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Abstract.  

The process of laser light reflecting from surfaces made of scattering materials that do not strongly absorb at the wavelength 10 

of the laser can involve reflections from hundreds or thousands of individual grains, which can introduce delays in the time 

between light entering and leaving the surface.  These time of flight biases depend on the grain size and density of the medium, 

and so can result in spatially and temporally varying surface height biases estimated from NASA’s ICESat-2 (Ice Cloud, and 

land Elevation Satellite-2) mission.  In this study, we investigate these biases using a model of subsurface scattering, altimetry 

measurements form NASA’s ATM (Airborne Topographic Mapping system), and grain-size estimates based on optical 15 

imagery of the ice sheet.  We demonstrate that distortions in the shapes of waveforms measured using ATM are related to the 

optical grain size of the surface estimated using optical reflectance measurements, and argue that they can be used to estimate 

an effective grain radius for the surface.  Using this effective grain radius as a proxy for the severity of subsurface scattering, 

we use our model with grain-size estimates from optical imagery to simulate corrections for biases in ICESat-2 data due to 

subsurface scattering, and demonstrate that on the basis of large-scale averages, the corrections calculated based on the optical 20 

imagery match the biases in the data.  This work demonstrates that waveform-based altimetry data has the potential to measure 

the optical properties of granular surfaces, and that corrections based on optical grain-size estimates have the potential to 

correct for subsurface-scattering biases in ICESat-2 data. 

1 Introduction. 

Laser altimetry techniques allow efficient measurement of precise snow-surface elevations for ice sheets and glaciers, both 25 

from satellites (Abdalati et al., 2010) and aircraft (MacGregor et al., 2021).  Repeated measurements over glaciers and ice 

sheets allow the detection of surface elevation changes that show the effects of atmospheric and ice-dynamic processes (Smith 

et al., 2020), while measurements over floating ice are used to estimate sea ice thickness (Petty et al., 2022) and to infer melt 

rates beneath ice shelves (Sutterley et al., 2019).  These techniques rely on the altimeter’s ability to measure the range to the 
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ice or snow surface with high precision.  Since its launch in late 2018, ICESat-2 has been making high-precision measurements 30 

of ice-sheet and glacier elevation.  Unlike the near-infrared laser used by its predecessor, ICESat, ICESat-2’s laser transmits 

and receives green light, with a wavelength of 532 nm.  The shorter wavelength allows ICESat-2 to use highly efficient 

detectors to measure the arrival time of individual return photons, increasing its overall precision and efficiency relative to that 

of ICESat, but it leads to potential biases in its altimetry measurements because ice absorbs green light weakly, allowing 

photons to scatter over relatively long distances within the snow before returning to the surface and, potentially, the satellite. 35 

These biases are relevant to interpretations of ICESat-2 altimetry measurements over glaciers, because ICESat-2 was designed 

to make precise measurements of glacier elevation change, and time varying biases in ICESat-2 measurements over glaciers 

and ice shelves can produce spurious signals that might be interpreted as ice-sheet mass changes, and spatially varying biases 

in measurements over sea ice might be interpreted as variability in freeboard and thus ice thickness (Harding et al., 2011; 

Smith et al., 2018).  40 

When light scatters from granular materials that absorb light strongly, only those photons that have scattered a small number 

of times escape the surface.  By contrast, light scattering from weakly absorbing granular materials may enter the surface and 

scatter from tens or hundreds of grains before escaping again.  The extra distance travelled during these subsurface scattering 

events delays the return of the photons to the surface, and light leaving the surface includes a distribution of photon delays, 

which both delays the mean time of the returning photons and changes the shape of the returning pulse.  The mean delay of 45 

the photons and the shape of the returning pulse depend on the scattering properties of the material, with lower densities and 

coarser grain sizes corresponding to weaker scattering, broader returns, and longer delay times.  Light absorption within the 

scattering medium can also influence time distribution of returning photons, with stronger absorption producing narrower 

distributions and smaller net delays.   

The dependence of return photon timing distribution on ice optical properties has been explored in previous studies (Smith et 50 

al., 2018; Allgaier and Smith, 2021; Hu et al., 2022), and researchers have used predictions from a scattering model to interpret 

measurements from a hand-carried system to estimate snow and ice optical properties, using a pulsed laser and a detector 

pressed against the ice surface, separated by a few cm (Allgaier et al., 2022).   Although other studies studies have noted the 

potential for remote-sensing studies to apply these theories to laser measurements, only a few studies have attempted to infer 

snow and firn properties based on remotely sensed lidar scattering measurements (Hu et al., 2022; Lu et al., 2022; Harding et 55 

al., 2011).  Two studies submitted contemporaneously with ours (Unpublished manuscripts provided as attachments) explore, 

respectively, the estimation of snow grain size based on apparent elevation differences between green and near-infrared 

altimetry measurements over northern Greenland snow surfaces, and the biases associated with subsurface scattering of green 

laser light in altimetry measurements over sea ice.  The second of these studies demonstrates that subsurface scattering of 

green laser light can lead to elevation biases in sea ice that make it appear that the surface of floating ice is below the surface 60 

of the surrounding water, which emphasizes the importance of subsurface scattering for both land ice and sea ice. 
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In this study, we investigate the scattering properties of Greenland snow and ice surfaces with the goal of developing a 

correction for the biases that subsurface scattering can introduce into ICESat-2 data.   Using waveform measurements from an 

airborne laser-altimetry system over the Greenland ice sheet, we test the model of subsurface scattering developed previously 65 

(Smith et al., 2018) based on a comparison between the shapes of the returned pulses and timing distributions expected based 

on the model, and demonstrate that by adjusting the scattering parameters in the model to match modelled waveforms to 

measured waveforms we can recover an estimate of the near-surface optical grain size.  We then test whether the spatial 

variations in parameters found in this way match variations observed based on optical reflectance measurements calculated at 

the same time.  We then demonstrate the use of grain-size estimates derived from satellite imagery to estimate range delays 70 

for ICESat-2, confirm that these delays are consistent with delays derived based on airborne waveform waveforms and discuss 

how sampling in high-resolution altimetry-based measurements can lead to mismatch in calibrations based on optical data. 

 

2.  Data 

This study is based on ATM waveform data, grain-size estimates from an airborne spectrometer, and satellite-based grain-size 75 

estimates. 

