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S.1 Case A

Taking into account of the order of magnitude of the dimensionless numbers,
[
FT
i

]
=O

([
FT
a

])
=O ([Fρ

a]) =O(ε2), [K] =

O (1) , [H] =O
(
ε2
)
, [WR] =O

(
ε2
)
, the dimensionless microscopic description (13)-(18) becomes:

ε2ρ∗iC
∗
i

∂T ∗
i

∂t∗
−div∗(k∗i grad

∗T ∗
i ) = 0 in Ωi (A.1)

5

ε2ρ∗aC
∗
a

∂T ∗
a

∂t∗
−div∗(k∗agradT

∗
a ) = 0 in Ωa (A.2)

ε2
∂ρ∗v
∂t∗

−div∗(D∗
vgrad

∗ρ∗v) = 0 in Ωa (A.3)

T ∗
i = T ∗

a on Γ (A.4)10

k∗i grad
∗T ∗

i ·ni − k∗agrad
∗T ∗

a ·ni = ε2L∗
sgw

∗ ·ni on Γ (A.5)

D∗
vgrad

∗ρ∗v ·ni = ε2ρ∗iw
∗ ·ni on Γ. (A.6)

This set of equations is completed by the Hertz-Knudsen equation (10) and the Clausius Clapeyron’s law (9) expressed in15

dimensionless form as:

w∗
n =w∗ ·ni =

α∗

ρ∗i
w∗

k [ρ
∗
v − ρ∗vs(T

∗
a )] on Γ (A.7)
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ρ∗vs(T
∗
a ) = ρref∗vs (T ref∗)exp

[
L∗
sgm

∗

ρ∗i k
∗

(
1

T ref∗ − 1

T ∗
a

)]
(A.8)

S.1.1 Heat transfer20

Introducing asymptotic expansions for T ∗
i and T ∗

a in the relations (A.1), (A.2), (A.4), (A.5) gives at the lowest order:

divy∗(k∗i grady∗T
∗(0)
i ) = 0 in Ωi (A.9)

divy∗(k∗agrady∗T ∗(0)
a ) = 0 in Ωa (A.10)

25

T
∗(0)
i = T ∗(0)

a on Γ (A.11)

(k∗i grad
∗
y∗T

∗(0)
i − k∗agrad

∗
y∗T ∗(0)

a ) ·ni = 0 on Γ (A.12)

where the unknowns T
∗(0)
i (x∗,y∗, t) and T

∗(0)
a (x∗,y∗, t) are y∗-periodic. It can be shown that the obvious solution of the

above boundary value problem is given by:30

T
∗(0)
i = T ∗(0)

a = T ∗(0)(x∗, t). (A.13)

At the first order, the temperature is independent of the microscopic dimensionless variable y∗, i.e. we have only one tem-

perature field. Taking into account of these results, equations (A.1), (A.2), (A.4), and (A.5) of order ε give the following

second-order problem:

divy∗(k∗i (grady∗T
∗(1)
i +gradx∗T ∗(0))) = 0 in Ωi (A.14)35

divy∗(k∗a(grady∗T ∗(1)
a +gradx∗T ∗(0))) = 0 in Ωa (A.15)

T
∗(1)
i = T ∗(1)

a on Γ (A.16)

40

(k∗i (grady∗T
∗(1)
i +gradx∗T ∗(0))− k∗a(grady∗T ∗(1)

a +gradx∗T ∗(0))) ·ni = 0 on Γ (A.17)
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where the unknowns T ∗(1)
i (x∗,y∗, t) and T

∗(1)
a (x∗,y∗, t) are y∗-periodic and the macroscopic gradient gradx∗T ∗(0) is given.

The solution of the above boundary value problem appears as a linear function of the macroscopic gradient, modulo an arbitrary

function T̃ ∗(1)(x∗, t):

T
∗(1)
i (x∗,y∗, t) = t∗i (y

∗) ·gradx∗T ∗(0) + T̃
∗(1)
i (A.18)45

T ∗(1)
a (x∗,y∗, t) = t∗a(y

∗) ·gradx∗T ∗(0) + T̃ ∗(1)
a (A.19)

where t∗i (y
∗) and t∗a(y

∗) are two periodic vectors which characterize the fluctuation of temperature in both phases at the pore

scale. Introducing (A.18) and (A.19) in the set (A.14)-(A.17), these two vectors are solution of the following boundary value

problem, expressed in a compact form as:50

divy∗(k∗i (grady∗t∗i + I)) = 0 in Ωi (A.20)

divy∗(k∗a(grady∗t∗a + I)) = 0 in Ωa (A.21)

t∗i = t∗a on Γ (A.22)55

(k∗i (grady∗t∗i + I)− k∗a(grady∗t∗a + I)) ·ni = 0 on Γ (A.23)

1

|Ω|

∫
Ω

(t∗a + t∗i )dΩ= 0 (A.24)

This latter equation is introduced to ensure the uniqueness of the solution. Finally, the third order problem is given by the Eq.60

(A.1), (A.2), (A.4), and (A.5) of order ε2:

ρ∗iC
∗
i

∂T ∗(0)

∂t∗
−divy∗(k∗i (grady∗T

∗(2)
i +gradx∗T

∗(1)
i ))− divx∗(k∗i (grady∗T

∗(1)
i +gradx∗T ∗(0))) = 0 in Ωi (A.25)

ρ∗aC
∗
a

∂T ∗(0)

∂t∗
−divy∗(k∗a(grady∗T ∗(2)

a +gradx∗T ∗(1)
a ))−divx∗(k∗a(grady∗T ∗(1)

a +gradx∗T ∗(0))) = 0 in Ωa (A.26)

65

T
∗(2)
i = T ∗(2)

a on Γ (A.27)
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(k∗i (grady∗T
∗(2)
i +gradx∗T

∗(1)
i )− k∗a(grady∗T ∗(2)

a +gradx∗T ∗(1)
a )) ·ni = w∗(0)

n on Γ (A.28)

where the unknowns T ∗(2)
i (x∗,y∗, t) and T

∗(2)
a (x∗,y∗, t) are y∗-periodic and w

∗(0)
n is the normal interface velocity due to the

sublimation-deposition process given, at the zero order, by the Hertz-Knudsen equation (A.7) and the Clausius Clapeyron’s70

law (A.8).

S.1.2 Water vapor transfer

Introducing asymptotic expansions for ρ∗v in the relations (A.3) and (A.6) gives at the lowest order:

divy∗(D∗
vgrady∗ρ∗(0)v ) = 0 in Ωa (A.29)

75

D∗
vgrady∗ρ∗(0)v ·ni = 0 on Γ. (A.30)

where the unknown ρ
∗(0)
v (x∗,y∗, t) is y∗-periodic. It can be shown (Auriault et al., 2009) that the solution of the above

boundary value problem is given by:

ρ∗(0)v = ρ∗(0)v (x∗, t). (A.31)

At the first order, the water vapor density is independent of the microscopic dimensionless variable y∗. Taking into account of80

these results, the second-order problem is given by Eq. (A.3) and (A.6) of order ε, which are:

divy∗(D∗
v(grady∗ρ∗(1)v +gradx∗ρ∗(0)v )) = 0 in Ωa (A.32)

D∗
v(grady∗ρ∗(1)v +gradx∗ρ∗(0)v ) ·ni = 0 on Γ. (A.33)

where the unknown ρ
∗(1)
v (x∗,y∗, t) is y∗-periodic and the macroscopic gradient gradx∗ρ

∗(0)
v is given. The solution of the85

above boundary value problem appears as a linear function of the macroscopic gradient, modulo an arbitrary function ρ̃
∗(1)
v (x∗, t)

(Auriault et al., 2009):

ρ∗(1)v (x∗,y∗, t) = g∗
v(y

∗) ·gradx∗ρ∗(0)v + ρ̃∗(1)v (x∗, t) (A.34)

where g∗
v(y

∗) is a periodic vector which characterizes the fluctuation of water vapor density in the air phase at the pore scale.

