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Abstract. Temperature gradient metamorphism in dry snow is driven by heat and water vapor transfer through snow, which

includes conduction/diffusion processes in both air and ice phases as well as sublimation and deposition at the ice-air interface.

The latter processes are driven by the condensation coefficient α, a poorly constrained parameter in literature. In the present

paper, we use an upscaling method to derive heat and mass transfer models at the snow layer scale according to α in the range

10−10 to 1. A transition α-value arises, of the order of 10−4 for typical snow microstructures (characteristic length ∼ 0.5 mm),5

such as the vapor transport is limited by sublimation-deposition below that value and by diffusion above. Accordingly, different

macroscopic models with specific domains of validity with respect to α-values are derived. A comprehensive evaluation of the

models is presented by comparing with three experimental datasets as well as with pore-scale simulations using a simplified

microstructure. The models reproduce the two main features of the experiments: the non-linear temperature profiles, with

enhanced values in the center of the snow layer, and the mass transfer, with an abrupt basal mass loss. However, both features10

are overall underestimated by the models when compared to the experimental data. We investigate possible causes of these

discrepancies and suggest potential improvements for the modeling of heat and mass transport in dry snow.

1 Introduction

Natural snowpacks are frequently subjected to temperature gradients induced by the meteorological conditions. In case of tem-

perature gradient in dry snow, heat and water vapor are transported through the snowpack by heat conduction through ice and15

air and by vapor diffusion in air. These phenomena are coupled by the sublimation-deposition processes at the ice-air inter-

faces. In practice, such transfer processes can be enhanced by natural air convection induced by the temperature gradient (e.g.,

Jafari et al., 2022) or by forced convection generated by the wind at the snowpack surface (e.g., Albert and McGilvary, 1992;

Calonne et al., 2015). For a sake of simplicity, both types of convection are neglected in the following. All those processes lead

to changes in the snow microstructure called temperature gradient metamorphism (TGM), which transforms snow into faceted20

crystals (FC) in the case of moderate gradients and into depth hoar (DH) for stronger gradients (see Fierz et al., 2009). Those

transformations of the microstructure can sometimes come along with a redistribution of mass in the snow layer, a density
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drop or even the formation of an air gap at the base of the snowpack, as observed in the Arctic (e.g., Domine et al., 2019)

or in some cold room experiments (e.g., Kamata and Sato, 2007; Wiese, 2017; Bouvet et al., 2023). As a result of changes

in microstructure and density, TGM also induces significant changes in the snow physical and mechanical properties, such25

as thermal conductivity, vapor diffusivity, or elastic properties (e.g., Srivastava et al., 2010; Calonne et al., 2014a; Wautier

et al., 2015), affecting the snowpack behavior at larger scale. Hence, an accurate representation of the heat and mass transport

processes during TGM is key to accurately model the snow cover, as required for many applications as avalanche forecasting

or climate studies (Jordan, 1991; Lehning et al., 2002; Vionnet et al., 2012).

::::::
Models

::
to

:::::::
describe

:::
the

::::
heat

:::
and

::::
mass

:::::::
transfer

:
at
:::
the

::::
pore

:::::
scale,

:::::::
referred

::
to

::
as

::::::::::
micro-scale,

::::
have

::::
been

::::::::
proposed

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Flin et al., 2003; Flin and Brzoska, 2008; Kaempfer and Plapp, 2009; Vetter et al., 2010; Bouvet et al., 2022)30

:
.
:::::
Based

:::
on

::::::
explicit

:::::::::::::
representations

::
of

:::
the

:::
3D

:::::
snow

:::::::::::::
microstructure,

:::::
often

::::
from

:::::
x-ray

::::::::::
tomography

:::::::
images,

::::::::::
simulations

::
at

::::
that

::::
scale

:::
are

::::::
usually

:::::::::
performed

:::
on

::::
small

:::::
snow

:::::::
volumes

::::
due

::
to

::::::::
numerical

::::
cost

:::::::::
limitations.

:
In micro-scale modeling, heat and mass

transfer processes are coupled through boundary conditions accounting for
:::::::
interface

:::::::::
conditions

:::
that

:::::::
account

:::
for

:::
the

:
sublima-

tion and deposition processes at the air-ice interface and involving the
::::::
involve

:::
an interface growth velocity. The latter

::
In

:::::
snow

::::::
physics,

::::
the

:::::::
interface

:::::::
growth

:::::::
velocity is classically given by the Hertz-Knudsen equation , which is linearly dependent

:::
and35

:::::::
strongly

:::::::
depends on the condensation coefficient α. This parameter, also called condensation, attachment, sticking, deposition,

or kinetic coefficient(e.g., Flin et al., 2003; Libbrecht, 2005; Brzoska et al., 2008; Kaempfer and Plapp, 2009; Furukawa, 2015; Krol and Löwe, 2016; Fourteau et al., 2021a; Granger et al., 2021)

, theoretically ranges from 0 to 1 for an infinite flat surface, since it characterizes
:
,
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Flin et al., 2003; Libbrecht, 2005; Brzoska et al., 2008; Kaempfer and Plapp, 2009; Furukawa, 2015; Krol and Löwe, 2016; Fourteau et al., 2021a; Granger et al., 2021)

:
.
::::
This

:::::::::
coefficient

::::::::
describes the probability that a water vapor molecule striking the ice surface is

:::
will

::
be

:
incorporated into it

:
,

:::
and

:::::::::::
theoretically

:::::
ranges

:::::
from

::
0

::
to

::
1

:::
for

::
an

::::::
infinite

::::
flat

::::::
surface

:
(see e.g., Libbrecht, 2005; Furukawa, 2015). The analogous40

coefficient for sublimation can also be defined, although it is classically
:::
but

::
is

::::
often

:
assumed equal to the condensation coef-

ficient. However, this
::
At

::::::
present,

:::
the

::::::::::::
condensation coefficient is still poorly understood and quantified, notably because of its

complex dependencies on temperature, temperature gradient, supersaturation, and
::::::::::::
supersaturation

:::
(or

::::::::::
temperature

:::::::::
gradient),

:::
and

:::
ice crystalline orientation (see, e.g., Libbrecht, 2021). Values

::::::::
Estimates

:
of the condensation coefficient can be found in the

literature, from single .
::::::
Typical

::::::
values

:::::::
obtained

:::::
from

:::::
single

::
ice

:
crystal growth experiments , usually ranging

:::::
range from 10−4 to45

10−1 (see, e.g., Libbrecht and Rickerby, 2013), or indirectly retrieved .
:::::::
Indirect

::::::::
estimates from snow modeling at the pore scale

, ranging
:::::
range from 10−4 to 10−3 (see, e.g., Flin, 2004; Bouvet et al., 2022). Currently, modeling heat and mass transport at the

pore scale can only be performed on small snow volumes (e.g., Kaempfer and Plapp, 2009; Vetter et al., 2010; Bouvet et al., 2022)

. To predict the behavior of the entire snowpack, macro-scale models, i.e. at the scale of the snow layer, are used.

In the last decades, several models have been proposed
:::::::
presented

:
to describe heat and mass transfer at the snow layer scale

::::
scale50

::
of

:
a
:::::
snow

:::::
layer,

::::::
referred

::
to
:::
as

::::::::::
macro-scale.

:::
At

:::
that

:::::
scale,

:::
the

:::::
snow

::::::::::::
microstructure

::
is

:::
not

::::::::
explicitly

::::::::::
represented

:::
and

::::::::::
simulations

:::
can

::
be

::::::
carried

::::
out

::
on

:::::
entire

::::::::::
snowpacks. The first models assumed saturated vapor conditions in the snow (e.g., de Quervain,

1963; Anderson, 1976; Powers et al., 1985). Later, using a phenomenological approach, Albert and McGilvary (1992) proposed

to describe the heat and water vapor transfer through a snowpack subjected to an air flow, without restricting the water vapor

to its saturation value. The model uses two coupled advection-diffusion equations
:
, including a source term arising from phase55

change at the pore scale. A similar heat and mass transfer model was analytically obtained by Calonne et al. (2014b, 2015)

using an upscaling method. In that case, the macroscopic equivalent modeling was derived from its description at the pore
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scale using the homogenization of multiple scale expansions. This theoretical method also provides the exact expression of the

effective parameters arising at the macro-scale and the domains of validity of the macroscopic modeling. Two main effective

parameters emerge from the model: (i) the effective thermal conductivity keff , which depends on the ice and air conductivity60

and on the snow microstructure, and (ii) the effective diffusion Deff , which depends on the vapor molecular diffusion coeffi-

cient and the snow microstructure. The source term is related to the Hertz-Knudsen equation, which involves the condensation

coefficient α. Calonne et al. (2014b) have shown that this model is valid for interface growth velocities below 3 × 10−11 m

s−1, which typically corresponds to slow kinetics.

Other approaches largely rely on the assumption of saturated vapor conditions, which seems valid for faster kinetics and rather65

high values of α (e.g., Sturm and Benson, 1997; Kamata and Sato, 2007; Hansen and Foslien, 2015). Hansen and Foslien (2015)

developed a heat and mass transfer model using a mixture theory. Assuming that the water vapor is saturated (based on the value

of α= 0.0144 from Delaney et al. (1964)), the authors derived a unique thermal equation which yields an apparent thermal

conductivity that depends on the air and ice conductivities, the water vapor diffusivity, the latent heat of sublimation-deposition,

and the temperature derivative of the Clapeyron equation. A similar formulation of the apparent thermal conductivity was also70

proposed by Yosida et al. (1955). Recently, Fourteau et al. (2021b) investigated the influence of α on the apparent diffusion

coefficient in snow. By performing numerical simulation on 3D images, they showed that this apparent diffusion coefficient

is equal to Deff for α-values smaller than ≈ 10−4 and then increases with increasing α until it reaches a plateau for α larger

than 10−2; the value at the plateau being smaller than the molecular diffusion of water vapor in the air. In a companion paper,

Fourteau et al. (2021a) computed from 3D images the apparent thermal conductivity of snow assuming that the water vapor75

on the ice-air interface is equal to the water vapor at saturation given by the Clapeyron equation. In this case, they showed that

the apparent thermal conductivity is enhanced by the sublimation-deposition process arising at the pore scale. Their results are

consistent with the model of Moyne et al. (1988) for wet porous media based on the same hypothesis at the micro-scale and

derived using the volume averaging method.

Further uses of the above mentioned models, as their implementation in full snow cover models, are limited by some chal-80

lenges. One is the difficulty of choosing between models as they differ in many ways: they were derived using different

methods, involve different balance equations and effective parameters, and are valid for different, often unclear, domains of

validity in terms of α-values. This should be clarified, especially by estimating the α-values from which the assumption of

saturated water vapor is theoretically valid. A second challenge is that none of these models were thoroughly evaluated to as-

sess their performances. This might be partly due to the limited number of suited datasets to compare with. The datasets from85

the cold-laboratory experiments of Kamata and Sato (2007) and, recently, of Bouvet et al. (2023) seem however relevant for

such comparisons, as they provide time-series of the vertical profiles of snow density and temperature, as well as the forcing

conditions to be reproduced in the simulations.

This paper aims i/ to define the heat and mass transport modeling in dry snow for the full α-values range and ii/ to evaluate the

model’s ability to reproduce natural snow evolution during TGM. To this end, in a first part, the homogenization of multiple90

scale expansions is applied to derive the macroscopic equivalent modeling of heat and vapor transfer for α-values ranging

from 10−10 to 1, following Calonne et al. (2014b). The physics considered at the pore scale includes heat conduction, vapor
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diffusion, and phase change; neglecting any transport linked to curvature effect and convection. The macroscopic models and

the involved macroscopic properties are compared to the ones from the literature and illustrated for simplified snow microstruc-

tures. In a second part, the derived macroscopic models are evaluated using three cold-laboratory experiments of TGM from95

Kamata and Sato (2007) and Bouvet et al. (2023). The experiments are reproduced with the macroscopic models and results

between observations and simulations are analyzed.

2 Derivation of the macroscopic modeling

2.1 Upscaling method

We apply the homogenization technique of multiple scale expansion (Bensoussan et al., 1978; Sanchez-Palencia, 1980) to the100

physics of heat and vapor transport in dry snow. The homogenization method allows to model the local physical processes in

heterogeneous media by an equivalent continuous macroscopic description if the condition of separation of scales is satisfied

(Bensoussan et al., 1978; Sanchez-Palencia, 1980; Auriault, 1991; Auriault et al., 2009). This coefficient of separation of

scales can be expressed as ε= l/L≪ 1, where l and L are the characteristic lengths of the heterogeneities at the pore scale

and of the macroscopic sample or excitation, respectively. This condition implies the existence of a Representative Elementary105

Volume (REV) of size l for both the material and the excitation. Following the methodology presented by Auriault (1991), the

macroscopic equivalent model is obtained from the description of the physics at the pore scale by: (i) assuming the medium

to be periodic, without loss of generality as the condition ε= l/L≪ 1 is fulfilled; (ii) writing the description of the physics at

the pore scale in a dimensionless form; (iii) evaluating the obtained dimensionless numbers with respect to the coefficient of

separation of scale ε; (iv) looking for the unknown fields in the form of asymptotic expansions in powers of ε; and (v) solving110

the successive boundary-value problems that are obtained after introducing these expansions in the pore scale dimensionless

description. The macroscopic equivalent model is obtained from compatibility conditions that are the necessary conditions for

the existence of solutions to the boundary-value problems.

2.2 Physical processes at the pore scale

As in Calonne et al. (2014b), we assume that a snow layer of characteristic length L can be represented by a collection of spa-115

tially periodic REVs of characteristic length l such that the coefficient of separation of scale ε= l/L≪ 1. In what follows, Ω

is the REV domain, Ωi is the ice domain, and Ωa is the air domain (Fig. 1). The ice grains interface is noted Γ and ni is the unit

outward vector of Ωi. The subscripts (i) or (a) are related to quantities defined in Ωi and Ωa, respectively. As illustrated in Fig.

1, the processes of heat and mass transport in dry snow considered are (i) the heat conduction through ice and air, (ii) the water

vapor diffusion in air, and (iii) the sublimation of ice and deposition of vapor at the ice grain interface, characterized by an inter-120

face growth velocity (Libbrecht, 2005; Kaempfer and Plapp, 2009; Barrett et al., 2012) following the Hertz-Knudsen equation.

::::
This

::::
latter

::::::::
equation,

::::::
initially

:::::::
derived

::
to

:::::::
describe

:::
the

:::::::::::::::::::::
condensation-evaporation

::::::::
processes

::
at

:
a
::::::::
liquid-gas

::::::::
interface,

::
is

::::::
widely

::::
used

::
in

::::
snow

::::::
physics

::::
and

:
is
:::::::::
supported

::
by

::::::
several

:::::::::::
experimental

::::::::
evidences

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Libbrecht, 2005; Kaempfer and Plapp, 2009; Furukawa, 2015; Libbrecht and Rickerby, 2013; Krol and Löwe, 2016)
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Figure 1. Physical phenomena under consideration at the Representative Elementary Volume (REV) scale.

