 91 mg L-409 

1) and Turbels (n = 820; 31 ± 62 mg L-1), mineral permafrost soils that have experienced 410 

cryoturbation, had the lowest DOC concentrations. The median DOC concentrations found 411 

within the top 3 m of these soil classes represent <1% of the soil organic carbon stock found in 412 

the top 3 m of each soil class (Hugelius et al., 2014). DOC concentrations also differed within 413 

the thermal horizon of these different soil classes (chi-square = 91, df = 3, p < 0.001; Figure 2d). 414 

The highest DOC concentrations were found in permafrost free sites (n = 202; 57 ± 22 mg L-1), 415 

which were largely Histosol soils (19%) or Histel soils (74%) that have experienced thermokarst 416 

formation. In areas where permafrost was present, DOC concentrations were highest in the active 417 

layer (n = 1,400; 45 ± 74 mg L-1) and the permafrost lens (n = 729; 30 ± 113 mg L-1). 418 

  419 

Figure 2. Violin plots of DOC concentrations (mg L-1-) found in the top 3 m across (a) permafrost 420 

zones, (b) ecoregions, (c) soil classes, and (d) thermal horizons. (a) Dark to light blue shading 421 

represents the permafrost zones Continuous, Discontinuous, and Sporadic, according to Brown 422 

et al., (1997). (b) Dark to light green shading represents the ecoregions Arctic Tundra, Sub-423 
Arctic Tundra, Continental Boreal, and Sub-Arctic Boreal, according to Olson et al., (2001). (c) 424 

Dark to light yellow shading represents the soil classes Histosol, Histel, Orthel, and Turbel, 425 
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according to the USDA Soil Taxonomy (USDA, 1999). (d) Dark to light red shading represents 426 

the thermal horizons Active Layer, Permafrost Lens, Thaw Stream, and Permafrost Free. Black 427 

dots on each violin plot represents the median. Black vertical lines represent the interquartile 428 
range with the upper and lower limits representing the 75th and 25th percentiles, respectively. 429 

Either side of the black vertical line represents a kernel density estimation. This shape shows 430 

the distribution of the data, with wider areas representing a higher probability that samples 431 

within the database will have that DOC concentrations. The number of samples (n) found in 432 
each sub-category is found above each corresponding violin plot. 433 

 434 

3.3 Trends in DOC concentrations across ecosystems 435 

 Similar to other categorical variables (i.e. permafrost zone, ecoregion, soil class, and 436 

thermal horizon data), DOC concentrations within each of the eight ecosystem types were found 437 

to be non-normally distributed, with median values skewed toward the lower end of the 0 – 500 438 

mg L-1 range of concentrations (Figure S1). Permafrost bogs, upland tundra, and permafrost 439 

wetlands were the most represented in the database with regards to DOC concentrations (Table 440 

S2). The majority of permafrost bog measurements came from studies with field sites within 441 

Canada (Figure 1; Table S2), as was the case for upland tundra and retrogressive thaw slump 442 

DOC concentration data. The majority of permafrost wetland sample locations were found in 443 

Russia, whereas the majority of the 414 coastal tundra sampling locations were in the USA. The 444 

least represented ecosystem classes included the  peatland ecosystem class, which is not strictly a 445 

permafrost ecosystem as the other are, and the Yedoma ecosystem class (145 DOC 446 

concentrations from 9 studies, Table S2). DOC concentrations differed significantly across the 447 

eight ecosystem types (chi-square = 700, df = 7, p < 0.001; Figure 3). The highest DOC 448 

concentrations were found in coastal tundra (66 ± 116 mg L-1) and permafrost bogs (63 ± 75 mg 449 

L-1) ecosystems. The lowest DOC concentrations were found in permafrost wetlands (7 ± 20 mg 450 

L-1) and Yedoma ecosystems (9 ± 18 mg L-1), both of which had only slightly lower median 451 

DOC concentrations than retrogressive thaw slumps (15 ± 21 mg L-1). 452 
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 453 

 454 

Figure 3. Boxplot and jitter plot of (a) DOC concentrations (mg L-1), (b) the number of DOC 455 

measurements, and (c) number of studies including DOC measurements were taken from the 456 

top 3 m for each ecosystem type. Retro Thaw Slump = Retrogressive Thaw Slump. Boxes 457 

represents the interquartile range (25 – 75%), with median shown as black horizontal line. 458 
Whiskers extend to 1.5 times the interquartile range (distance between first and third quartile) in 459 

each direction. Jitter points represent the concentration of each individual DOC measurement, 460 

with random variation applied to each points location vertically in the plot, to avoid overplotting. 461 

Yedoma = dark teal. Coastal Tundra = orange. Retro Thaw Slump = red. Upland Tundra = 462 
green. Forest = purple. Permafrost Wetland = light pink. Permafrost bog = yellow. Peatland = 463 
brown.  464 

 465 

 When grouping all DOC concentrations by ecosystem types and differentiating between 466 

the active layer and permafrost lens thermal horizons, we found that DOC concentrations 467 

differed between the active layer and permafrost lens for all ecosystems (ANCOVA: F(1, 1277) = 468 

49.8, p < 0.001), except for permafrost bogs (chi-square = 0.37, df = 1, p = 0.5) and Yedoma 469 