Introducing (A.34) in the set (A.32)-(A.33), this vector is solution of the following boundary value problem, expressed in a90

compact form:

divy∗(D∗
v(grady∗g∗

v + I)) = 0 in Ωa (A.35)

4



D∗
v(grady∗g∗

v + I) ·ni = 0 on Γ (A.36)

95

1

|Ω|

∫
Ωa

g∗
vdΩ= 0 (A.37)

This latter equation is introduced to ensure the uniqueness of the solution. Finally, the third order problem is given by Eq. (A.3)

and (A.6) of order ε2:

∂ρ
∗(0)
v

∂t∗
−divy∗(D∗

v(grady∗ρ∗(2)v +gradx∗ρ∗(1)v ))−divx∗(D∗
v(grady∗ρ∗(1)v +gradx∗ρ∗(0)v )) = 0 in Ωa (A.38)

100

D∗
v(grady∗ρ∗(2)v +gradx∗ρ∗(1)v ) ·ni = w∗(0)

n on Γ (A.39)

where the unknown ρ
∗(2)
v (x∗,y∗, t) is y∗-periodic and w

∗(0)
n is the normal interface velocity due to the sublimation/deposition

process given, at the zero order, by the Hertz-Knudsen equation (A.7) and the Clausius Clapeyron’s law (A.8). Taking into

account the above results, we have:

ρ∗vs(T
∗
a ) = ρref∗vs (T ref∗)exp

[
L∗
sgm

∗

ρ∗i k
∗

(
1

T ref∗ − 1

T ∗(0)

)](
1+ ε

L∗
sgm

∗

ρ∗i k
∗

T
∗(1)
a

(T ∗(0))2
+ ...

)
(A.40)105

This relation shows that the asymptotic development of the Clausius-Clapeyron’s law is written:

ρ∗vs(T
∗
a ) = ρ∗(0)vs (x∗, t)+ ερ∗(1)vs (x∗,y∗, t)+ ... (A.41)

where the first term ρ
∗(0)
vs , which depends on T ∗(0)(x∗, t) only, is defined as:

ρ∗(0)vs (T ∗(0)) = ρref∗vs (T ref∗)exp

[
L∗
sgm

∗

ρ∗i k
∗

(
1

T ref∗ − 1

T ∗(0)

)]
(A.42)

The relation (A.42) shows that the normal velocity w
∗(0)
n arising in the boundary condition (A.39) does not depend on y∗.110

From (A.7), w∗(0)
n is also written:

w∗(0)
n =

α∗

ρ∗i
w∗

k

[
ρ∗(0)v − ρ∗(0)vs (T ∗(0))

]
(A.43)

S.1.3 Macroscopic description

Integrating (A.25) over Ωi and (A.26) over Ωa, and then using the divergence theorem, the periodicity condition, and the

boundary conditions (A.28) leads to the first order dimensionless description:115

(ρC)eff∗ ∂T
∗(0)

∂t∗
−divx∗(keff∗gradx∗ T ∗(0)) = SSAVL

∗
sgw

∗(0)
n (A.44)
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where SSAV = |Γ|/|Ω| is the specific surface area and where (ρC)eff∗ and keff∗ are the dimensionless effective thermal ca-

pacity and the effective dimensionless thermal conductivity, respectively, defined as:

(ρC)eff∗ = (1−ϕ)ρ∗iC
∗
i +ϕρ∗aC

∗
a (A.45)

120

keff∗ =
1

|Ω|

∫
Ωa

k∗a(grady∗t∗a(y
∗)+ I)dΩ+

∫
Ωi

k∗i (grady∗t∗i (y
∗)+ I)dΩ

 (A.46)

where ϕ is the porosity. Consequently, integrating (A.38) over Ωa, and then using the divergence theorem, the periodicity

condition, and the boundary conditions (A.39) leads to the first order dimensionless description:

ϕ
∂ρ

∗(0)
v

∂t
−divx∗(Deff∗gradx∗ρ∗(0)v ) =−SSAVρ

∗
iw

∗(0)
n (A.47)

where Deff∗ is the dimensionless effective diffusion tensor defined as:125

Deff∗ =
1

|Ω|

∫
Ωa

D∗
v(grady∗ g∗

v(y
∗)+ I)d Ω (A.48)

S.2 Case B1 and B2

S.2.1 Case B1

Taking into account of the order of magnitude of the dimensionless numbers,
[
FT
i

]
=O

([
FT
a

])
=O ([Fρ

a]) =O(ε2), [K] =

O (1) , [H] =O (ε) , [WR] =O (ε), the dimensionless microscopic description (13)-(18) becomes:130

ε2ρ∗iC
∗
i

∂T ∗
i

∂t∗
−div∗(k∗i grad

∗T ∗
i ) = 0 in Ωi (B1.1)

ε2ρ∗aC
∗
a

∂T ∗
a

∂t∗
−div∗(k∗agradT

∗
a ) = 0 in Ωa (B1.2)

ε2
∂ρ∗v
∂t∗

−div∗(D∗
vgrad

∗ρ∗v) = 0 in Ωa (B1.3)135

T ∗
i = T ∗

a on Γ (B1.4)

k∗i grad
∗T ∗

i ·ni − k∗agrad
∗T ∗

a ·ni = εL∗
sgw

∗ ·ni on Γ (B1.5)
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140

D∗
vgrad

∗ρ∗v ·ni = ερ∗iw
∗ ·ni on Γ. (B1.6)

This set of equations is completed by the Hertz-Knudsen equation (10) and the Clausius Clapeyron’s law (9) expressed in

dimensionless form as:

w∗
n =w∗ ·ni =

α∗

ρ∗i
w∗

k [ρ
∗
v − ρ∗vs(T

∗
a )] on Γ (B1.7)

145

ρ∗vs(T
∗
a ) = ρref∗vs (T ref∗)exp

[
L∗
sgm

∗

ρ∗i k
∗

(
1

T ref∗ − 1

T ∗
a

)]
(B1.8)

S.2.1.1 Heat transfer

Introducing asymptotic expansions for T ∗
i and T ∗

a in the relations (B1.1), (B1.2), (B1.4), and (B1.5) gives at the lowest order:

divy∗(k∗i grady∗T
∗(0)
i ) = 0 in Ωi (B1.9)

150

divy∗(k∗agrady∗T ∗(0)
a ) = 0 in Ωa (B1.10)

T
∗(0)
i = T ∗(0)

a on Γ (B1.11)

(k∗i grad
∗
y∗T

∗(0)
i − k∗agrad

∗
y∗T ∗(0)

a ) ·ni = 0 on Γ (B1.12)155

where the unknowns T
∗(0)
i (x∗,y∗, t) and T

∗(0)
a (x∗,y∗, t) are y∗-periodic. It can be shown Auriault et al. (2009) that the

obvious solution of the above boundary value problem is given by:

T
∗(0)
i = T ∗(0)

a = T ∗(0)(x∗, t). (B1.13)

At the first order, the temperature is independent of the microscopic dimensionless variable y∗, i.e. we have only one tempera-

ture field. Taking into account of these results, Eq. (B1.1), (B1.2), (B1.4), and (B1.5) of order ε give the following second-order160

problem:

divy∗(k∗i (grady∗T
∗(1)
i +gradx∗T ∗(0))) = 0 in Ωi (B1.14)

divy∗(k∗a(grady∗T ∗(1)
a +gradx∗T ∗(0))) = 0 in Ωa (B1.15)

7



165

T
∗(1)
i = T ∗(1)

a on Γ (B1.16)

(k∗i (grady∗T
∗(1)
i +gradx∗T ∗(0))− k∗a(grady∗T ∗(1)

a +gradx∗T ∗(0))) ·ni = L∗
sgw

∗(0)
n on Γ (B1.17)

where the unknowns T ∗(1)
i (x∗,y∗, t) and T

∗(1)
a (x∗,y∗, t) are y∗-periodic and the macroscopic gradient gradx∗T ∗(0) is given.