:
. Air convection and snow densification are not taken into account here. Assuming that the properties of air and ice are isotropic,

these physical processes at the pore scale are described by the following set of equations:125

ρiCi
∂Ti

∂t
−div(kigradTi) = 0 in Ωi (1)

ρaCa
∂Ta

∂t
−div(kagradTa) = 0 in Ωa (2)

∂ρv
∂t

− div(Dvgradρv) = 0 in Ωa (3)130

Ti = Ta on Γ (4)

kigradTi ·ni − kagradTa ·ni = Lsgw ·ni on Γ (5)

135
Dvgradρv ·ni = (ρi − ρv)w ·ni ≃ ρiw ·ni on Γ (6)

where t is the time (s), T is the temperature (K), k is the thermal conductivity (W m−1 K−1), ρ is the density (kg m−3), C is the

specific heat capacity (J kg−1 K−1), Lsg is the latent heat of sublimation-deposition (J m−3), w is the interface growth velocity

(m s−1), ρv is the partial density of water vapor in air (kg m−3), Dv is the water vapor diffusion coefficient in air (m2 s−1)

and, div and grad are the divergence and gradient operators with respect to the physical space variable X respectively. At the140

interface, the heat and mass transfer are coupled through the normal interface growth velocity wn =w ·ni, which is given by

the Hertz-Knudsen equation,

wn =w ·ni =
1

β

[
ρv − ρvs(Ta)

ρvs(Ta)
− d0K

]
on Γ (7)
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such as wn is positive when the ice grain grows and negative when it sublimates. β is the interface kinetic coefficient (s m−1),

ρvs is the saturation water vapor density in air (kg m−3), d0 is the capillary length (m), and K is the interface mean curvature145

(m−1). The interface kinetic coefficient β is linked to the condensation coefficient α by

1

β
= α

ρvs(Ta)

ρi

√
kBTa

2πm
(8)

where m is the mass of a water molecule (kg) and kB is the Boltzmann’s constant equal to 1.38×10−23 J K−1. As already

mentioned, the condensation coefficient α characterizes the probability for a water molecule hitting the surface of the solid to

be incorporated to the crystal, or inversely, and ranges from 0 to 1. Although this coefficient depends on several parameters as150

temperature, supersaturation, and crystalline orientation, we assume that this parameter is constant over the REV at first order.

The saturation vapor density ρvs at a given air temperature Ta is given by the Clausius Clapeyron’s law

ρvs(Ta) = ρrefvs (T
ref)exp

[
Lsgm

ρikB

(
1

T ref
− 1

Ta

)]
(9)

::
In

:::
the

::::::
current

:::::
work,

:::
we

:::::
chose

:::
the

::::::::
reference

::::::
values

::::
T ref

:
=
::::
263

::
K,

:::::::
leading

::
to

:
a
:::::::::
ρrefvs (T

ref)
:::::
value

::
of

:::::
2.173

::
×
:::::
10−3

:::
kg

::::
m−3.

:
For

simplicity, we assume that none of the material properties (ρ, C, kB , Dv , β, m) depend on the temperature. Also, the effect155

of curvature on the ice interface growth is considered insignificant compared to the effect of temperature and is neglected.

Consequently, using Eq. (8), the Hertz-Knudsen equation can be rewritten

wn =w ·ni =
1

βρvs(Ta)
[ρv − ρvs(Ta)] =

α

ρi
wk(Ta) [ρv − ρvs(Ta)] on Γ (10)

where wk =
√

kBTa/2πm is defined as a kinetic velocity which depends on the temperature at the ice-air interface. Taking

into account this result, Eq. (5) and (6) can be rewritten:160

kigradTi ·ni − kagradTa ·ni = Lsg
α

ρi
wk(Ta) [ρv − ρvs(Ta)] = Lsg

Dv

ρi
gradρv ·ni on Γ (11)

Dvgradρv ·ni = αwk(Ta) [ρv − ρvs(Ta)] on Γ (12)

2.3 Dimensionless pore scale description

The next step is the normalization of the above pore scale description Eq. (1) - (4) and (11) - (12). For that, all the dimensional165

variables in this description are written such as each variable φ reads φ= φcφ
∗, where the subscript ‘c’ denotes a characteristic

quantity (constant) and the superscript ‘*’ denotes a dimensionless variable. Note that the microscopic length l is chosen

as characteristic length such as lc = l, i.e. the so-called microscopic point of view is adopted (Auriault, 1991). The formal

dimensionless set of equations that describes the physics at the pore scale can thus be written as:[
FT
i

]
ρ∗iC

∗
i

∂T ∗
i

∂t∗
−div∗(k∗i grad

∗T ∗
i ) = 0 in Ωi (13)170

[
FT
a

]
ρ∗aC

∗
a

∂T ∗
a

∂t∗
−div∗(k∗agradT

∗
a ) = 0 in Ωa (14)
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[Fρ
a]
∂ρ∗v
∂t∗

−div∗(D∗
vgrad

∗ρ∗v) = 0 in Ωa (15)

175
T ∗
i = T ∗

a on Γ (16)

[K]k∗i grad
∗T ∗

i ·ni − k∗agrad
∗T ∗

a ·ni = [H]L∗
sg

D∗
v

ρ∗i
grad∗ρ∗v ·ni on Γ (17)

D∗
vgrad

∗ρ∗v ·ni = [WR]α
∗w∗

k [ρ
∗
v − [R]ρ∗vs(T

∗
a )] on Γ (18)180

This dimensionless description introduces seven dimensionless numbers that characterize the relative intensity of the physical

processes at the pore scale. These dimensionless numbers are defined as:

[
FT
i

]
=

l2ρicCic

tckic
,
[
FT
a

]
=

l2ρacCac

tckac

, [Fρ
a] =

l2

Dvctc
, [K] =

kic
kac

, [WR] =
lαcwkc

Dvc

, [R] =
ρvsc(Tac)

ρvc
,

[H] =
lLsgcwnc

kac
Tac

with wnc
=

αcwkc

ρic
(ρvc − ρvsc(Tac

)) =
Dvcρvc
lρic

(19)185

Dimensionless numbers
[
FT
i

]
and

[
FT
a

]
correspond to the inverse of the Fourier number in Ωi and Ωa, respectively. They

characterize the ratio between the rate of thermal energy storage and the heat conduction rate. [Fρ
a] is an analogous inverse

Fourier number for the transient water vapor transfer by diffusion in Ωa. Dimensionless numbers [K], [R], [H] and [WR] are

defined at the ice-air interface. [H] characterizes the ratio between the heat flux induced by deposition and sublimation and the

heat flux by conduction in the air phase. The above analysis slightly differs from the one presented in Calonne et al. (2014b).190

Indeed, two new dimensionless parameters are introduced: [WR] and [R] to better capture the effect of α on the macroscopic

models. Finally, let us remark that Eq. (18) defined at the ice-air interface corresponds to a Robin boundary condition, i.e a

weighted combination of a Dirichlet boundary condition and a Neumann boundary condition. Hence, when [WR] tends towards

zero, Eq. (18) is equivalent to a Neumann boundary condition (D∗
vgrad

∗ρ∗v ·ni = 0), whereas when [WR] tends towards infinite

(or is very large), Eq.(18) is equivalent to a Dirichlet boundary condition (ρ∗v = ρ∗vs(T
∗
a )).195

2.4 Estimation of the dimensionless numbers

The next key step is to estimate the above six dimensionless numbers with respect to the separation of scale parameter ε= l/L

in order to weigh the relative importance of the physical phenomena arising from the pore scale. In practice, l and L correspond

to the order of magnitude of the typical snow grain size and the thickness of a snow layer, respectively. In what follows,

we assumed that l ≈ 5× 10−4 m and L≈ 0.1 m, leading to ε= 5× 10−3. The characteristic value of each variable in the200

dimensionless numbers are summarized in Table 1. These values were evaluated for a temperature of -10°C and come from the

literature (Massman, 1998; Kaempfer and Plapp, 2009). According to these characteristic values, it can be first shown (Calonne

et al., 2014b) that the thermal diffusivity in the ice phase Dic = kic/(Cicρic) and in the air phase Dac
= kac

/(Cac
ρac

), are
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Table 1. Characteristic values of the properties evaluated at -10°C from the literature (Massman, 1998; Kaempfer and Plapp, 2009).

Symbol Description Value

Tic , Tac temperature of ice, air 263 K

kic heat conductivity of ice 2.3 W m−1 K−1

kac heat conductivity of air 0.024 W m−1 K−1

Cic specific heat capacity of ice 2000 J kg−1 K−1

Cac specific heat capacity of air 1005 J kg−1 K−1

Lsgc latent heat of sublimation of ice 2.60× 109 J m−3

Dvc water vapor diffusion coefficient in air 2.036× 10−5 m2 s−1

ρvc water vapor density in air 0.002 kg m−3

ρic ice density 917 kg m−3

ρac air density 1.335 kg m−3

l microscopic length 5×10−4 m

L macroscopic length 0.1 m

of the same order of magnitude than the vapor diffusion coefficient Dvc . Thus, the characteristic time tc associated with these

transfers through the snowpack are of the same order of magnitude: tc =O(L2/Dic) =O(L2/Dac
) =O(L2/Dvc). Hence,205

from Eq. (19), we get
[
FT
i

]
=O

([
FT
a

])
=O ([Fρ

a]) =O(ε2). At the ice-pore interface, from Eq. (19), we have [K] =O (1)

and [R] =O (1). The latter estimation implies that the supersaturation σ = (ρv − ρvs)/ρvs varies between -1 and 13, which is

consistent with the range of values classically considered (Libbrecht and Rickerby, 2013). The dimensionless number [WR]

can be written:

[WR] =
lαcwkc

Dvc

=
l2

Dvc

αcwkc

l
=

τd
τsub/dep

210

where τd = l2/Dvc is the characteristic time associated to water vapor diffusion at the pore scale and τsub/dep = l/(αcwkc
)

is the characteristic time associated to the sublimation-deposition process. This result shows that this ratio can take different

orders of magnitude depending on the value of αc. Using the characteristic values given in Table 1, this ratio is equal to 1 for

a particular value of αc, noted αT =Dvc/(lwkc
)≈ 3× 10−4. This value decreases when the characteristic length l increases,

such as values range between 10−3 for small grains (∼0.1 mm) and 10−5 for very large grains (∼5 mm). It also depends on215

temperature but the influence is negligible in the -30 to 0°C range. The αT -value characterizes the transition between two
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Figure 2. Estimation of the dimensionless number [WR] with respect to α, which leads to several cases of macroscopic modeling to be

considered (Cases A to C3
::
D2). The αT -value characterizes the transition between two cases presenting different limiting processes for

the water vapor transfer at the pore scale, so that τd < τsub/dep or τd > τsub/dep, with τd the characteristic time associated to water vapor

diffusion and τsub/dep the characteristic time associated to the sublimation-deposition process. αT was estimated based on the characteristic

values given in Table 1.

mechanisms which drive the water vapor transfer at the pore scale. When τd ≪ τsub/dep, i.e for αc ≪ αT , the water vapor

flux is limited by sublimation-deposition processes. This case is also called the ‘slow kinetics case’ in Fourteau et al. (2021a).

When τd ≫ τsub/dep, i.e. for αc ≫ αT , the water vapor transfer is mainly limited by diffusion, which is called ‘fast kinetics

case’ in Fourteau et al. (2021a). For intermediate cases, both mechanisms may be in competition.220

Estimations of the dimensionless numbers [H] is not as straightforward, as it depends on the intensity of the interface normal

growth velocity wnc
. When αc is small (typically smaller than αT ), [WR] is also small and Eq. (18) implies that ∆ρvc has a

finite value (O(ρvc)). Thus, this dimensionless number [H] can be also written:

[H] =
lLsgcαcwkc

ρvc
kacTacρic

.

In that case, it increases when αc increases and according to the characteristic values given in Table 1, it is of the same order of225

[WR]. For large values of αc (typically larger than αT ), Eq. (18) implies that ρ∗v ≈ ρ∗vs(T
∗
a ). As a consequence, from Eq. (17)
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and Eq. (19), [H] can be rewritten:

[H] =
lLsgcDvcγ(Tac

)Tac

lρickac
Tac

=
LsgcDvcγ(Tac

)

ρickac

=
kdifc
kac

where γ(Tac) = dρvs(Tac)/dTac is the derivative of Clausius-Clapeyron’s law and kdifc = LsgcDvcγ(Tac)/ρic can be seen as

‘an enhancement’ of the air thermal conductivity. Using the characteristic values given in Table 1 and the Clausius-Clapeyron230

Eq. (9), for large values of αc, [H] =O (1). According to the above analysis, several cases must be considered depending on

the value of the condensation coefficient αc (Fig. 2):

– Case A: τd =O(ε2τsub/dep), i.e [WR] =O
(
ε2
)

and [H] =O
(
ε2
)

– Case B1
:
B: τd =O(ετsub/dep), i.e [WR] =O (ε) and [H] =O (ε)

– Case B2
:
C: τd =O(τsub/dep), i.e [WR] =O (1) but with ε1/2 ⩽ [WR]⩽ 1 and [H] =O (1)235

– Case C1: τd =O(τsub/dep), i.e [WR] =O (1) but with 1⩽ [WR]⩽ ε−1/2 and [H] =O (1)

– Case C2
::
D1: τd =O(ε−1τsub/dep), i.e [WR] =O

(
ε−1
)

and [H] =O (1)

– Case C3
::
D2: τd =O(ε−2τsub/dep), i.e [WR] =O

(
ε−2
)

and [H] =O (1)

The cases A , B1 and B2 correspond to 0⩽ α⩽ αT :::
and

::
B

:::::::::
correspond

:::
to

::::::::::
0⩽ α≪ αT , whereas the cases C1, C2 and C3

correspond to αT ⩽ α⩽ 1. Moreover, let us remark that the cases B2 and C1 correspond to the same order of magnitude of240

[WR] and [H]. However, two cases are considered to take into account the transition which occurs when α= αT (see Eq. (18)).

::
D1

::::
and

:::
D2

:::::::::
correspond

::
to

:::::::::::
αT ≪ α⩽ 1.

::::
The

::::
Case

::
C
:::::::
ensures

:::
the

::::::::
transition

:::::::
between

:::
the

::::::
models

::
B

:::
and

::::
D1,

:::::
when

:::::::
α≈ αT .

2.5 Asymptotic analysis

The next step is to introduce multiple-scale coordinates (Bensoussan et al., 1978; Sanchez-Palencia, 1980; Auriault, 1991).

The two characteristic lengths L and l introduce two dimensionless space variables, x∗ =X/L and y∗ =X/l, where X is245

the physical space variable. The macroscopic (or slow) dimensionless space variable x∗ is related to the microscopic (or fast)

dimensionless space variable y∗ by x∗ = εy∗. When l is used as the characteristic length, the dimensionless derivative operator

grad∗ becomes (grady∗ + ε gradx∗), where the subscripts x∗ and y∗ denote the derivatives with respect to the variables x∗

and y∗, respectively. Following the multiple-scale expansion technique (Bensoussan et al., 1978; Sanchez-Palencia, 1980;

Auriault, 1991), the ice temperature T ∗
i , the air temperature T ∗

a , and the water vapor ρ∗v are sought in the form of asymptotic250

expansions of powers of ε:

φ∗(x∗,y∗, t) = φ∗(0)(x∗,y∗, t)+ εφ∗(1)(x∗,y∗, t)+ ε2φ∗(2)(x∗,y∗, t)+ ... (20)

where φ∗ = T ∗
i ,T

∗
a ,ρ

∗
v and the corresponding φ∗(i) are periodic functions of period Ω with respect to the space variable

y∗. Substituting these expansions in the set (13)-(18) gives, by identification of like powers of ε, successive boundary value

problems to be investigated. All the details concerning this asymptotic analysis are presented in the Supplement. The main255

results are summarized in the following section.
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2.6 Macroscopic equivalent descriptions

2.6.1 Case A

The case A corresponds to the model presented in Calonne et al. (2014b). According to the order of magnitude of the dimen-

sionless numbers and notably [H] =O
(
ε2
)
, [WR] =O

(
ε2
)
, the asymptotic analysis presented in the Supplement (Sec. S1)260

shows that the heat transfer and the water vapor diffusion at the macroscopic scale are described by the equations (A.45
::
.44)

and (A.48
::
.47). Returning in dimensional variables, the macroscopic model is written:

(ρC)eff
∂T (0)

∂t
−div(keffgrad T (0)) = SSAVLsgw

(0)
n =−Lsgϕ̇ (21)

ϕ
∂ρ

(0)
v

∂t
−div(Deffgrad ρ(0)v ) =−SSAVρiw

(0)
n = ρiϕ̇ (22)265

where w
(0)
n is given by the Hertz-Knudsen Eq. (A.44

::
.43) and the Clausius-Clapeyron’s law (A.43)

:::
.42)

::::
-see

::::::::::
Supplement

:::::
(Sec.

