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S.1 Case A

Taking into account of the order of magnitude of the dimensionless numbers, [F} | = O ([F1]) = O([F4]) = O(e?), [K] =
O(1),[H] = O (£?),[Wr] = O (?), the dimensionless microscopic description (13)-(18) becomes:

T
e2prCy Zti —div*(kfgrad*T}) =0 in Q; (A1)
e“prCr o div*(kigradT;)=0 in€Q, (A2)
Eoin div*(D;grad®p;) =0 in{, (A3)
Tf =T onT (A.4)
kigrad™T} -n; — kigrad™T) -n; = 52L:gw* ‘n; onT (A.5)
Digrad®pl -n; =c?piw*-n; onl. (A.6)

This set of equations is completed by the Hertz-Knudsen equation (10) and the Clausius Clapeyron’s law (9) expressed in

dimensionless form as:

wh=w* = wl (o} — ph, (1)) onT (A7)
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L;,m* 1 1
* *\ __ refx prefx sg
Pus (Ta) = Pus (T )exp |: p;kk,* <Tref* o T‘;)] (AS)

S.1.1 Heat transfer

Introducing asymptotic expansions for 7" and T} in the relations (A.1), (A.2), (A.4), (A.5) gives at the lowest order:

divy- (k; grad,). Ti*(o)) =0 inf (A9)
div,- (kigrad,.T; ) =0 inQ, (A.10)
7O =12 onT (A.11)
(krgrad:.T; " —kigrad!.T:®) . nj=0 onT (A.12)

where the unknowns Ti*(o)(x*,y*,t) and 7, ¥ (x*,y*,t) are y*-periodic. It can be shown that the obvious solution of the

above boundary value problem is given by:
T =150 = 7*O0) (x* ). (A.13)

At the first order, the temperature is independent of the microscopic dimensionless variable y*, i.e. we have only one tem-
perature field. Taking into account of these results, equations (A.1), (A.2), (A.4), and (A.5) of order ¢ give the following

second-order problem:

divy- (k} (grad,. T,V + grad,. T*@)) =0 in (A.14)
divy- (k;(grad,. T; ") + grad .. T*(©)) =0 inQ, (A.15)
7 =11 onT (A.16)
(k:;k(grady*Ti*(l) +grad,.T") - k;‘(grady*T;(l) +grad,.T*©)).n; =0 onT (A.17)
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where the unknowns Ti*(l) (x*,y*,t) and T, ™ (x*,y*,t) are y*-periodic and the macroscopic gradient grad,. 7*(?) is given.
The solution of the above boundary value problem appears as a linear function of the macroscopic gradient, modulo an arbitrary

function 7+ (x*, £):

Ty ) = 4 (y") -grad, T 4+ 77 A1®

T;0(x",y".1) = t5(y") - grad,. 7% + T30 (A.19)

where t; (y*) and t*(y*) are two periodic vectors which characterize the fluctuation of temperature in both phases at the pore
scale. Introducing (A.18) and (A.19) in the set (A.14)-(A.17), these two vectors are solution of the following boundary value

problem, expressed in a compact form as:

div,- (k] (grad,.t; +1)) =0 in (A.20)

divy-(k;(grad,.t; +I)) =0 in€Q, (A.21)

tr=t" onl (A22)

(ki (grad,.t; +1) — k;(grad,.t; +1)) - nj=0 onl (A.23)
1 _—_—

T Q/ (62 +t1)dQ =0 (A.24)

This latter equation is introduced to ensure the uniqueness of the solution. Finally, the third order problem is given by the Eq.
(A.1), (A.2), (A.4), and (A.5) of order £2:

aT*(O) * * *
p;C e divy- (k] (grad,. T; @) +grad,.T; (1))) —div,- (k] (grad,. T} ™4 grad,.T*9)) =0 inQ, (A.25)
oT*(0)
PaCa—gr — divy: (k:(grad,.T;® +grad,.T; ")) — div,- (k; (grad,. T; ) + grad,.7*?)) =0 inQ,  (A.26)
7 =1:® onT (A.27)
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(k (grad,.T;® + grad,. ;") — k2 (grad . T;® + grad,. T:V)) -n; = wi® onT (A.28)

() 5 the normal interface velocity due to the

where the unknowns T} *) (x*,y* ) and Tj ® (x*,y*, t) are y*-periodic and w;
sublimation-deposition process given, at the zero order, by the Hertz-Knudsen equation (A.7) and the Clausius Clapeyron’s

law (A.8).
S.1.2 Water vapor transfer

Introducing asymptotic expansions for pj; in the relations (A.3) and (A.6) gives at the lowest order:

div,- (Djgrad,.p;?) =0 inQ, (A.29)

v

Dygrad, . pt®.ny=0 onT. (A.30)

(0)(

where the unknown p, '~ (x*,y*,t) is y*-periodic. It can be shown (Auriault et al., 2009) that the solution of the above

boundary value problem is given by:
Py = pi O (x*, ). (A31)

At the first order, the water vapor density is independent of the microscopic dimensionless variable y*. Taking into account of

these results, the second-order problem is given by Eq. (A.3) and (A.6) of order €, which are:

div,- (D (grad,. p;") + grad,.p;?)) =0 inQ, (A.32)

D; (grady*p;(l) +grad,.p5®) - n; =0 onT. (A.33)

(0)

m(x*,y*,t) is y*-periodic and the macroscopic gradient grad,. p, 0

where the unknown p;, is given. The solution of the
above boundary value problem appears as a linear function of the macroscopic gradient, modulo an arbitrary function ,47;(1) (x*,t)