Moreover, it can be shown that at the first order w∗(0)
n = 0 (see B1.37). As in the case A, the solution of the above boundary170

value problem appears as a linear function of the macroscopic gradient, modulo an arbitrary function T̃ ∗(1)(x∗, t) Auriault

et al. (2009):

T
∗(1)
i (x∗,y∗, t) = t∗i (y

∗) ·gradx∗T ∗(0) + T̃
∗(1)
i (B1.18)

T ∗(1)
a (x∗,y∗, t) = t∗a(y

∗) ·gradx∗T ∗(0) + T̃ ∗(1)
a (B1.19)175

where t∗i (y
∗) and t∗a(y

∗) are two periodic vectors which characterize the fluctuation of temperature in both phases at the pore

scale. Introducing (B1.18) and (B1.19) in the set (B1.14)-(B1.17), these two vectors are solution of the following boundary

value problem in a compact form:

divy∗(k∗i (grady∗t∗i + I)) = 0 in Ωi (B1.20)

180

divy∗(k∗a(grady∗t∗a + I)) = 0 in Ωa (B1.21)

t∗i = t∗a on Γ (B1.22)

(k∗i (grady∗t∗i + I)− k∗a(grady∗t∗a + I)) ·ni = 0 on Γ (B1.23)185

1

|Ω|

∫
Ω

(t∗a + t∗i )dΩ= 0 (B1.24)

This latter equation is introduced to ensure the uniqueness of the solution. Finally, the third order problem is given by Eq.

(B1.1), (B1.2), (B1.4), and (B1.5) of order ε2:

ρ∗iC
∗
i

∂T ∗(0)

∂t∗
−divy∗(k∗i (grady∗T

∗(2)
i +gradx∗T

∗(1)
i ))− divx∗(k∗i (grady∗T

∗(1)
i +gradx∗T ∗(0))) = 0 in Ωi (B1.25)190

8



ρ∗aC
∗
a

∂T ∗(0)

∂t∗
−divy∗(k∗a(grady∗T ∗(2)

a +gradx∗T ∗(1)
a ))−divx∗(k∗a(grady∗T ∗(1)

a +gradx∗T ∗(0))) = 0 in Ωa (B1.26)

T
∗(2)
i = T ∗(2)

a onΓ (B1.27)

195

(k∗i (grady∗T
∗(2)
i +gradx∗T

∗(1)
i )− k∗a(grady∗T ∗(2)

a +gradx∗T ∗(1)
a )) ·ni = L∗

sgw
∗(1)
n on Γ (B1.28)

where the unknowns T ∗(2)
i (x∗,y∗, t) and T

∗(2)
a (x∗,y∗, t) are y∗-periodic. Integrating (B1.25) over Ωi and (B1.26) over Ωa,

and then using the divergence theorem, the periodicity condition, and the boundary conditions (B1.28) leads to the first order

dimensionless description:

(ρC)eff∗ ∂T
∗(0)

∂t∗
−divx∗(keff∗gradx∗T ∗(0)) =

∫
Γ

L∗
sgw

∗(1)
n dS =−L∗

sgϕ̇ (B1.29)200

where (ρC)eff∗ and keff∗ are the dimensionless effective thermal capacity and the effective dimensionless thermal conductivity

respectively, defined, as in the Case A, by:

(ρC)eff∗ = (1−ϕ)ρ∗iC
∗
i +ϕρ∗aC

∗
a (B1.30)

keff∗ =
1

|Ω|

∫
Ωa

k∗a(grady∗t∗a(y
∗)+ I)dΩ+

∫
Ωi

k∗i (grady∗t∗i (y
∗)+ I)dΩ

 (B1.31)205

where ϕ is the porosity.

S.2.1.2 Water vapor transfer

Introducing asymptotic expansions for ρ∗v in the relations (B1.3) and (B1.6) gives at the lowest order:

divy∗(D∗
vgrady∗ρ∗(0)v ) = 0 in Ωa (B1.32)

210

D∗
vgrady∗ρ∗(0)v ·ni = 0 on Γ. (B1.33)

where the unknown ρ
∗(0)
v (x∗,y∗, t) is y∗-periodic. It can be shownAuriault et al. (2009) that the solution of the above boundary

value problem is given by:

ρ∗(0)v = ρ∗(0)v (x∗, t). (B1.34)

9



At the first order, the water vapor density is independent of the microscopic dimensionless variable y∗. Taking into account of215

these results, the second-order problem is given by Eq. (B1.3) and (B1.6) of order ε:

divy∗(D∗
v(grady∗ρ∗(1)v +gradx∗ρ∗(0)v )) = 0 in Ωa (B1.35)

D∗
v(grady∗ρ∗(1)v +gradx∗ρ∗(0)v ) ·ni = αwk

[
ρ∗(0)v − ρ∗(0)vs (T ∗(0))

]
on Γ. (B1.36)

where the unknown ρ
∗(1)
v (x∗,y∗, t) is y∗-periodic. Consequently, integrating (B1.35) over Ωa, and then using the divergence220

theorem, the periodicity condition, the boundary conditions (B1.36) and the result (B1.34) leads to the first order dimensionless

description:

ρ∗(0)v = ρ∗(0)vs (T ∗(0)) (B1.37)

Consequently, as in the Case A, the solution of the above boundary value problem (B1.35) - (B1.36) appears as a linear function

of the macroscopic gradient gradx∗ρ
∗(0)
vs (T ∗(0)) modulo an arbitrary function ρ̃

∗(1)
v (x∗, t) :225

ρ∗(1)v (x∗,y∗, t) = g∗
v(y

∗) ·gradx∗ρ∗(0)vs (T ∗(0))+ ρ̃∗(1)v (x∗, t) (B1.38)

where g∗
v(y

∗) is a periodic vector which characterizes the fluctuation of water vapor density in the air phase at the pore

scale induced by the macroscopic gradient gradx∗ρ
∗(0)
vs (T ∗(0)). Introducing (B1.38) in the set (B1.35)-(B1.36), this vector is

solution of the following boundary value problem in a compact form:

divy∗(D∗
v(grady∗g∗

v + I)) = 0 in Ωa (B1.39)230

D∗
v(grady∗g∗

v + I) ·ni = 0 on Γ (B1.40)

1

|Ω|

∫
Ωa

g∗
vdΩ= 0 (B1.41)

This latter equation is introduced to ensure the uniqueness of the solution. Finally, the third order problem is given by Eq.235

(B1.3) and (B1.6) of order ε2:

∂ρ
∗(0)
vs

∂t∗
−divy∗(D∗

v(grady∗ρ∗(2)v +gradx∗ρ∗(1)v ))−divx∗(D∗
v(grady∗ρ∗(1)v +gradx∗ρ∗(0)vs (T ∗(0)))) = 0 in Ωi (B1.42)

D∗
v(grady∗ρ∗(2)v +gradx∗ρ∗(1)v ) ·ni = ρ∗iw

∗(1)
n on Γ (B1.43)

10



where the unknowns ρ∗(2)v (x∗,y∗, t) is y∗-periodic and w
∗(1)
n is the normal interface velocity due to the sublimation/deposition240

process at the first order. Consequently, integrating (B1.42) over Ωa, and then using the divergence theorem, the periodicity

condition, and the boundary conditions (B1.43) leads to the first order dimensionless description:

ϕ
∂ρ

∗(0)
vs

∂t
−divx∗(Deff∗gradx∗ρ∗(0)vs (T ∗(0))) =

∫
Γ

ρ∗iw
∗(1)
n dS = ρ∗i ϕ̇ (B1.44)

where Deff∗ is the classical dimensionless effective diffusion tensor defined as (see Case A):

Deff∗ =
1

|Ω|

∫
Ωa

D∗
v(grady∗ g∗

v(y
∗)+ I)d Ω (B1.45)245

S.2.2 Case B2

Taking into account of the order of magnitude of the dimensionless numbers,
[
FT
i

]
=O

([
FT
a

])
=O ([Fρ

a]) =O(ε2), [K] =

O (1) , [H] =O (1) , [WR] =O (1), the dimensionless microscopic description (13)-(18) becomes:

ε2ρ∗iC
∗
i

∂T ∗
i

∂t∗
−div∗(k∗i grad

∗T ∗
i ) = 0 in Ωi (B2.1)

250

ε2ρ∗aC
∗
a

∂T ∗
a

∂t∗
−div∗(k∗agradT

∗
a ) = 0 in Ωa (B2.2)

ε2
∂ρ∗v
∂t∗

−div∗(D∗
vgrad

∗ρ∗v) = 0 in Ωa (B2.3)