2.1 Altimetric waveforms from the Airborne Topographic Mapping lidar systems. 

The characteristics of the altimeter and the characteristics of the surface measured both play a role in the degree to which 

subsurface-scattering effects can be distinguished in the return-pulse shape. Because the recorded pulse for a laser altimeter 

corresponds to the temporal convolution of the expected distribution of photon delays, the impulse response function (IRF) of 80 

the recording system, the range to the surface, and the shape of the transmitted pulse, the effects of subsurface scattering 

become easier to measure for narrower transmitted pulses, higher bandwidth recording systems, flatter surfaces, and smaller 

beam divergence values. 

The Airborne Topographic Mapping System instrument suite (ATM) has made altimetry measurements over the Greenland 

and Antarctic ice sheets since 1993, with an evolving configuration of lasers and measurement strategies that have gradually 85 

improved measurement precision and reliability.  Since 2017, the system has used green (532-nm) lasers with a 1.3-ns pulse 

duration (full width at half maximum) and a receiver with a bandwidth of around 1 GHz.   At a nominal flight elevation of 460 

m above ground level the size of the lidar footprint on the surface is ~0.64 m.  It is this more recent set of data that offers the 

best potential to measure the optical properties of snow surfaces, because the temporal resolution of the system (corresponding 

to the receiver sampling interval and the pulse duration) is not large compared with the path delays predicted for green light 90 

reflecting from snow surfaces.  Similar measurements have been made using the Land, Vegetation, and Ice Sensor (LVIS) 

(Hofton et al., 2008), but that sensor’s longer pulse duration and infrared wavelength provide only limited sensitivity of 

waveform shapes to snow conditions; photon-counting lidar measurements by the Slope Imaging Multi-polarization Photon-
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counting Lidar (SIMPL) (Yu et al., 2016; Harding et al., 2011) offer some of the advantages of ATM data, but used a photon-

counting detection strategy that is not compatible with the processing software used in this study. 95 

Waveform measurements in this study come from the ATM wide-swath and narrow-swath waveform products (Studinger, 

2018a, b), which provide digitized transmitted and received waveforms associated with each transmitted pulse in each airborne 

campaign.  The waveforms have a temporal sampling of 0.25 ns, and are quantized at 8 bits, to produce digital values between 

0 and 255.  During flights, a variable neutral density filter in front of the receiver is adjusted to compensate for varying 

conditions and avoid digitizer saturation.  Therefore the amplitude of the recorded pulse does not have a consistent relation 100 

with the intensity of the received signal.  At the start of each ATM measurement campaign, waveforms were recorded with 

the laser aimed at a fixed, flat panel of fine-grained white material (SpectralonÒ) (Studinger et al., 2022a).  We take these 

measurements to represent the system IRF I(t) for the whole campaign.  The instruments record both the received and 

transmitted waveforms.  The recorded transmited waveform is delayed through a multimode fiber-optic cable to eliminate 

backscattered photons from the scan mirror and the aircraft’s optical window.   This delayed waveform was intended to record 105 

the shape of the transmitted pulse, but our analysis suggests that dispersion in the delay fiber introduces significant temporal 

blurring of this waveform, so that for smooth, flat surfaces with minimal subsurface scattering, the measured waveforms are 

more consistent with the calibration waveform than they are with the waveforms recorded during flight.  Because of this, we 

disregard the measured transmitted pulse shapes, and instead assume that the system IRF is consistent with the most recent 

calibration measurement available.  The wide-swath and narrow-swath ATM instruments produce very similar measurements, 110 

but use separate transmitters, optics, and receivers; for this reason, we use separate calibrations for the two systems for each 

campaign (Studinger et al., 2022b). 

2.2 Grain-size estimates from the AVIRIS-NG airborne spectrometer 

To help verify that the ATM-derived waveforms were consistent with the returns we would expect from known surface 

conditions, we used data collected using AVIRIS-NG (the Airborne Visible/Infrared Imaging Spectrometer, Next-Generation), 115 

on a Basler aircraft that followed the aircraft carrying ATM on five subsequent days in the autumn of 2019.  These 

measurements were processed to estimate grain sizes using a technique that uses the strength of an absorption feature in the 

reflectance spectrum of snow at 1.03 𝜇𝑚 as an indicator of snow grain size (Nolin and Dozier, 2000).  These data provide 

grain-size estimates on a swath that is several times wider than the ATM swath, with pixel sizes between five and six meters, 

depending on the height of the aircraft above the surface.  The quality of the grain-size retrievals depends strongly on the solar 120 

illumination of the ice-sheet surface during the acquisition; we found that some of the data files contained grain-size estimates 

with uniform values, or contained areas of small grain sizes that did not appear consistent with expected surface characteristics.  

The remaining 26 data files cover two coast-parallel lines and a few coast-perpendicular lines in northwest Greenland, spanning 

a range of grain-size conditions from large-grained melting surfaces near the coast to fine-grained surfaces inland.   
 125 
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2.3 Grain-size estimates from satellite measurements 

To demonstrate potential corrections for ICESat-2 height biases, we use a set of satellite measurements (Vandecrux et al., 

2022b) derived from the Ocean and Land Colour Instrument (OLCI) onboard the European Space Agency’s Sentinel-3A 

satellite.  OLCI provides surface-reflectance information for 21 spectral bands over a 1270-km wide swath with sub-kilometer 

resolution, giving sub-daily revisit times for Greenland during summer months.  Images that were determined to be cloud free 130 

were converted to grain-size estimates by comparing estimated surface reflectances at 685 nm (far red, band 17) and 1020 nm 

(near infrared, band 21) with the output of a radiative-transfer model (Kokhanovsky et al., 2019).  The result is a set of daily 

maps of Greenland, posted at 1 km, giving an estimate of the surface optical grain size for cloud-free areas of the ice sheet 

(Vandecrux et al., 2022a).  Validation against in-situ datasets found that the OCLI-based estimates were systematically larger 

than estimates derived from the infrared (1310 nm) reflectance (Gallet et al., 2009) of surface-snow samples collected at 135 

EastGRIP in northeast Greenland, but showed the expected decreases during snowfall events, and increases during melt events 

(Vandecrux et al., 2022b).  The daily grids include labels that mark pixels for which the grain size could not be retrieved, 

generally because of the presence of clouds.  We assembled these maps into a look-up table for time-varying grain size by 

creating a daily grid for Greenland, and for each time step, updating the grain-size estimate for the previous time step with 

valid data from the current time step, while keeping track of the difference between the time for each grid cell and the most 140 

recent valid observation for that grid cell.  Values interpolated from this grain-size look-up table give an estimate of the grain 

size, under the assumption that the grain size did not change since the previous observation, and values interpolated from the 

measurement-age lookup table let us edit out data points whose observations have not recently been updated.  This lets us 

derive independent grain-size estimates coincident with the ATM and AVIRIS-NG measurements, and, because each of these 

datasets was collected under mainly cloud-free conditions, we expect that this assumption was correct for most the data ATM 145 

and AVIRIS data considered in this study. 