(Auriault et al., 2009):
Py (x",y" 1) = gi(y") - grad,. o} 0 + 5p D (x*, 1) (A.34)

where g (y*) is a periodic vector which characterizes the fluctuation of water vapor density in the air phase at the pore scale.
Introducing (A.34) in the set (A.32)-(A.33), this vector is solution of the following boundary value problem, expressed in a

compact form:

divy-(D;(grad,.g, +1)) =0 inQ, (A.35)
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Dy (grad,.g, +1I)-n;=0 onl (A.36)

g d =0 (A37)
] /

This latter equation is introduced to ensure the uniqueness of the solution. Finally, the third order problem is given by Eq. (A.3)

and (A.6) of order 2:

90
gt* —divy-(D;, (grady*pu(z) +grad,. ptV)) — div,- (D (grad, iV pgrad,. pi9) =0 inQ, (A.38)
Dy (grad, 253 pgrad,. pfM) ny =w® onT (A.39)

where the unknown pv( )( *,y*,t) is y*-periodic and wZ(O) is the normal interface velocity due to the sublimation/deposition
process given, at the zero order, by the Hertz-Knudsen equation (A.7) and the Clausius Clapeyron’s law (A.8). Taking into

account the above results, we have:

Lt m* 1 1 Lxm* W
* * refs (refx sg9 _ s9 a
pvs<Ta) Pus (T )GXp |: p;‘k* <Tref* T*(O)>:| <1+5 p;kk* (T*(O))2 + ... (A4’0)
This relation shows that the asymptotic development of the Clausius-Clapeyron’s law is written:

pig(T2) = prlO (x* 1) +epilD (x*, 3% 1) + ... (A41)

where the first term ng()), which depends on 7*(0) (x*,t) only, is defined as:

* * refs (rprefsx L: m* 1 1
pO(T* ) = pre (17 )eXp{ p;’k* (Tref* - T*(O))] (A.42)

(0)

The relation (A.42) shows that the normal velocity w;, ~ arising in the boundary condition (A.39) does not depend on y*.

From (A.7), w:l(o) is also written:

n

o * *
w© = —wk[ ©) _ pr©)(p <°>)} (A43)

%

S.1.3 Macroscopic description

Integrating (A.25) over 2; and (A.26) over €1,, and then using the divergence theorem, the periodicity condition, and the

boundary conditions (A.28) leads to the first order dimensionless description:

effx aT*

(pC) g e

— div,~ (k*T*grad,. T7*) = SSAy L}, w:® (A.44)

sgn



120

125

130

135

where SSAy = |I'|/|Q] is the specific surface area and where (pC)°* and k°* are the dimensionless effective thermal ca-

pacity and the effective dimensionless thermal conductivity, respectively, defined as:

(pC)*™ = (1= )p;Cf + dpiCi (A.45)

keﬂ* _

=Tl /k;‘(grady*tZ(y*) +I)dQ2 —l—/kf(grady*tf(y*) +I)dQ2 (A.46)

2a Q;
where ¢ is the porosity. Consequently, integrating (A.38) over €,, and then using the divergence theorem, the periodicity

condition, and the boundary conditions (A.39) leads to the first order dimensionless description:

api(o)
ot

) — div,« (D grad,,. p*(?)) = —SSAy p;w®) (A.47)

where Deff* is the dimensionless effective diffusion tensor defined as:

1
D — o [ Dierad, £1(v')+ 10 (A48)
Qa

S.2 Case B1 and B2
S.2.1 CaseBl1

Taking into account of the order of magnitude of the dimensionless numbers, [F} | = O ([F1]) = O([F4]) = O(e?), [K] =
O0(1),[H] =0(¢e),[Wr] = O(e), the dimensionless microscopic description (13)-(18) becomes:

aTr
e2prCy 81&1 —div*(kfgrad*T}) =0 in Q; (B1.1)
2 K vk 8T; .k * * .
e“prCx S div*(kigradT;)=0 in€Q, (B1.2)
e o T div¥(D;grad®p;) =0 in{, (B1.3)
T =T* onTl (B1.4)
kigrad™T; -n; — kjgrad™T, -n; =eLiw"-n; onT (B1.5)
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Djgrad®p} -nj=ep;w*-n; onl. (B1.6)

This set of equations is completed by the Hertz-Knudsen equation (10) and the Clausius Clapeyron’s law (9) expressed in

dimensionless form as:

*

* * a [ % * *
wy, =w"-n; = Ewk oy —pis(TX)] onT (BL.7)
. L m* 1 1
* T* _ ref Trct* sg _ BIS
pvs( a ) Pus ( )eXp |: p;kk* Tref* T; ( )

S.2.1.1 Heat transfer

Introducing asymptotic expansions for T} and T} in the relations (B1.1), (B1.2), (B1.4), and (B1.5) gives at the lowest order:

div,- (kfgrad,. ;') =0 inQ; (B1.9)
div,- (kgrad,. T;) =0 inQ, (B1.10)
770 =750 onr (B1.11)
(krgrad’.T; " —kigrad!.T:) . nj=0 onT (B1.12)

(0)(

where the unknowns Ti*(o) (x*,y*,t) and o x*,y*,t) are y*-periodic. It can be shown Auriault et al. (2009) that the

obvious solution of the above boundary value problem is given by:
T =20 = 7*O) (x* ). (B1.13)

At the first order, the temperature is independent of the microscopic dimensionless variable y*, i.e. we have only one tempera-

ture field. Taking into account of these results, Eq. (B1.1), (B1.2), (B1.4), and (B1.5) of order € give the following second-order

problem:
divy- (k} (grad,. T,V + grad,. T*@)) =0 in Q (B1.14)
divy (k;(grad,. T; ") + grad,. T*(©)) =0 inQ, (B1.15)
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7Y =10 onT (B1.16)

(k; (grad,. 77" + grad,. T*©) — k% (grad . T; V) + grad,. ")) -n; = LZ,wy® onT (B1.17)

sg’n

® (x*,y*,t) and T (x*,y*,t) are y*-periodic and the macroscopic gradient grad,.T*(?) is given.