:::
S1):

:

w(0)
n =

α

ρi
wk

[
ρ(0)v − ρ(0)vs (T

(0))
]

(23)

ρ(0)vs (T
(0)) = ρrefvs exp

[
Lsgm

ρik

(
1

T ref
− 1

T (0)

)]
(24)270

and where ϕ is the porosity and ϕ̇ its total time derivative. SSAV = |Γ|/|Ω| is the specific surface area per unit volume, defined

as the ice surface area over the snow volume in m−1. The SSA can also be defined per unit mass, with SSAV = SSA× ρi.

(ρC)eff is the effective thermal capacity (A.46
:::
.45), keff is the effective thermal conductivity tensor (A.47

::
.46), and Deff is the

effective diffusion tensor (A.49
:::
.48). These effective properties are defined as:

(ρC)eff = (1−ϕ)ρiCi +ϕρaCa (25)275

keff =
1

|Ω|

∫
Ωa

ka(grad ta + I)dΩ+

∫
Ωi

ki(grad ti + I)dΩ

 (26)

Deff =
1

|Ω|

∫
Ωa

Dv(grad gv + I)dΩ (27)

where ta and ti are two periodic vectors, solution of the following boundary value problem over the REV (A.20)-(A.24):280

div(ki(grad ti + I)) = 0 in Ωi (28)
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div(ka(grad ta + I)) = 0 in Ωa (29)

ti = ta on Γ (30)285

(ki(grad ti + I)− ka(grad ta + I)) ·ni = 0 on Γ (31)

1

|Ω|

∫
Ω

(ta + ti)dΩ= 0 (32)

and where gv is a periodic vector solution of the following boundary value problem over the REV (A.36
:::
.35)-(A.38

::
.37):290

div(Dv(grad gv + I)) = 0 in Ωa (33)

Dv(grad gv + I) ·ni = 0 on Γ (34)

1

|Ω|

∫
Ωa

gvdΩ= 0 (35)295

In that case, the above macroscopic equivalent description shows that, at the first order, the heat and water vapor transfer are

described by two equations which are coupled through a source term proportional to the Hertz-Knudsen equation (23) and

the Clausius Clapeyron’s law (24), but expressed with respect to the two macroscopic variables T (0) and ρ
(0)
v . These equa-

tions involve two effective parameters: the effective thermal conductivity keff = keff(ki,ka,microstructure) and the effective

diffusion Deff =Deff(Dv,microstructure).300

2.6.2 Cases B1 and B2
::::
Case

::
B

According to the order of magnitude of the dimensionless numbers in the cases B1 and B2
::::
case

::
B, the asymptotic analysis

presented in the Supplement (Sec. S2) shows that these two cases lead to the same macroscopic description: the heat transfer

and the water vapor diffusion at the macroscopic scale are described by the equations (B1
::
B.29) and (B1

:
B.44)(or (B2.41) and

(B2.46)). Returning in dimensional variables, the macroscopic model is written:305

(ρC)eff
∂T (0)

∂t
−div(keffgradT (0)) =−Lsgϕ̇ (36)

ϕ
∂ρ

(0)
vs

∂t
−div(Deffgradρ(0)vs ) = ρiϕ̇ (37)
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with

ρ(0)v = ρ(0)vs (T
(0)) (38)310

where (ρC)eff is the effective thermal capacity, keff is the effective thermal conductivity tensor and Deff is the effective

diffusion tensor as defined in the case A. The above macroscopic equivalent description shows that at the first order the heat

and vapor transfer are only driven by the temperature field, since the water vapor density ρ
(0)
v = ρ

(0)
vs (T (0)) is directly given by

the Clausius-Clapeyron equation (24). Consequently, from (37) we have:

ϕ̇=− 1

ρi

(
div(Deffgradρ(0)vs (T

(0)))−ϕ
∂ρ

(0)
vs

∂t

)
=− 1

ρi

(
div(γ(T (0))DeffgradT (0))−ϕγ(T (0))

∂T (0)

∂t

)
(39)315

where

γ(T (0)) =
dρ

(0)
vs (T (0))

dT (0)
= ρrefvs

Lsgm

ρik

1

(T (0))2
exp

[
Lsgm

ρik

(
1

T ref
− 1

T (0)

)]
=

Lsgm

ρik

1

(T (0))2
ρ(0)vs (T

(0)) (40)

Taking into account this result, the macroscopic heat transfer equation (36) is written:(
(ρC)eff +ϕγ(T (0))

Lsg

ρi

)
∂T (0)

∂t
− div(kBk̃B

::
gradT (0)) = 0 (41)

In this latter equation,320

kBk̃B
::

= keff +
γ(T (0))Lsg

ρi
Deff (42)

appears as an apparent thermal conductivity of the snow which depends non-linearly on the temperature through γ(T (0)). Our

results show that this is valid if [WR] =O (ε)or O (1), i.e for α-values ranging from around
:::
2×10−6 to αT:::

−7
::
to

:::::::
2×10−5,

typically. Finally, let us remark that (i) this model B can be also seen as a particular case of the model A, when ρ
(0)
v tends

towards ρ(0)vs (T (0)) by increasing α, and (ii) the apparent thermal conductivity of the snow kB
::
k̃B can be also written:325

kBk̃B
::

= keff +
γ(T (0))LsgDv

ρi

Deff

Dv
= keff + kdif

Deff

Dv
(43)

where kdif = γ(T (0))LsgDv/ρi corresponds to “an enhancement" of the air thermal conductivity, as defined in Sect. 2.4.

However, in that case, γ(T (0)) depends on the macroscopic temperature T (0).

2.6.3 Cases C1, C2 and C3
::
C

According to the order of magnitude of the dimensionless numbers in the cases C1, C2 and C3,
:::
case

:::
C,

:::
the

:::::::::
asymptotic

:::::::
analysis330

::::::::
presented

::
in

:::
the

::::::::::
Supplement

::::
(Sec.

::::
S3)

:::::
shows

::::
that

:::
the

::::
heat

::::::
transfer

::::
and

:::
the

:::::
water

:::::
vapor

::::::::
diffusion

::
at

:::
the

::::::::::
macroscopic

:::::
scale

:::
are

::::::::
described

::
by

:::
the

::::::::
equations

::::::
(C.42)

:::
and

::::::
(C.47).

:::::::::
Returning

::
in

::::::::::
dimensional

::::::::
variables,

:::
the

:::::::::::
macroscopic

::::::
model

:
is
:::::::
written:

:

(ρC)eff
∂T (0)

∂t
−div(kCgradT (0)) =−Lsgϕ̇

::::::::::::::::::::::::::::::::::::

(44)
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ϕ
∂ρ

(0)
vs

∂t
−div(DCgradρ(0)vs (T

(0))) = ρiϕ̇
:::::::::::::::::::::::::::::::::

(45)335

::::
with

ρ(0)v = ρ(0)vs (T
(0))

:::::::::::::
(46)

:::::
where

:::::::
(ρC)eff

:::
and

:::
kC

:::
are

:::
the

::::::::::::
dimensionless

::::::::
effective

::::::
thermal

::::::::
capacity

:::
and

:::
the

::::::::
effective

:::::::::::
dimensionless

:::::::
thermal

:::::::::::
conductivity

::::::::::
respectively,

::::::
defined

:::
as:

:

(ρC)eff = (1−ϕ)ρiCi +ϕρaCa
::::::::::::::::::::::::::

(47)340

kC =
1

|Ω|

∫
Ωa

ka(gradsa + I)dΩ+

∫
Ωi

ki(gradsi + I)dΩ


::::::::::::::::::::::::::::::::::::::::::::::::

(48)

:::
and

:::::
where

::::
DC

::
is

:::
the

:::::::
effective

::::::::
diffusion

:::::
tensor

::::::
defined

:::
as:

:

DC =
1

|Ω|

∫
Ωa

Dv(grad(d+ sa)+ I)d Ω

::::::::::::::::::::::::::::::::

(49)

:::::
where

:::
si, ::

sa::::
and

::
d

:::
are

:::::::
periodic

::::::
vectors

:::::::
solution

:::
of

:::
the

::::::::
following

:::::::
coupled

::::::::
boundary

:::::
value

::::::::
problem

::
in

::
a

:::::::
compact

:::::
form

::::
(See345

::::::::::
Supplement

:::
Sec.

::::
S3:

::::::::::
C.30-C.37):

div(ki(gradsi + I)) = 0 in Ωi
::::::::::::::::::::::::::

(50)

div(ka(gradsa + I)) = 0 in Ωa
:::::::::::::::::::::::::::

(51)

350

si = sa on Γ
:::::::::::

(52)

(ki(gradsi + I)− ka(gradsa + I)) ·ni =
Lsg

ρi
αwkγ(T

(0))d on Γ
:::::::::::::::::::::::::::::::::::::::::::::::::::::::

(53)

div(Dv(grad(d+ sa)+ I)) = 0 in Ωa
::::::::::::::::::::::::::::::::

(54)355
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(grad(d+ sa)+ I) ·ni = αwkd on Γ
::::::::::::::::::::::::::::::::

(55)

::::
with

1

|Ω|

∫
Ω

(sa + si)dΩ= 0

::::::::::::::::::

(56)

360

1

|Ω|

∫
Γ

d dΓ = 0

:::::::::::::

(57)

:::
The

::::::
vector

::
si,:::

sa:::
and

::
d
:::::::
depend

::
on

:::
the

::::::
values

::
of

::
α
::::
and

:::
the

::::::::::
temperature

:::::::
(notably

:::::::
through

::::::::
γ(T (0))).

:::
As

:::
for

:::
the

::::::
models

:::
B,

:::
the

::::::::::
macroscopic

::::
heat

:::::::
transfer

:::::::
equation

::::
(44)

:::
can

::
be

::::
also

:::::::
written:(

(ρC)eff +ϕγ(T (0))
Lsg

ρi

)
∂T (0)

∂t
− div(k̃CgradT (0)) = 0

::::::::::::::::::::::::::::::::::::::::::::::::

(58)

:::::
where365

k̃C = kC +
γ(T (0))Lsg

ρi
DC = kC + kdif

DC

Dv
::::::::::::::::::::::::::::::::::::

(59)

::::::
appears

::
as

:::
an

:::::::
apparent

:::::::
thermal

:::::::::::
conductivity

::
of

:::
the

:::::
snow.

::
In

::::
that

::::
case

:::
kC

::::
and

:::
DC

::::
both

:::::::
depend

::
on

:::
ka,

:::
ki,::::

kdif:::
and

::
α
::::
and

:::
we

::::
have:

:

k̃C =
1

|Ω|

∫
Ωa

(ka + kdif)(grad(sa +d)+ I)dΩ+

∫
Ωi

ki(grad si + I)dΩ


::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(60)

::::
This

:::::
model

::
C

:
is
:::::
valid

::
for

:::::::::::::
[WR] =O (1),

::
i.e

:::
for

:::::::::::::::::
ε1/2 < [WR]< ε−1/2

::::
and

:::
thus

:::
for

::::::::
α-values

:
in
:::
the

:::::
range

::::::::::::::::::::::::::::::::::::::
(ε1/2Dvc/(lwkc))< α < (ε−1/2Dvc/(lwkc)),370

::
or

::::::::
typically,

:::::::::::::::::::::
3× 10−5 < α < 4× 10−3.

:

2.6.4
:::::
Cases

:::
D1

::::
and

:::
D2

::::::::
According

:::
to

:::
the

::::
order

::
of
:::::::::

magnitude
:::

of
:::
the

::::::::::::
dimensionless

:::::::
numbers

::
in

:::
the

:::::
cases

:::
D1

:::
and

:::
D2

:
the asymptotic analysis presented

in the Supplement (Sec. S3
::
S4) shows that these two cases lead to the same macroscopic description. Returning in dimen-

sional variables, the macroscopic model (C1.19-C1.22) (see also (C2
::
D1.41-C2.44) and (C3

::::::
-D1.45)

::
or

::::
(D2.41-C3.44)

::::::
-D2.45)375

is written:

(ρC)eff
∂T (0)

∂t
−div(ktdkD

::
gradT (0)) =−Lsgϕ̇ (61)
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ϕ
∂ρ

(0)
vs

∂t
−div(DtdD

:
gradρ(0)vs ) = ρiϕ̇ (62)

380

ρ(0)v = ρ(0)vs (T
(0)) (63)

(ρC)eff is the classical dimensionless effective thermal capacity. The macroscopic thermal conductivity tensor ktd
::
kD

:
and the

macroscopic diffusion tensor Dtd
:::
DD are defined as

ktdkD
::

=
1

|Ω|

∫
Ωa

ka(grad ra + I)dΩ+

∫
Ωi

ki(grad ri + I)dΩ

 (64)

385

DtdDD
:::

=
1

|Ω|

∫
Ωa

Dv(grad ra + I)d Ω (65)

where ra and ri are two periodic vectors, solution of the following boundary value problem over the REV (C1.8
:::::
D1.30)-

(C1.12
::::

D1.34):

div(ki(grad ri + I)) = 0 in Ωi (66)

390

div((ka + kdif)(grad ra + I)) = 0 in Ωa (67)

ri = ra on Γ (68)

(ki(grad ri + I)− (ka + kdif)(grad ra + I)) ·ni = 0 on Γ (69)395

1

|Ω|

∫
Ω

(ra + ri)dΩ= 0 (70)

As for the model B
::::::
models

:
B
::::
and

::
C, the macroscopic heat transfer equation (61) can be also written:(

(ρC)eff +ϕγ(T (0))
Lsg

ρi

)
∂T (0)

∂t
− div(kCk̃D

::
gradT (0)) = 0 (71)

In this latter equation,400

kCk̃D
::

= ktdkD
::

+
γ(T (0))Lsg

ρi
DtdD

:
= ktdkD

::
+ kdif

Dtd

Dv

DD

Dv
:::

(72)
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Figure 3. Definition of the three different macroscopic models and their domain of validity with respect to α. The value of αT was estimated

based on the characteristic values given in Table 1.

appears as an apparent thermal conductivity of the snow. In that case ktd and Dtd
::
kD

::::
and

:::
DD

:
both depend on ka, ki, and kdif

and we have:

kCk̃D
::

=
1

|Ω|

∫
Ωa

(ka + kdif)(grad ra + I)dΩ+

∫
Ωi

ki(grad ri + I)dΩ

 (73)

This model C
:
D
:

corresponds to the one derived by Moyne et al. (1988), assuming that ρv = ρvs(T ) on the interface at the405

microscopic scale and using the volume averaging-method. This model is also similar to the one derived by Hansen and

Foslien (2015), assuming that α≈ 10−2. In that case, we show that this model is valid for
::::::::::::::
[WR] =O

(
ε−1
)

::
or

:::::::
O
(
ε−2
)
,
:::
i.e

:::
for

α-values ranging from αT to 1
:::::
around

:::::::
5×10−3

::
to
::
1,
::::::::
typically.
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2.7 Macroscopic equivalent descriptions - synthesis

Figure 3 presents a summary of the three
:::
four

:
macroscopic models of heat and vapor transport in dry snow derived above,410

together with their domain of validity according to the value of α. As already mentioned, the model A is the one already

derived in Calonne et al. (2014b), whereas the model C
:
D
:

is equivalent to the model derived by Moyne et al. (1988) and

Hansen and Foslien (2015). In practice, the model A and C are sufficient to describe the heat and vapor transfer in the whole

range of α, since the model B can be seen as a particular case of the model A, assuming that ρv tends towards ρvs(T ) at

macro-scale. A transition value αT taken at 3× 10−4 was presented, yet we recall that it can vary between 10−5 and 10−3415

depending on the grain size and, to a lesser extent, temperature. Besides, without loss of generality, a constant value of α

accounting for sublimation and deposition (in time, space and other dependencies) was used, material properties such as Dv ,

ki and ka were taken constant at -10°C, and curvature effects were neglected.The hypothesis that

:
A
::::

first
:::::::::
important

:::::::
outcome

::
is
::::
that

:::
the

:::::::::
hypothesis

:
ρv = ρvs(T ), which is often made, appears as a good approximation for

α-values larger than 10−6. However, the ,
:::
as

::
for

:::
the

:::::::
models

::
B,

::
C

:::
and

:::
D.