3. Methods 

Work in this study is based on a model of how the measured time distribution of light reflected from a scattering surface 

depends on the properties of the surface and on the properties of the transmitted waveform (Smith et al., 2018).   We partially 

validate this model by comparing its results with measured waveforms, and by tuning the parameters in the model, we estimate 150 

surface grain sizes in Greenland, and use these grain-size values as a proxy for the degree of subsurface scattering to help 

predict subsurface scattering delays in ICESat-2 data.  

3.1 Modeling return time distributions 

We model light scattering in snow and firn based on a Monte-Carlo radiative transfer model for near-surface scattering 

combined with an analytical extrapolation of the shape of the return for photons with long scattering delays (Smith et al., 155 

2018).  This model is similar to that used in other studies (Allgaier and Smith, 2021), except that we use a Monte-Carlo model 
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to predict the return photon distribution at short delay times, and diffusion theory at longer delay times, where the other studies 

use diffusion theory at all times.  The choice to use diffusion theory is appropriate when the detector and the laser source are 

not coincident (i.e. when all photons measured have travelled an appreciable horizontal distance through the scattering 

medium) but less so for the backscatter geometry used here, because diffusion theory can produce unphysical results for very 160 

short time delays, and the horizonal displacement between the source and the detector means that these short delays are not 

observed.  By directly modelling the time of flight for the incident beam and the first few scattering events, our Monte Carlo 

model avoids this problem.  

 
Figure 1.  Relation between scattering time, density, and effective grain size.  Panel A) shows the relation between scattering time 165 
and density for a constant grain size of 1000 µm, using a mixing law to calculate the velocity, and using a constant velocity 
appropriate to solid ice.  Panel B) shows the relationship between scattering time and grain size, for three different densities.  The 
dashed black lines show double and half the effective radius for 𝝆 = 𝟒𝟎𝟎	𝒌𝒈	𝒎!𝟑. 

 

Returns from our model can be described as: 170 

 

𝑆𝑅𝐹!(𝑡) = 𝑆 *
𝑡
𝜏∗, exp0−𝑘#$%𝑣&''𝑡4

where
𝜏∗ = 8𝑣&''𝑘%(#)(1 − 𝑔);

*+
 

 

1 

Here 𝑣&'' is the effective velocity of light traveling through the scattering medium, which depends on the density; 	𝑘%(#) and  

𝑘#$% are the bulk scattering and absorption coefficients of the medium;  g is the asymmetry parameter of scattering in the 
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medium;  and S is a scattering function that gives the distribution of return times from a non-absorbing scattering half space, 

in units of the average time between scattering events in the half space. The quantity 𝜏∗ describes the time required for light to 175 

travel between two scattering events, where we have approximated the anisotropic scattering characteristics of light interacting 

with large particles by multiplying the scattering coefficient by a factor (1 − 𝑔) (Smith et al., 2018). We estimate the optical 

bulk scattering properties based on a Mie-theory calculation treating ice grains as independent spheres of ice surrounded by 

air (Gardner and Sharp, 2010), which gives estimates of	𝑘%(#) and  𝑘#$%, and g as a function of wavelength, grain size, and 

density. We approximate the velocity of light in firn for density 𝜌: 180 

 

𝑣&'' = 𝑐 *
𝜌
𝜌,(&

𝑛,(& +	
𝜌,(& − 𝜌
𝜌,(&

𝑛#,-,
*+

 
2 

where c is the speed of light in a vacuum,  𝜌,(&	is the density of ice,  𝑛,(& is the real part of the refractive index of ice calculated 

from a published compilation (Warren and Brandt, 2008), and 𝑛#,- = 1. 

 

To reduce our description of scattering to a single parameter, we use a nominal density value of 400 kg m-3, and a corresponding 185 

velocity value of 0.27 m ns-1, which lets us express eqn. 1 solely in terms of kabs and reff.  Figure 1A shows 𝑡∗ as a function of 

density for a grain size of 200 µm, plotted once using the relationship between velocity and density from Eq. 2, and once using 

a constant velocity value appropriate for solid ice.  Over this range of densities, t* varies by about a factor of 4, while the 

difference in t* associated with the velocity model is at most about 20%.  This shows that most of the variability in scattering 

time is associated with the distance between scattering events (determined by the density and the grain size), not with the 190 

velocity of light in the medium (determined by the density alone).  Figure 1B shows grain size that would be inferred for a 

given t* value, for our nominal density value (400 kg m-3), and for densities corresponding to light, fresh snow (200 kg m-3) 

and to nearly solid ice (800 kg m-3).  Over the three-order-of magnitude range of reff considered here, the range of reff at any 

given value of t* between the nominal and the extreme values of density is just less than a factor of two, which demonstrates 

that while there is some uncertainty in the relationship between t* and reff when the density is unknown, a measured value of 195 

t* can constrain the surface grain size to around a factor of two. 

3.2 Modelling expected waveform shapes 

The return waveform measured by an altimeter depends on the scattering properties of the surface, on the shape of the surface, 

and on the IRF of the system making the measurements. Combining these gives:  

 200 

𝑊0𝑡 − 𝑡%.-'4 = 𝐼(𝑡)	⨂	𝑆𝑅𝐹(𝑡)	⨂	𝛿𝑧 *
𝑐𝑡
2 , 

3a 

 

𝑊!/0&10𝑡 − 𝑡%.-' , 𝑟/4 = 𝐼&%)(𝑡)	⨂	𝑆𝑅𝐹!(𝑡; 𝑟/)	⨂	𝐺 *
𝑐𝑡
2 , 0, 𝜎, 3b 
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Here 𝑊0𝑡 − 𝑡%.-'4 is the received waveform, where t is time and tsurf is the round-trip travel time to the surface, and ⨂ 

represents a temporal convolution.  Equation 3a describes our assumed model of how the received waveform relates to I(t), 

the system IRF of the altimeter, including the transmitted pulse and the receiving optics and electronics, to SRF(t), the rate of 

photons returning from the surface, and to 𝛿𝑧, the distribution of surface heights within the altimeter’s footprint. Equation 3b 205 

describes our model of the return, where 𝑆𝑅𝐹!(𝑡; 𝑟/) is calculated from Eq. 1,  𝐼&%)(𝑡) is an estimate of the IRF, and 𝐺(𝑡, 0, 𝜎) 

is a Gaussian function representing the combination of surface roughness and return broadening due to surface slope. 