(

where the unknowns Ti*
Moreover, it can be shown that at the first order w;, 0 — 0 (see B1.37). As in the case A, the solution of the above boundary
value problem appears as a linear function of the macroscopic gradient, modulo an arbitrary function f*(l)(x*,t) Auriault

et al. (2009):

Ty 1) = 4 (y") -grad, 7" 4 77 (BLIS

T;0(x",y".1) = t5(y") - grad,. 7% + T30 (BL.19)

where t; (y*) and t*(y*) are two periodic vectors which characterize the fluctuation of temperature in both phases at the pore
scale. Introducing (B1.18) and (B1.19) in the set (B1.14)-(B1.17), these two vectors are solution of the following boundary

value problem in a compact form:

divy- (k] (grad,.t; +1)) =0 inQ; (B1.20)
divy«(k;(grad,.t; +I)) =0 in€Q, (B1.21)
t;=t, onl (B1.22)
(ki (grad,.t; +1) — k;(grad,.t; +1)) - nj=0 onT (B1.23)
1 * oy gx

QIQ/(tfﬁtti)dQ:o (B1.24)

This latter equation is introduced to ensure the uniqueness of the solution. Finally, the third order problem is given by Eq.
(B1.1), (B1.2), (B1.4), and (B1.5) of order £2:

T*(O) * * *
pr;‘aaT —divy- (k] (grad,. T; @) +grad,.T; (1))) —divy« (k] (grad,. T; ™4 grad,. T*?))=0 inQ; (B1.25)
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oT*(0)

PaCagp— — divy: (k:(grad,.T;® +grad,.T; ")) — div,- (k; (grad,. ;") + grad,.7*?)) =0 inQ, (B1.26)
77 =75 onl (B1.27)
(k‘;‘(grady*ﬂ*@) + gradw*Ti*(l)) - k;(grady*T;@) +grad,. 7)) . n; = ngw:fb(l) onl (B1.28)

where the unknowns Ti*(2)(x*,y*,t) and T;@)(x*,y*,t) are y*-periodic. Integrating (B1.25) over §2; and (B1.26) over (2,
and then using the divergence theorem, the periodicity condition, and the boundary conditions (B1.28) leads to the first order
dimensionless description:

or*

eff x
(PO)™ —

— div,- (k*F*grad . 7)) = / LiwiVdS=—L,¢ (B1.29)
r

where (pC)** and k#* are the dimensionless effective thermal capacity and the effective dimensionless thermal conductivity

respectively, defined, as in the Case A, by:

(pC) ™ = (1 - ¢)p;C} + ¢piCii (B1.30)

1
effx __ * * * * * (L
ko = 0] (D/k:a(grady*ta(y )+I)dQ+/kl (grad,.t; (y*) +1)dQ (B1.31)

i

where ¢ is the porosity.
S.2.1.2 Water vapor transfer

Introducing asymptotic expansions for pj; in the relations (B1.3) and (B1.6) gives at the lowest order:

div,- (Djgrad,.p;?) =0 inQ, (B1.32)
Djgrad,.p;” -n;=0 onT. (B1.33)
%(0)

where the unknown p," "’ (x*,y*,t) is y*-periodic. It can be shownAuriault et al. (2009) that the solution of the above boundary

value problem is given by:

Py = py O (x*, ). (B1.34)
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At the first order, the water vapor density is independent of the microscopic dimensionless variable y*. Taking into account of

these results, the second-order problem is given by Eq. (B1.3) and (B1.6) of order ¢:

divy- (D;i(grady*pi(l) +grad,.pf ) =0 inQ, (B1.35)

D (grad,. pt) +grad,. pt©) - n; = aw [pj;@ — O (T*(O))} onT. (B1.36)

where the unknown p:(l) (x*,y*,t) is y*-periodic. Consequently, integrating (B1.35) over €2,, and then using the divergence

theorem, the periodicity condition, the boundary conditions (B1.36) and the result (B1.34) leads to the first order dimensionless

description:
py @ = ps (T ) (B1.37)

Consequently, as in the Case A, the solution of the above boundary value problem (B1.35) - (B1.36) appears as a linear function

of the macroscopic gradient grad,,. psz’) (T*(©)) modulo an arbitrary function /7?,(1) (x*,1) :

PV (x*y" ) = g (v") - grad,. oy (T7) + 5D (x7 ) (B1.38)

where g’ (y*) is a periodic vector which characterizes the fluctuation of water vapor density in the air phase at the pore

scale induced by the macroscopic gradient grad . pﬁgo) (7). Introducing (B1.38) in the set (B1.35)-(B1.36), this vector is

solution of the following boundary value problem in a compact form:

divy-(D;(grad,.g, +1)) =0 inQ, (B1.39)
D;(grad,.g, +1) nij=0 onT (B1.40)
L/g*dQ—O (B1.41)
/& '

This latter equation is introduced to ensure the uniqueness of the solution. Finally, the third order problem is given by Eq.

(B1.3) and (B1.6) of order €

ops” . . .
gt* —div,- (D (grad,. p}® + grad,. p;"))) — div,- (D} (grad,. p;") + grad,. o, (T*("))) =0 inQ; (B1.42)
D; (grady*pf}@) +grad,.p:V).n; = prwi®  onT (B1.43)

10
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(2)( (€]

where the unknowns py, ~ (x*,y*,t) is y*-periodic and wy, ~ is the normal interface velocity due to the sublimation/deposition

process at the first order. Consequently, integrating (B1.42) over {2, and then using the divergence theorem, the periodicity

condition, and the boundary conditions (B1.43) leads to the first order dimensionless description:

aput”
ot

) — div,« (D grad . p:(O(T*())) = / prwiMds = pro (B1.44)

r

where D is the classical dimensionless effective diffusion tensor defined as (see Case A):
eff 1 * * *
Deffx = Tl /Dv(grady* g (y")+1)dQ (B1.45)
Qq
S.2.2 Case B2

Taking into account of the order of magnitude of the dimensionless numbers, [F7| = O ([FL]) = O ([F£]) = O(e?), [K] =
O(1),[H]=0(1),[Wgr] = O (1), the dimensionless microscopic description (13)-(18) becomes:

T

e2prCy %ti —div*(kfgrad*T}) =0 in Q; (B2.1)
2 % *aT; k7% % .

e“paCo 5 —div*(kigradT))=0 in€Q, (B2.2)
D00 .