:::
The

:
asymptotic analysis shows that in the range

::
of

::
α420

[10−6, αT ], this approximation is of the order of O (ε) since ρ
(0)
v = ρ

(0)
vs

(
T (0)

)
, i.e. σ = (ρv − ρvs)/ρvs ≈O (ε). In the range

[αT , 1], this approximation is of the order of O
(
ε2
)
, since ρ(0)v = ρ

(0)
vs

(
T (0)

)
and ρ

(1)
v = ρ

(1)
vs

(
T (1)

)
, i.e. σ ≈O

(
ε2
)
. It is also

worth noting that the value of α appears explicitly in the model A only. In the model
:::
This

:::::
result

:::::::
implies

:::
that

:::
the

::::::
models

:::
B,

::
C

:::
and

::
D

:::
can

:::
be

::::::
written

::
in

:::
the

:::::
same

::::
form

:::
and

:::::::
reduced

::
to

::
a
::::::
simple

::::
heat

::::::
transfer

::::::::
equation.

::::
This

::::
heat

:::::::
transfer

:::::::
equation

:::::::
involves

:::
an

:::::::
apparent

::::::
thermal

:::::::::::
conductivity

:::
k̃β

:::::
which

::::::
differs

::::
from

:::
one

::::::
model

::
to

::::::
another

::::
one.

::
In

::::::::
contrast,

:::
the

:::::
model

::
A

::::
does

:::
not

:::::::
presume

::::
any425

:::::::::
assumption

:::::
about

:::
the

:::::
vapor

:::::::::
saturation.

:
A
:::::::
second

::::
point

::::::::
concerns

:::
the

::::::
relative

::::
role

::
of

:::
the

:::::
vapor

::::::::
diffusion

:::
and

::
of

:::
the

::::::::::::::::::::::
sublimation-condensation

::
in

:::
the

:::::
vapor

::::::::
transport,

:::::
which

:::::::
directly

::::::
impacts

::::
the

:::::
model

:::::::::::
formulation.

::
In

:::
the

:::::::
models A and B, the water vapor transfer are

::
is mainly limited by the

sublimation-deposition at the ice-air interfaces. At macro-scale, diffusion is characterized by the classical effective diffusion

Deff(Dv,microstructure) which depends on Dv and the microstructure of the snow. In the model C
:::
The

::::::
model

::
A

:::::::
consists

::
of430

:::
two

::::::::
equations

::
of

::::::::::
temperature

::::
and

:::::
vapor

::::::
density

:::::::
coupled

:::::::
through

::::::
source

::::
terms

::::
that

:::
are

::::::::::
proportional

::
to
:::
α.

:::::::::
Classically,

::::
heat

::::
and

:::::
vapor

:::::::
transport

:::
are

::::::
driven

::
by

:::
the

::::::::
effective

::::::
thermal

:::::::::::
conductivity

::
of

:::::
snow

:::
keff

::::
and

:::
the

:::::::
effective

:::::
vapor

:::::::::
diffusivity

::
of

:::::
snow

:::::
Deff ,

::::::::::
respectively.

::::
Both

:::::::::
properties

::::::
depend

:::
on

:::
the

:::::::
intrinsic

::::::::
properties

::
of

:::
ice

::::
and

::
air

::::::::::
(ki,ka,Dv)

:::
and

:::
on

:::
the

::::
snow

:::::::::::::
microstructure.

::::
The

:::::
model

::
B

:::
can

::
be

::::
seen

:::
as

:
a
::::::::
particular

::::
case

::
of

:::
the

::::::
model

::
A,

::::::::
assuming

::::
that

::
ρv:::::

tends
:::::::
towards

::::::
ρvs(T )::

at
::::::::::
macro-scale,

:::::::
leading

::
to

:::
the

::::::::::
simplication

::
to

:::
one

::::
heat

:::::::
transfer

:::::::
equation

::
in
::::::
which

:::
the

:::::::
apparent

:::::::
thermal

::::::::::
conductivity

:::
k̃B

:::
can

:::
be

:::::
easily

::::::::
expressed

:::::
with

::::::
respect435

::
to

:::::::::::::::::::::::
keff(ki,ka,microstructure)

:::
and

:::::::::::::::::::::::
Deff(Dv,microstructure).

::
By

::::::::
contrast,

::
in

::
the

::::::
model

::
D, the water vapor transfer is mainly limited by the diffusion process at micro-scale. In that case, the

macroscopic diffusion tensor Dtd(Dv,ki,ka,kdif ,microstructure) appears
:::::
model

::::::
consists

:::
of

:
a
:::::
single

::::
heat

::::::
transfer

::::::::
equation

::
in

:::::
which

::
α

:
is
:::
not

::::::::
involved,

:::::
driven

:::
by

::
an

:::::::
apparent

:::::::
thermal

::::::::::
conductivity

:::
k̃D,

::::::
which

:::
can

::
be

::::::::
expressed

::::
with

::::::
respect

::
to
:::
the

:::::::::::
macroscopic

::::::
thermal

:::::::::::
conductivity

::::::::::::::::::::::::::
kD(ki,ka,kdif ,microstructure)

:::
and

:::
to

::
the

:::::::::::
macroscopic

::::::::
diffusion

:::::::::::::::::::::::::::::::
DD(Dv,ki,ka,kdif ,microstructure),440

::
the

:::::
latter

:::::::::
appearing as a "thermo-diffusion" coefficientsince it depends on Dv , the microstructure of the snow, but also on the

thermal properties of the ice ki, and the air .
:::::
Note

:::
that

:::::
these

:::::::::
parameters

:::::::
depend

::
on

::::
the

::
air

:::::::
thermal

:::::::::
properties ka + kdif , the
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latter being
:::
that

:::
are

:
enhanced by the phase change through kdif . Even if the model B and Ccan be written in a similar form , the

involved macroscopic parameters strongly differ, since they capture different mechanisms (diffusion or sublimation-deposition)

arising at the pore scale,445

:::
The

::::::::
transition

:::::::
between

::
a

::::::::::::::
diffusion-limited and consequently they cannot be deduced from one model to the other in a simple

way
:::::::::::::::::::::::::
sublimation-deposition-limited

:::::
vapor

::::::::
transport

:
is
::::::::
captured

::
by

:::
the

:::::
model

::
C.

::::
This

::::::::
transition

:::::::
appears

::::::
around

:
a
::::::::
transition

:::::
value

:::
αT ::::::::

estimated
:::
here

::
at
:::::::::
3× 10−4,

::
yet

:::
we

:::::
recall

:::
that

::
it
:::
can

::::
vary

:::::::
between

:::::
10−5

:::
and

:::::
10−3

::::::::
depending

:::
on

:::
the

::::
grain

::::
size

:::
and,

::
to
::
a
:::::
lesser

:::::
extent,

:::
on

::::::::::
temperature.

::::
The

:::::
model

::
C
::
is
::
of

:::
the

:::::
same

::::
form

::
as

:::
the

:::::::
models

:
B
::::
and

::
D,

:::
but

:::
the

::::::::
apparent

::::::
thermal

:::::::::::
conductivity

::
k̃C

::::
can

::
be

::::::::
expressed

:::::
with

::::::
respect

::
to

:::
the

:::::::::::
macroscopic

:::::::
thermal

:::::::::::
conductivity

::::::::::::::::::::::::::::
kC(ki,ka,kdif ,α,microstructure)

::::
and

:::
the

:::::::::::
macroscopic450

:::::::
diffusion

:::::::::::::::::::::::::::::::::
DC(Dv,ki,ka,kdif ,α,microstructure).

::::::
Unlike

:::
the

:::::
other

::::::
models,

:::::
both

::::::::::
macroscopic

::::::::::
parameters

::
kC

::::
and

:::
DC

:::::::
depend

::
on

:::
α.

:::::
These

::::::::::
parameters

::::
tend

:::::::
towards

::::
keff

:::
and

:::::
Deff

:::::
when

::
α

:::::
tends

:::::::
towards

:::::
10−5,

::::
thus

:::::::::
recovering

:::
the

::::::
model

:::
B.

:::::
They

::::
tend

::::::
towards

:::
kD

::::
and

:::
DD

:::::
when

::
α

:::::
tends

:::::::
towards

::
1,

::::
thus

:::::::::
recovering

:::
the

:::::
model

:::
D.

:::::::::::
Consequently,

:::
in

:::::::
practice,

:::
the

:::::
model

::
A
::::
and

::
C

:::
are

:::::::
sufficient

::
to
::::::::
describe

:::
the

:::
heat

::::
and

:::::
vapor

::::::
transfer

::
in
:::
the

::::::
whole

:::::
range

::
of

::
α

:::
(see

::::
Sec.

::::
3.3).

3 Application to analytical and numerical cases455

In this section, two simple snow microstructures, a bilayer and an assemblage of spherical grains and pores, are first considered

to illustrate the influence of the microstructure and of the parameters taken at the pore scale on the macroscopic parameters of

models A, B and C
:
D

:
(Sec. 3.2 and 3.1).

Then, a simplified 2D snow microstructure is considered to evaluate the models by comparing simulation results obtained

with the pore scale description and with the macroscopic modelings (Sec. 3.3).460

3.1 The bilayer snowpack: upper and lower bounds

Figure 4. Illustration of the bilayer snowpack problem: (a) at the macroscopic scale, (b) at the scale of a Representative Elementary Volume

(REV).
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As a first example, we consider the classical bilayer material problem and the snowpack is seen as a succession of horizontal

layers of pure air and of pure ice, as illustrated in Fig. 4. In this case, the macroscopic parameters arising in the models A,

B and C
::
D can be analytically determined and constitute the upper and lower bounds of these parameters for any anisotropic

snow microstructure. The boundary value problems (33-35), (28-32), (66-70) have been solved analytically on the REV (Fig.465

4.b) in Auriault et al. (2009). Taking into account those results and using equations (27) and (26), we have for the model A and

B:

Deff =

 Deff
11 0

0 0

 Deff
11 = ϕDv (74)

keff =

 keff11 0

0 keff22

 keff11 = ϕka +(1−ϕ)ki, keff22 =
kika

(1−ϕ)ka +ϕki
(75)470

Thus, it comes that;

kk̃B11 = ϕ(ka + kdif)+ (1−ϕ)ki, kk̃B22 =
kika

(1−ϕ)ka +ϕki
(76)

These results imply that the macroscopic properties (Deff ,keff ,kB
:::::::::::
Deff ,keff , k̃B) of any anisotropic snow verify the following

bounds:

0⩽Deff ⩽ ϕDv, (77)475

and,

kika
(1−ϕ)ka +ϕki

⩽ keff ⩽ ϕka +(1−ϕ)ki,
kika

(1−ϕ)ka +ϕki
⩽ kk̃B ⩽ ϕ(ka + kdif)+ (1−ϕ)ki (78)

For the model C
:
D, from (65) and (64), we have:

DtdD
:
=

 DD
11 0

0 DD
22

 D11
tdD

:
= ϕDv, D22

tdD
:
= ϕDv

ki
(1−ϕ)(ka + kdif)+ϕki

(79)

480

ktdD
:
=

 kD11 0

0 kD22

 k11
tdD

:
= ϕka +(1−ϕ)ki, k22

tdD
:
=

ki(ka +(1−ϕ)kdif)

(1−ϕ)(ka + kdif)+ϕki
(80)

Thus, it comes that

k11
CD

:
= ϕ(ka + kdif)+ (1−ϕ)ki, k22

CD
:
=

ki(ka + kdif)

(1−ϕ)(ka + kdif)+ϕki
(81)

In that case, these results imply that the macroscopic properties(Dtd,ktd,kC
::::::::::
DD,kD, k̃D) of any anisotropic snow verify the

following bounds:485

ϕDv ⩽DtdD
:
⩽ ϕDv

ki
(1−ϕ)(ka + kdif)+ϕki

(82)
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and

ki(ka +(1−ϕ)kdif)

(1−ϕ)(ka + kdif)+ϕki
⩽ ktdD

:
⩽ ϕka +(1−ϕ)ki,

ki(ka + kdif)

(1−ϕ)(ka + kdif)+ϕki
⩽ kCk̃D

:
⩽ ϕ(ka + kdif)+ (1−ϕ)ki (83)

The above results show that, as already underlined in Calonne et al. (2014b), Moyne et al. (1988) and Fourteau et al. (2021b),

the bounds (77) and (82) of both the effective diffusion coefficients Deff and Dtd
:::
DD

:
are always smaller than Dv and490

Dtd >Deff
:::::::::
DD >Deff , whatsoever the α-value. Moreover, according to the definition of Deff (Eq. 74) and Dtd

:::
DD (Eq.

79), if a vertical macroscopic temperature gradient is applied along e2, the model A (or B) will not predict any mass
:::::::
porosity

variation along that direction because of the pore geometry. By contrast, the model C
:
D, where the sublimation-deposition

process is faster than diffusion, can predict mass transport along e2 since Dtd
22 ̸= 0

::::::::
DD

22 ̸= 0,
:::
and

::::
thus

:
a
::::::::
variation

::
of

:::
the

:::::::
porosity

::::
along

:::
e2.495

3.2 Assemblage of spherical grains and pores: self-consistent estimates

The next analytical model is the self-consistent model (Bruggeman, 1935; Hill, 1965; Budiansky, 1965; Torquato, 2002).

Previous works showed that self-consistent (SC) estimates provide good estimations of the macroscopic properties of heat

and vapor transport in dry snow (Calonne et al., 2014b, a, 2019). In this model, the snow microstructure is considered as

a macroscopically isotropic material made of an assemblage of spherical inclusions of air or ice. Each type of inclusion is500

embedded in a homogeneous equivalent material, which allows accounting for the connectivity of both phases. The equivalent

material corresponds to an infinite matrix whose effective properties is the unknown to be calculated. The solution of the

equations for an isolated inclusion then gives an implicit relation which can be solved for this effective property.

For the model A, the SC estimate of the effective thermal conductivity of snow keffSC and of the effective diffusion coefficient

Deff
SC verify the following implicit relation (Torquato, 2002):505

keffSC =
β+

√
β2 +8kika
4

with β = ki(3(1−ϕ)− 1)+ ka(3ϕ− 1) (84)

Deff
SC =Dv

(3ϕ− 1)

2
(85)

For the model B, the SC estimates of thermal conductivity kBSC :::
k̃BSC is simply obtained by replacing the effective properties by

their SC estimates in Eq. (41) and reads:510

kk̃BSC = keffSC + kdif
Deff

SC

Dv
(86)

Finally, for the model C
:
D, the SC estimate of thermal conductivity kCSC :::

k̃DSC:
can be obtained by replacing ka in Eq. (84) by

ka + kdif as:

kCk̃D
:SC =

β+
√

β2 +8ki(ka + kdif)

4
with β = ki(3(1−ϕ)− 1)+ (ka + kdif)(3ϕ− 1) (87)
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Figure 5. Evolution of the SC estimates of the thermal conductivities keff
SC, kB

SC:::
k̃B
SC:

and kC
SC :::

k̃D
SC with respect to porosity at four temperatures

(a, c, e), and with respect to temperature for four porosities (b, d, f). The vertical dotted gray lines indicate the four temperature and porosity

values considered.

For the diffusion coefficient Dtd
SC :::

DD
SC, it can be shown (Auriault et al., 2009) that:515

DtdD
:SC = ϕDv

3kCSC
(ka + kdif)+ 2kCSC

3k̃DSC
(ka + kdif)+ 2k̃DSC
:::::::::::::::

(88)
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Figure 6. Evolution of the normalized SC estimates Deff
SC/Dv and Dtd

SC/Dv :::::::
DD

SC/Dv:
with respect to porosity at different temperatures

(solid lines). Results of the numerical computations of Dtd
SC/Dv :::::::

DD
SC/Dv at two temperatures from Fourteau et al. (2021a) are also shown

(symbols).
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Figure 7. Evolution of the thermal conductivity with temperature for ki (Huang et al., 2013), ka (Haynes, 2016), kdif , and ka + kdif .

The above SC estimates of thermal conductivity and diffusion coefficient are presented in Figure 5 and 6 and the impact of

snow porosity and temperature is shown. To do so, we used the relationships of the thermal conductivity of ice ki(T ) and of

air ka(T ) with temperature from Huang et al. (2013) and Haynes (2016), respectively.