 

 
Figure 2.  Components of the waveform model.  The ATM IRF  (A) is convolved with a Gaussian function representing surface 210 
roughness (B) and the surface response function (C) to produce the model waveform (D).  Three SRFs and corresponding waveforms 
are shown in (C) and (D), for  reff=50, 500, and 2000 µm. 

Figure 2 shows the components of equation 3b, and resulting waveforms, based on the system IRF measured 9 March 2018, 

for a surface roughness equivalent to 0.5 ns (i.e. 7.5 cm), and for three grain sizes: 50, 500, and 2000 µm.  The modeled 

waveforms show that for increasingly large grain sizes, the peak amplitude of the waveform becomes smaller and the waveform 215 

becomes broader, with the trailing edge of the waveform being blurred much more than the leading edge.  The measured I(t) 

has a distinctive droop (negative excursion) just after the end of the main pulse, which is reflected in the predicted waveforms, 

although for larger grain sizes it no longer extends below zero.  We were initially uncertain that the droop in the I(t) was due 

to a process that would be modeled correctly by eqn. 3, but the consistency between modeled and recovered waveforms (see 

the next section) suggests that the process that leads to the droop is a linear effect, likely in the receiver electronics.  We 220 

speculate that it is due to bandwidth limitations in the receiver, perhaps due to an impedance mismatch at the input of the 

digitizer, but do not have strong evidence about its origin. 

3.3 Matching modelled waveform shapes to measured waveforms 

For each measured waveform, we identified the first sample at which the waveform exceeded 50% of its maximum amplitude 

and assumed that all samples more than 3 ns before this sample contained only a DC offset and noise, whose values we 225 

calculated as the mean and standard deviation (Nest) of the sample values in this region.   We then corrected each waveform by 

subtracting this DC offset. 
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To match  waveforms with model results, we minimized the misfit between the DC-corrected and modelled waveforms: 

 230 

𝑅20	𝑟&'' , 𝜎, 𝑡34 = 	MN
𝑃!(𝑡,) − 𝐴	𝑊(𝑡, − 𝑡3, 𝑟/, 𝜎)

𝑁 R
2

 
4 

 

 Here Pm (ti) is the waveform sampled at times ti, corrected for the background rate, and W is the modelled waveform.   

 

 
Figure 3.  Fitting test data.  Vertical bars show the range of recovered grain sizes for each input grain size value, for a low -amplitude, 235 
rough-surface case with A=90, s=2 ns, and a high-amplitude, smooth-surface case, with A=255, s=0 ns.  Bars indicate the 5th and 
95th percentiles of the recovered grain sizes; bars extending off the bottom of the plot for the smallest grain sizes and the low-
amplitude case indicate that for more than 5% of the waveforms, the best fit was with the non-scattering model waveform. 

We find optimal values for our adjustable parameters using a three-stage golden-section search (Press et al., 2007) in s, reff, 

and t0: The search algorithm consists of an outer search over a range of reff values, with an inner search over s  values, and 240 
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within that a second inner search over t0 values. Within the search over t0, the amplitude values are found with a least-squares 

regression between each model waveform and the measured waveform.  The searches use a tolerance in s of 0.25 ns and a 

logarithmic tolerance in reff of 10%.  After each golden-section search has converged, a final parabolic-search step is used to 

further refine the estimated s,  and reff values.  The convolutions in Eqn. 3b are computationally costly, so we keep track of all 

waveforms we had calculated, and, whenever possible, used pre-computed waveforms in the misfit calculations.  Using the 245 

golden-section search rather than a derivative-based searching strategy (e.g. a steepest-descent or conjugate-gradient search) 

lets the fitting algorithm search a consistent set of parameters as it encounters waveforms that are similar to waveforms that it 

has previously matched, which greatly reduces the time required to fit a collection of waveforms, many of which are similar 

to one another.  We further reduce our computational times by fitting only every fourth waveform for data from the narrow-

swath scanner, and every second waveform from the wide-swath scanner.  For most purposes in this study, we further reduce 250 

the spatial resolution of the recovered grain size estimates using a 10-meter block-median filter, in which we identify the pulse 

containing the median grain-size value within each 10x10 m block sampled by each survey, and report its location and grain 

size. 

 

To evaluate the resolution and accuracy of this fitting procedure, we generated a set of test waveforms based on Iest(t), for a 255 

range of grain sizes, pulse amplitudes, and broadening values.  To each sample in each of these simulated waveforms, we 

added a random value drawn from a Gaussian distribution with a standard deviation of two digitizer counts. To demonstrate 

that the algorithm can converge when the input does not match the search data exactly, we generated the input test data for 

grain-size values that were offset from the set of searched values by half the spacing between the searched values.  Figure 3 

shows the relationship between the specified and recovered grain size for small amplitudes and large broadening values (A = 260 

90, s =2 ns), and for large amplitudes and small broadening values (A=225, s =0 ns).  For surfaces with little broadening (s 

=0 ns), the fitting procedure consistently recovers grain sizes as small as 20 µm, converging to either the next larger or the 

next smaller grain size value among the searched values (separated by 10%) with a moderate preference for the next smaller 

value, giving recovered values whose distribution width (5th to 95th percentile) is on the order of 10%.  For smaller amplitudes 

and larger roughness, the width of the recovered distribution increases with decreasing grain size, with distributions spanning 265 

around a factor of 5 for reff=50 µm.  For the smallest input grain sizes with the small-amplitude rough input, the waveform that 

best fit the simulated waveform was often the one with no scattering, so the bottom of the distribution is not constrained on a 

log scale. 

 

Our numerical experiments show that for synthetic data, the ratio between the amplitude of the returned pulse and the noise 270 

value plays a large role in the accuracy of the recovered grain size, with larger amplitudes corresponding to higher precision.  

For measured field data, however, there is no consistent relation between the reflectance of the surface and the amplitude of 

the received pulse, because the digitizer consistently produced noise values of a few counts, while the transmittance of the 
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ATM receiver optics was adjusted by hand during surveys to avoid saturating the detector.  In areas where the surface was 

consistently dark or had consistently large grain sizes, the receiver might have been tuned to capture the returns at high gain, 275 

but in areas where bright snow was mixed with darker surfaces, or where the range to the surface was highly variable because 

of rugged topography, the strongest returns were often captured with settings that produced large amplitudes, while the darker, 

more distant surfaces had lower amplitude, and thus lower precision grain-size estimates. 