(chi-square = 3.5, df = 1, p = 0.06) ecosystems (Figure 4). Within the permafrost lens thermal 470 

horizon, the highest DOC concentrations were found in coastal tundra (n = 103; 130 ± 119 mg L-471 

1) and permafrost bogs (n = 248; 78 ± 144 mg L-1) sites, and lowest found in Yedoma sites (n = 472 

91; 8 ± 10 mg L-1). The highest active layer DOC concentrations were in permafrost bogs (n = 473 
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276; 64 ± 61 mg L-1) and forest (n = 185; 57 ± 84 mg L-1) sites, and lowest found in permafrost 474 

wetland sites (n = 274; 10 ± 42 mg L-1).  475 

 476 

 477 

Figure 4 . Boxplot of (a) DOC concentrations (mg L-1) and (b) the number of DOC 478 

measurements in the Active Layer and Permafrost Lens thermal horizons of each ecosystem 479 

type. Only DOC concentrations from ecosystems with these thermal horizons present is used, 480 
thus no permafrost-free sites are included. Retro Thaw Slump = Retrogressive Thaw Slump. 481 

Boxes represents the interquartile range (25 – 75%), with median shown as black horizontal 482 

line. Whiskers extend to 1.5 times the interquartile range (distance between first and third 483 

quartile) in each direction. Blue boxplots represent DOC concentrations in the active layer. 484 
Green boxplots represent DOC concentrations in the permafrost lens. 485 

 486 

3.4 Effect of extraction and analysis methods on DOC concentrations 487 

 We found that DOC concentrations differed between filter sizes (ANOVA: F(4, 2339) = 488 

22.9, p < 0.001). The highest DOC median concentrations reported were filtered using 0.45 µm 489 
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(53 ± 78 mg L-1) and 0.22 µm (42 ± 54 mg L-1) and lowest using 0.7 µm (17 ± 78 mg L-1). The 490 

majority of DOC concentrations were determined using 0.45, 0.7, and 0.22 µm filter sizes. The 491 

trends observed in in DOC concentrations across study regions and ecosystems were also found 492 

when exploring these trends for the three main filter sizes used (Table S3, S3). Using 0.45 and 493 

0.7 µm filter sizes, which represents 79% of all reported DOC concentrations, we find that DOC 494 

concentrations are generally higher in the discontinuous and sporadic permafrost zone, the two 495 

boreal ecoregions, Histel soils, and the active layer thermal horizons (Table S3). Similarly, the 496 

highest DOC concentrations using these two most common filter sizes were highest in 497 

permafrost bog and coastal tundra ecosystems (Table S4). Given these similarities when 498 

considering and not considering filter size, and the large variation in DOC concentrations within 499 

each filter size, we consider the effect of filter size on the trends observed in DOC concentrations 500 

across study regions and ecosystems reported above (Figure 2, 3) to be minor. 501 

 DOC concentrations were found to be significantly different between samples subject to 502 

the six broader groups of extraction method used (ANOVA: F(5, 2518) = 30.8, p < 0.001), and 503 

between water based and soil (solid) based extraction methods (ANOVA: F(1, 2524) = 182.1, p < 504 

0.001). The trends observed in DOC concentrations across study regions (Figure 2) and 505 

ecosystems (Figure 3) were also found when exploring study region and ecosystem trends for the 506 

three main DOC extraction methods used (Table S5, S6). We found that 93% of DOC 507 

concentrations were determined using the suction (42%), leach (37%), and grab (14%) extraction 508 

methods. Using these three most common approaches the highest DOC concentrations across 509 

study regions (Table S5) and ecosystems (Table S6) were found in the discontinuous and 510 

sporadic permafrost zone, the two boreal ecoregions, Histel soils, the active layer thermal 511 

horizons, and in permafrost bog and coastal tundra ecosystems. 512 

 The different methods of measuring DOC concentrations also produced significantly 513 

different DOC concentrations (ANOVA: F(3, 2515) = 36.2, p < 0.001). The three most common 514 

accounted for 99% of all DOC concentrations and were combustion, persulphate, and 515 

photometric. Of these three combustion was the most common and used for 89% of DOC 516 

measurements. The persulphate and photometric methods were not used in all study regions 517 

(Table S7) and ecosystems (Table S8), thus comparison of all three methods is not complete. 518 

Trends in DOC measured using the combustion and persulphate method (Table S7, S) were 519 
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similar to those found across study regions (Figure 2) and ecosystems (Figure 3). This is 520 

unsurprising given that both of these methods account for 98% of all DOC concentrations. 521 

We consider the effect of filter size, extraction method, and method of DOC 522 

measurement to be minor in determining trends in DOC concentrations across study regions and 523 

ecosystems. We find that trends in DOC concentrations across study regions and ecosystems are 524 

similar when you both consider and do not consider the methods used to determine those 525 

concentrations. Also, the variability observed in DOC concentrations for each study region and 526 

ecosystem remains high even when considering filter size, extraction method, and measurement 527 

method. Thus, each method or approach similarly impacts DOC concentrations from each study 528 

region and ecosystem, and cannot explain the DOC concentration variability observed within 529 

each. However, these different approaches did have an impact on DOC concentrations. In this 530 

study we did not focus on systematically testing the effect of filter sizes, extraction methods, or 531 

DOC measurement methods. Our goal was to assess the concentration and mobilization of DOC 532 

in terrestrial permafrost ecosystems across circumpolar regions and ecosystems. The assessment 533 

of methods is outside the scope of our study. Rather, we compare DOC concentrations collected 534 

from samples using a variety of these methods and suggest that future studies use this 535 

information to decide on methods to be consistent with compiled measurements, thus far. 536 