For thermal conductivity, the SC estimates keffSC, kBSC, and kCSC :::
k̃BSC,

::::
and

::::
k̃DSC at a given temperature are similar and follow520

the classical exponential evolution with snow porosity. Overall, estimates vary between about 0.06 W m−1 K−1 for porosity

of 0.5 and 0.01 W m−1 K−1 for porosity of 1 (Fig. 5.a, 5.c and 5.e). More differences between the estimates can be seen for

the normalized diffusion coefficient. The effective coefficient Deff
SC/Dv is overall much smaller than Dtd

SC/Dv :::::::
DD

SC/Dv:
and

evolves linearly from 0.25 to 1 when porosity varies from 0.5 to 1 (Fig. 6). In contrast, Dtd
SC/Dv :::::::

DD
SC/Dv:

shows a non-linear
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evolution from 0.7 to 1, with values close to 1 for porosity above 0.8. The non-linearity and the high values of Dtd
SC/Dv525

:::::::
DD

SC/Dv:
comes from the contribution of the heat conduction, through kCSC:::

k̃DSC, and of the latent heat, through kdif . Finally,

those estimates are in good agreement with the computed values on 3D images of snow from Fourteau et al. (2021a).

Next, we look at the impact of temperature on the properties. The impact is weaker than the one of porosity and more

complex to understand
:
, as dependencies are multiple. To help understanding

:::::::::
understand, we first break down the dependencies

and show in Fig. 7 how the variables kdif and ka + kdif and the thermal conductivity of pure ice ki and pure air ka evolve530

with temperature. When temperature increases from 210 to 273 K, the thermal conductivity of ice decreases and the one of

air slightly increase, both evolution being quasi linear. Non-linearity is introduced with the parameter kdif , which increases

exponentially with temperature. Values for this parameter are small, even smaller than the air thermal conductivity, and are

close to 0 W m−1 K−1 at -60°C and reach 0.02 W m−1 K−1 at -3°C. Finally, the term ka + kdif evolves in the same way as

kdif (non linear) but the values are increased by ka.535

Keeping in mind the above considerations, the evolution of keffSC, kBSC, and kCSC :::
k̃BSC,

::::
and

:::
k̃DSC:with temperature is presented

in Fig. 5.b, 5.d and 5.f. For keffSC, the SC estimates follow basically a monotonous decrease of the thermal conductivity with

increasing temperature. This decrease is less pronounced for high porosity, and inversely. These features directly result from

the impact of the evolution of the ice and air thermal conductivity with temperature. The evolution of kBSC and kCSC :::
k̃BSC:::

and
::::
k̃DSC

with temperature is more complex as the impact of kdif superimposes. They show non linear evolution with temperature with540

an evolution similar to keffSC for the lower temperatures transitioning to an exponential increase for the higher temperatures, the

latter being driven by kdif . We see that this non-linearity is even more important for kCSC than for kBSC:::
k̃DSC::::

than
:::
for

:::
k̃BSC, as kdif

appears several time in the definition of kCSC:::
k̃DSC. Finally, estimates of diffusion coefficient Dtd

SC :::
k̃DSC show a slight influence of

temperature through ki, ka, and kdif and increases with decreasing temperature, in agreement with Fourteau et al. (2021a).

3.3 Numerical evaluation on a simplified 2D geometry545

We perform a numerical evaluation of the obtained macroscopic models on a simplified 2D snow microstructure, as in Calonne

et al. (2014b). We compare simulations of heat and water vapor transfer in snow obtained with the pore scale description and

with the macroscopic modelings.

3.3.1 Case study definition

Finite element numerical simulations were performed using the code COMSOL Multiphysics on a 2D vertical snow layer of550

10 cm height and 0.5 cm width (Fig. 8). A constant temperature gradient of 100 K m−1 or 500 K m−1 are applied across the

layer. Temperature at the top Ttop and at the bottom Tbottom are imposed and Tbottom is kept at 273 K. For the water vapor

conditions at the top and bottom, the Robin boundary condition is applied for the pore-scale simulations and a null vapor flux

is appliedfor the macro-scale simulations. Symmetry conditions are imposed on the lateral sides of the snow layer. Simulations

were run in steady state.555

At the pore scale, the snow layer consists in 200 periodic cells of 0.5 × 0.5 mm2; each periodic cell (REV) is composed

of an ice grain of diameter 0.3 mm surrounded by air, as shown in Fig. 8. The snow porosity is 0.71, which corresponds to a
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Figure 8. Illustration of the 2D geometry for the pore-scale modeling and the macroscopic equivalent modeling.

density of 266 kg m−3. The heat and the mass transfer is described by the set of Eq. (1)-(12), where Ti, Ta, and ρv are the

unknowns. This set of equations were numerically solved using the material parameter values presented in Table 1 and for

different α-values in the range of 10−10 to 1. For the sake of simplicity, the thermal conductivities ki and ka are at taken for560

-10°C and supposed to be constant in all the simulations.

At the macroscopic scale, the snow layer is seen as a continuous equivalent medium. The heat and the mass transfer is

described by the homogenized equations Eq. (21) - (23) for the model A, Eq. (41) and (37) for the model B,
:::
(58)

::::
and

::::
(45)

::
for

:::
the

::::::
model

::
C and Eq. (71) and (62) for the model C

::
D, where T (0) and ρ

(0)
v are the macroscopic unknowns. These macro-

scopic descriptions involve different parameters and effective properties defined over the REV, which need to be provided. The565

porosity and the specific surface area SSAV equal to 0.71 and 3770 m−1, respectively. The effective properties keff and Deff

were computed over the REV composed of a unique cell by solving the boundary value problems (33) - (35) and (28) - (32),

respectively. Given the symmetry of the REV, all the tensors involved in the macroscopic descriptions are isotropic. We found

that keff = 0.04243 W m−1 K−1 and Deff = 1.156×10−5 m2 s−1. The apparent thermal conductivity kB
::
k̃B

:
was analytically

deduced using Eq. (41). Its value depends on temperature through the term kdif(T ). Finally, kC and Dtd
::
k̃C

::::
and

:::
DC

:
were570

computed over the REV by solving the boundary value problem (66
::
50) - (70

::
57) at different temperatures , by varying the term

ka + kdif(T ) ::
for

::::::::
α-values

::
in

:::
the

:::::
range

::::
10−6

:::
to

::
1.

::::::
Finally,

:::
k̃D

::::
and

:::
DD

:::::
were

::::::::
computed

::::
over

:::
the

:::::
REV

::
by

:::::::
solving

:::
the

::::::::
boundary

25



::::
value

::::::::
problem

:::
(66)

::
-
::::
(70)

::
at

:::::::
different

:::::::::::
temperatures

::
in

::
a

::::::
similar

::::
way. In the considered temperature range, Dtd

:::
DD is almost

constant and equal to 1.85× 10−5
::::::::::
2.01× 10−5 m2 s−1.

Figure 9 presents the evolution of keff , kB and kC
::
k̃B

::::
and

:::
k̃D

:
with temperature. As expected, kB and kC

::
k̃B

::::
and

:::
k̃D575

evolve non-linearly with T . To perform the simulations, the computed values of kC
::
k̃D

:
were fitted by the following relation:

kC = 46.064(T/273)4 − 156.05(T/273)3 +198.7(T/273)2 − 112.68(T/273)+24.045
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
k̃D = 46.064(T/273)4 − 156.05(T/273)3 +198.7(T/273)2 − 112.68(T/273)+24.045

::::
(blue

::::
line

::
in

:::
Fig.

:::
9).

::::::
Figure

::
10

::::::
shows

:::
the

::::::::
evolution

::
of

:::
the

::::::::::::
dimensionless

:::::::
diffusion

::::::::::
coefficients

::::::::
Deff/Dv ,

:::::::
DC/Dv::::

and
:::::::
DD/Dv

:::
and

::
of

:::
the

::::::::::
macroscopic

:::::::
thermal

::::::::::::
conductivities

::::
keff ,

::
kC

::::
and

:::
kD

::::
with

::::::
respect

::
to

::
α

:::
and

:::
for

:::
two

:::::::::::
temperatures

::
of

::::
270

:
K
::::
and

:::
250

:::
K.

::
As

::::::::
expected,

::::
only

:::
the

:::::::::
parameters

:::
of

::
the

::::::
model

::
C

:::::::
(DC/Dv::::

and
:::
kC)

::::
vary

::::
with

::
α

:::
and

::::::
ensure

:
a
::::::::::
continuous

::::::::
transition

:::::::
between

:::
the580

:::::::::
parameters

::
of

:::
the

:::::
model

::
A

:::::::::
(Deff/Dv :::

and
::::
keff )

:::
and

:::
the

::::
ones

:::
of

:::
the

:::::
model

::
D

::::::::
(DD/Dv :::

and
::::
kD).

::::::
Fitting

:::
the

::::::::
numerical

:::::::::
estimates,

::::
such

:
a
::::::::
transition

:::
can

:::
be

::::::::
described

::
by

::
a
::::::
simple

:::::::
function:

:

DC(α)−Deff

DD −Deff
=

kC(α)− keff

kD − keff
=

k̃C(α)− k̃B

k̃D − k̃B
=

Aα

1+Aα
::::::::::::::::::::::::::::::::::::::::::::::

(89)

:::::
where

::::::::
A= 1200

::
is
::
a

:::::::
constant.

::::
This

::
fit
::
is
::::::
shown

::::
with

:::::
black

::::
lines

::
in

::::
Fig.

:::
10.

::::
The

:::::
figure

:::
also

::::::::
includes

:::
the

::::::::
numerical

::::::::::
estimations

::
of

:::
the

:::::::
diffusion

:::::::::
coefficient

:::
on

:::
3D

:::::
snow

:::::::::::::
microstructures

::
of

:::::::
different

::::::::
densities

::::
from

:::::::::::::::::::
Fourteau et al. (2021b)

:
,
:::::
which

:::
are

::
in

:::::
good585

::::::::
agreement

::::
with

:::
the

::::::::
proposed

:::::::
function

::::
Eq.

:::
(89).

Figure 9. Evolution of the thermal conductivities keff , kB
::
k̃B

:
and kC

::
k̃D

:
with temperature. For kC

::
k̃D, the blue dots represent the numerical

estimates of kC
:::
over

:::
the

::::
REV and the blue line is the fit.

3.3.2 Comparison between pore-scale and macro-scale simulations

Results between pore-scale and macro-scale simulations are compared in terms of temperature, vapor density, and mass change

rate. At the pore-scale, the average values of each variable were taken over the cell and computed as follows:

⟨T ⟩= 1

Ω

∫
Ωi

TidΩ+

∫
Ωa

TadΩ

 , ⟨ρv⟩=
1

Ωa

∫
Ωa

ρvdΩ ⟨ρvs(T )⟩=
1

Ωa

∫
Ωa

ρvs(Ta)dΩ ⟨ϕ̇⟩= 1

Ω

∫
Γ

wndΓ (90)590
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Figure 10.
:::::::
Evolution

:::
of

:::
the

:::::::::::
dimensionless

:::::::
diffusion

::::::::::
coefficients

::::::::
Deff/Dv ,

:::::::
DC/Dv :::

and
:::::::
DD/Dv::::

and
::
of

:::
the

::::::::::
macroscopic

:::::::
thermal

::::::::::
conductivities

::::
keff ,

:::
kC

:::
and

:::
kD

::::
with

:::::
respect

:::
to

:
α
::::

and
::
for

::::
two

::::::::::
temperatures

::::
(270

::
K

:::
and

:::
250

:::
K).

::::
The

::::
black

::::
lines

::::::::
represent

::
the

::::::::
proposed

::::::
function

:::
Eq.

:::
(89)

::
to
:::::::
describe

::
the

:::::::::
parameters

::
of

::
the

:::::
model

::
C.

::::::::
Numerical

::::::::
estimates

:
of
:::

the
:::::::
diffusion

::::::::
coefficient

::
on

:::
3D

::::
snow

::::::::::::
microstructures

::
of

::::::
different

:::::::
densities

::::
from

:::::::::::::::::
Fourteau et al. (2021b)

::
are

:::::::::
represented

::
by

:::
the

:::
dot

:::::::
symbols.
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Figure 11. Simplified example of the transition from the x to ∆x notation in a concave (red), and a convex (blue) case.

Thus, we compare the vertical profiles of the pore-scale variables ⟨T ⟩, ⟨ρv⟩, ⟨ρvs⟩ and ⟨ϕ̇⟩ with the vertical profiles of the

macroscopic variables T (0), ρ(0)v , ρ(0)vs (T (0)) and ϕ̇. As the obtained simulated temperature profiles were close to each other, to

ease the comparison, we also use the temperature deviation ∆T , which represents the deviation of the simulated temperature

profile from the linear temperature profile imposed by Ttop and Tbottom, as illustrated in Fig. 11. In the same vein, we use the

water vapor supersaturation, which is the difference between the simulated water vapor density and the saturation water vapor595

density ρv − ρvs(T ). Figure 12 shows the vertical profiles of ∆T , of ρv − ρvs(T ), and of ϕ̇ from the pore-scale simulations

(dots) and the macroscopic models (lines), considering a temperature gradient of 100 and 500 K m−1. For the pore-scale

simulations, values of α from 10−9 to 1 were used. For the macroscopic models, results are only shown in their domain of
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Figure 12. Vertical profiles of ∆T , ρ− ρvs(T )::::::::::
ρv − ρvs(T ), and ϕ̇ from the pore scale simulations (dots) and from the macroscopic model

A (grey lines), B (orange lines), and C (
::::::
magenta

::::
lines)

:::
and

::
D

:
(blue lines), considering a temperature gradient of 100 and 500 K m−1 and for

different values of α. ∆T represents the deviation of the temperature profile from a linear temperature profile.
::::::::
Predictions

::
of

::::::::::
ρv − ρvs(T )

:::
from

:::
the

::::::
models

::
C

:::
and

::
D

:::
are

::
not

::::::
shown

::
in

::
c)

:::
and

::
d)

::
as

::::
they

:::::::::
superimpose

::::
with

:::
the

::::
pore

::::
scale

::::::::
simulation

:::::
results

:::
for

::
α

:
=
::
1

::::::
(yellow

:::::
dotted

::::
lines).
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Figure 13. Temperature and water vapor density in the middle of the snow layer as a function of α, obtained from the pore-scale simulations

(dots) and from the macroscopic model A (grey lines), B (orange lines), and C (
:::::::
magenta

::::
lines)

:::
and

::
D

:
(blue lines), at 100 and 500 K m−1.

The models are only shown for the α-values within their domain of validity. Values of saturation water vapor density ρvs from the pore-scale

simulations and from the model A are also presented. The pink curve represents the transition between the model B and C presented in Sect.

5.

validity with respect to α. To further highlight the impact of α, Fig. 13 presents the evolution of T , ρ and ρvs with α for a

specific
::
the

:::::::
specific

::::::
middle

:
cell of the snow layer, here the hundredth cell from the bottom (x= l/2,y = 100l− l/2). Again,600

pore-scale simulations (dots) and the macroscopic models (line) are compared.

We describe first the main features observed in the pore-scale simulations. All the variables show an impact of the α-value.