S —div*(Djgrad®p;) =0 in{, (B2.3)
Tr=T; onl (B2.4)
kigrad™1; -n; — k,grad T, -n; = L, —-grad p,-n; onl (B2.5)

P;
Digrad®p) -n;=piw*-n; onT. (B2.6)

This set of equations is completed by the Hertz-Knudsen equation (A.7) and the Clausius Clapeyron’s law (9) expressed in

dimensionless form as:

*

wy = w o = “wi o} = p},(T7)] onT (B27)
i
Lt m* 1 1
*(TFY = ref* Trcf* sg o B2.8
pvs( a) Pus ( )exp{ p;kk* (Tref* T;>:| ( )

11
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S.2.2.1 Heat and water vapor transfer at the first order

Introducing asymptotic expansions for 7} and 7 in the relations (B2.1), (B2.2), (B2.4), and (B2.5) gives at the lowest order:

divy- (kigrad,. T;”) =0 inQ (B2.9)
divy- (kgrad,. T;) =0 inQ, (B2.10)
77O =10 onT (B2.11)
L*
kf‘grad**Tfk(o) —kigrad’.T*©).n; = =9 D*grad,.px® -n; onT (B2.12)
7 Yy 7 a Yy a * v y* Po

3

where the unknowns Ti*(o) (x*,y*,t) and T, © (x*,y*,t) are y*-periodic. Introducing asymptotic expansions for p}, in the

relations (B2.3) and (B2.6) gives at the lowest order:

divy- (Djgrad,.p5?) =0 inQ, (B2.13)

Digrad,.p}? -n; = a*wi; | p3© — p3O(T*@)|  onT. (B2.14)

(0)(

where the unknown p;," (x*,y*,t) is y*-periodic. Consequently, integrating (B2.13) over €, and then using the divergence

theorem, the periodicity condition, the boundary conditions (B2.14) leads to:
pr@ = pr© onT. (B2.15)

Taking into account this result, the solution of the above boundary value problem is given by:

7O _ 70) — 7+(0) (x* ), (B2.16)
and
ps @ = pr O (x 1) = pp (7). (B2.17)

At the first order, the temperature and the the water vapor density are independent of the microscopic dimensionless variable

y*, i.e. we have only one temperature field.

12
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S.2.2.2 Heat and water vapor transfer at the second order

Taking into account of these results, Eq. (B2.1), (B2.2), (B2.4), and (B2.5) of order € give the following second-order problem:

divy- (k} (grad,. T,V + grad,. T*@)) =0 in (B2.18)
div,- (k}(grad,. T; ") + grad,,. 7)) =0 inQ, (B2.19)
7 =11 onT (B2.20)

L*
(ki (grad,. TZ-*(l) +grad,,. () —k,(grad, . TV 4 grad,.T*)).n; = ‘ig Dy (grad, . prW tgrad,.pt@)-n; onT

K2

(B2.21)

where the unknowns Ti*(l) (x*,y*,t) and Ty, ) (x*,y*,t) are y*-periodic and the macroscopic gradient gradz*T*(O) is given.

The second-order problem for the water vapor is given by Eq. (B2.3) and (B2.6) of order ¢:

divy-(D; (grad,). iV +grad,.p ) =0 inQ, (B2.22)

D; (grady*pz(l) +grad,.p:?) - n; = a*w; {pi(l) - ngl)] onT. (B2.23)

where the unknowns pf,(l) (x*,y*,t) is y*-periodic. Consequently, integrating (B2.22) over €),, and then using the divergence

theorem, the periodicity condition, the boundary conditions (B2.23) leads to:

p:(l)

=p:M onT. (B2.24)
This result also implies that

D;(grad,. pt® +grad,.p:®) ;=0 onT. (B2.25)

The above boundary value problem can not be solved by considering both boundary conditions (B2.24) and (B2.25) on the
ice-air interface simultaneously. However, it seems reasonable to assume that in the range gl/2 < [Wg] <1 the Neumann
boundary condition (B2.25) can be privileged (Case B2), whereas in the range 1 < [Wg] < e~ '/? the Dirichlet boundary

condition (B2.24) can be considered (Case C1). These two cases will give us the two extreme behaviours when [Wgr] = O (1).

13
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By considering first the Neumann boundary condition (B2.25), the solution of the above boundary value problem for the

temperature appears as a linear function of the macroscopic gradient, modulo an arbitrary function T (x*,1):

1706y 1) = £ (y") -grad,. T+ I, (8226

i (x*,y" ) = 62(y") - grad,. 7O + T30 (B2.27)

where t} (y*) and t*(y*) are two periodic vectors which characterize the fluctuation of temperature in both phases at the pore
scale. Introducing (B2.26) and (B2.27) in the set (B2.18)-(B2.21), these two vectors are solution of the following boundary

value problem in a compact form:

div,-(k (grad,.t; +1)) =0 in (B2.28)

divy- (K (grad,.t; +1)) =0 inQ, (B2.29)

tr=t* onl (B2.30)

(ki (grad,.t; +1) — k;(grad,.t; +1)) - n;=0 onT (B2.31)
1 * *

] Q/ (62 +t5)d2 =0 (B2.32)

This latter equation is introduced to ensure the uniqueness of the solution. Similarly, solution of the boundary value problem

(B2.22) and (B2.25) appears as a linear function of the macroscopic gradient grad.,. p:go) (T*(©)) modulo an arbitrary function

ot (x*, 1) :

pi W (x*,y*,t) = gi(y*) - grad,. pi O (T*©) + 52V (x*, ) (B2.33)