3.5 Drivers of DOC concentrations  537 

 No continuous variables recorded in the dataset were available for all DOC concentration 538 

database entries, with no sites containing data for all continuous variables. This limited our 539 

ability to explore relationships between continuous environmental and ecological data and DOC 540 

concentrations across the permafrost region. To address drivers of DOC concentrations across 541 

the circumpolar permafrost region we used partial least squares regression (PLS) as it is tolerant 542 

to missing values. Multiple PLS regressions were run using various combinations of continuous 543 

and categorical data with similar model performance throughout. We chose the PLS to determine 544 

the drivers of DOC concentrations using environmental continuous variables and ecosystem type 545 

as this contained the lowest background correlation. The most parsimonious PLS regression 546 

extracted 9 significant components, captured 79% variation of the predictor variables, and 547 

explained 37% of the variance in DOC concentrations in the dataset. The majority of the 548 
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variance in DOC (35%) is explained along the first two axes of the model. The model was robust 549 

and not overfitted as model predictability was moderate (Q2 = 0.35) and background correlation 550 

was low (0.006).  551 

The PLS plot (Figure 5a) shows the correlation between DOC concentrations and 552 

selected environmental and ecological variables for the first two axes of the model. The two 553 

variables with the greatest positive and negative relationship with DOC concentrations were total 554 

dissolved nitrogen content (mg L-1) and C:N ratios, respectively (Figure 5b). The positive 555 

relationship of DOC with total dissolved nitrogen and soil carbon content (SoilC), and negative 556 

relationship with the specific UV absorbance at 254 nm (SUVA), may be a result of ecosystem 557 

properties. The strong negative relationship with C:N ratios indicates that DOC concentrations 558 

decrease with increased decomposition. Other than higher soil carbon content (SoilC) in 559 

permafrost bogs, there was no clear or obvious observable trends in SoilC, TDN, C:N ratios, and 560 

SUVA across ecosystem types (Figure S3). The PLS demonstrates that ecosystem type strongly 561 

affects DOC concentrations, with DOC positively related with the highest ecosystems where the 562 

highest DOC concentrations are observed, permafrost bogs and coastal tundra, and negatively 563 

related to the lower DOC ecosystems, permafrost wetland and retrogressive thaw slumps (Figure 564 

5). This negative relationship may be due to the higher latitudes these ecosystems are generally 565 

found at, which is supported by the negative relationship with DOC and the climate indicators 566 

mean annual temperature (MAAT) and mean annual precipitation (MAP). Additionally, it may 567 

be due to the high number of thermokarst affected sites found within these ecosystem classes, 568 

particularly retrogressive thaw slumps. There is a clear negative relationship between DOC 569 

concentrations and disturbed permafrost wetlands, retrogressive thaw slumps, and permafrost 570 

bogs. 571 
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   572 

 573 

Figure 5. Partial least squares regression (PLS) (a) loadings plot explaining 37% of the 574 

variability observed in DOC concentrations. (b) Bar plot of PLS regression coefficients showing 575 

the relative importance of each variable in predicting DOC concentrations. Regression 576 

coefficients on y-axis are normalized so their absolute sum is 100, with positive and negative 577 
values indicating the direction of the relationship. In the loadings plot squares depict ecosystem 578 

classes and the blue triangle represents DOC concentrations. Black circles in the (a) loadings 579 

plot and black bars in the (b) bar plot represent continuous environmental data that had at lest 580 

20% coverage of DOC data. Continuous data variables are represented by the colour black. CN 581 
= carbon:nitrogen ratio. SUVA = the specific UV absorbance at 254 nm (L mg C−1 m−1). MAP = 582 
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mean annal precipitation (mm). MAAT = mean annual temperature. SoilC = carbon content of 583 

soil (g C kg-1). TDN = total dissolved nitrogen (mg L-1). Fe = dissolved iron (mg L-1). PermWet.D 584 

= disturbed permafrost wetland ecosystem class and is light pink (as in Figure 3) to represent 585 
this ecosystem class. RTS = retrogressive thaw slump ecosystem class and is red (as in Figure 586 

3) to represent this ecosystem class. Coast.AL = active layer of coastal tundra ecosystem class 587 

and is orange. PermBog.AL = active layer of permafrost bog ecosystem class and is yellow. 588 

PermBog.P = permafrost lens of permafrost bog ecosystem class and is yellow\. PermBog.D = 589 
disturbed permafrost bog ecosystem class and is yellow. 590 

3.6 Response and mobilization of DOC and BDOC to thermokarst formation 591 

 The highest DOC concentrations were found in pristine permafrost bog (n = 442; 75 ± 592 

112 mg L-1) and coastal tundra ecosystems (n = 427; 72 ± 126 mg L-1; Figure 6a). No 593 

thermokarst affected coastal tundra ecosystems were recorded within the dataset. Whereas, in 594 

permafrost bogs DOC concentrations were found to differ across different thermokarst 595 

disturbances (ANOVA: F (3, 720) = 23.04, p < 0.001), with the lowest found in thermokarst 596 

wetlands (n = 16; 10 ± 21 mg L-1). DOC concentrations were also found to differ between 597 

thermokarst affected and pristine sites in upland tundra ecosystems (ANOVA: F (3, 539) = 5.91, p 598 