The temperature deviation ∆T is overall mainly positive (Fig. 12.a and b), which reflects the presence of a heat source by non-

conductive processes such as latent heat from deposition. This temperature deviation increases with α and with the temperature

gradient. This is also reflected in the temperature of the middle cell that overall increases with increasing α (Fig. 13.a and b).605

This increase is not uniform and two plateau
::::::
plateaus

:
are observed, one between 10−6 ⩽ α⩽ αT , and the other one between

10−1 ⩽ α⩽ 1. The largest ∆T value is reached in the center of the snow layer and is around 0.4 K at 100 K m−1 and 4 K

at 500 K m−1. Looking at the lower part of the layer, negative ∆T values can be found for α⩽ αT ∼ 3× 10−4 and indicate
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a heat loss by non-conductive processes such as latent heat from sublimation. This feature vanishes for the large temperature

gradient. In terms of water vapor supersaturation ρv − ρvs(T ), we observe positive values (over-saturation) in the upper part610

of the snow layer, values close to zero in the central part (at saturation), and negative values (under-saturation) in the lower

part (Fig. 12 c, d). The largest over-saturation and under-saturation values are shown for low α-values, when phase changes are

very limited. With increasing α-values, values close to saturation gets predominant and the over-saturation and under-saturation

zones become localized near the top and bottom, respectively. This is confirmed in Fig. 13.c and 13.d. where ρv ≈ ρvs(T ) for

10−6 ⩽ α⩽ 1. Similarly to temperature, two plateau
::::::
plateaus

:
are shown where ρv − ρvs(T ) evolve little with α. All these615

results are consistent with our theoretical analysis presented in Sect. 2. Last, the vertical profiles of ϕ̇ are consistent with the

ones of supersaturation, showing deposition in the upper part where the porosity decreases and sublimation in the lower part

where the porosity increases (Fig. 12.e and f). As α increases, those transitions become sharper and sharper, like a front. For

αT ⩽ α⩽ 1, most values become negative, indicating overall deposition in the snow layer. A sublimation zone is still visible at

the bottom of the snow layer but its thickness is typically of the order of a few REV or smaller. Finally, as the difference ρv−ρvs620

is directly related to the interface growth velocity wn (see Eq. 10), and as it could be useful to compare it with experimental

estimates (e.g., Flin and Brzoska, 2008; Brzoska et al., 2008; Pinzer et al., 2012; Libbrecht and Rickerby, 2013), we provide

below the mean values of wn computed over the bottom and middle cell for α = 10−6. For 100 K m−1, a value of 5.9 ×10−13

m s−1 and of -2.7 ×10−11 m s−1 is found in the middle and bottom cell, respectively. For 500 K m−1, a value of 4.5 ×10−12

m s−1 and of -1.1 ×10−10 m s−1 is found in the middle and bottom cell, respectively.625

Next we compare the different macroscopic models to the pore-scale simulations. In both Fig. 12 and Fig. 13, the comparison

shows different behaviors depending on α. For α⩽ αT::::::::
α⩽ 10−5, the model A reproduces precisely all the features shown

at the pore-scale. The model B and C
::
D are independent of α and provide one estimate of the temperature, and thus the

water vapor density, for all the α-values in their domain of validity. These estimates are only able to reproduce the plateau

values observed in the pore-scale simulations, i.e. temperatures for 10−6 ⩽ α⩽ αT ::::::::::::::
10−7 ⩽ α⩽ 10−5

:
for the model B and630

10−1 ⩽ α⩽ 1
:::::::::::
10−2 ⩽ α⩽ 1

:
for the model C

:
D
:
(Fig. 13). Both models Band C

::::
The

:::::
model

:::
C,

:::::
which

:::::::
depends

:::
on

::
α,

::::::
allows

::
to

::::::::
reproduce

:::
the

:::::
main

::::::
features

::::::
shown

::
at

:::
the

:::::::::
pore-scale

:::
for

:::::::
α-values

:::
in

:::
the

:::::
range

::::::::::::
10−5 ⩽ α⩽ 1.

::::
This

::::::
model

::::::
predicts

::::
∆T

::::::
values

:::::
higher

::::
than

:::
the

::::
pore

:::::
scale

::::::::::
simulations

:::
for

:
a
:::::
given

::
α.

:::::::::
Moreover,

:::
the

::::::
models

:::
B,

::
C

:::
and

::
D

:
predict only deposition in snow, with

negative ϕ̇ values throughout the layer (Fig. 12.e and f). They do not capture the sublimation front at the bottom of the snow

layer, in contrast with the model A. The mass balance between sublimation-deposition over the whole snow layer is not well635

satisfied: the Dirichlet boundary condition on the temperature field at the bottom and the top of the snow cannot ensure that

the water vapor flux is null at the same time since ρv = ρvs(T ). :::
This

:::::::::
limitation

:::
can

:::::::
explain

:::
the

:::::
slight

:::::::::
differences

::::
that

::
we

::::
can

::::::
observe

:::::::
between

::::
the

:::::
model

::
C
::::::::::
predictions

:::
and

:::
the

:::::
pore

::::
scale

:::::::::::
simulations. In order to overcome this limit, specific boundary

conditions should be introduced to allow describing mass variations near the interfaces.
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Table 2. Overview of the experimental settings used in the simulations.

Experiment Bouvet A Bouvet B Kamata

initial density (kg m−3) 210 287 165

snow layer height (cm) 13.5 7.7 10

temperature gradient (K m−1) 93 103 530

snow base temperature (°C) -3.1 -6.5 -12

snow surface temperature (°C) -15.6 -14.5 -65

duration (days) 20 28 5.5

4 Application to experimental data640

This section presents the evaluation of the macroscopic models A, B and C
::
D based on observations of natural snow evolution

from three cold-laboratory TGM experiments. We first introduce the experimental data (Sect. 4.1), then we define the estimates

to be taken for the input parameters of the models (Sect. 4.2), and, finally, we present the simulation results with the models

and their comparison with the experiments (Sect. 4.3).

4.1 Experimental datasets645

We used the datasets provided by Bouvet et al. (2023), consisting of two experiments referred as Bouvet A and Bouvet B in

their paper and hereafter, and the data from Kamata and Sato (2007), referred as ‘Kamata’. These experiments provide the

required data to evaluate our models: time-series of the vertical profiles of temperature and density of a snow layer evolving

under a temperature gradient in a controlled environment. The main characteristics of the three experiments are summarized

in Table 2. Bouvet A is a TGM experiment on a 13.5 cm height snow layer for which a TG of 93 K m−1 was applied during650

20 days. X-ray tomography was done at regular time intervals resulting in 9 large 3D images of the whole vertical dimension

of the snow layer at a resolution of 21 µm and 17 small 3D images of the top or bottom part of the layer at a resolution of 8

µm. For the large images, the first few mm at the base of the layer is lacking, due to the snow sampling procedure, so no data

are available for this area. This experiment also includes monitoring of the temperature profile of the snow layer, measured

using 7 PT100 sensors. Bouvet B is a TGM experiment on a 7.7 cm height snow layer for which a TG of 103 K m−1 was655

applied during 28 days. Four tomography images of the first lower 4.2 cm of the snow layer are provided at a resolution of

10 µm. For both experiments, Bouvet A and Bouvet B, the vertical profiles of snow density computed from the 3D images

are provided and vertical mass redistribution can be analyzed. Finally, the Kamata experiment is a TGM experiment on a

snow layer of 10 cm height for which an extreme TG of 530 K m−1 was applied during 5.5 day (133 hours). The vertical

mass redistribution was estimated by measuring snow density for four sections of the snow layer. For that, the snow layer660

was separated in 4 compartments of about 2.5 cm height each using horizontal nylon meshes, which enables water vapor to
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get through. Each compartment was weighed at the initial and final stage of the experiment. In addition, the temperature was

recorded at 6 vertical locations.

4.2 Effective properties and parameters

Next we study the estimates of the effective properties and others input parameters required to run the model A, B and C
::
D.665

:::
For

:::
the

::::
sake

::
of

:::::::::
simplicity,

:::
the

::::::
model

::
C

:
is
::::

not
::::::::::::
systematically

:::::
shown. For each model, these properties are computed from the

3D images of snow of the experiment Bouvet A and Bouvet B. Those values are then compared to different parameterizations

from the literature or fitted regressions and we select the more suited ones to be used later in the models.
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Figure 14. Average values of effective conductivity and normalized effective diffusivity as a function of density, and SSA as a function

of time, computed from the tomography images of Bouvet A (symbols, upper plots) and Bouvet B (symbols, lower plots). The error bars

represent the standard deviation of the parameter along the image height. Comparison with the SC model, classical parameterizations, and

fits are shown (solid lines).

The model A involves three effective parameters that are the effective thermal conductivity keff , the effective vapor diffu-670

sivity Deff and the SSA (Sect. 2.6.1). These parameters were estimated in the case of Bouvet A and Bouvet B by numerical

computations on the 3D tomographic images available. SSA was computed per unit of mass based on the voxel projection

approach (Flin et al., 2011; Dumont et al., 2021). keff and Deff were computed with the software Geodict (Thoemen et al.,

2008) by solving the boundary value problems (28) - (32) and (33) - (35) on the 3D images, applying periodic boundary con-

ditions on the external boundaries, as described in Calonne et al. (2011, 2014b). Values of ki and ka at -10°C
::::
were

::::
used for675
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the computation of keff . The obtained 3D tensors of both properties show negligible non-diagonal terms. In the following, we

refer to keff and Deff as the average of the diagonal terms of the tensors.

Figure 14 presents the results of the image-based computations of keff , Deff and SSA, for the experiment of Bouvet A and

Bouvet B. To compare with, we show the estimates of keff and Deff by the SC model presented in Section 3.2, the density-

based parameterizations of keff from Calonne et al. (2011) and Riche and Schneebeli (2013), and a fitted regression of the SSA680

values as a function of time, referred as SSAFit(t), based on a logarithmic function as formerly proposed by Legagneux et al.

(2004). For thermal conductivity, the parameterization of Calonne et al. (2011) are in good agreement with the image-based

computations in both experiments, whereas the parameterization of Riche and Schneebeli (2013), which specifically describes

the case of depth hoar, predicts slightly larger values. The SC model largely underestimates the values, about two to four times

smaller than the image-based computations. For the vapor diffusion coefficient, the SC model provides overall fair estimates,685

which are slightly overestimated, especially towards the end of the experiments, as reported for depth hoar and faceted crystals

in Calonne et al. (2014b). For SSA, the fit reproduces well the SSA evolution for the experiment Bouvet A. For Bouvet B, SSA

does not follow the classic exponential decrease but it increases after 7 days and until the end of the experiment; this increase

is specific to hard depth hoar formation (Bouvet et al., 2023). This feature is not predicted by the applied fit, yet it provides fair

estimates of the SSA values.690

Given the above considerations, we selected two sets of parameters to simulate Bouvet A, Bouvet B, and Kamata with the

model A, which are summarized in Table 3. In the set ‘Calonne’, keff is estimated with the parameterization of Calonne et al.

(2011). In the second set ‘SC’, keff is given by the self-consistent estimates. In both sets, Deff is estimated with the SC model

and the SSA with the logarithmic fit, which is specific for Bouvet A and Bouvet B. In the case of the Kamata experiment, we

cannot test the proposed estimates of keff , Deff and SSA against reference data, as such data are not available from Kamata and695

Sato (2007). SSA evolution was reproduced based on the logarithmic fit from Bouvet A, as both experiments are the closest

in terms of initial snow type, grain size and density. In the model evaluation that follows (Sec. 4.3), the set ‘Calonne’ is the

one per default used to evaluate the model A. Results with the set ‘SC’ are also presented to illustrate an alternative choice of

parameters, which, although less accurate, allows for consistent and analytically-based estimates for all properties.

4.2.2 Models B and C
:
D700

The models B and C
:
D only involve the apparent thermal conductivities of snow kB and kC

:::
k̃B

:::
and

:::
k̃D, respectively. Estimating

kB
::
k̃B

:
comes down to estimating keff and Deff , as it is defined as kB = keff + kdifD

eff/Dv ::::::::::::::::::::
k̃B = keff + kdifD

eff/Dv . For that,

we use the same estimates of keff and Deff selected for the model A as described above. So two sets of input parameters were

used for the model B: the set ’Calonne’, from which the model’s performances are evaluated, and the alternative set ’SC’ (Tab.

3). Figure 15 presents the evolution of kBCalonne and kBSC:::::::
k̃BCalonne::::

and
:::
k̃BSC:with temperature for each experiment, taking the705

mean snow density of the experiments (see Tab. 2). Both estimates show similar trend but, as in the model A, the SC estimate

predicts lower values than when using the parameterization of Calonne et al. (2011).

For the model C, kC
::
D,

::
k̃D

:
was computed on the 3D images from Bouvet A and Bouvet B, by solving the boundary problem

(66) - (70) using the Geodict software. As above, only diagonal terms of the tensor were considered and kC
::
k̃D

:
refers to the
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Table 3. Summary of the effective parameters used in the simulations.

Model A
Set SC keff

SC, Deff
SC, SSAFit(t)

Set Calonne keff
Calonne, Deff

SC, SSAFit(t)

Model B
Set SC kB

SC = keff
SC + kdifD

eff
SC/Dv:::::::::::::::::::::

k̃B
SC = keff

SC + kdifD
eff
SC/Dv , Deff

SC

Set Calonne kB
Calonne = keff

Calonne + kdifD
eff
SC/Dv:::::::::::::::::::::::::::

k̃B
Calonne = keff

Calonne + kdifD
eff
SC/Dv , Deff

SC

Model C
Set SC kC

SC, Dtd
SC :::::

k̃C
SC(α)::::

and
::::::
DC

SC(α)::::
from

:::
Eq.

:::
(89)

:

:::
Set

::::::
Calonne

:::::::::
k̃C
Calonne(α):::

and
::::::::::
DC

Calonne(α)::::
from

:::
Eq.

::::
(89)

Model D :::
Set

::
SC

: ::::
k̃D
SC,

::::
DD

SC

Set Fit kC
Fit, D

td
SC::::

k̃D
Fit,::::

DD
SC

Figure 15. The thermal conductivity estimates for the model B kB
SC :::

(k̃B
SC:

and kB
Calonne,

:::::::
k̃B
Calonne)

:
and for the model C kC

SC ::
D

::::
(k̃D

SC and kC
Fit, ::::

k̃D
Fit):are presented as a function of temperatures (

:::
solid

::::
and

:::::
dotted

:
lines). The parameters are presented for Bou-

vet A, Bouvet B and Kamata experiment
::
and

:::
the

:::::
green

:::::
areas

:::::::
represent

:::
the

::::::::::
temperature

:::::
ranges

:::
of

::::
each

:::::::::
experiment. The computed

values on 3D images used to derived kC
Fit :::

k̃D
Fit:

are shown by blue dots. The green areas represent the temperature ranges of each

experiment
:::
For

:::::
Bouvet

::
A,

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
k̃D
Fit(T ) = 5.4485× 10−9 ×T 4 − 4.8119× 10−6 ×T 3 +1.5965× 10−3 ×T 2 − 2.3581× 10−1 ×T +1.3195.

::
For

:::::::
Bouvet

:::
B,

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
k̃D
Fit(T ) = 6.0212× 10−9 ×T 4 − 5.2974× 10−6 ×T 3 +1.7523× 10−3 ×T 2 − 2.5868× 10−1 ×T +14.6338.

::::
For

::::::
Kamata,

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
k̃D
Fit(T ) = 5.1386× 10−9 ×T 4 − 4.5612× 10−6 ×T 3 +1.5206× 10−3 ×T 2 − 2.2553× 10−1 ×T +12.6279.

average value of the diagonal terms. Here, computations were performed on only one REV from each experiment and for 10710

temperatures ranging from 210 to 273 K. We selected the image at 14 days for Bouvet A (cropped between 5.8 and 6.7 cm

height) and the image at 7 days for Bouvet B (cropped between 1.7 and 2.5 cm height). To be able to estimate kC
:::
k̃D for the

Kamata experiment, we took a 3D image of snow with similar characteristics and used the one from Fourteau et al. (2021a) of

depth hoar with a density of 165 kg m−1. Results of the image-based computations are presented in Fig 15, as well as estimates
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from the SC model kCSC :::
k̃DSC:presented in Sec. 3.2. A fit

::
For

:::::
each

::::::::::
experiment,

:
a
:::

fit
:::
was

:::::::::
performed

:
on the computed data is715

also shown and refers as kCFit :::
k̃DFit::

in
:::
the

::::::::
following. Again, the SC estimates for the model C

::
D captures the trend but largely

underestimate the values. In what follows, simulations were performed using the fitted values kCFit::::
k̃DFit, referred as the set ’Fit’

in Tab. 3, from which the evaluation of the model C
:
D
:
is based on. As for the other models, simulations with the SC estimates

kCSC :::
k̃DSC are also presented for a sake of comparison and as they allow for independent and consistent estimates.