T ∗
i = T ∗

a on Γ (B2.4)255

k∗i grad
∗T ∗

i ·ni − k∗agrad
∗T ∗

a ·ni = L∗
sg

D∗
v

ρ∗i
grad∗ρ∗v ·ni on Γ (B2.5)

D∗
vgrad

∗ρ∗v ·ni = ρ∗iw
∗ ·ni on Γ. (B2.6)

This set of equations is completed by the Hertz-Knudsen equation (A.7) and the Clausius Clapeyron’s law (9) expressed in260

dimensionless form as:

w∗
n =w∗ ·ni =

α∗

ρ∗i
w∗

k [ρ
∗
v − ρ∗vs(T

∗
a )] on Γ (B2.7)

ρ∗vs(T
∗
a ) = ρref∗vs (T ref∗)exp

[
L∗
sgm

∗

ρ∗i k
∗

(
1

T ref∗ − 1

T ∗
a

)]
(B2.8)
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S.2.2.1 Heat and water vapor transfer at the first order265

Introducing asymptotic expansions for T ∗
i and T ∗

a in the relations (B2.1), (B2.2), (B2.4), and (B2.5) gives at the lowest order:

divy∗(k∗i grady∗T
∗(0)
i ) = 0 in Ωi (B2.9)

divy∗(k∗agrady∗T ∗(0)
a ) = 0 in Ωa (B2.10)

270

T
∗(0)
i = T ∗(0)

a on Γ (B2.11)

(k∗i grad
∗
y∗T

∗(0)
i − k∗agrad

∗
y∗T ∗(0)

a ) ·ni =
L∗
sg

ρ∗i
D∗

vgrady∗ρ∗(0)v ·ni on Γ (B2.12)

where the unknowns T
∗(0)
i (x∗,y∗, t) and T

∗(0)
a (x∗,y∗, t) are y∗-periodic. Introducing asymptotic expansions for ρ∗v in the

relations (B2.3) and (B2.6) gives at the lowest order:275

divy∗(D∗
vgrady∗ρ∗(0)v ) = 0 in Ωa (B2.13)

D∗
vgrady∗ρ∗(0)v ·ni = α∗w∗

k

[
ρ∗(0)v − ρ∗(0)vs (T ∗(0))

]
on Γ. (B2.14)

where the unknown ρ
∗(0)
v (x∗,y∗, t) is y∗-periodic. Consequently, integrating (B2.13) over Ωa, and then using the divergence

theorem, the periodicity condition, the boundary conditions (B2.14) leads to:280

ρ∗(0)v = ρ∗(0)vs on Γ. (B2.15)

Taking into account this result, the solution of the above boundary value problem is given by:

T
∗(0)
i = T ∗(0)

a = T ∗(0)(x∗, t). (B2.16)

and

ρ∗(0)v = ρ∗(0)v (x∗, t) = ρ∗(0)vs (T ∗(0)). (B2.17)285

At the first order, the temperature and the the water vapor density are independent of the microscopic dimensionless variable

y∗, i.e. we have only one temperature field.
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S.2.2.2 Heat and water vapor transfer at the second order

Taking into account of these results, Eq. (B2.1), (B2.2), (B2.4), and (B2.5) of order ε give the following second-order problem:

290

divy∗(k∗i (grady∗T
∗(1)
i +gradx∗T ∗(0))) = 0 in Ωi (B2.18)

divy∗(k∗a(grady∗T ∗(1)
a +gradx∗T ∗(0))) = 0 in Ωa (B2.19)

T
∗(1)
i = T ∗(1)

a on Γ (B2.20)295

(k∗i (grady∗T
∗(1)
i +gradx∗T ∗(0))−k∗a(grady∗T ∗(1)

a +gradx∗T ∗(0)))·ni =
L∗
sg

ρ∗i
D∗

v(grady∗ρ∗(1)v +gradx∗ρ∗(0)v )·ni on Γ

(B2.21)

where the unknowns T ∗(1)
i (x∗,y∗, t) and T

∗(1)
a (x∗,y∗, t) are y∗-periodic and the macroscopic gradient gradx∗T ∗(0) is given.

The second-order problem for the water vapor is given by Eq. (B2.3) and (B2.6) of order ε:

divy∗(D∗
v(grady∗ρ∗(1)v +gradx∗ρ∗(0)v )) = 0 in Ωa (B2.22)300

D∗
v(grady∗ρ∗(1)v +gradx∗ρ∗(0)v ) ·ni = α∗w∗

k

[
ρ∗(1)v − ρ∗(1)vs

]
on Γ. (B2.23)

where the unknowns ρ∗(1)v (x∗,y∗, t) is y∗-periodic. Consequently, integrating (B2.22) over Ωa, and then using the divergence

theorem, the periodicity condition, the boundary conditions (B2.23) leads to:

ρ∗(1)v = ρ∗(1)vs on Γ. (B2.24)305

This result also implies that

D∗
v(grady∗ρ∗(1)v +gradx∗ρ∗(0)v ) ·ni = 0 on Γ. (B2.25)

The above boundary value problem can not be solved by considering both boundary conditions (B2.24) and (B2.25) on the

ice-air interface simultaneously. However, it seems reasonable to assume that in the range ε1/2 ⩽ [WR]⩽ 1 the Neumann

boundary condition (B2.25) can be privileged (Case B2), whereas in the range 1⩽ [WR]⩽ ε−1/2 the Dirichlet boundary310

condition (B2.24) can be considered (Case C1). These two cases will give us the two extreme behaviours when [WR] =O (1).
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By considering first the Neumann boundary condition (B2.25), the solution of the above boundary value problem for the

temperature appears as a linear function of the macroscopic gradient, modulo an arbitrary function T̃ ∗(1)(x∗, t):

T
∗(1)
i (x∗,y∗, t) = t∗i (y

∗) ·gradx∗T ∗(0) + T̃
∗(1)
i (B2.26)

315

T ∗(1)
a (x∗,y∗, t) = t∗a(y

∗) ·gradx∗T ∗(0) + T̃ ∗(1)
a (B2.27)

where t∗i (y
∗) and t∗a(y

∗) are two periodic vectors which characterize the fluctuation of temperature in both phases at the pore

scale. Introducing (B2.26) and (B2.27) in the set (B2.18)-(B2.21), these two vectors are solution of the following boundary

value problem in a compact form:

divy∗(k∗i (grady∗t∗i + I)) = 0 in Ωi (B2.28)320

divy∗(k∗a(grady∗t∗a + I)) = 0 in Ωa (B2.29)

t∗i = t∗a on Γ (B2.30)

325

(k∗i (grady∗t∗i + I)− k∗a(grady∗t∗a + I)) ·ni = 0 on Γ (B2.31)

1

|Ω|

∫
Ω

(t∗a + t∗i )dΩ= 0 (B2.32)

This latter equation is introduced to ensure the uniqueness of the solution. Similarly, solution of the boundary value problem

(B2.22) and (B2.25) appears as a linear function of the macroscopic gradient gradx∗ρ
∗(0)
vs (T ∗(0)) modulo an arbitrary function330

ρ̃
∗(1)
v (x∗, t) :

ρ∗(1)v (x∗,y∗, t) = g∗
v(y

∗) ·gradx∗ρ∗(0)vs (T ∗(0))+ ρ̃∗(1)v (x∗, t) (B2.33)

where g∗
v(y

∗) is a periodic vector which characterizes the fluctuation of water vapor density in the air phase at the pore

scale induced by the macroscopic gradient gradx∗ρ
∗(0)
vs (T ∗(0)). Introducing (B2.33) in the set (B2.22)-(B2.25), this vector is

solution of the following boundary value problem in a compact form:335

divy∗(D∗
v(grady∗g∗

v + I)) = 0 in Ωa (B2.34)
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D∗
v(grady∗g∗

v + I) ·ni = 0 on Γ (B2.35)

1

|Ω|

∫
Ωa

g∗
vdΩ= 0 (B2.36)340

This latter equation is introduced to ensure the uniqueness of the solution.