< 0.001). The highest DOC concentrations in upland tundra ecosystems were found in sites that 599 

had experienced active layer thickening (n = 142; 53 ± 39 mg L-1), whereas the lowest were 600 

found in sites that had experienced active layer detachment (n = 6; 4 ± 2 mg L-1). Pristine sites 601 

had the highest DOC concentrations in both Yedoma (n = 114; 11 ± 15 mg L-1) and forest (n = 602 

189; 49 ± 64 mg L-1) ecosystems. However, in permafrost wetland ecosystems pristine sites had 603 

the lowest DOC concentrations (n = 766; 7 ± 51 mg L-1) with sites that were affected by both 604 

thermokarst wetland formation (n = 17; 21 ± 26 mg L-1) and active layer thickening (n = 12; 41 ± 605 

13 mg L-1) having higher DOC concentrations.   606 

Our database contained limited data regarding BDOC (n = 146), thus BDOC results 607 

across ecosystems should be interpreted with caution. Due to limited data we have combined 608 

BDOC over all incubation lengths when assessing BDOC between pristine and thermokarst sites 609 

(Figure 6). BDOC was found to differ between thermokarst disturbances within ecosystem types 610 

in only Yedoma (ANOVA: F (2, 27) = 23.09, p < 0.001) and permafrost wetland (ANOVA: F (1, 10) 611 

= 15.87, p < 0.001) ecosystems. The highest BDOC was found in both of these ecosystem types 612 

also, with 54% (n = 5) in pristine Yedoma sites and 49% (n = 8) in thermokarst wetland affected 613 

permafrost wetland sites (Figure 6b), with the latter exhibiting the highest BDOC across all 614 
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permafrost affected sites followed by thaw slumps (18%, n = 11) in Yedoma ecosystems and 615 

active layer thickening (40%, n = 1) in upland tundra sites. The lowest median BDOC of 4% 616 

were seen in thermokarst bogs (n = 5) and active layer thickening (n = 3) affected sites, with 617 

pristine sites experiencing BDOC of 9% (n = 15). However, not all ecosystem types in the 618 

database had BDOC data for both pristine and disturbance sites. For example, only pristine sites 619 

data was available for forests, whereas there was no pristine site data available for upland tundra 620 

sites. No BDOC data was available for coastal tundra sites.  621 

All ecosystem types that had BDOC data, reported BDOC observed following 40 – 90 622 

incubation days, and this also corresponded to the highest BDOC values for each ecosystem type 623 

(Figure S4). When comparing the greatest BDOC observed within this incubation length 624 

window, we found that values varied across ecosystem type (ANOVA: F (5, 131) = 14.6, p < 625 

0.001). The highest loss rates were observed in Yedoma and permafrost wetland ecosystems, 626 

whereas the lowest we observed in organic rich forest and permafrost bog ecosystems (Figure 627 

S4). Forest (ANOVA: F (1, 16) = 2.31, p = 0.15) and permafrost bog (ANOVA: F (3, 24) = 2.49, p = 628 

0.09) BDOC did not differ over incubation length, whereas Yedoma (ANOVA: F (4, 25) = 24.92, p 629 

< 0.001) and permafrost wetland (ANOVA: F (1, 10) = 15.87, p < 0.01) did differ over time, with 630 

their max occurring during this 40 – 90-day incubation length. This suggests that when incubated 631 

for the same number of days, we would expect greater BDOC in Yedoma and permafrost 632 

wetland ecosystems. Note, for this analysis BDOC values from all thermokarst and non-633 

thermokarst affected sites within an ecosystem type were included. Given the limited BDOC data 634 

available we have compared BDOC across ecosystems in two ways. The first is using data from 635 

all measurement days to assess BDOC across pristine and disturbed ecosystems (Figure 6b). The 636 

second is assessing max BDOC within each ecosystem type, which includes pristine and 637 

disturbed sites (Figure S4). Using both approaches we find that the highest BDOC is observed in 638 

high-latitude Yedoma and permafrost wetland sites. 639 
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 640 

Figure 6. DOC concentrations (mg L-1) and biodegradable DOC (BDOC; %) from the top 3 m 641 

following disturbance including data from both field based and incubation studies. (a) DOC 642 

concentrations from each ecosystem type following disturbance where data was available. (b) 643 

Biodegradable DOC (BDOC) from each ecosystem type following disturbance where data was 644 

available. BDOC loss was determined following 3 – 304 days of incubation. Data from different 645 

incubation lengths was combined due to low sample size. Retro Thaw Slump = Retrogressive 646 

Thaw Slump. Boxes represents the interquartile range (25 – 75%), with median shown as black 647 

horizontal line. Whiskers extend to 1.5 times the interquartile range (distance between first and 648 

third quartile) in each direction, with outlier data plotted individually as black dots. Note colours 649 

associated with boxplots in this figure are only relevant for this figure. 650 

Response ratios comparing the change in DOC concentrations between pristine and 651 

thermokarst affected sites were calculated from our dataset from 108 studies using Eq. 1 (Figure 652 

7). Only 17 studies provided data for both pristine and thermokarst affected ecosystems, with 87 653 

papers providing DOC concentrations from pristine and 34 from thermokarst affected sites. 654 