4.3 Comparisons between models and experiments720

In this section we compare simulations from the models A, B and C
:
D
:

with the measurements from the three experiments

Bouvet A, Bouvet B, and Kamata. The simulations were performed with the software COMSOL Multiphysics by resolving

the homogenized equations on a 1D geometry that corresponds to the snow layer of experiments. Equations are Eq. (21) - (22)

for the model A, Eq. (41) and (37) for the model B, and Eq. (71) and (62) for the model C
::
D. For the model A, the boundary

conditions in temperature are the top and bottom imposed temperatures of the experiments. In terms of vapor density, the725

conditions correspond to zero flux at the top and bottom. Additionally, the source term is forced to zero in the simulation

nodes where a density of zero is reached. For the models B and C
:
D, the boundary conditions are the imposed temperatures.

The models were run using the sets of input parameters described in Table 3 and and considering the experimental conditions

summarized in Table 2. Comparisons between measurements and simulations are performed based on temperature and mass

change variables.730

4.3.1 Temperature

Figure 16 presents the measured and simulated vertical profiles of ∆T with the models A, B and C
::
D for the three experiments,

taking different α-values from 10−9 to 10−4 for the model A. The ∆T values analyzed here are the ones computed at the

beginning of the experiments when the temperature gradient is well established but before the formation of the air gap. Overall,

profiles of ∆T are of similar shapes as the ones simulated on the simplified 2D microstructure (Sec. 3.3), describing right-735

headed curves indicating that processes apart from pure heat conduction, such as phase change, occur and result in a heat source

in the snow layer. In the center part of the layer, a maximum deviation of 1.15 K was measured in the Bouvet A experiment

and of 5.9 K in the Kamata experiment. The negative ∆T value in the upper part of the layer in Bouvet A is attributed to a

temperature sensor error
::
the

:::::::::::
temperature

::::::
sensors

:::::::::
uncertainty

:
(Bouvet et al., 2023).

Looking at the models, the main observation is that they all underestimate ∆T . In more details, the model A predicts negative740

∆T in the lower part of the snowpack and positive otherwise, reflecting a heat sink attributed to more sublimation in the lower

part and a heat source attributed to more deposition in the rest of the layer. With increasing α, the positive values of ∆T

increase and the negative ones tends to vanish, so that the shape of the simulated curve become closer to the experimental one.

The maximum ∆T predicted by the model A is reached for the highest α = 10−4 and is of 0.11 K for Bouvet A and of 0.49 K

for Kamata, which corresponds only to 10% and 8% of the experimental value, respectively.745

The models B and C
:
D
:
show a unique ∆T profile valid over their domain of validity, 10−6 ⩽ α⩽ αT and αT ⩽ α⩽ 1,

respectively. The profile shape is in agreement with the measurements, showing only positive values throughout the layer. ∆T
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Figure 16. Vertical steady state profiles of ∆T simulated with the model A with α ranging from 10−9 to 10−4, with the model B and the

model C
::
D, for Bouvet A, Bouvet B and Kamata experiments. Simulations using the set ‘Calonne’ (solid lines) are shown for the model A

and using both set ‘Calonne’ (solid lines) and set ‘SC’ (dashed lines) for the models B and C
:
D. The experimental profiles are shown with

black dashed lines for Bouvet A and Kamata.

values of the model B correspond to the upper limit of the model A. The model C
:
D

:
is the closest to the experimental data.

Still, values are largely underestimated and reach at most 0.29 K (25% of the experimental data) for Bouvet A and 1.4 K (23%

of the experimental data) for Kamata. In both models B and C
:
D, slightly better results are found when using the ’SC’ set of750

input parameters, even though it corresponds to underestimated estimates as seen in Sec. 4.2. This better agreement with the

SC estimate is somehow artificial and comes from the fact that the lower values of kBSC and kCSC compared to kBCalonne and

kCFit:::
k̃BSC::::

and
::::
k̃DSC ::::::::

compared
:::
to

:::::::
k̃BCalonne::::

and
:::
k̃DFit, respectively, lead to reduce the overall heat conduction through snow and

allow for higher ∆T , as well as the fact that the SC estimates allow for a slightly higher sensitivity (steeper slope) of the

thermal conductivity to temperature in the temperature range of the considered experiments (see the green areas in Fig. 15).755

A final interesting point is the strong impact of the density on ∆T , which can be seen by comparing simulations of Bouvet A

and Bouvet B, for which temperature gradients were very close but snow density was 210 and 287 kg m−3, respectively. For

the same temperature gradient, the higher the snow density, the higher the heat conduction through snow and the lower the

∆T . For example, in lighter snow (Bouvet A), a maximum ∆T of 0.29 K is predicted by the model C
::
D against 0.06 K for the

denser snow (Bouvet B).760

4.3.2 Mass change

Next we evaluate the models regarding mass changes across the vertical dimension of the snow layer. We look at the vertical

density profile of snow, as well as the height of the air gap formed at the base of the layer at the end of the experiments, caused
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Figure 17. (a ,b, c): Density profiles from the macroscopic models and from the experimental data for the final stage of the Bouvet A, Bouvet

B and Kamata experiments. Results of the model A are provided for α-values from 10−5 to 10−9 and for the parameter set ‘Calonne’. The

height of the air gaps derived for the models B and C
:
D

:
are shown with horizontal bars in the zoom boxes. Results of the model B are

provided for the set ‘SC’ (orange dashed lines) and the set ‘Calonne’ (orange solid lines). Results of the model C
:
D
:

are provided for the set

‘SC’ (blue dashed lines) and the set ‘Fit’ (blue solid lines). (d, e, f): Air gap height at the final stage of the experiments as a function of α,

simulated with the models A, Band
:
, C

:::
and

::
D using the parameter sets ‘SC’, ‘Calonne’, and ‘Fit’.

:::
For

::
the

:::::
model

:::
C,

::
the

:::
air

:::
gap

::::::::
calculated

:::
with

:::
the

:::
Eq.

:::
(92)

::
is

:::
also

:::::
shown

::::
with

::::
black

:::::
lines.

by an upward mass transfer during TGM. For the model A, the air gap height is defined as the highest height value at which the

density is zero. For the models Band C ,
::
C

:::
and

::
D, the vertical profile of density cannot be evaluated because they only predict765
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deposition and thus density increase, due to boundary condition issue as already described in Sect. 3.3. Still, to allow for a

comparison with measurements, we derived a rough estimate of the air gap by considering that all the mass gain in the snow

layer over the whole experiment duration is balanced by a mass loss localized at the very bottom of the snow layer, leading to

a sharp air gap described as:

hair gap =H
ϕ̇ texp

(ϕ̇ texp +ϕinit − 1)
with ϕ̇=

1

H

H∫
0

ϕ̇(z)dz =− 1

H

H∫
0

1

ρi

∂

∂z

(
∂Dρ

(0)
vs (T )

∂z

)
dz (91)770

with hair gap the height of the air gap (m), H the total height of the snow layer (m), ϕinit the initial porosity (-) and texp the

total duration of the experiment (s) (Table 2). D is the diffusivity coefficient and corresponds to Deff
SC for the model B and Dtd

SC

::::
DD

SC for the model C.
::
D.

:::
For

:::
the

::::::
model

::
C,

:::
D

::::::::::
corresponds

::
to

::::::
DC(α)

:::::
using

::::
Eq.

::::
(89).

::::
The

::
air

::::
gap

:::
for

:::
the

:::::
model

::
C
:::
can

::::
also

:::
be

::::::
directly

:::::::::
calculated

:::::
using

::::
only

:::
the

::
air

::::
gap

:::::
values

::
of

:::
the

::::::
models

::
B
::::
and

::
D,

::::
and

:
a
:::::
fitting

:::::::
function

::::::
similar

::
to
::::
Eq.

::::
(89):

:

hC
air gap −hB

air gap

hD
air gap −hB

air gap

=
Aα

1+Aα
:::::::::::::::::::::::

(92)775

::::
with

::
A
::

=
:::::
1200.

:

Figure 17 shows the vertical profile of density and the height of the air gap simulated and measured in Bouvet A, Bouvet B,

and Kamata at the end of the experiments. The Bouvet B and Kamata experiment report a mass loss in the lower part of the

snow layer. In Bouvet B, it results in the formation of an air gap of 2.7 mm height at the layer base, at which the snow density

drops from about 290 to 0 kg m−3 within a few mm (Fig. 17.b). In Kamata, the initial uniform density profile around 165 kg780

m−3 evolved and show at the final stage a density of 152 kg m−3 at the bottom of the layer which is lower than elsewhere,

where density is around 170 kg m−3 (Fig. 17.c). So only a decrease in density at the base was observed, not an air gap. This

might be however prevented by the vertical resolution of the density measurement of 2.5 cm in Kamata, at which the detection

of a mm-scale air gap is not possible. To provide an estimation of the height of the potential air gap, we converted the density

decrease in the bottom first 2.5 cm into a pure air gap. This would lead to a 2.6 mm height air gap, similar to the one measured785

for Bouvet B for a much lower temperature gradient. Finally, as already mentioned, the experiment of Bouvet A does not

include the first mm at the base of the snow layer, so comparison with simulations is not possible.

We look
:::::::
Looking

:
at the experiments Bouvet A and Bouvet Band describe first the simulations ,

::
a
::::
first

:::::::::
description

:
of the

model A , performed
::
is

:::::
given,

:
with α

:::::::
ranging from 10−9 to 10−5(at α = 10−4 the model becomes numerically unstable). The

model predicts similar mass transport for both experiments: a mass gain in the upper part of the layer and a mass loss in the790

upper part, the latter feature being consistent with the measurements. In more details, and as for temperature, the impact of α is

clearly shown. For the lowest α-value of 10−9, the density profile is almost linear so the mass redistribution is even throughout

the layer. As α increases, the area of mass loss and mass gain become more localized near the base and top of the layer and

the density transitions become sharper. From α = 10−6 and above, an air gap is simulated with density values reaching 0 kg

m−3 at the bottom. The air gap closest to the experiments is obtained with the highest α = 10−5 and reaches 2.3 mm height for795

Bouvet A and 1.65 mm for Bouvet B, which corresponds fairly well to the measured air gap, yet slightly underestimated (75%)

(Fig. 17.d and 17.e). Approximations of the air gap for the models B and C
:
D

:
are close to the ones simulated by the model A,
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so that all the models seem to underestimate the air gap. For Bouvet B, an air gap of 1.7 mm is estimated for the model C
::
D

(63% of the experimental air gap) and of 1.1 mm for the model B (41% of the experimental air gap). Finally, for all the models,

using the alternative ’SC’ set of input parameters (Tab. 3) has little impact on the air gap and leads mostly to a slight reduction800

in height (dashed lines in Fig. 17).

Simulations of the Kamata experiment with the model A differ from the ones of Bouvet A and Bouvet B. Indeed, a mass gain

is not predicted in the upper part of the snow layer but instead in a zone right above the mass loss region. This is particularly

visible for α = 10−5, where the air gap, located in the first 2.1 mm, is directly surmounted by the densest part of the snow

layer, located around 4 mm, with a density reaching 175 kg m−3. Simulations seem to show that mass redistribution in the805

Kamata experiment occur
:::::
occurs

:
mostly in the lower part of the snow layer, which might be due to the impact of temperature

on the simulated heat and mass transport processes so that they are reduced in the very cold upper part (-65°C). This effect of

temperature can also be seen in the ϕ̇ simulations on the simplified microstructure for the temperature gradient of 500 K m−1,

for which the imposed temperature conditions were close to the ones of Kamata, as presented in Fig. 12.f. Considering that this

effect applies in reality, it would imply that the final density measured in Kamata in the bottom first 2.5 cm is the result of both810

the mass loss and mass gain and thus that the above estimation of an air gap of 2.6 mm might be underestimated. Comparisons

of air gaps for the Kamata experiment should be looked at with the above consideration in mind. When averaging the simulated

density values of the model A over a 2.5 cm step, as done in the measurements, a value of 158 kg m−3 is found for the first

2.5 cm, in agreement with the measured one of 152 kg m−3. Coming back to the air gap comparisons, the model A predicts

well the air gap estimated for the Kamata experiment when the highest α-value is considered. At α = 10−5, the simulated air815

gap is of 2 mm, again close to the estimated one of 2.6 mm, yet underestimated (77%). Unlike for Bouvet A and Bouvet B, the

models B and C
::
D stand out from the model A and their approximations of the air gap are significantly larger, between 3 mm

and 4 mm. They would thus predict
:
a larger air gap than the one from the experiment, up to twice the height.

5 Discussion

5.1 Modeling heat and mass transfer with the models A, Bor
:
, C

::
or

::
D820

In the present work, macroscopic models for heat and mass transfer in dry snow have been derived by homogenization from

the physics at the pore scale for different values of the condensation coefficient α in the range [10−10, 1]. The latter was

assumed to be constant in the whole modeled snow layer. The Robin boundary equation for the water vapor at the ice-air

interface allowed to define a transition value αT , which equals ≈ 3× 10−4 for typical snow grain size around 0.5 mm, that

characterizes the transition between the two main mechanisms driving the water vapor transfer through the snowpack: diffusion825

and sublimation-deposition. The homogenization process allowed (i) to retrieve three different models already proposed in the

literature (Calonne et al., 2014b; Hansen and Foslien, 2015; Moyne et al., 1988) and to specify their domains of validity

according to the α-values, and (ii) to show that the hypothesis ρv = ρvs(T ), which is often made, is a good approximation for

α-values larger than 10−6.
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At the macroscopic scale, the model A (Calonne et al., 2014b), valid for α-values in the range [10−10, αT ::::
10−5], is described830

by two coupled equations, one for the temperature field and one for the water vapor field. They are coupled by a source term

that reflects the sublimation-deposition process and depends on α. In this model, the induced porosity variation in the snow

layer can be easily computed. In the case of the model Band the model C
::::::
models

::
B,

::
C

:::
and

::
D

:
(Moyne et al., 1988; Hansen and

Foslien, 2015), the physics at macro-scale is driven by the temperature field only as ρv = ρvs(T ). Because the models only

solve temperature field, it is not as straightforward to access the porosity variation. In our case, both models do not satisfy835

mass conservation and predict only deposition over the whole snow layer and so the sublimation front occurring at the bottom

of the snow layer, as seen in the comparison between pore-scale and macroscopic-scale simulations (Fig. 12). In the future, a

more reliable boundary condition, as a Stefan boundary condition, should be introduced to better describe the evolution of the

sublimation front.

(a): Fitted B-C transition function Eq. (89) as a function of α for the simplified snow microstructure of Sect. 3.3 (solid pink840

line). Values from the pore-scale simulations, which were fitted to obtain the B-C transition, are shown by green squares for

the thermal conductivity and by blue triangles for the diffusion coefficient. The circle markers show the diffusion coefficient

estimates from Fourteau et al. (2021b) for different snow densities. (b): Estimation of the air gap simulated by the macroscopic

models for the simplified microstructure after 15 days under a temperature gradient of 100 K m−1 (solid lines) and of 500

K m−1 (dotted lines). Results using the B-C transition are shown (pink lines). In contrast to the model A, there is no smooth845

transition between
:::::::::
According

::
to

::::
their

:::::::::
definition,

:
the model B and the model C when varying the α-value, as both

::
D

:
do not

depend on α . Hence, at the first order, the temperature and vapor density fields obtained from those models apply for the entire

α range of their domain of validity, which does not agree with the smooth evolution observed
:::
and

:::
are

::::
able

::
to

::::::::
describe

:::
the

:::::::
observed

:::::::
plateaus

::
in

::
a

::::::
limited

:::::
range

::
of

::
α.

:::::
These

::::
two

::::::
models

:::
can

:::
be

::::
seen

::
as

::::::::
particular

:::::
cases

::
of

::::::
models

::
A

::::
and

::
C.