S.2.2.3 Macroscopic description

Finally, the third order problem for the heat transfer is given by Eq. (B2.1), (B2.2), (B2.4), and (B2.5) of order ε2:

ρ∗iC
∗
i

∂T ∗(0)

∂t∗
−divy∗(k∗i (grady∗T

∗(2)
i +gradx∗T

∗(1)
i ))− divx∗(k∗i (grady∗T

∗(1)
i +gradx∗T ∗(0))) = 0 in Ωi (B2.37)

345

ρ∗aC
∗
a

∂T ∗(0)

∂t∗
−divy∗(k∗a(grady∗T ∗(2)

a +gradx∗T ∗(1)
a ))−divx∗(k∗a(grady∗T ∗(1)

a +gradx∗T ∗(0))) = 0 in Ωa (B2.38)

T
∗(2)
i = T ∗(2)

a onΓ (B2.39)

(k∗i (grady∗T
∗(2)
i +gradx∗T

∗(1)
i )− k∗a(grady∗T ∗(2)

a +gradx∗T ∗(1)
a )) ·ni (B2.40)350

= L∗
sg

D∗
v

ρ∗i
(grady∗ρ∗(2)v +gradx∗ρ∗(1)v )) ·ni on Γ

where the unknowns T ∗(2)
i (x∗,y∗, t) and T

∗(2)
a (x∗,y∗, t) are y∗-periodic. Integrating (B2.37) over Ωi and (B2.38) over Ωa,

and then using the divergence theorem, the periodicity condition, and the boundary conditions (B2.40) and the results leads to

the first order dimensionless description:355

(ρC)eff∗ ∂T
∗(0)

∂t∗
−divx∗(keff∗gradx∗T ∗(0)) =−

∫
Γ

L∗
sgw

∗(2)
n dS = L∗

sgϕ̇ (B2.41)

where (ρC)eff∗ and keff∗ are the dimensionless effective thermal capacity and the effective dimensionless thermal conductivity

respectively, defined as:

(ρC)eff∗ = (1−ϕ)ρ∗iC
∗
i +ϕρ∗aC

∗
a (B2.42)

360

keff∗ =
1

|Ω|

∫
Ωa

k∗a(grady∗t∗a(y
∗)+ I)dΩ+

∫
Ωi

k∗i (grady∗t∗i (y
∗)+ I)dΩ

 (B2.43)

15



where ϕ is the porosity.

Finally, the third order problem for the water vapor is given by Eq. (B2.3) and (B2.6) of order ε2:

∂ρ
∗(0)
vs

∂t∗
−divy∗(D∗

v(grady∗ρ∗(2)v +gradx∗ρ∗(1)v ))−divx∗(D∗
v(grady∗ρ∗(1)v +gradx∗ρ∗(0)vs (T ∗(0)))) = 0 in Ωi (B2.44)

365

D∗
v(grady∗ρ∗(2)v +gradx∗ρ∗(1)v ) ·ni = ρ∗iw

∗(2)
n on Γ (B2.45)

where the unknown ρ
∗(2)
v (x∗,y∗, t) is y∗-periodic and w

∗(2)
n is the normal interface velocity due to the sublimation/deposition

process at the first order. Consequently, integrating (B2.44) over Ωa, and then using the divergence theorem, the periodicity

condition, and the boundary conditions (B2.45) leads to the first order dimensionless description:

ϕ
∂ρ

∗(0)
vs

∂t
−divx∗(Deff∗gradx∗ρ∗(0)vs (T ∗(0))) =

∫
Γ

ρ∗iw
∗(2)
n dS = ρ∗i ϕ̇ (B2.46)370

where Deff∗ is the classical dimensionless effective diffusion tensor defined as:

Deff∗ =
1

|Ω|

∫
Ωa

D∗
v(grady∗ g∗

v(y
∗)+ I)d Ω (B2.47)

S.3 Cases C1, C2 et C3

S.3.1 Case C1

S.3.1.1 Heat and water vapor transfer at the second order375

The Dirichlet boundary condition (B2.24) is now considered. According to (A.40), this boundary condition can be also written

as:

ρ∗(1)v = ρ∗(1)vs = γ∗(T ∗(0))T ∗(1)
a on Γ (C1.1)

Moreover, we have

gradx∗ρ∗(0)vs = γ∗(T ∗(0))gradx∗T ∗(0) (C1.2)380

thus Eq. (B2.22) and (B2.24) are written:

divy∗(D∗
v(grady∗ρ∗(1)v + γ∗(T ∗(0))gradx∗T ∗(0)) = 0 in Ωa (C1.3)

ρ∗(1)v = γ∗(T ∗(0))T ∗(1)
a on Γ (C1.4)
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The solution of the boundary value problems (B2.18)-(B2.21) and (C1.3)-(C1.4) appears as a linear function of the macroscopic385

gradient gradx∗T ∗(0), modulo an arbitrary function.

T
∗(1)
i (x∗,y∗, t) = r∗i (y

∗) ·gradx∗T ∗(0) + T̃
∗(1)
i (C1.5)

T ∗(1)
a (x∗,y∗, t) = r∗a(y

∗) ·gradx∗T ∗(0) + T̃ ∗(1)
a (C1.6)

390

ρ∗(1)v (x∗,y∗, t) = γ∗(T ∗(0))(r∗a(y
∗) ·gradx∗T ∗(0) + T̃ ∗(1)

a ) on Γ (C1.7)

where r∗i (y
∗) and r∗a(y

∗) are two periodic vectors which characterize the fluctuation of temperature in both phases at the

pore scale. Introducing (C1.5) and (C1.6) in the set (B2.18)-(B2.21) and (C1.3)-(C1.4), these two vectors are solution of the

following boundary value problem in a compact form:

divy∗(k∗i (grady∗r∗i + I)) = 0 in Ωi (C1.8)395

divy∗((k∗a +L∗
sgD

∗
v

γ∗(T ∗(0))

ρ∗i
)(grady∗r∗a + I)) = 0 in Ωa (C1.9)

r∗i = r∗a on Γ (C1.10)

400

(k∗i (grady∗r∗i + I)− (k∗a +L∗
sgD

∗
v

γ∗(T ∗(0))

ρ∗i
)(grady∗r∗a + I)) ·ni = 0 on Γ (C1.11)

1

|Ω|

∫
Ω

(r∗a + r∗i )dΩ= 0 (C1.12)

This latter equation is introduced to ensure the uniqueness of the solution. This latter boundary value problem is similar as the

(A.20)-(A.24) where k∗a is now equal to k∗a +L∗
sgD

∗
vγ

∗(T ∗(0))/ρ∗i . At the local scale, the thermal conductivity appears to be405

enhanced by the phase change.

S.3.1.2 Macroscopic description

Finally, the third order problem is given by Eq. (B2.1), (B2.2), (B2.4), and (B2.5) of order ε2:

ρ∗iC
∗
i

∂T ∗(0)

∂t∗
−divy∗(k∗i (grady∗T

∗(2)
i +gradx∗T

∗(1)
i ))− divx∗(k∗i (grady∗T

∗(1)
i +gradx∗T ∗(0))) = 0 in Ωi (C1.13)

17



410

ρ∗aC
∗
a

∂T ∗(0)

∂t∗
−divy∗(k∗a(grady∗T ∗(2)

a +gradx∗T ∗(1)
a ))−divx∗(k∗a(grady∗T ∗(1)

a +gradx∗T ∗(0))) = 0 in Ωa (C1.14)

T
∗(2)
i = T ∗(2)

a onΓ (C1.15)

(k∗i (grady∗T
∗(2)
i +gradx∗T

∗(1)
i )− k∗a(grady∗T ∗(2)

a +gradx∗T ∗(1)
a )) ·ni = (C1.16)415

= L∗
sg

D∗
v

ρ∗i
(grady∗ρ∗(2)v +gradx∗ρ∗(1)v ) ·ni on Γ.

where the unknowns T ∗(2)
i (x∗,y∗, t) and T

∗(2)
a (x∗,y∗, t) are y∗-periodic. For the water vapor, the third order problem is given

by Eq. (B2.3) and (B2.6) of order ε2:

∂ρ
∗(0)
vs

∂t∗
−divy∗(D∗

v(grady∗ρ∗(2)v +gradx∗ρ∗(1)v ))−divx∗(D∗
v(grady∗ρ∗(1)v +gradx∗ρ∗(0)vs (T ∗(0)))) = 0 in Ωa (C1.17)420

D∗
v(grady∗ρ∗(2)v +gradx∗ρ∗(1)v ) ·ni = ρ∗iw

∗(2)
n on Γ (C1.18)

Integrating (C1.13) over Ωi and (C1.14) over Ωa, and then using the divergence theorem, the periodicity condition, and the

boundary conditions (C1.16) leads to the first order dimensionless description:

(ρC)eff∗ ∂T
∗(0)

∂t∗
−divx∗(ktd∗gradx∗T ∗(0)) =

∫
Γ

L∗
sg

D∗
v

ρ∗i
(grady∗ρ∗(2)v +gradx∗ρ∗(1)v ) ·nidS =−L∗

sgϕ̇. (C1.19)425

where (ρC)eff∗ and ktd∗ are the dimensionless effective thermal capacity and the apparent dimensionless thermal conductivity,

respectively, defined as:

(ρC)eff∗ = (1−ϕ)ρ∗iC
∗
i +ϕρ∗aC

∗
a (C1.20)

ktd∗ =
1

|Ω|

∫
Ωa

k∗a(grady∗r∗a(y
∗)+ I)dΩ+

∫
Ωi

k∗i (grady∗r∗i (y
∗)+ I)dΩ

 (C1.21)430

where ϕ is the porosity. Integrating (C1.17) over Ωa, and then using the divergence theorem and the periodicity condition, leads

to the first order dimensionless description:

ϕ
∂ρ

∗(0)
vs

∂t
−divx∗(Dtd∗gradx∗ρ∗(0)vs (T ∗(0))) =−

∫
Γ

D∗
v(grady∗ρ∗(2)v +gradx∗ρ∗(1)v ) ·nidS = ρ∗i ϕ̇. (C1.22)

where Dtd∗ is the macroscopic effective diffusion tensor defined as:

Dtd∗ =
1

|Ω|

∫
Ωa

D∗
v(grady∗ r∗a(y

∗)+ I)d Ω (C1.23)435
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S.3.2 Case C2

Taking into account of the order of magnitude of the dimensionless numbers,
[
FT
i

]
=O

([
FT
a

])
=O ([Fρ

a]) =O(ε2), [K] =

O (1) , [WR] =O
(
ε−1
)
, [H] =O (1), the dimensionless microscopic description (13)-(18) becomes:

ε2ρ∗iC
∗
i

∂T ∗
i

∂t∗
−div∗(k∗i grad

∗T ∗
i ) = 0 in Ωi (C2.1)

440

ε2ρ∗aC
∗
a

∂T ∗
a

∂t∗
−div∗(k∗agradT

∗
a ) = 0 in Ωa (C2.2)

ε2
∂ρ∗v
∂t∗

−div∗(D∗
vgrad

∗ρ∗v) = 0 in Ωa (C2.3)

T ∗
i = T ∗

a on Γ (C2.4)445

k∗i grad
∗T ∗

i ·ni − k∗agrad
∗T ∗

a ·ni = L∗
sg

D∗
v

ρ∗i
grad∗ρ∗v ·ni on Γ (C2.5)

D∗
vgrad

∗ρ∗v ·ni = ε−1ρ∗iw
∗ ·ni on Γ. (C2.6)

This set of equations is completed by the Hertz-Knudsen equation (A.7) and the Clausius Clapeyron’s law (9) expressed in450

dimensionless form as:

w∗
n =w∗ ·ni =

α∗

ρ∗i
w∗

k [ρ
∗
v − ρ∗vs(T

∗
a )] on Γ (C2.7)

ρ∗vs(T
∗
a ) = ρref∗vs (T ref∗)exp

[
L∗
sgm

∗

ρ∗i k
∗

(
1

T ref∗ − 1

T ∗
a

)]
(C2.8)

S.3.2.1 Heat transfer and water vapor transfer at the first and the second order455

Introducing asymptotic expansions for T ∗
i and T ∗

a in the relations (C2.1), (C2.2), (C2.4), and (C2.5) give at the lowest order:

divy∗(k∗i grady∗T
∗(0)
i ) = 0 in Ωi (C2.9)

divy∗(k∗agrady∗T ∗(0)
a ) = 0 in Ωa (C2.10)
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460

T
∗(0)
i = T ∗(0)

a on Γ (C2.11)

(k∗i grad
∗
y∗T

∗(0)
i − k∗agrad

∗
y∗T ∗(0)

a ) ·ni = L∗
sg

D∗
v

ρ∗i
grady∗ρ∗(0)v on Γ (C2.12)

where the unknowns T
∗(0)
i (x∗,y∗, t) and T

∗(0)
a (x∗,y∗, t) are y∗-periodic. Introducing asymptotic expansions for ρ∗v in the

relations (C2.3, C2.6) give at the lowest order:465

divy∗(D∗
vgrady∗ρ∗(0)v ) = 0 in Ωa (C2.13)

ρ∗(0)v = ρ∗(0)vs (T ∗(0)) on Γ. (C2.14)

where the unknown ρ
∗(0)
v (x∗,y∗, t) is y∗-periodic. The solution of the above boundary value problems is given by:

ρ∗(0)v = ρ∗(0)v (x∗, t) = ρ∗(0)vs (T ∗(0)). (C2.15)470

T
∗(0)
i = T ∗(0)

a = T ∗(0)(x∗, t). (C2.16)

At the first order, the temperature and the water vapor density are independent of the microscopic dimensionless variable y∗.

We have only one temperature field. Taking into account of these results, Eq. (C2.1), (C2.2), (C2.4), and (C2.5) of order ε give

the following second-order problem:475

divy∗(k∗i (grady∗T
∗(1)
i +gradx∗T ∗(0))) = 0 in Ωi (C2.17)

divy∗(k∗a(grady∗T ∗(1)
a +gradx∗T ∗(0))) = 0 in Ωa (C2.18)

T
∗(1)
i = T ∗(1)

a on Γ (C2.19)480

(k∗i (grady∗T
∗(1)
i +gradx∗T ∗(0))− k∗a(grady∗T ∗(1)

a +gradx∗T ∗(0))) ·ni (C2.20)

= L∗
sg

D∗
v

ρ∗i
(grady∗ρ∗(1)v +gradx∗ρ∗(0)v ) ·ni on Γ.
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where the unknowns T ∗(1)
i (x∗,y∗, t) and T

∗(1)
a (x∗,y∗, t) are y∗-periodic and the macroscopic gradient gradx∗T ∗(0) is given.485

Moreover we have the second-order problem for Eq. (C2.3) and (C2.6) is written:

divy∗(D∗
v(grady∗ρ∗(1)v +gradx∗ρ∗(0)vs )) = 0 in Ωa (C2.21)

ρ∗(1)v = ρ∗(1)vs on Γ. (C2.22)

where the unknowns ρ∗(1)v (x∗,y∗, t) is y∗-periodic. According to (A.40), this latter boundary condition can be also written490

ρ∗(1)v = ρ∗(1)vs = γ∗(T ∗(0))T ∗(1)
a on Γ (C2.23)

Moreover, we have

gradx∗ρ∗(0)vs = γ∗(T ∗(0))gradx∗T ∗(0) (C2.24)

thus Eq. (C2.21) and (C2.23) are written:

divy∗(D∗
v(grady∗ρ∗(1)v + γ∗(T ∗(0))gradx∗T ∗(0)) = 0 in Ωa (C2.25)495

ρ∗(1)v = γ∗(T ∗(0))T ∗(1)
a on Γ (C2.26)

As in the Case C1, the solution of the above boundary value problems (C2.17)-(C2.20) and (C2.25)-(C2.26) appears as a linear

function of the macroscopic gradient gradx∗T ∗(0), modulo an arbitrary function.