S

where g (y*) is a periodic vector which characterizes the fluctuation of water vapor density in the air phase at the pore
scale induced by the macroscopic gradient grad,, . p:g‘” (T*(O)). Introducing (B2.33) in the set (B2.22)-(B2.25), this vector is

solution of the following boundary value problem in a compact form:
divy-(D;(grad,.g, +1)) =0 inQ, (B2.34)

14
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Dy(grad,.g, +1I)'nj=0 onl (B2.35)

1
o / ghdQ =0 (B2.36)
Qg

This latter equation is introduced to ensure the uniqueness of the solution.
S.2.2.3 Macroscopic description

Finally, the third order problem for the heat transfer is given by Eq. (B2.1), (B2.2), (B2.4), and (B2.5) of order £2:

or() N ] "
POy = — divy. (k; (grad,,. T, @)t grad,. T;V)) — div,- (k} (grad,. TV + grad,. T*®)) =0 inQ, (B237)
oT*0)
paCh e div,- (k;(grady*T;@) +grad,,. M) — div,- (k; (grad,. TV grad, . T*9)) =0 inQ, (B2.38)
7 =1+@  onl (B2.39)
(k;‘(grady*ﬂ*@) +grad,. Ty ) - k;(grad,.T;® +grad,.T; ™)) n; (B2.40)

D*
=L pv (grad,- ps? +grad,.p;")) - m; onT

where the unknowns Ti*@)(x*,y*,t) and T;(Q)(X*,y*,t) are y*-periodic. Integrating (B2.37) over €2; and (B2.38) over €,
and then using the divergence theorem, the periodicity condition, and the boundary conditions (B2.40) and the results leads to
the first order dimensionless description:

effx aT*(O)

(rC) e

— div,~ (kT grad,. 7*() = — / Liwi?dS=1L%,¢ (B2.41)
r
where (pC)** and k°f* are the dimensionless effective thermal capacity and the effective dimensionless thermal conductivity

respectively, defined as:

(pC)™ = (1= ) p;Cf + dpiCi (B2.42)

keff* _

- T / K (grad . t2 (y*) + T)dQ + / K (grad .t (y") + T)dQ (B2.43)

Do Qi
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where ¢ is the porosity.

Finally, the third order problem for the water vapor is given by Eq. (B2.3) and (B2.6) of order £

811:‘ - ley* (Dv(grady*pv@) +gradz*pv(1))) - leI* (Dv(grady*pv(l) +gradz*png) (T (0)))) =0 in QZ (B244)
Dﬁ(grady*p;ﬁ(z) +grad,.psM).ny=piw:®  onT (B2.45)

@ (x*,y*,t) is y*-periodic and wZ(Q) is the normal interface velocity due to the sublimation/deposition

where the unknown p,

process at the first order. Consequently, integrating (B2.44) over 2, and then using the divergence theorem, the periodicity

condition, and the boundary conditions (B2.45) leads to the first order dimensionless description:

dpu)
ot

® — div, (D*®*grad . p; (T*(V))) = /p;‘wz(Q)dS =pid (B2.46)

T

where D®f* is the classical dimensionless effective diffusion tensor defined as:

1
D / D3 (grad,. gi(y") +1)d Q (B2.47)
Qq

S.3 Cases C1,C2et C3
S.3.1 Case C1
S.3.1.1 Heat and water vapor transfer at the second order

The Dirichlet boundary condition (B2.24) is now considered. According to (A.40), this boundary condition can be also written

as:
PV = psV = () Ty onT (CL.1)
Moreover, we have

grad,.p:) = ~*(T*)grad,.7*® (C1.2)

thus Eq. (B2.22) and (B2.24) are written:

div,- (D (grad,. p;") ++*(T*©)grad,.T*?) =0 inQ, (C1.3)

P = (O on T (CL4)
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The solution of the boundary value problems (B2.18)-(B2.21) and (C1.3)-(C1.4) appears as a linear function of the macroscopic

gradient grad,. 7*(®), modulo an arbitrary function.

0y ) = i (") -grad,. )+ T >
T,V (x"y" 1) =1y(y") - grad,. 7" + T, (€16
Py (x,y*,8) =y (17O (r}(y") - grad,. 7O + T;) onT (CL.7)

where rf(y*) and r}(y*) are two periodic vectors which characterize the fluctuation of temperature in both phases at the
pore scale. Introducing (C1.5) and (C1.6) in the set (B2.18)-(B2.21) and (C1.3)-(C1.4), these two vectors are solution of the

following boundary value problem in a compact form:

divy-(k; (grad,.r; +I)) =0 in; (CL.8)

ley* ((ka + LsgDvi*)(grad'q* r, + I)) =0 in Qa (C19)
Pi )
r;=r, onl (C1.10)

*(0))

(T
(ki (grad,.r; +1) — (k; + L:QDZL)(grady*r,*l +I)) - nj=0 onl (CI1.11)
, P .

*
3

1
Ql/(riiﬂi*)dﬂo (C1.12)
Q

This latter equation is introduced to ensure the uniqueness of the solution. This latter boundary value problem is similar as the
(A.20)-(A.24) where k is now equal to &k} + ngD;j’y*(T*(O)) /pi. At the local scale, the thermal conductivity appears to be
enhanced by the phase change.