::::::::::::
Consequently,

in
:::::::
practice,

:
the pore-scale simulation results when α varies in the range 10−5, 1(see Fig. 12 and 13). As both models B and850

Cpresent similar form, a way to reproduce this transition is to introduce a simple function to describe the evolution, when

α varies, between the macroscopic parameters involved in the model B and in the model C, i.e. between Deff and Dtd and

between kB and kC. For that, we used the temperature and vapor density fields obtained from the pore-scale simulations (see

Section 3.) over one REV of snow (the hundredth cell) at different α-values to compute the apparent properties DBC(α) and

kBC(α), which verify in first approximation the following relation:855

DBC(α)−Deff

Dtd −Deff
≈ kBC(α)− kB

kC − kB
≈ tanh

((
α− 10−5

b

)a)
where a= 0.58 and b= 0.00693 are two constants. Figure ??.a shows the evolution of this function fitted on the numerical

fine scale results of DBC(α) and kBC(α). The figure also includes the numerical estimations of the diffusion coefficient on

3D snow microstructure from Fourteau et al. (2021b), which are in good agreement with the proposed function. Using balance

equations similar as the ones of the models B or C, but with the parameters DBC(α) and kBC(α), it is possible to compute the860

temperature and ρvs(T ) field in a refined way
::::::
models

::
A

:::
and

:::
C,

:::::
which

::::::
depend

:::
on

::
α,

:::
are

::::::::
sufficient

::
to

:::::::
describe

:::
the

:::::::::::
macroscopic

:::
heat

::::
and

::::
mass

:::::::
transfer

:::::::
through

:::
the

::::::::
snowpack

:
for α-values in the range 10−5, 1. To illustrate, we applied this approach to the
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simulations on the simplified 2D snow microstructure presented in Sect. 3.3 and the results are shown in Fig. 13. Temperature

and vapor density from pore-scale simulations are closely reproduced by the macroscopic models in the α range 10−5, 1. The

proposed fit (Eq. 89) also allows a continuous estimation of the air-gap as it is shown on Figure ??.b. The introduction of such865

a function can be useful for future studies working in the α range 10−5, 1, in which most experimental α-values from the

literature fall, as well as when running the model A in the range 10−5, αT , as it can present numerical instabilities above 10−5

(Schürholt et al., 2022)
:::

−10
::
to
::
1.
::::
Let

::
us

:::::::
remarks

:::
that

:::
the

::::::
model

:
C
::::::::
required

::
to

::::
solve

::
a

::::
fully

:::::::
coupled

:::::::
problem

::
at

:::
the

::::
REV

:::::
scale

::
in

::::
order

::
to

:::::::::
determine

:::
the

:::::::
effective

:::::::::
parameters.

5.2 On the comparisons between simulations and measurements870

Summary of the models’ evaluation: Comparing experiments and simulations with the three models, it appears that they are

able to reproduce the main features of the heat and mass transport during TGM, including the non-linear temperature profile

and, for the model A, the upward vapor transport with eventually the formation of a mm-scale basal air gap. However, a ma-

jor discrepancy lies in the fact that temperature values are underestimated by all the models. More precisely, the heat source

inducing the non-linearity in the temperature profile seems underestimated. The best predictions of the temperature deviation875

∆T are obtained by the model C
::
D and correspond only about 25% of the experimental data, which translates into temperature

differences of around 1 K and 5 K for the Bouvet A and Kamata experiments, respectively. To a much lesser extend
:::::
extent, up-

ward vapor transport seems slightly underestimated and the heights of the basal air gaps simulate by the model A corresponds

about 75% of the experimental ones, leading to small differences in height of 1 mm and 0.6 mm for the experiment Bouvet B

and Kamata, respectively. Similar conclusions seem to be drawn for the models B and C
:
D, based on rough approximations of880

the air gap. Possible causes of the differences between experiments and simulations are explored in the following.

Uncertainties on the experimental data: Temperature measurements in Bouvet A were performed with PT100 sensors with

an accuracy of ±0.2°C (Bouvet et al., 2023). Copper-Constantan thermo-couples were used in the experiment of Kamata and

Sato (2007) and are known to be very stable at low temperatures, with an accuracy of ±0.5°C. In both cases, these uncertainties885

are smaller than the discrepancies between the measured and modeled ∆T . For density, the experimental setup of Bouvet B

ensure precise monitoring of the mass change over time by tomography (Bouvet et al., 2023). Air gaps similar to the one in

Bouvet B were reported by Wiese (2017) during temperature gradient experiments. For Kamata experiment, the reliability of

the compartment method is less obvious, and the vertical resolution of 2.5 cm is rather poor to assess the presence of an air gap.

890

Uncertainties on the numerical simulation input: The macroscopic modeling of heat and mass transport in dry snow relies

on the effective parameters keff , Deff and SSA, for the model A, on kB
::
k̃B

:
for the model B, and on kC

:::
k̃D

:
for the model

C
::
D. For thermal conductivity, the different estimates used in the simulations are overall in good agreement with the values

computed on the experimental 3D images. A possible way of improvement could be to account for the anisotropy of the prop-

erty, so for an enhanced thermal conductivity in the vertical direction as observed for snow evolving under a high TGM (e.g.895

Calonne et al., 2011). However, an increase in the thermal conductivity of the models A, B and C
:
D
:
leads to a decrease in both
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temperature deviation and air gap height, and thus to degrade the models’ performance, as illustrated in Fig. 16. Concerning the

vapor diffusion coefficient, the SC models was
::::
were

:
used in the simulations, which provide slightly overestimated estimates.

However, improving these estimates, so taking lower values of the diffusion coefficient, leads to a decrease in both temperature

deviation and air gap height, which, again, degrades the model results. To illustrate in the case of the model A, by lowering the900

SC estimate of Deff by 10%, a ∆T of 0.096 K and an air gap of 1.17 mm is simulated for α = 10−5, compared to 0.102 K and

2.3 mm with the initial value. Finally, potential errors in the SSA parameter would affect the source term of the model A and

would only translate in small variations of α. To conclude, the uncertainties linked to the estimate of the effective parameters

cannot be responsible for the reported differences between experiments and simulations.

905

Models limitations and potential improvements: As the points raised above do not seem sufficient to explain the models’

errors, a plausible cause remains to be investigated and is the definition of the models itself, i.e. the definition of the physics at

the pore scale considered for the homogenization. A first element concerns the source terms in the model A, which are derived

from the Hertz-Knudsen equation and relies on a condensation coefficient α (Eq. 7). Here, this coefficient was taken constant

and uniform over the snow layer and considered equal for both condensation and sublimation. In their review, Persad and910

Ward (2016) explore the expressions of the evaporation coefficient and of the condensation coefficient in the Hertz-Knudsen

equation for the water-air interface. They conclude that most errors come from assuming the evaporation and condensation

coefficients to be equal and assuming thermal equilibrium across the liquid-vapor interface (Eq. 4 in this study). Moreover, as

mentioned in the introduction, the condensation parameter α depends on many parameters, such as the vapor supersaturation,

which can lead to a non-linear expression of the Hertz-Knudsen equation. Hence, refining the Hertz-Knudsen equation could915

add non-linearity in the source terms of the model A, which could enhance the contribution of latent heat and thus increase the

temperature deviation ∆T , which would improve the model’s prediction.

Another point is that the natural convection was not taken into account at the pore scale. This process was however hypoth-

esized to be key for heat and mass transport of snow under strong temperature gradients, such as Arctic and sub-Arctic ones

(e.g. Sturm and Johnson, 1991; Domine et al., 2018). To include natural convection, fluxes of temperature (JT ) and water vapor920

(Jρv
) should be expressed at the pore-scale as follows:

JT =− kagradTa + ρaCavaTa in Ωa and Jρv =− Dvgradρv + vaρv in Ωa (93)

with va the air velocity. A numerical study was recently presented by Jafari et al. (2022) using a macroscopic model similar

to the model A. They show that the occurrence and intensity of natural convection in snow depends on the Rayleigh number

defined as:925

Ra=
ρaβT g(Tbottom −Ttop)HK

((µakeff)/(ρaCa))
(94)

where H is the height of the snow layer, K is the snow permeability, g = 9.81 m s−2 is the gravity, µa = 17.29× 10−6 Pa.s is

the air viscosity and βT = 0.0036 K−1 is the thermal expansion coefficient. Their simulations indicate that, for Ra > 50 and

H > 25 cm, natural convection could generate an upward air flux from the warmer region to the colder one, and inversely. We
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estimated the Rayleigh number for the three experiments used in this study. Using the values in Table 1 and 2, and using the930

parameterization of Calonne et al. (2012) for the snow permeability, the Rayleigh number is typically of 0.15, 0.02 and 0.85,

for the experiments Bouvet A, Bouvet B and Kamata, respectively. These values are much smaller than the threshold value

presented by Jafari et al. (2022), which would indicate that natural convection is negligible in our cases. Moreover, Kamata

et al. (1999) present a symmetric TGM experiment, with warmer conditions at the base and top of the snow layer and colder

conditions imposed in the middle using a cold plate. The snow layer was thus under a positive TG in one part and under a935

negative TG in the other part, both of the same intensity. The temperature profiles were recorded in both parts of the snow layer

and show similar nonlinear curves in both cases, although natural convection could only occur in the bottom area, where the

temperature conditions are unstable. The authors conclude that natural convection does not seem to impact their temperature

fields. This would be consistent with the small Rayleigh number that we estimated to be 0.16 for this experiment.

Finally, the cross-coupling effects between the temperature and water vapor density, such as the Soret and Dufour effects,940

were not considered in the physics at the pore scale. The effect of the vapor density gradient on the heat flux, called the

Dufour effect, is characterized by the diffusion-thermo coefficient DTv, and the effect of temperature gradient on the vapor

density flux, called the Soret effect, is characterized by the thermo-diffusion coefficient DvT. Taking these effects into account,

temperature and water vapor flux can be expressed as follows:

JT =− kagradTa −DTvgradρv in Ωa and Jρv
=− Dvgradρv −DvTgradTa in Ωa (95)945

For porous media, the Dufour effect is neglected in most cases, whereas the Soret effect is often taken into account (e.g.,

Davarzani et al., 2010; Häussling Löwgren et al., 2020) and can be measured using the Soret coefficient defined as ST =

DvT/Dv . This coefficient is positive when the heaviest species in the pore space move toward the colder regions, and is

negative when they move toward the warmer regions. However, this coefficient could change sign when the temperature is

lowered (Chapman and Cowling, 1990; Caldwell, 1973). When the temperature is positive, the Soret coefficient for water950

vapor is supposed to be positive. To the best of our knowledge, there is no data concerning this coefficient when temperature is

negative. The Soret effect can be easily introduced in pore-scale simulations in the case of the 2D simplified microstructure as

presented in Sect. 3.3. By doing so, we found that negative ST coefficients lead to increase the simulated temperature deviation

∆T , and inversely. For example, for α= 0.1 and a temperature gradient of 500 K m−1, a maximum value of ∆T of 6.5 K, 4.2

K and 2.8 K is simulated for ST equals to -2 × 10−4, 0 and 2 × 10−4, respectively. The Soret effect can also be introduced in955

the model C
:
D, by replacing ka+kdiff by ka+kdiff +STDvLsg/ρi. Using the self consistent estimate of thermal conductivity

(Eq. 87) and for values of ST of -2 × 10−4, 0 and 2 × 10−4, the maximum simulated values of ∆T for the Kamata experiment

are 6.3 K, 3.1 K and 1.95 K, respectively, whereas the experimental value is around 6 K. A negative Soret coefficient seems

thus suitable to improve the temperature simulations and better describe the experimental data. However, the influence of the

Soret effect on the air gap is not straightforward, as it seems to induce a downward movement of vapor molecules, thus opposed960

to the formation of a basal air gap. These preliminary results show that the introduction of such coupling effects (Soret and/or

Dufour) between the temperature and the water vapor density in the modeling of heat and water vapor transfer in snowpacks is

interesting and that future works would be needed to investigate such an hypothesis.
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6 Conclusion

This paper presents the definition and evaluation of the equivalent macroscopic modeling of heat and mass transport during965

TGM in dry snow. In a first part, we applied the homogenization process to retrieve the macroscopic models valid for con-

densation coefficients α ranging from 10−10 to 1. We showed that, at a transition value αT ≈ 3×10−4, the modeling changes

from vapor transport limited by sublimation-deposition (models A and B) to vapor transport limited by diffusion (model C
::
D).

The homogenization process allowed to retrieve different models proposed in the literature (Calonne et al., 2014b; Hansen

and Foslien, 2015; Moyne et al., 1988) and to clarify their domains of validity according to the α-values.
::::
The

:::::
model

::
A

::::
and970

:
C
:::
are

::::::::
sufficient

:::
to

:::::::
describe

:::
the

::::
heat

:::
and

:::::
mass

:::::::
transfer

::
in

:::
the

:::::
whole

:::::
range

:::
of

::
α,

:::::::
between

::::::
10−10

::::
and

::
1. For α between 10−10

and αT ::::
10−5, the model A consists of two equations of temperature and water vapor density coupled through the source terms,

which are proportional to the Hertz Knudsen equation and therefore to α. This model does not presume any assumption on

the saturation of the vapor density. For α between 10−6 to αT , the model B can be seen as a particular case of the model A,

when water vapor is saturated at the macroscopic scale. It consists of one temperature equation which does not involve α at975

the first order. Finally, for α between αT and
::

−5
::
to

:
1, the model C also consists of one temperature equation which does not

involve
::::::
involves

:
α, and the water vapor is at saturation. Although of the same form, this model differs strongly from

::::
since

::
the

::::::::::
hypothesis

:::::::::::
ρv = ρvs(T ),::::::

which
::
is

::::
often

::::::
made,

::
is

:::::
valid

::
in

:::
that

::::::
range.

::::::::::
Concerning

:::
the

::::
two

:::::
other

:::::::
models, the model B as

it captures a new mechanism, namely the thermo-diffusion induced by the phase change. To ensure a continuous transition

between the models B and C , a simple transition function depending on
:::
can

::
be

::::
seen

::
as

:
a
:::::::::
particular

:::
case

:::
of

::
the

::::::
model

::
A

:::
for αis980

proposed.
::::::
-values

::
in

:::
the

:::::
range

::::
10−7

:::
to

:::::
10−5,

:::::::
whereas

:::
the

:::::
model

::
D

:::
can

:::
be

::::
seen

::
as

:
a
::::::::
particular

::::
case

::
of

:::
the

::::::
model

:
C
:::
for

::::::::
α-values

::
in

:::
the

:::::
range

:::::
10−3

::
to

::
1.

:

In the second part of the paper, we evaluated the homogenized models A, Band C
:
,
::
C

:::
and

:::
D by comparing with three

laboratory experiments of TGM of snow (Kamata and Sato, 2007; Bouvet et al., 2023), as well as by a numerical evaluation

for a 2D simplified microstructure. Evaluations were performed based on the temperature and density profiles of snow, and985

more precisely, on the ability to reproduce two main features reported in the TGM experiments: the non-linear concave-shaped

temperature profile, characterized by the temperature deviation from a linear gradient ∆T, and the upward vapor transport

leading to a mass loss or an air gap at the base of the snow layer. We showed that (i) the three models allow to reproduce
::::
four

::::::
models

:::::
allow

::::::::::
reproducing

:
the shape of the temperature profile

:
,
:
but the values are largely underestimated, the best prediction

being obtained with the model C
:
D and corresponding only to 25% of the experimental data; this major discrepancy highlights990

that a process that contributes to heat up the layer is not well captured, if at all, (ii) the model A allows to reproduce the upward

vapor transport and the formation of a mm-scale basal air gap, the best result being obtained for the highest α-value of 10−5,

(iii) the models B and C
::
D

::::
(and

:::
also

:::
C)

:
do not allow to reproduce

::::::::::
reproducing mass transport as they predict only mass gain

in the snow layer, as they do not satisfy mass conservation in the present case. Potential improvements were suggested and

include the refining or enrichment of the physic
::::::
physics at the pore scale considered to derive the models, such as questioning995

the expression of the Hertz-Knudsen equation or the role of the Soret and/or Dufour effects, as well as improving the boundary

conditions to allow for realistic mass transport for the models Band C
:
,
::
C

:::
and

::
D.
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