T
∗(1)
i (x∗,y∗, t) = r∗i (y

∗) ·gradx∗T ∗(0) + T̃
∗(1)
i (C2.27)500

T ∗(1)
a (x∗,y∗, t) = r∗a(y

∗) ·gradx∗T ∗(0) + T̃ ∗(1)
a (C2.28)

ρ∗(1)v (x∗,y∗, t) = γ∗(T ∗(0))(r∗a(y
∗) ·gradx∗T ∗(0) + T̃ ∗(1)

a ) on Γ (C2.29)

where r∗i (y
∗) and r∗a(y

∗) are two periodic vectors which characterize the fluctuation of temperature in both phases at the pore505

scale. Introducing (C2.27) and (C2.28) in the set (C2.17)-(C2.20), these two vectors are solution of the following boundary

value problem in a compact form:

divy∗(k∗i (grady∗r∗i + I)) = 0 in Ωi (C2.30)
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divy∗(k∗a(grady∗r∗a + I)) = 0 in Ωa (C2.31)510

r∗i = r∗a on Γ (C2.32)

(k∗i (grady∗r∗i + I)− (k∗a +L∗
sgD

∗
v

γ∗(T ∗(0))

ρ∗i
)(grady∗r∗a + I)) ·ni = 0 on Γ (C2.33)

515

1

|Ω|

∫
Ω

(r∗a + r∗i )dΩ= 0 (C2.34)

This latter equation is introduced to ensure the uniqueness of the solution. This latter boundary value problem is similar as the

(A.20)-(A.24) where k∗a is now equal to k∗a +L∗
sgD

∗
vγ

∗(T ∗(0))/ρ∗i . At the local scale, the thermal conductivity appears to be

enhanced by the phase change.

S.3.2.2 Macroscopic description520

Finally, the third order problem is given by the equations (C2.1, C2.2, C2.4, C2.5) of order ε2:

ρ∗iC
∗
i

∂T ∗(0)

∂t∗
−divy∗(k∗i (grady∗T

∗(2)
i +gradx∗T

∗(1)
i ))− divx∗(k∗i (grady∗T

∗(1)
i +gradx∗T ∗(0))) = 0 in Ωi (C2.35)

ρ∗aC
∗
a

∂T ∗(0)

∂t∗
−divy∗(k∗a(grady∗T ∗(2)

a +gradx∗T ∗(1)
a ))−divx∗(k∗a(grady∗T ∗(1)

a +gradx∗T ∗(0))) = 0 in Ωa (C2.36)

525

T
∗(2)
i = T ∗(2)

a onΓ (C2.37)

(k∗i (grady∗T
∗(2)
i +gradx∗T

∗(1)
i )− k∗a(grady∗T ∗(2)

a +gradx∗T ∗(1)
a )) ·ni = (C2.38)

= L∗
sg

D∗
v

ρ∗i
(grady∗ρ∗(2)v +gradx∗ρ∗(1)v ) ·ni on Γ.530

where the unknowns T ∗(2)
i (x∗,y∗, t) and T

∗(2)
a (x∗,y∗, t) are y∗-periodic. For the water vapor, the third order problem is given

by the the equations (C2.3, C2.6) of order ε2:

∂ρ
∗(0)
vs

∂t∗
−divy∗(D∗

v(grady∗ρ∗(2)v +gradx∗ρ∗(1)v ))−divx∗(D∗
v(grady∗ρ∗(1)v +gradx∗ρ∗(0)vs (T ∗(0)))) = 0 in Ωa (C2.39)
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D∗
v(grady∗ρ∗(2)v +gradx∗ρ∗(1)v ) ·ni = ρ∗iw

∗(3)
n on Γ (C2.40)535

Integrating (C2.35) over Ωi and (C2.36) and (C2.39) over Ωa, and then using the divergence theorem, the periodicity condition,

and the boundary conditions (B2.40) leads to the first order dimensionless description:

(ρC)eff∗ ∂T
∗(0)

∂t∗
−divx∗(ktd∗gradx∗T ∗(0)) =

∫
Γ

L∗
sg

D∗
v

ρ∗i
(grady∗ρ∗(2)v +gradx∗ρ∗(1)v ) ·nidS =−L∗

sgϕ̇. (C2.41)

where (ρC)eff∗ and ktd∗ are the dimensionless effective thermal capacity and the apparent dimensionless conductivity respec-

tively, defined as:540

(ρC)eff∗ = (1−ϕ)ρ∗iC
∗
i +ϕρ∗aC

∗
a (C2.42)

ktd∗ =
1

|Ω|

∫
Ωa

k∗a(grady∗r∗a(y
∗)+ I)dΩ+

∫
Ωi

k∗i (grady∗r∗i (y
∗)+ I)dΩ

 (C2.43)

where ϕ is the porosity. Integrating (C2.39) over Ωa, and then using the divergence theorem and the periodicity condition, leads

to the first order dimensionless description:545

ϕ
∂ρ

∗(0)
vs

∂t
−divx∗(Dtd∗gradx∗ρ∗(0)vs (T ∗(0))) =−

∫
Γ

D∗
v(grady∗ρ∗(2)v +gradx∗ρ∗(1)v ) ·nidS = ρ∗i ϕ̇. (C2.44)

where Dtd∗ is the apparent effective diffusion tensor defined as:

Dtd∗ =
1

|Ω|

∫
Ωa

D∗
v(grady∗ r∗a(y

∗)+ I)d Ω (C2.45)

S.3.3 Case C3

Taking into account of the order of magnitude of the dimensionless numbers,
[
FT
i

]
=O

([
FT
a

])
=O ([Fρ

a]) =O(ε2), [K] =550

O (1) , [WR] =O
(
ε−1
)
, [H] =O (1), the dimensionless microscopic description (13)-(18) becomes:

ε2ρ∗iC
∗
i

∂T ∗
i

∂t∗
−div∗(k∗i grad

∗T ∗
i ) = 0 in Ωi (C3.1)

ε2ρ∗aC
∗
a

∂T ∗
a

∂t∗
−div∗(k∗agradT

∗
a ) = 0 in Ωa (C3.2)

555

ε2
∂ρ∗v
∂t∗

−div∗(D∗
vgrad

∗ρ∗v) = 0 in Ωa (C3.3)
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T ∗
i = T ∗

a on Γ (C3.4)

k∗i grad
∗T ∗

i ·ni − k∗agrad
∗T ∗

a ·ni = L∗
sg

D∗
v

ρ∗i
grad∗ρ∗v ·ni on Γ (C3.5)560

D∗
vgrad

∗ρ∗v ·ni = ε−2ρ∗iw
∗ ·ni on Γ. (C3.6)

This set of equations is completed by the Hertz-Knudsen equation (A.7) and the Clausius Clapeyron’s law (9) expressed in

dimensionless form as:

w∗
n =w∗ ·ni =

α∗

ρ∗i
w∗

k [ρ
∗
v − ρ∗vs(T

∗
a )] on Γ (C3.7)565

ρ∗vs(T
∗
a ) = ρref∗vs (T ref∗)exp

[
L∗
sgm

∗

ρ∗i k
∗

(
1

T ref∗ − 1

T ∗
a

)]
(C3.8)

S.3.3.1 Heat transfer and water vapor transfer at the first and second order

Introducing asymptotic expansions for T ∗
i and T ∗

a in the relations (C3.1, C3.2, C3.4, C3.5) give at the lowest order:

divy∗(k∗i grady∗T
∗(0)
i ) = 0 in Ωi (C3.9)570

divy∗(k∗agrady∗T ∗(0)
a ) = 0 in Ωa (C3.10)

T
∗(0)
i = T ∗(0)

a on Γ (C3.11)

575

(k∗i grad
∗
y∗T

∗(0)
i − k∗agrad

∗
y∗T ∗(0)

a ) ·ni = L∗
sg

D∗
v

ρ∗i
grady∗ρ∗(0)v on Γ (C3.12)

where the unknowns T
∗(0)
i (x∗,y∗, t) and T

∗(0)
a (x∗,y∗, t) are y∗-periodic. Introducing asymptotic expansions for ρ∗v in the

relations (C3.3, C3.6) give at the lowest order

divy∗(D∗
vgrady∗ρ∗(0)v ) = 0 in Ωa (C3.13)
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580

ρ∗(0)v = ρ∗(0)vs (T ∗(0)) on Γ. (C3.14)

where the unknowns ρ∗(0)v (x∗,y∗, t) is y∗-periodic. The solution of the above boundary value problems is given by:

ρ∗(0)v = ρ∗(0)v (x∗, t) = ρ∗(0)vs (T ∗(0)). (C3.15)

T
∗(0)
i = T ∗(0)

a = T ∗(0)(x∗, t). (C3.16)585

At the first order, the temperature and the water vapor density are independent of the microscopic dimensionless variable y∗.