S.3.1.2 Macroscopic description

Finally, the third order problem is given by Eq. (B2.1), (B2.2), (B2.4), and (B2.5) of order £:

T*(O) * * *
pr;‘aaT —divy- (k] (grad,. T; @) +grad,.T; (1))) —divy« (k] (grad,. T; ™4 grad,. T*?))=0 inQ; (CL13)
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415

420

425

430

435

3T*(O)
PaCa—gp — divy: (k:(grad,.T;® +grad,.T; ")) — div,- (k; (grad,. T; ") + grad,.7*?)) =0 inQ, (CL14)
TL-*(2) _ T;(Q) onl’ (Clls)
(k; (grad,. T;® + grad,. T/ V) — k7 (grad,. T;® + grad,. T; (")) - n; = (C1.16)
=L, P (grady*pv(z) +gradm*pv(1)) ‘n; onl.

where the unknowns Ti*(Q) (x*,y*,t) and T,y 2 (x*,y*,t) are y*-periodic. For the water vapor, the third order problem is given
by Eq. (B2.3) and (B2.6) of order £2:

TR div,-(D;, (grady*pU@) +grad,. p;V)) — div,- (D (grad,. W +grad,. pfO(T* ) =0 inQ, (C1.17)
Dj(grad,.p;? +grad,.p;") -n; = pfwi®  onT (CL.18)

Integrating (C1.13) over €2; and (C1.14) over €,, and then using the divergence theorem, the periodicity condition, and the
boundary conditions (C1.16) leads to the first order dimensionless description:

oT*(0)

effx
(PO) —

D* .
— div,- (k" grad,.T*() = /L* — (grad, pr® ygrad,.prM) . ndS = —L3 0. (C1.19)
r P
where (pC)** and k'¥* are the dimensionless effective thermal capacity and the apparent dimensionless thermal conductivity,

respectively, defined as:

(pC)™* = (1= ¢)p; CF + dpiCy (C1.20)

1

ki = 9l /k; (grad,.r,(y") +1)dQ + /k;" (grad,.r;(y*) +1)dQ (C1.21)
a Qi

where ¢ is the porosity. Integrating (C1.17) over 2, and then using the divergence theorem and the periodicity condition, leads

to the first order dimensionless description:

dpu

¢8t

— div,~ (D'%*grad,,. p: () (7)) /D (grad, 2@ 4grad,. prM)  nydS = pio. (C1.22)

where D'* is the macroscopic effective diffusion tensor defined as:

1
D = a / Dj(grad,. rj(y*)+1)d Q (C1.23)

18



S.3.2 Case C2

Taking into account of the order of magnitude of the dimensionless numbers, [F} | = O ([F1]) = O([F4]) = O(e?), [K] =
0(1),[Wgr]=0(e7!),[H] = O(1), the dimensionless microscopic description (13)-(18) becomes:

*

e2piCt 86151 —div*(kfgrad*T) =0 in (C2.1)
440
2 sk vk aT; s k7% * .
e“p.Co T div*(k;gradT;)=0 in€Q, (C2.2)
2 0P} sk (T * ok i
S div¥(D;grad®p;) =0 in{, (C2.3)
445 T =T onl (C2.4)
kigrad"T; -n; — k;grad™T, -n; = Ly, —’gradp, -n; onl (C2.5)
P;
Digrad*p n;=¢ 'piw*-n; onT. (C2.6)

450 This set of equations is completed by the Hertz-Knudsen equation (A.7) and the Clausius Clapeyron’s law (9) expressed in

dimensionless form as:

*

wh =W = i [~ pi,(T7)] onT (C2.7)
Pi
L;,m* 1 1
* T* _ ref Tref* sg o C28
pvs( a) Pus ( )eXp|: p;kk* (Tref* T;):| ( )

455 S.3.2.1 Heat transfer and water vapor transfer at the first and the second order

Introducing asymptotic expansions for 7;" and T} in the relations (C2.1), (C2.2), (C2.4), and (C2.5) give at the lowest order:

divy- (kigrad,. T;”Y) =0 inQ (C2.9)

divy- (kgrad,. T;) =0 inQ, (C2.10)
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465

470

475

480

70 =1 onT (C2.11)

*

* * ek * D *
(kgrad,.T; ©_ k,grad,. 7). n; = Ly, p” grady*pv(o) onT (C2.12)

*
(2

where the unknowns Ti*(o) (x*,y*,t) and T}, © (x*,y*,t) are y*-periodic. Introducing asymptotic expansions for p} in the

relations (C2.3, C2.6) give at the lowest order:

div,- (Djgrad,.p;?) =0 inQ, (C2.13)

pr0 = pr Oy on T, (C2.14)
where the unknown pZ(O) (x*,y*,t) is y*-periodic. The solution of the above boundary value problems is given by:

P = PO " ) = (1), (€2.15)

7O ) — e (x* ), (C2.16)

At the first order, the temperature and the water vapor density are independent of the microscopic dimensionless variable y*.
We have only one temperature field. Taking into account of these results, Eq. (C2.1), (C2.2), (C2.4), and (C2.5) of order ¢ give

the following second-order problem:

divy- (k} (grad,. T,V + grad,. T*@)) =0 in (C2.17)
div,- (k;(grad,. T; ") + grad .. T*©)) =0 inQ, (C2.18)
7 =11 onT (C2.19)
(k;‘(grady*ﬂ*(l) +grad,. T*(?) — k;(grady*T;(l) +grad,. T*(?)) . n; (C2.20)

* D: *(1 *(0
= LSQ P (grady*pv( ) + gradx*pv( )) ‘ny  on T.

*
i
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where the unknowns Ti*(l) (x*,y*,t) and T, ™ (x*,y*,t) are y*-periodic and the macroscopic gradient grad,. 7*(?) is given.

Moreover we have the second-order problem for Eq. (C2.3) and (C2.6) is written:

divy- (DZ(grady*pfj(l) +grad,.p! ) =0 inQ, (C2.21)

prW =pr) on T, (C2.22)

where the unknowns pz(l)(

x*,y*,t) is y*-periodic. According to (A.40), this latter boundary condition can be also written
pyD = ppV =4 ()T onT (C2.23)
Moreover, we have

grad,.p:® = ~*(T*)grad,. 7+ (C2.24)

thus Eq. (C2.21) and (C2.23) are written:

divy- (D (grad,. ;") ++*(T*©)grad,.T*?) =0 inQ, (C2.25)

prW = (T Oy on T (C2.26)

As in the Case C1, the solution of the above boundary value problems (C2.17)-(C2.20) and (C2.25)-(C2.26) appears as a linear

function of the macroscopic gradient grad,. 79, modulo an arbitrary function.