3.4 Predicting biases in ICESat-2 measurements. 

We predict expected biases in ICESAT-2 data based on measured ATM waveform shapes by using our model to interpret the 280 

measured ATM waveforms, using the effective grain size as a proxy for the degree of subsurface scattering, then using the 

model again to estimate the range delay that would result from an ICESAT-2 measurement over the same surface.  To explain 

why this is necessary, we present a general statement of the magnitude of the bias (B) in an altimetry measurement estimated 

from a waveform 𝑊%(𝑡), due to subsurface scattering: 

𝐵0𝑀,𝑊%(𝑡)4 = 𝑀0𝑊%(𝑡)4 −𝑀0𝑊(𝑡)4 6 

Here 𝑊%(𝑡)  is the waveform including the effects of scattering, 𝑊(𝑡) is the waveform excluding the effects of scattering, and 285 

𝑀( ) is a metric used to derive height measurements from waveforms (referred to here as a retracker).  The ICESAT-2 

ATL06 algorithm (Smith et al., 2019) provides a standard land-ice height parameter, hli, that is based on the median photon 

elevation within a small (typically ±1.5 m) window around the surface.  Ideally, we would use measured ATM waveforms to 

approximate 𝑊%(𝑡), and use the ATM IRF to approximate 𝑊(𝑡), which would let us directly use (6) to calculate expected 

biases with the windowed waveform bias as 𝑀( ).  This is not practical, however, because most ATM waveforms include 290 

digitizer output that is less than zero (see figure 2), and a waveform-based median is not defined for a waveform that is not 

uniformly non-negative.  Instead, we model the effects of subsurface scattering on ATL06 biases by using Eq. 3 to generate 

synthetic scattering-affected waveforms for a range of grain sizes, based on an estimate of the ICESat-2 system IRF.  We then 

use Eq. 6 to predict the bias in the ATL06 measurements as a function of grain size.  Figure 4 shows the expected bias in hli as 

a function of grain size using the ICESat-2 IRF, for the ATL06 windowed median, for a windowed mean (equivalent to the 295 

h_mean parameter on ATL06), and the metric used to track ATM waveforms, using the ATM IRF: the centroid of the part of 

the waveform that has digitized values greater than 15% of the waveform’s maximum.  The biases are smallest for the median 

retracker for the ICESAT-2 waveform, increasing from sub-centimeter levels for reff < 10 µm to around 35 cm for reff > 10000 

µm.  The mean-based IS2 bias is around twice as large as the median-based IS2 bias, and the ATM bias falls in between the 

two, and increasing sharply for the larger grain sizes as the portion of the waveform tail that exceeds the 15% threshold 300 

increases with grain size. 
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Figure 4.  Predicted range bias for ATM and ICESat-2 waveforms.  ATM biases were calculated using a mean-based 
retracker with a 15% amplitude threshold. ICESat-2 biases were calculated using a windowed median and a windowed 
mean retracker. 305 

 

We then use this relation between the IS2 median bias and grain size to estimate the temporal and spatial variation of ICESat-

2 height biases based on ATM data.  Although the estimated grain sizes may not be correct because of errors in the assumptions 

that we have made about the density of the ice and snow in the near subsurface, the recovered grain size should be an accurate 

way of describing how subsurface scattering affected the measured waveform, so the predicted hli bias for a given recovered 310 

grain size should be consistent with the conditions that produced the ATM waveform, despite errors in the grain-size estimates 

related to surface-density variations.  We note that this plot implies that ATM elevation products are likely to include 

decimeter-scale biases over surfaces with substantial subsurface scattering. 

 

 315 
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3. Results 

3.1 Recovered grain sizes 

 
Figure 5.  Recovered grain sizes from ATM and AVIRIS.  Colored points indicate recovered grain sizes for four ATM campaigns 
(A-D) and for AVIRIS (E ).  Each color-coded points indicates a 1-km block median of recovered grain sizes, and the points have 320 
been plotted in order of grain size, so that coarser grain sizes overprint finer grain sizes.  Background is the Mosaic of Greenland 
from 2012 (Scambos et al., 2012). 

Figure 5 shows maps of recovered grain size from ATM for the summer of 2017, the spring seasons of 2018 and 2019, and 

the late summer of 2019, and the valid AVIRIS surveys for the late summer of 2019. These maps show a trend from large 

grain sizes at low elevation to small grain sizes at higher elevation, with notably larger grain sizes in the summer than in the 325 

spring where surveys overlap.  The southern portion of the spring-2018 survey was carried out earlier than the corresponding 

portion of the spring-2019 survey, and encountered coarser grain sizes, particularly along the coast, while grain sizes in the 

northern parts of both surveys were consistently fine.  The summer surveys in 2017 and 2019 both encountered coarse grain 

sizes, particularly in the coast-parallel lines in 2019.  The AVIRIS survey from 2019 has most of its overlap with the 

contemporaneous ATM survey along two coast-parallel lines, but a third coast-parallel line where ATM measured some of the 330 

coarsest grain sizes of the campaign was not covered by usable AVIRIS data. 
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Figure 6.  Grain size and waveforms.  A. True-color Landsat image of the Northeast Greenland ice sheet near Leidy Glacier from 6 
August, 2019, with estimated effective grain size (reff) ) from ATM.  For the ATM data, we plot the results of a 100-m blockmedian 335 
applied to reff. Panels B, C, and D show measured (RX) and best-fit modeled waveforms (fit), for three locations, as well as the input 
transmitted pulse (TX), scaled to match the amplitude of the received pulse. 

 

Figure 6 shows a map of recovered grain size, and three waveforms measured in Greenland, one measured over a rock/soil 

surface (panel B), one over low-elevation coarse-grained melting ice, and a third from finer-grained snow, as well as the 340 

corresponding best-fitting waveforms. The rock/soil waveform shows some broadening relative to the transmitted waveform, 

likely due to surface roughness, that is symmetric in time, with equal distortion of the upper and lower slopes of the waveform.  

The best fitting model waveform has an reff value of 0 𝜇m, and a 𝜎	value of 1.46 ns.  The coarse-grained waveform (panel C) 

is also broader than the transmitted waveform, but has different amounts of distortion for the leading (upper) and trailing 

(lower) edges of the waveform: It has a sharply sloping upper edge, but a more gradual slope on the lower edge, which is 345 

consistent with the predicted effects of subsurface scattering.  The best-fitting model waveform has an reff value of 2896 𝜇m, 

and a 𝜎	value of 0.26 ns.  The higher-elevation waveform (panel D) has much less distortion than the low-elevation waveform, 

with a shape much more similar to the transmitted pulse, which is reflected in the best-fitting model parameters of reff =109 

𝜇m, 𝜎	= 0.26 ns.  The mapped distribution of grain sizes (panel A) shows little or no subsurface scattering on rock and soil 

(𝑟&'' ≈ 0), strong subsurface scattering for low-elevation ice that has experienced extensive melt (𝑟&'' > 1000	𝜇𝑚), and 350 

weaker subsurface scattering at higher elevations (𝑟&'' < 	200	𝜇𝑚). 