When considering all ecosystems together we found that response ratios were negative, 655 

suggesting that DOC concentrations were higher in thermokarst affected sites compared to 656 

pristine sites (Figure 7). These negative response ratios were most evident in permafrost bogs, 657 

where they found throughout the entire column and individual thermal horizons. The greatest 658 
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increase in DOC concentrations following thermokarst was seen when comparing DOC 659 

concentrations in the permafrost lens of permafrost bogs, and to a lesser extent permafrost 660 

wetlands (Figure 7). Only in Yedoma ecosystems did we see positive response ratios throughout 661 

the entire profile, suggesting a decrease in DOC concentrations following thermokarst formation 662 

in Yedoma sites. This was also seen for DOC concentrations within the permafrost lens of 663 

upland tundra sites, which include DOC concentrations from retrogressive thaw slumps and 664 

thermo-erosion gullies in their thermokarst affected sites. The large confidence intervals for 665 

some response ratios suggests high variability in the response of DOC concentrations to 666 

thermokarst formation. 667 

 668 
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 669 

Figure 7. Response ratios of DOC concentrations from the top 3 m following thermokarst 670 

formation (calculated using Eq. 1). Response ratio means allow for relative comparison of 671 

changes in DOC following thermokarst formation between different ecosystem types. Negative 672 

values indicate lower DOC concentrations found in pristine ecosystems, whereas positive value 673 

indicates a decrease in DOC concentrations following thermokarst. Studies reporting DOC 674 

concentrations from Exposures, Retrogressive Thaw Slumps, and Thermo-Erosion Gullies from 675 

sites within the continuous permafrost zone were combined into the Upland Tundra ecosystem 676 

category. This did not include DOC concentrations from studies within the Yedoma permafrost 677 

domain (Strauss et al., 2021). Blue line represent DOC concentrations in the active layer, as per 678 

Figure 4. Green lines represent DOC concentrations in the permafrost lens, as per Figure 4. 679 
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Brown lines represent DOC concentrations from the entire column (i.e., both active layer and 680 

permafrost lens). 681 

4. Discussion 682 

In this systematic review, we evaluated patterns of DOC concentrations in the top 3 m of 683 

soil in terrestrial ecosystems across the northern circumpolar permafrost region based on results 684 

from 111 studies and 2,845 DOC measurements. We focused on comparing concentrations of 685 

DOC in soils across various geographical regions, ecological conditions, and disturbance types. 686 

Our synthesis shows that median DOC concentrations across ecosystems range from 9 – 61 mg 687 

L-1, which represents similar albeit slightly higher DOC concentrations when compared to the 688 

median DOC concentrations found in top soils of other land cover groups below 50°N (25 mg L -689 

1; Langeveld et al., 2020), globally distributed lakes (6 mg L -1; Sobek et al., 2007), and lakes 690 

across the permafrost region (11 mg L -1; Stolpmann et al., 2021). In general, we show that 691 

organic soils have higher DOC concentrations than mineral soils, and that DOC concentrations 692 

are positively related to total dissolved nitrogen concentrations and negatively to C:N ratios, 693 

which corroborate previous findings of factors correlating with DOC concentrations (Aitkenhead 694 

& McDowell, 2000; Lajtha et al., 2005). Overall, we found that properties associated with 695 

ecosystem type are the main constraint on DOC concentrations. Furthermore, disturbance 696 

through permafrost thaw has little impact on measured DOC concentrations, however this may 697 

be due to the loss of biologically reactive DOC or the loss of an initially larger pulse of DOC 698 

having been previously mobilised prior to the timing of sampling. 699 

4.1 Environmental factors influencing DOC 700 

Our database confirmed our first hypothesis that the highest DOC concentrations would be 701 

found in organic rich soils. Previous synthesis efforts estimating global distributions of terrestrial 702 

DOC concentrations have presented similar findings (Guo et al., 2020; Langeveld et al., 2020). 703 

Both of these previous studies also show that some of the highest terrestrial DOC concentrations 704 

are found within the northern circumpolar permafrost region, highlighting that these high DOC 705 

concentrations found in organic rich permafrost soils are of global significance. Concentrations 706 

of DOC in the top 3 m of soils closely mirrored stocks of SOC across the circumpolar permafrost 707 

region (Hugelius et al., 2014). Organic rich Histosol and Histel soils contain the greatest SOC 708 
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per km2, followed by Turbels and Orthels (Hugelius et al., 2014). The leaching of organic C from 709 

soils act as a major source of DOC (Kalbitz et al., 2000; Marschner & Bredow, 2002), thus it is 710 

not surprising that we find the highest DOC concentrations in the soil types with the greatest 711 

quantities of SOC (Figure 2a). While the highest DOC concentrations are found within organic 712 

rich soils, the amount of C found as DOC represent a small amount of the total SOC pool. Using 713 

the current best estimates of Histel SOC stocks (Hugelius et al., 2020), the DOC pool represents 714 

<1% of the total C stock in permafrost-affected peatlands as has been shown for both permafrost 715 

and global soils (Guo et al., 2020; Prokushkin et al., 2008).  716 

4.2 Variation in DOC across ecosystems  717 

The accumulation of high DOC concentrations we show in permafrost bogs and permafrost 718 

wetlands (Figure 3), is a result of the prevalence of cold and anoxic conditions throughout the 719 