We have only one temperature field. Taking into account of these results, equations (C3.1, C3.2, C3.4, C3.5) of order ε give

the following second-order problem:

divy∗(k∗i (grady∗T
∗(1)
i +gradx∗T ∗(0))) = 0 in Ωi (C3.17)

590

divy∗(k∗a(grady∗T ∗(1)
a +gradx∗T ∗(0))) = 0 in Ωa (C3.18)

T
∗(1)
i = T ∗(1)

a on Γ (C3.19)

(k∗i (grady∗T
∗(1)
i +gradx∗T ∗(0))− k∗a(grady∗T ∗(1)

a +gradx∗T ∗(0))) ·ni (C3.20)595

= L∗
sg

D∗
v

ρ∗i
(grady∗ρ∗(1)v +gradx∗ρ∗(0)v ) ·ni on Γ.

where the unknowns T ∗(1)
i (x∗,y∗, t) and T

∗(1)
a (x∗,y∗, t) are y∗-periodic and the macroscopic gradient gradx∗T ∗(0) is given.

Moreover we have the second-order problem for the equations (C3.3, C3.6) is written:

divy∗(D∗
v(grady∗ρ∗(1)v +gradx∗ρ∗(0)vs )) = 0 in Ωa (C3.21)600

ρ∗(1)v = ρ∗(1)vs on Γ. (C3.22)

where the unknowns ρ∗(1)v (x∗,y∗, t) is y∗-periodic. According to (A.40), this latter boundary condition can be also written

ρ∗(1)v = ρ∗(1)vs = γ∗(T ∗(0))T ∗(1)
a on Γ (C3.23)
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Moreover, we have605

gradx∗ρ∗(0)vs = γ∗(T ∗(0))gradx∗T ∗(0) (C3.24)

thus equations (C3.21) and (C3.23) are written:

divy∗(D∗
v(grady∗ρ∗(1)v + γ∗(T ∗(0))gradx∗T ∗(0)) = 0 in Ωa (C3.25)

ρ∗(1)v = γ∗(T ∗(0))T ∗(1)
a on Γ (C3.26)610

As in the Cases C1 and C2, the solution of the above boundary value problems (C3.17-C3.20) and (C3.25-C3.26) appears as a

linear function of the macroscopic gradient gradx∗T ∗(0), modulo an arbitrary function.

T
∗(1)
i (x∗,y∗, t) = r∗i (y

∗) ·gradx∗T ∗(0) + T̃
∗(1)
i (C3.27)

T ∗(1)
a (x∗,y∗, t) = r∗a(y

∗) ·gradx∗T ∗(0) + T̃ ∗(1)
a (C3.28)615

ρ∗(1)v (x∗,y∗, t) = γ∗(T ∗(0))(r∗a(y
∗) ·gradx∗T ∗(0) + T̃ ∗(1)

a ) on Γ (C3.29)

where r∗i (y
∗) and r∗a(y

∗) are two periodic vectors which characterize the fluctuation of temperature in both phases at the pore

scale. Introducing (C3.27) and (C3.28) in the set (C3.17-C3.20), these two vectors are solution of the following boundary value

problem in a compact form:620

divy∗(k∗i (grady∗r∗i + I)) = 0 in Ωi (C3.30)

divy∗(k∗a(grady∗r∗a + I)) = 0 in Ωa (C3.31)

r∗i = r∗a on Γ (C3.32)625

(k∗i (grady∗r∗i + I)− (k∗a +L∗
sgD

∗
v

γ∗(T ∗(0))

ρ∗i
)(grady∗r∗a + I)) ·ni = 0 on Γ (C3.33)

1

|Ω|

∫
Ω

(r∗a + r∗i )dΩ= 0 (C3.34)

This latter equation is introduced to ensure the uniqueness of the solution. This latter boundary value problem is similar as the630

one of (A.20)-(A.24) where k∗a is now equal to k∗a +L∗
sgD

∗
vγ

∗(T ∗(0))/ρ∗i . At the local scale, the thermal conductivity appears

to be enhanced by the phase change.
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S.3.3.2 Macroscopic description

Finally, the third order problem is given by Eq. (C3.1), (C3.2), (C3.4), and (C3.5) of order ε2:

ρ∗iC
∗
i

∂T ∗(0)

∂t∗
−divy∗(k∗i (grady∗T

∗(2)
i +gradx∗T

∗(1)
i ))− divx∗(k∗i (grady∗T

∗(1)
i +gradx∗T ∗(0))) = 0 in Ωi (C3.35)635

ρ∗aC
∗
a

∂T ∗(0)

∂t∗
−divy∗(k∗a(grady∗T ∗(2)

a +gradx∗T ∗(1)
a ))−divx∗(k∗a(grady∗T ∗(1)

a +gradx∗T ∗(0))) = 0 in Ωa (C3.36)

T
∗(2)
i = T ∗(2)

a onΓ (C3.37)

640

(k∗i (grady∗T
∗(2)
i +gradx∗T

∗(1)
i )− k∗a(grady∗T ∗(2)

a +gradx∗T ∗(1)
a )) ·ni = (C3.38)

= L∗
sg

D∗
v

ρ∗i
(grady∗ρ∗(2)v +gradx∗ρ∗(1)v ) ·ni on Γ.

where the unknowns T ∗(2)
i (x∗,y∗, t) and T

∗(2)
a (x∗,y∗, t) are y∗-periodic. For the water vapor, the third order problem is given

by Eq. (C3.3) and (C3.6) of order ε2:645

∂ρ
∗(0)
vs

∂t∗
−divy∗(D∗

v(grady∗ρ∗(2)v +gradx∗ρ∗(1)v ))−divx∗(D∗
v(grady∗ρ∗(1)v +gradx∗ρ∗(0)vs (T ∗(0)))) = 0 in Ωa (C3.39)

D∗
v(grady∗ρ∗(2)v +gradx∗ρ∗(1)v ) ·ni = ρ∗iw

∗(4)
n on Γ (C3.40)

Integrating (C3.35) over Ωi and (C3.36) and (C3.39) over Ωa, and then using the divergence theorem, the periodicity condition,

and the boundary conditions (B2.40) leads to the first order dimensionless description:650

(ρC)eff∗ ∂T
∗(0)

∂t∗
−divx∗(ktd∗gradx∗T ∗(0)) =

∫
Γ

L∗
sg

D∗
v

ρ∗i
(grady∗ρ∗(2)v +gradx∗ρ∗(1)v ) ·nidS =−L∗

sgϕ̇. (C3.41)

where (ρC)eff∗ and ktd∗ are the dimensionless effective thermal capacity and the apparent dimensionless thermal conductivity,

respectively, defined as:

(ρC)eff∗ = (1−ϕ)ρ∗iC
∗
i +ϕρ∗aC

∗
a (C3.42)

655

ktd∗ =
1

|Ω|

∫
Ωa

k∗a(grady∗r∗a(y
∗)+ I)dΩ+

∫
Ωi

k∗i (grady∗r∗i (y
∗)+ I)dΩ

 (C3.43)
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where ϕ is the porosity. Integrating (C3.39) over Ωa, and then using the divergence theorem and the periodicity condition, leads

to the first order dimensionless description:

ϕ
∂ρ

∗(0)
vs

∂t
−divx∗(Dtd∗gradx∗ρ∗(0)vs (T ∗(0))) =−

∫
Γ

D∗
v(grady∗ρ∗(2)v +gradx∗ρ∗(1)v ) ·nidS = ρ∗i ϕ̇. (C3.44)

where Dtd∗ is the apparent effective diffusion tensor defined as:660

Dtd∗ =
1

|Ω|

∫
Ωa

D∗
v(grady∗ r∗a(y

∗)+ I)d Ω (C3.45)
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