00y ) =i (y") grad, 7O + T (2D
L0y ) = ri(y") - grad,. 7O £ T (€228)
PV Gy 1) = (7 O) (ri(y") - grad, 7O 4 ;) onT (€229

where r} (y*) and r (y*) are two periodic vectors which characterize the fluctuation of temperature in both phases at the pore
scale. Introducing (C2.27) and (C2.28) in the set (C2.17)-(C2.20), these two vectors are solution of the following boundary

value problem in a compact form:
div,-(k; (grad,.r; +1)) =0 in; (C2.30)
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530

divy-(k,(grad,.r, +1)) =0 in€Q, (C2.31)

ri=r onl (C2.32)

*(0))

(T
(ki (grad,.r; +1) — (k; + L:ngjPY(p)(grady*r: +I)) n;=0 onl (C2.33)

*
2

1
= [ xan—o (€2.34)
Q

This latter equation is introduced to ensure the uniqueness of the solution. This latter boundary value problem is similar as the
(A.20)-(A.24) where k7, is now equal to kj + L3, Dyv* (T*(©))/p¥. At the local scale, the thermal conductivity appears to be
enhanced by the phase change.

S.3.2.2 Macroscopic description

Finally, the third order problem is given by the equations (C2.1, C2.2, C2.4, C2.5) of order £

aT*(O) * * *
POy = — divy. (k; (grad,.T; @)t grad,. 7)) — div,- (k} (grad,. TV + grad,. T*®)) =0 inQ; (C2.35)
oT*(0)
PaCa—gp— — divy (k;(grad,.T;® +grad,.T; ")) — div,- (k; (grad,. T; ) + grad,.7*®)) =0 inQ, (C2.36)
T =75 onl (C2.37)
(kf(grad,. T, +grad,. Ty V) — ki (grad,. T}® + grad,. T;V)) - n; = (C2.38)

D*
=L, p: (grad,. pi® tgrad,.pfM)-n; onT.

where the unknowns Ti*@) (x*,y*,t) and T,y 2 (x*,y*,t) are y*-periodic. For the water vapor, the third order problem is given

by the the equations (C2.3, C2.6) of order £2:

%(0)
82% —divy- (D} (grad,. p}® +grad,. p;")) — div,- (D} (grad,. p;V) + grad,.p;" (T*?))) =0 inQ, (C2.39)

22



535

540

545

550

555

D;, (grady*p;ﬁ@) +grad,.p:M).n;=piw:®  onT (C2.40)
Integrating (C2.35) over €2; and (C2.36) and (C2.39) over (2,, and then using the divergence theorem, the periodicity condition,
and the boundary conditions (B2.40) leads to the first order dimensionless description:

eff 8T*(O)
ot*

D .
(pC) — div,~ (k***grad,. T*() = / L:,—2(grad,.p;® +grad,.p;")) nidS = — L} é. (C2.41)
Pi

r

where (pC)°f* and k** are the dimensionless effective thermal capacity and the apparent dimensionless conductivity respec-

tively, defined as:

(pC)°™* = (1= )p; CF + dpCi (C2.42)

1

K / K (grad,.r’(y") + T)dQ + / K (grad,.r7 (y*) + T)dQ (C2.43)
a Qi

where ¢ is the porosity. Integrating (C2.39) over 2, and then using the divergence theorem and the periodicity condition, leads

to the first order dimensionless description:

aput”
ot

— div,- (D***grad,. p (T*()) = — /D: (grady*p;(g) +grad,.ptV) - n;dS = p} . (C2.44)
r

¢

where D'* is the apparent effective diffusion tensor defined as:

1
DU - / D;(grad,. ri(y") +I)d 2 (C2.45)
Qo

S.3.3 Case C3

Taking into account of the order of magnitude of the dimensionless numbers, [F7| = O ([FL]) = O ([F£]) = O(e?), [K] =
O(1),[Wr] =0 (e71),[H] = O(1), the dimensionless microscopic description (13)-(18) becomes:

oTy
e2piC ati —div*(kfgrad*T;) =0 in; (C3.1)
oT*
e2prC e —div*(kigradT) =0 inQ, (C3.2)
Qap; sk * k% :
€ o div*(D;grad®p;) =0 in{, (C3.3)
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Ty =T; onl (C3.4)

*

D
kigrad™T; -n; — kjgrad’T, -n; = L, —Zgrad"p; -n; onT (C3.5)
p

*
7

Digrad*p! -n;=c 2piw*-n; onT. (C3.6)

This set of equations is completed by the Hertz-Knudsen equation (A.7) and the Clausius Clapeyron’s law (9) expressed in
dimensionless form as:

*

wp=w"-n; = a—*wf; oy —pis(TX)] onT (C3.7)
Lt m* 1 1

(T = ref* Tref* sg _ C3.8

pvs( a) Pus ( )eXp|: p;kk* (Tref* T;>:| ( )

S.3.3.1 Heat transfer and water vapor transfer at the first and second order

Introducing asymptotic expansions for 7;" and T} in the relations (C3.1, C3.2, C3.4, C3.5) give at the lowest order:

divy- (kigrad,. T;”) =0 inQ (C3.9)
div,- (kigrad,.T;) =0 inQ, (C3.10)
77O =120 onT (C3.11)
* * k(0) * * o (0) _ T D: %(0)
(kigrad,.T; " —k;grad,.T,"") - n; = L{,—grad,.p, onl (C3.12)
Pi

where the unknowns T:(o) (x*,y*,t) and T, ) (x*,y*,t) are y*-periodic. Introducing asymptotic expansions for p7 in the

relations (C3.3, C3.6) give at the lowest order

div,- (Djgrad,.p;?) =0 inQ, (C3.13)
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prO = prO (@) on. (C3.14)
where the unknowns p:(o) (x*,y*,t) is y*-periodic. The solution of the above boundary value problems is given by:

pi® = O (", 0) = il (T7O). (€3.15)