3.2 Comparisons of recovered grain sizes between two independent ATM instruments 
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Figure 7.  Recovered grain sizes from two ATM systems from the Summer 2019 campaign. Panel A shows the density 355 
of measurements as a function of recovered reff values from the narrow and wide-scan ATM systems (lighter colors 
represent a higher density of measurements).  Points for which one of the systems found a best match with a scattering-
free model waveform are reported along the rows/columns marked ‘fine’.  Panel B shows the distribution of wide-to-
narrow reff ratios for different ranges of narrow-swath reff.  The legend for panel B gives the median and standard 
deviation of the ratios for each range.   360 

 

Figure 7A shows a two-dimensional histogram of grain-size estimates from the two ATM sensors.  The estimates are clustered 

around the 1:1 line, with slightly larger grain-size estimates from the wide-swath instrument.  The histogram shows horizontal 

and vertical streaks that correspond to grain-size values that the fitting algorithm selects preferentially as part of the effort to 

reuse previously computed model waveforms.  These likely reflect small reductions in the accuracy of the recovered grainsize 365 

estimates, although not obviously to any large extent.  For grain sizes smaller than around 25 µm, the fitting process For both 

datasets often selects a model waveform with no scattering model applied as best fitting the measurements.  This results in a 

reduced number of recovered values at reff<25 µm, and spikes in the histogram for values where one or both estimates selected 

the scattering-free waveform.   For display purposes, we have mapped to the left of and below the range of possible fit values 

(labeled ‘fine’ in 6A).  The two sets of measurements appear to be consistent for grain sizes as small as 30 µm, and the two 370 

datasets report effective-zero grain sizes (< 10 µm) for most of the same points: for 85% of points for which the wide swath 

grain size effectively zero, the narrow swath was also, and for 70% of points for which the narrow-swath grain size was 

effectively zero, the wide-swath grain size was also.   

 

Figure 7B shows histograms of ratios between wide-swath and narrow-swath estimates, for three ranges of grain sizes (as 375 

determined from the narrow-swath values).  For large grain sizes (> 3000 µm) the median ratio is 1.1, with a robust spread 

(equal to the half-width of the central 68% of the distribution, approximately the one-sigma range) of 0.27; the bias and spread 
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increase with decreasing grain size, and for small grain sizes (30 to 300 µm) the median ratio is 1.2, with a spread of 0.45, 

indicating close agreement between the two systems.   

3.3 Comparisons between grain sizes derived from ATM and AVIRIS 380 

 
Figure 8.  Sample of AVIRIS- and ATM-derived grain-size estimates for a coastal location in Greenland.  The grain 
size based on the complete 4-km AVIRIS swath is shown, with a 10-m block median of the recovered grainsize from 
the 250-m wide-scan ATM swath superimposed on top.  The scene center is approximately 75.314° N, 33.464°E, and 
contains data from the AVIRIS-NG granule ang20190906t144855 and the ATM granule 385 
ILATMW1B_20190906_133000.atm6T6.h5. 

 

Figure 8 shows maps of grain size estimates from the wide-swath ATM scanner and from AVIRIS for a short segment of a 

flight path in northwest Greenland.  Both datasets show a range of surface grain sizes, with variations that that appear to 

correspond to spatial variations in surface weathering, likely over a drained supraglacial lake basin.  The patterns of variation 390 

are very similar between the sensors, although the ATM data show consistently larger gain sizes than AVIRIS-NG, particularly 

in the upper part of the scene in the roughest part of the lake basin.  
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Figure 9.  Two-dimensional histogram comparing AVIRIS-NG-derived grain size with ATM-derived grain size, with 395 
cells colored by the number of points observed.  The solid white line shows the 1:1 relationship between the two datasets, 
the two dashed lines show the ATM : 2 x AVIRIS-NG (upper) and ATM : 0.5 x AVIRIS-NG (lower) relationships.  

 Figure 9 shows a comparison between grain-size estimates from AVIRIS and those from ATM.  The two show a generally 

similar trend, although ATM grain sizes are typically around 2-3 times larger than the corresponding AVIRIS grain sizes.  This 

relationship is less pronounced towards the small-grainsize side of the plot, where we see more values where ATM grainsize 400 

approximately equal to, or smaller than, AVIRIS grainsize.  We believe that this comes about because the AVIRIS dataset 

includes few points smaller than about 40 µm, so points where the ATM fit estimated grain sizes smaller than this are mapped 

into a near-vertical feature at the left-hand side of the plot.  The points where the ATM fit selected zero scattering are not 

shown in this plot; they amount to a small fraction (0.4 %) of observations. 
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3.4 Comparison between satellite, AVIRIS, and ATM grain sizes 405 

 
Figure 10.  Comparison between AVIRIS-derived grain sizes and satellite-derived grain sizes.  The solid white line 
shows the 1:1 relationship between the two datasets, the two dashed lines show the satellite: 3 times AVIRIS (upper) 
and satellite : 1/3 AVIRIS (lower) relationships.   All satellite measurements were collected within ½ day of the AVIRIS 
measurement, 410 

Figure 10 shows a comparison between AVIRIS-derived grain sizes and satellite-derived grain sizes.  The largest concentration 

of satellite grain sizes is between three and four times larger than the corresponding AVIRIS sizes.  As in the comparison 

between ATM and AVIRIS, there is a vertical feature in the distribution at AVIRIS grain size = 40-50 µm, which likely 

corresponds to the fine-grained limit of the AVIRIS data.  The distribution of measurements for which the satellite grain-size 

estimates are substantially finer than the AVIRIS estimates may reflect contamination with undetected clouds in the satellite 415 

imagery, which would tend to bias the satellite estimates in the fine-grained direction. 
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Figure 11.  Comparison between ATM-derived and satellite-derived grain-size estimates.  Panel A shows the 
distribution for the summer of 2017 and the spring of 2018, Panel B shows the distribution from the spring and summer 
of 2019.  In both plots, the ATM grain sizes are derived from a 10-meter blockmedian of the data, and only those points 420 
for which the time difference between the satellite measurement and the ATM measurement was less than 3 days are 
included.  The solid lines indicates the 1:1 relationship between the datasets, the dashed lines indicate the 1:3 and the 
3:1 relations. 