Holocene (Blodau, 2002). This leads to a reduction in microbial decomposition, and the 720 

accumulation of both a large SOC (Hugelius et al., 2020) and DOC pool. Our results suggest that 721 

the pristine permafrost bog and permafrost wetland DOC pool is relatively stable following 722 

permafrost thaw (Figure 6, 7a). The lower DOC pool found in the active layer of permafrost 723 

wetland (Figure 4a)may represent a potentially labile DOC pool (Figure 7a), but this is likely due 724 

to fresh, plant derived inputs rather than the exposure and mineralization of previously frozen 725 

organic matter (Figure 7a). Peatland vegetation, in particular Sphagnum mosses, produces litter 726 

that has anti-microbial properties and is decay resistant (Hamard et al., 2019; Limpens, Bohlin, 727 

& Nilsson, 2017), limiting the amount of SOC that is degraded and assimilated into the DOC 728 

pool (Tfaily et al., 2013). This is further enhanced by the build-up of decomposition end products 729 

and the thermodynamic constraint on decay observed in anoxic soils (Beer et al., 2008). 730 

Permafrost has been continuously present in peatlands across the northern circumpolar 731 

permafrost region for the past 6,000 years, with the greatest rates of permafrost formation 732 

occurring within the past 3,000 years (Treat & Jones, 2018). Thus, a large proportion of the 733 

organic matter found peatlands and wetlands in this region were present prior to permafrost 734 

aggradation (i.e., permafrost formation), which indicates that permafrost formed epigenetically in 735 

these areas. Permafrost aggradation impacts soil biogeochemical properties, leading to 736 

potentially less decomposed organic matter with higher C/N ratios than non-permafrost 737 

equivalent soils, particularly in permafrost wetlands (Treat et al., 2016). This can lead to the 738 
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build-up of high DOC concentrations that are vulnerable to potential mobilization following 739 

thermokarst. Decomposition in epigenetic permafrost bogs following thermokarst has been 740 

shown to be relatively slow (Heffernan et al., 2020; Manies et al., 2021), which further supports 741 

our finding (Figure 6) that the large DOC pool found in these systems in relatively stable 742 

following permafrost thaw.  743 

Coastal tundra ecosystems had similarly high DOC concentrations to those found in 744 

permafrost bogs (Figure 3a). Coastal tundra ecosystems represented the highest concentrations of 745 

DOC in mineral permafrost soils, with the highest concentrations found in the permafrost lens 746 

(Figure 4a). This is contrary to findings that deeper coastal permafrost consists of low organic 747 

matter Pleistocene marine sediments (Bristol et al., 2021) and the proximity of the active layer to 748 

vegetation inputs, although this productivity and inputs are vulnerable to projected climatic 749 

warming and regional “browning” and “greening” (Lara et al., 2018). Recent work has shown 750 

that DOC in the active layer within the coastal permafrost is more biodegradable that OC in the 751 

permafrost lens (Speetjens et al., 2022) and a substantial proportion of organic carbon derived 752 

from thawing coastal permafrost is vulnerable to mineralization upon thawing, particularly when 753 

exposed to sea water (Tanski et al., 2021). Export of terrestrial coastal permafrost DOC directly 754 

into the Arctic Ocean can significantly influence marine biogeochemical cycles and food webs 755 

within the Arctic ocean (Bruhn et al., 2021). Arctic coasts are eroding at rates of up to 25 m yr-1 756 

(Fritz, Vonk, & Lantuit, 2017) and exporting large quantities of terrestrial organic matter export 757 

directly to the ocean that is rapidly mineralized (Tanski et al., 2019). Enhanced DOC export from 758 

these coastal tundra ecosystems may disrupt aquatic food webs through altering nutrient and 759 

light supply, as has been shown for Swedish coastal systems (Peacock et al., 2022). These 760 

coastal tundra sites represent a large DOC pool that is highly vulnerable to enhanced 761 

mobilization and deserve further attention. 762 

We found that DOC concentrations increased along a clear latitudinal gradient, from north to 763 

south, in the remaining ecosystems characterised by mineral soils with an upper organic layer, 764 

i.e., forests, upland tundra, and Yedoma. In forest ecosystems, the upper organic layer, and the 765 

impact of soil temperature, moisture, and pH on SOC found there, strongly influences the 766 

production, concentration, and composition of DOC (Neff & Hooper, 2002; Wickland et al., 767 

2007). Furthermore, the sorption of DOC to charcoal (Guggenberger et al., 2008), and high 768 
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lignin and phenolic input from vegetation (O’Donnell et al., 2016) produce a difficult to degrade 769 

DOC pool, leading to the accumulation of the large DOC pool in the active layer (Figure 4a) this 770 

ecosystem type. This trend with depth has also been observed in the vertical distribution of DOC 771 

across global soils, with 50% of the DOC pool found in the top 0 – 30 cm (Guo et al., 2020). 772 