7O 7 0) — e(0) (% ), (C3.16)

At the first order, the temperature and the water vapor density are independent of the microscopic dimensionless variable y*.
We have only one temperature field. Taking into account of these results, equations (C3.1, C3.2, C3.4, C3.5) of order ¢ give

the following second-order problem:

divy- (k} (grad,. T,V + grad,. T*@)) =0 in (C3.17)
div,- (k% (grad,. T; ") + grad,. 7)) =0 inQ, (C3.18)
7 =11 onT (C3.19)
(k (grad,. T,V + grad,. T*)) — & (grad,. T; ) + grad,. T*©)) - n; (C3.20)

=L3, 5 (grady*pv(l) +grad,.pt®)-n; onT.

*
K2

where the unknowns Ti*(l) (x*,y*,t) and Ty ) (x*,y*,t) are y*-periodic and the macroscopic gradient gradw*T*(()) is given.

Moreover we have the second-order problem for the equations (C3.3, C3.6) is written:

div,- (D (grad,. p;") + grad,.p;")) =0 inQ, (C3.21)

pr =pr) onT, (C3.22)

(1)(

where the unknowns p," "’ (x*,y*,t) is y*-periodic. According to (A.40), this latter boundary condition can be also written

P = i) =4 (T O) T onT (€3.23)
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Moreover, we have
grad,. p:®) = ~*(17*(")grad,. 7% (C3.24)
thus equations (C3.21) and (C3.23) are written:

div,- (D (grad,. p;") ++*(T*©)grad,.T*?) =0 inQ, (C3.25)

pr V) = (O onT (C3.26)

As in the Cases C1 and C2, the solution of the above boundary value problems (C3.17-C3.20) and (C3.25-C3.26) appears as a

linear function of the macroscopic gradient grad,,.7*(°), modulo an arbitrary function.

Iyt ) = v (v") -grad,. 7O + T (©-2D
TGy 1) = xi(y") - grad,. 7O + T;) (€3.28)
PV (v ) =2 (T O) (1 (v") - grad,.. T + ;) onT (€3.29)

where rf(y*) and r};(y*) are two periodic vectors which characterize the fluctuation of temperature in both phases at the pore
scale. Introducing (C3.27) and (C3.28) in the set (C3.17-C3.20), these two vectors are solution of the following boundary value

problem in a compact form:

divy- (k} (grad,.r; +1)) =0 in (C3.30)
divy-(k,(grad,.r, +1)) =0 in€Q, (C3.31)
ri=r; onT (€3.32)
(ki (grad,.r; +1) — (k; + LSgDvi*)(grady*ra +I)) ;=0 onl (C3.33)
1 * *
9] / (rz +1{)d2=0 (C3.34)
Q

This latter equation is introduced to ensure the uniqueness of the solution. This latter boundary value problem is similar as the
one of (A.20)-(A.24) where k; is now equal to k; + L3 Dyv* (T*(©))/p¥. At the local scale, the thermal conductivity appears
to be enhanced by the phase change.
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S.3.3.2 Macroscopic description

Finally, the third order problem is given by Eq. (C3.1), (C3.2), (C3.4), and (C3.5) of order e

aT*(O) * * *
POy = — divy. (k; (grad,.T; @)t grad,. 7;M)) — div,- (k} (grad,. TV + grad,. T*®)) =0 inQ; (C3.35)
o1+
PaCa—gp— — vy (k:(grad,.T;® +grad,.T; ")) — div,- (k} (grad,. T; ) + grad,.T*®)) =0 inQ, (C3.36)
T =12 onl (C3.37)
(k} (grady*Ti*(?) + gradx*Ti*(l)) - k;(grady*Tj(Q) +grad,. TFV)) .n; = (C3.38)

D*
=Lg, p” (grad,. @ tgrad,.pfV)-n; onT.

*
i

where the unknowns T:Q) (x*,y*,t) and T,y @ (x*,y*,t) are y*-periodic. For the water vapor, the third order problem is given
by Eq. (C3.3) and (C3.6) of order £2:

gt* —div,(Dy(grad, . pt@ +grad,.prV)) — div,- (D} (grad,. W +grad,.prO(T* @) =0 inQ, (C3.39)
Dj(grad,.p;? +grad,.p;") -n; = pfwi®  onT (C3.40)

Integrating (C3.35) over {2; and (C3.36) and (C3.39) over (), and then using the divergence theorem, the periodicity condition,
and the boundary conditions (B2.40) leads to the first order dimensionless description:

effx aT*(O)

(rC) v

D .
— div,- (k""" grad,.T*(©) = / L:gp—:(grady* p;® +grad,.p;M) nidS = —L% 6. (C3.41)

where (pC)*T* and k'®* are the dimensionless effective thermal capacity and the apparent dimensionless thermal conductivity,

respectively, defined as:

(pC)°™ = (1= )p; CF + dpiCi (C3.42)

ktd* _ 1

~ /k; (grad,.r;(y") +1)dQ + /kz* (grad,.r;(y") +1)dQ (C3.43)

da Q;
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where ¢ is the porosity. Integrating (C3.39) over 2, and then using the divergence theorem and the periodicity condition, leads

to the first order dimensionless description:

ops”
ot

) — div,- (D***grad,. p* (T*(¥)) = — /D: (grady*pf}@) +grad,.pV) - n;dS = plé. (C3.44)

T

660 where D'* is the apparent effective diffusion tensor defined as:

1
Did* = ] / Dj(grad,. r;(y*) +1)d Q (C3.45)
Qa
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