Figure 11 shows a comparison between satellite-derived grain sizes and those from ATM, based on a combination of data from 

the summer of 2017 and the spring of 2018 (10A) and from the spring and summer of 2019 (10B).  In each case, the 425 

distributions of both types of grain size measurements roughly follow the 1:1 line, although for both years, the ATM 

measurements show a range of measurements smaller than 100 µm for which the satellite measurements are clustered around 

100 µm.  This may indicate that there are conditions under which the satellite measurements cluster around a moderately small 

grain size while ATM maintains sensitivity at smaller grain sizes.  The 2017-2018 panel (A) contains far fewer points with 

large grain sizes because the dataset for the Summer of 2017 has very limited spatial coverage compared to the summer of 430 

2019, and the Spring-2019 dataset covered more melting surfaces than did the Spring-2018 dataset.   

3.5 Comparing subsurface-scattering bias estimates between satellite and ATM data 
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Figure 12.  Range biases as a function of grain size estimates for the complete 2017-19 dataset.  (A) shows range biases 435 
predicted from satellite grain-size estimates as a function of ATM grain size, B shows range biases estimated from ATM 
grain sizes as a function of satellite grain-size estimates.  For each panel, the vertical bars show the standard deviation 
of the range bias estimates for each grain-size value, the black solid curve shows the modeled range bias as a function 
of grain size, and the dashed lines show the factor-of-two uncertainties in the model related to surface density. 

Figure 12 shows ICESat-2 range biases predicted based on ATM and based on satellite grain-size estimates.  To estimate the 440 

accuracy of satellite-based grain-size estimates for each ATM measurement, we calculate the median of all satellite-derived 

range-bias predictions for ranges of ATM- measured grain size (in logarithmic bins with spacing 100.25).  The relationship 

between the two shows that the satellite-derived grain sizes generally increase with ATM grain size but badly underestimate 

the grain size for large values of the ATM grain size.  Second, to estimate the accuracy of satellite-derived grain sizes as a 

representation of ICESat-2 biases averaged over large numbers of measurements, we plot the median of ATM-derived bias 445 

estimates over ranges of satellite-derived grain sizes (also in logarithmic bins spaced by 100.25) against the bias estimates 

calculated for the satellite-derived grain sizes.  These values show a close match between the biases predicted based on the 

ATM data and those predicted based on the satellite measurements for satellite-estimated grain sizes larger than around 250 

µm; at smaller grain sizes, the ATM biases deviate from the satellite biases, with a roughly uniform value close to 0.02 m. 

 450 

3.4 Calculating a best-feasible correction. 

Based on figure 12, panel B, it appears reasonable to believe that ATM waveforms and satellite grain size estimates provide 

information about subsurface delays for coarse-grained snow, but not for fine-grained snow.  This suggests that we might 

correct for subsurface penetration with a function of the form: 

𝐵)4-(𝑟%#)) = Y
𝐵3

𝐵!&0(𝑟%#))
:		𝑟%#) < 𝑟)4-
:		𝑟%#) > 𝑟)4-

			 7 
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 455 

Here  𝑟%#) is the satellite-estimated grain size, 𝐵!&0(𝑟%#)) is the model predicted bias,  𝑟)4-is the threshold grain size above 

which the model produces reliable bias estimates, and 𝐵3 is a constant threshold used for satellite grain sizes smaller than 𝑟)4-.  

We used the ATM and satellite grain sizes from 2017 - 2019 to find optimal parameter values for this model: For a range of 

𝐵)4- and 𝑟)4-, we calculated the median and the robust spread of the distribution of corrected ATM biases,  𝐵!&0(𝑟567) −

𝐵)4-(𝑟%#)).  For the sake of computational efficiency, and to help match the resolution between the ATM and the satellite 460 

grain-size estimates, we carried out these calculations on a 250-m blockmedian of the ATM measurements.  Figure 13 (panels 

A, B) show how the median and the robust spread depended on the parameter values.  For threshold values greater than about 

150 µm, there is a threshold (B0) value that gives a median residual of zero, and for each fine-grain bias, there is a threshold 

value that gives the minimum robust spread; these curves intersect at B0=0.013 m, 𝑟)4-=280 µm.  Figure 13c shows the 

distributions of ATM-derived biases, ATM-derived biases corrected based on  𝐵!&0(𝑟%#)), and of ATM-derived biases 465 

corrected based on  𝐵)4-(𝑟%#)) using the optimized parameters.  The uncorrected distribution of ATM-derived biases has a 

peak at around 1 cm a median of 0.016 m, with a substantial tail of values extending in the positive direction.  Applying the 

unmodified correction results in a more compact distribution of residuals, with a median of -0.08m and a spread of 0.008 m, 

both of which are an improvement on the raw distribution but biased in the opposite direction.  The optimized threshold model 

yields a distribution of residuals with a zero median and a robust spread of 0.006 m.  We present this analysis using the median 470 

and robust spread because they are less affected by outlying data points.  Repeating the analysis using the mean and the 

standard deviation of the corrected datasets yields similar optimum B0 and rthr values (0.014 m and 250 µm, respectively) for 

the zero-mean-residual model with the smallest standard deviation, but finds that for this model, the standard deviation of the 

optimal model is approximately the same as that for the non-optimized correction (0.014 m in either case).  

 475 
Figure 13.  Tuning the threshold correction for ATM-based ICESat-2 bias estimates.  Panels A and B show the median and robust 
spread (equal to the half width of the central 68% of the distribution) of the distribution of ATM-derived ICESat-2 bias estimates 
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corrected with the threshold model (equation 7) for different values of the fine-grain bias (B0) and fine-grain threshold (rthr).  The 
dashed curves show the fine-grain bias corresponding to the minimum absolute value of the median for each value of the threshold, 
and the solid lines show the fine-grain threshold corresponding to the minimum value of the spread for each value of the fine-grain 480 
threshold.  Panel C shows histograms of uncorrected bias estimates, bias estimates corrected based on 𝑩𝒎𝒆𝒅(𝒓𝒔𝒂𝒕), and bias 
estimates corrected based on 𝑩𝒕𝒉𝒓(𝒓𝒔𝒂𝒕) for the optimum parameters, B0=0.013 m, 𝒓𝒕𝒉𝒓=280 µm.  The median and robust spread 
of each distribution is given in the legend. 

