
Review of the manuscript titled "Multiscale modeling of heat

and mass transfer in dry snow: in�uence of the condensation

coe�cient and comparison with experiments"

The manuscript reports on the multiscale modeling of the heat and mass transfer in dry snow by
using the homogenization technique to derive the macroscopic equations. The heat transfer is ruled
by the conduction mechanism in ice and water vapor phases whereas the mass transfer of water
vapor is described by the Fick's 2nd law. At the ice/�uid interface, the Hertz-Knudsen relation is
used to describe the sublimation/deposition mechanism. For di�erent order of magnitude of the
sublimation/deposition rate, di�erent cases (A, B1, B2 and C) are considered giving rise to di�erent
macroscopic models characterized by the e�ective coe�cients. The details of the homogenization
procedure are given in the supplementary document while the main results of the macroscopic
models are summarized in the manuscript.

First, I veri�ed the homogenization procedure in the "long" supplementary document for the cases
A, B1, B2 and C. The notations are quite heavy with the superscript ? for each term and it can be
simpli�ed. In general, I agree with these results except for the case B2 (see my comments below).
For high order of magnitude of the sublimation/deposition rate (or high value of α), this gives the
same result obtained from the volume averaging method reported in Moyne et al. (1988) for the
heat and mass transfer with condensation/evaporation problem in porous media.

The paper is interesting and well written. The development of the multiscale models is rigorous
with a well-posed ε-models from the dimensional analysis. For this reason, I recommend the paper
for publication after revision.

Major comments:

1. The authors should explicitly explain the choice of using the Hertz-Knudsen equation for
describing the vapor �ux at the solid/�uid interface.

Instead of using an equilibrium condition at the solid/�uid interface as (the curvature e�ect
is neglected)

ki∇Ti · n− ka∇Ta · n =
Lsg

ρi
Dv∇ρv · n

ρv = ρvs at Γfs, (1)

the authors introduce Hertz-Knudsen law to take into account the non-equilibrium state for
small value of α. It means that an "complementary resistance" is added at the solid/�uid
interface. This point should be clearly discussed at the beginning.

Moreover, maybe it should be better to de�ne the latent heat of sublimation by L = Lsg/ρi
in J/kg.

2. Dimensional analysis: the ratio of the heat conductivities of ice and air is

[K] =
kic
kac

= 96 ' O(ε−1) (2)

However, the authors assume that [K] = O(1). This point needs to be clari�ed.
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3. I don't agree with the result of the model B2. From Eqs. B2.22 and B2.23 together with the
periodicity condition, we have ∫

Γ

(ρ(1)
v − ρ(1)

vs )dS = 0 (3)

where ρ
(1)
v (x,y, t) is periodic function depending on x and y. This can not ensure that

ρ
(1)
v = ρ

(1)
vs on Γ is a unique solution.

I suggest that the authors should �nd a solution for ρ
(1)
v − ρ(1)

vs by linearity as

ρ(1)
v − ρ(1)

vs = χ ·∇xT
(0) (4)

combined with a solution for ρ
(1)
vs = γra ·∇xT

(0), so that from Eqs. B2.22 and B2.23, we can
obtain a consistent closure problem with a coupled term at the solid/�uid interface.

4. In my opinion, the e�ect of the sublimation/deposition needs to be better discussed in the
macroscopic results in the Section 2.6. For example, for the case C, what I understand is
that considering the sublimation/deposition at the solid/�uid interface refers to a classical
heat conduction problem for ice and air without sublimation/deposition with a modi�ed air
conductivity being ka + kdif .

5. I �nd that the discontinuity between the models B and C is quite surprising. Let consider only
a heat conduction problem with a resistance at the solid/�uid interface as reported in Auriault
et al. [1]. All the one equation models can be deduced from one to other. The discontinuity
appears when passing from two equations models to one equation model. However in this
work, the one equations models are not continuous. By revisiting the model B2 (see my
comment 3), can we obtain the continuity of the models?

6. Page 17, line 410: it was concluded that if a temperature gradient is applied along e2, the
model A (or B) will not predict any mass variation.

In this direction, Deff
22 = 0 and at the steady state, we have ρ

(0)
v = ρ

(0)
vs (T (0)) which varies

according to the Clausius Clapeyron's law.

7. Page 21, line 470: for the water vapor boundary conditions at the top and bottom, why
the Robin boundary condition is imposed instead of using the zero-�ux as applied for the
macro-scale simulations?

8. Comparison between DNS and macroscopic simulations: In Figs. 11(a) and (b) for ∆T , we
observe clearly that by increasing α, the DNS result tends to the one of model C and for
higher value of α (α > 1), we may have a good agreement between the DNS and the model
C as expected. However, in Fig. 11(f), why the result of the DNS for α → 1 does not tend
to the case C for φ̇?

Moreover, as the model C is independent on α, I suggest that to compare with the simulation
of the model C, for the mass transfer problem at the pore scale, the equilibrium should be
used at the solid/�uid interface ρv = ρvs at Γfs, instead of using the Robin condition involving
the parameter α.

9. It is observed that the model B and C can not predict correctly the behavior of sublima-
tion/deposition in the vicinity of the boundary, in comparing with the DNS. In my opinion,
it refers to a boundary layer problem (several works in the literature try to �x this problem
encountered in simulation of homogenized models).
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10. The terminology "boundary condition" used to describe the solid/�uid interface condition is
not correct. Please modify this sentence to "interface condition".
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