While not included in the most parsimonious PLS model (Figure 5), Yedoma and upland tundra 773 

ecosystems were found to negatively correlate with DOC concentrations (Figure S5). The 774 

greatest proportions of OC and nutrients used for DOC production in these ecosystems are found 775 

in shallow organic layers (Semenchuk et al., 2015; Wild et al., 2013). Beneath the upper organic 776 

horizons in these mineral soils processes such as sorption of DOC to minerals and the formation 777 

of Fe-DOC or Al-DOC complexes may remove DOC from the dissolved pool (Kawahigashi et 778 

al., 2006) and mechanically protect it from mobilization (Gentsch et al., 2015). The majority of 779 

vegetation and its leachates found in the permafrost region produce relatively stable DOC 780 

consisting of lignin-derived compounds, highly aromatic polyphenolic compounds, and low 781 

molecular weight organic acids (Chen et al., 2018; Drake et al., 2015; Ewing et al., 2015; Selvam 782 

et al., 2017). While differences in the stability of different DOC source end-members have been 783 

shown (MacDonald et al., 2021), differences in redox conditions are likely a major driver in 784 

differences in the accumulation and mineralization of DOC across permafrost ecosystem types 785 

(Mohammed et al., 2022). 786 

4.3 Vulnerability of DOC to enhanced mobilization following thermokarst 787 

We define DOC mobilization as DOC lost from an ecosystem either via export or 788 

degradation. Our second hypothesis that permafrost thaw would lead to enhanced mobilization of 789 

DOC cannot be fully supported by the findings from this database. Using our chosen systematic 790 

approach and focusing on data from terrestrial ecosystems, our database was limited to 3 studies 791 

which represented <1% of the DOC concentration data. Several previous studies have detailed 792 

the export of DOC in Arctic inland waters, see Table 2 in Ma et al., (2019). These studies were 793 

excluded using our systematic approach (Table 1 and 2) as they do not directly measure DOC 794 

export from a terrestrial ecosystem, rather they determine the quantity of terrestrial derived DOC 795 

found in inland waters. This is a key distinction, as by not quantifying the export rates for 796 

terrestrial ecosystems the net ecosystem carbon balance and vulnerability to enhanced export 797 

may not be assessed. We acknowledge the limitation in our approach regarding the inclusion of 798 
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DOC export data. Thus, this database cannot be used to determine how permafrost thaw will 799 

influence DOC export from terrestrial ecosystems within the northern circumpolar permafrost 800 

region. However, we identify this lack of export data from terrestrial permafrost ecosystems as a 801 

key knowledge gap in our current understanding of the permafrost carbon pool. Currently, Arctic 802 

rivers are estimated to export 25 – 36 Tg DOC year-1 (Amon et al., 2012; Holmes et al., 2012), 803 

with this being dominated by modern carbon sources (Estop-Aragonés et al., 2020), most likely 804 

derived from the top 1 m of terrestrial ecosystems. Using current best estimates of the areal 805 

extent and soil organic carbon stores in the top 1 m of Histosols, Histels, Orthels and Turbels 806 

(Hugelius et al., 2014), and if we assume that the DOC pool represents ~1% of the SOC pool, we 807 

estimate that <1% of the current DOC pool found in the top 1 m of  Histosols, Histels, Orthels 808 

and Turbels is exported annually to Arctic rivers. Quantifying the proportion of these DOC pools 809 

annually lost, and particularly the proportions lost in headwater streams while being exported to 810 

Arctic rivers, is vital to assess the importance of the mobilization of the terrestrial permafrost 811 

DOC pool.  812 

Our calculated response ratios (Figure 7) for all ecosystems, indicating the difference in DOC 813 

concentrations between pristine and permafrost thaw affected sites, partly supports of our second 814 

hypothesis that disturbance would lead to increased export and biodegradability of DOC. The 815 

increase in DOC following thaw observed in permafrost bogs is likely due to increased inputs 816 

due to increased runoff and shifts in vegetation following permafrost thaw (Burd, Estop-817 

Aragonés, Tank, & Olefeldt, 2020), enhanced release of DOC (Loiko et al., 2017), a relatively 818 

stable soil organic carbon pool at depth due to several millennia of microbial processing (Manies 819 

et al., 2021), the prevalence of anoxic conditions, and the potential hydrological isolation of 820 

thermokarst bogs (Quinton, Hayashi, & Pietroniro, 2003). While not included in our analysis, 821 

DOC found near the surface of the permafrost lens in forest ecosystems has been shown to be 822 

more biodegradable than DOC found in the active layer (Wickland et al., 2018), and may 823 

represent a decrease in DOC following thermokarst not captured here. Our findings of limited 824 

mobilization of permafrost bog DOC upon thawing are supported by the findings that the 14C 825 

signature of DOC in Arctic rivers is dominated by modern sources (Estop-Aragonés et al., 2020). 826 

However, individual studies have determined that thawing may release a large pool of permafrost 827 

peatland DOC into aquatic networks (Lim et al., 2021). We do see a reduction in DOC 828 
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concentrations in thermokarst affected sites at the higher latitude Yedoma, upland tundra, and 829 

permafrost wetland ecosystems. This reduction in DOC concentrations in these ecosystems may 830 

be due to the greater biodegradability and lability of the DOC found there (Figure 6b), 831 

supporting our third hypothesis that the most biodegradable DOC would be found in higher 832 

latitude ecosystems. Permafrost DOC in higher latitude ecosystems, particularly Yedoma 833 

ecosystems, is characterised by syngenetic permafrost aggradation which have not undergone 834 

centuries to millennia of soil formation and microbial processes, have been shown contain a 835 

greater proportion of low oxygen, aliphatic compounds and labile substrates (Ewing et al., 836 

2015b; MacDonald et al., 2021). This leads to a greater biolability and rapid mineralization of 837 

DOC (Vonk et al., 2015), potentially causing the reduction in DOC concentrations observed 838 

following thaw. If this hypothesis is to be found true across all high latitude ecosystems with 839 

further data, it further highlights the vulnerability of the large DOC pool found in coastal tundra 840 

ecosystems. 841 

 In this study, we focus on the dissolved fraction of the OC pool, however the particulate 842 

fraction should also be considered when discussing the mobilization of terrestrial OC in 843 

permafrost landscapes. In boreal freshwater networks, particulate organic carbon (POC) 844 

represents a small but highly labile fraction of terrestrially derived OC exported to the fluvial 845 

network (Attermeyer et al., 2018). The degradation of permafrost derived POC is much slower 846 

than that of POC in the boreal freshwater network and POC derived from younger sources along 847 

the riverbank (Shakil, Tank, Kokelj, Vonk, & Zolkos, 2020). The DOC pool in Arctic 848 

freshwaters in dominated by modern terrestrial sources (Estop-Aragonés et al., 2020), whereas 849 

the POC pool has been shown to be dominated by older sources in both permafrost peatland 850 

dominated areas (Wild et al., 2019), following the formation of retrogressive thaw slumps 851 

(Keskitalo et al., 2021), and in thermokarst affected periglacial streams (Bröder et al., 2022). 852 

This older POC has been shown to accumulate following export due to low lability and 853 

degradation and mineral association, which suggests that upon thermokarst formation, previously 854 

frozen OC exported in the particulate phase is not readily consumed by microbes and that 855 

permafrost derived DOC is the more labile fraction of exported terrestrial OC.  856 

4.4 Future considerations for study design 857 
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Determining the fate of mobilized terrestrial DOC in both permafrost thaw affected, and 858 

pristine sites should be prioritized in future studies to constrain current estimates of the 859 

permafrost C climate feedback. There are large spatial gaps in the database, particularly in areas 860 

with large stock of permafrost C such as the Hudson Bay Lowlands and Mackenzie River Basin, 861 

both in Canada and two of the three largest deposits of permafrost peatland C in the circumpolar 862 

permafrost region (Olefeldt et al., 2021). Similarly, coastal tundra sites, which along with 863 

permafrost bog represent the ecosystems with the highest DOC concentrations, were sampled 864 

only along the northern shoreline of Alaska and the Yukon (USA and Canada, respectively; 865 

Table S2). From our analysis of this database, we determine that DOC mobilization is poorly 866 

understood for terrestrial permafrost ecosystems. To address this, the two main needs of future 867 

studies are 1) more direct estimates of DOC fluxes and export from terrestrial ecosystems into 868 

aquatic ecosystems, and 2) more DOC degradation (BDOC) and mineralization studies. Our 869 

results suggest that the high concentrations of DOC in permafrost bogs remains relatively stable 870 

upon thermokarst formation, although individual studies do indicate that thawing peat may 871 

provide a reactive source of DOC (Panneer Selvam et al., 2017). The database did not include 872 

any studies that reported on the mineralization of DOC from coastal tundra sites, thus we are 873 

unable to comment on the stability of the high DOC concentrations found in this ecosystem type. 874 

Further sampling and assessing the mineralization of DOC is required to characterize the 875 

potential pool of vulnerable DOC in areas with high DOC concentrations. Overall, our database 876 

and systematic approach only included 5 studies (Olefeldt & Roulet, 2012, 2014; Olefeldt et al., 877 

2012; Prokushkin et al., 2006; Prokushkin et al., 2005) that explicitly reported rates of DOC 878 

discharge, export, or fluxes from terrestrial ecosystems into the fluvial network. Given the 879 

importance of terrestrial DOC as a source for CO2 production within the aquatic network 880 

(Weyhenmeyer et al., 2012), and the findings that previously frozen DOC is being exported to 881 

the freshwater network (Estop-Aragones et al., 2020), improved estimates of the quantity of 882 

terrestrial DOC being exported is essential to determine the potential aquatic greenhouse gas 883 

fluxes derived from the mineralization of terrigenous organic matter. To improve current 884 

estimates of the permafrost C feedback further studies are needed to determine how much DOC 885 

is laterally exported from terrestrial ecosystems, and the mineralization potential of this DOC 886 

along the terrestrial-freshwater-aquatic continuum.  887 
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Lastly, we suggest that future studies should consider a standardization of methods and 888 

approached used to determine DOC concentrations for better comparison across studies. In 889 

constructing this database we identified three different filter sizes, eleven different extraction 890 

procedures, and four different measurement methods. The most common filter size used was 891 

0.45 µm and this has previously been described as the cut off to separate DOC from colloid 892 

materials (Thurman 1985; Bolan et al., 1999). In extracting DOC concentrations from soils the 893 

mostly commonly used approach (70% of all soil samples) was via soil leaching with no 894 

chemical treatment of the soils, although some added filtered water to promote leaching. From 895 

the seven approaches identified to extract water samples from terrestrial sites in determining 896 

DOC, 48% of samples were collected using a variety of suction devices and 46% done via grab 897 

samples. Of the four DOC measurements methods the most common approach was by 898 

combustion, with 90% of all DOC concentrations measured using this approach. As such, in 899 

order to continue measuring DOC concentrations in terrestrial permafrost ecosystems using the 900 

most consistent approach we suggest using 0.45 µm filters, extracting pore water via some type 901 

of sucking device or soils via leaching, and using a combustion based method to determine DOC 902 

concentrations 903 
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