4. Discussion: 

The comparison of measurements between the narrow and wide-swath instruments shows that ATM-based estimates of grain 485 

size are consistent to within a factor of two or better between two independent instruments, and are not strongly influenced by 

measurement geometry except at small grain size, where blurring of the returned waveform by the angle between the beam 

and the surface likely results in a large bias in the wide-swath estimates.  As estimates of grain size, the two sets of 

measurements have biases and uncertainties due to our assumptions about the density of the snow, but as measurements of 

photon delays due to subsurface scattering, they are both consistent and should be useful in predicting biases in ICESat-2 data.  490 

The comparisons between AVIRIS-NG grain size ATM grain size, and those between AVIRIS-NG grain size and satellite-

derived grain size both show the AVIRIS-NG estimates as biased by a factor of 2-3 towards fine grain sizes relative to the 

other dataset; further, both the ATM and the satellite estimates appear to produce usable estimates of grain size that are smaller 

than 30 µm, while the AVIRIS-NG measurements seem to have a fine-grained limit of resolution around 40 µm.  These 

differences between these AVIRIS-NG measurements and ATM-based measurements are consistent with comparisons 495 

between this AVIRIS survey and observations of apparent elevation differences between green and near-infrared altimetry 

measurements that also implied that the AVIRIS data had underestimated grain sizes (Fair et al., n.d.).  Despite these 

limitations, the comparisons between ATM, satellite, and AVIRIS measurements show a consistent trend between the three 

sets of data, with larger grain sizes in each dataset corresponding to larger grain sizes in the others.  This relationship is not as 

consistent as we might have hoped, and for a substantial fraction of the points there is no clear relationship between the grain 500 

sizes from the different sensors.  Part of this scatter may result from differences in resolution between the datasets.  ATM 

resolves grain size on a sub-meter-sized footprint, which we then degrade to 10 m using our blockmedian filter, the AVIRIS-

NG data have a 5-meter pixel size, and the satellite-based measurements are posted at 1 km.  Many of the measurements 

showing the coarsest grain sizes from ATM are from small features such as crevasses and stream channels, which are likely 

not resolved by the larger pixel size of the satellite measurements.  Similarly, the smallest, coarsest-grained features in the 505 

AVIRIS-NG dataset are not expected to be resolved in the satellite data.  

There may also be differences between the retrieved grain sizes related to the measurement techniques.  The ATM scattering 

measurements rely on subsurface multiple scattering that may sample hundreds or thousands of scattering events, and in which 

photons may penetrate hundreds of times the grain diameter below the surface.  By contrast, the AVIRIS and satellite 

measurements both use portions of the reflectance spectrum extending into the near infrared, where the attenuation length of 510 

ice is as small as a few cm.  This means that the ATM measurements are sensitive to grain size over a much larger range of 

depths than are the reflectance-based measurements.  Particularly under melting surface conditions, we expect to see a layer 

https://doi.org/10.5194/tc-2023-147
Preprint. Discussion started: 11 October 2023
c© Author(s) 2023. CC BY 4.0 License.



23 
 

of finer-grained ice on top of coarse-grained or water-saturated deeper layers (Cooper et al., 2018), which would lead us to 

expect that the reflectance-derived grain sizes would be finer than those derived from ATM.  This effect is not expected to be 

as important under colder conditions, especially where fresh snow is present at the surface, because returns from a snow layer 515 

a few centimeters thick will contain only a very small minority of photons that have experienced long path delays (Smith et 

al., 2018) 

We believe that it is also likely that there are disagreements between reflectance-derived measurements of grain size and ATM-

based measurements because of the simplified relationship we have used between grain size and scattering properties. Our 

model of subsurface scattering assumes that the scattering is from independent spheres of ice suspended in air, and that the 520 

density of the medium is 400 kg m-3.   In fact, surface densities in the accumulation zone are often lower than that assumed by 

our model (Medley et al., 2022) while ablation-zone densities can approach that of compact glacier ice (800 kg m-3 and higher), 

and the presence of liquid water in the snow can result in reduced scattering efficiency per grain compared to that expected for 

spheres in ice.  Over fresh, low-density snow, we expect our ATM-based measurements to overestimate grain size because it 

does not fully account for the path length between scattering events and assumes that the extra path delay comes about because 525 

of time spent traveling through ice grains.  Over compact ice surfaces the situation is more complex, because the surface 

density is likely larger than our reference density, leading to an underestimate of grain sizes, but close packing of grains and 

the presence of water should each lead to less efficient scattering from each grain, leading to an overestimate of grain size.  

Under most circumstances, we expect the latter effects to be more significant, because the effect of density alone is unlikely 

to be larger than a factor of two (see figure 1). 530 

 

The comparison between predicted ICESat-2 biases derived from ATM and those from the satellite measurements suggests 

that while satellite measurements cannot accurately predict the measurement bias for each laser-based measurement, the mean 

bias at the kilometer scale is more likely to be reliable.  The difference between the two ways of plotting the biases in seen in 

fig. 12 likely relates to the spatial resolution of the two sensors.  ATM, with sub-meter resolution, captures small-scale features 535 

on the ice sheet, including crevasses, water channels, and ponds that all have large grain sizes.  These features do not appear 

in the satellite maps, which reflect the average grain size over 1-km pixels, which results in underestimates of bias for the 

ATM measurements with coarse grain sizes.  Conversely, the average over satellite measurements shows good agreement with 

the predicted grain-size-vs-bias curve, likely because the median biases for the collections of ATM measurements are only 

weakly affected by the minority of ATM measurements collected over large-grain-size features.  Further, the discrepancies 540 

between ATM and satellite-derived grain sizes in the small-grain-size regime (figure 11) should have relatively little impact 

on the accuracy of a satellite-based prediction of biases in ICESat-2 data, because whatever their disagreements, the two 

datasets agree that the bias correction should be small.  The peak in the ATM-bias-vs-satellite-grain-size (figure 11, panel B) 

likely reflects undetected clouds in the satellite data set; for these measurements, the ATM bias can have a large range of 

values, while the satellite reports a grain size appropriate for polar clouds.  Errors such as these might be ameliorated in part 545 
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by combining reflectance-based grain-size estimates with a model of firn evolution, which might help identify unlikely values 

of grain size, but this kind of analysis is beyond the scope of this study. 

Our experiments with a correction for ICESat-2 biases based on the satellite-derived grain-size estimates (figure 13) show that 

for the full dataset, the mismatch between satellite and ATM resolution and the imprecisions of the two datasets for small grain 

sizes result in a net overcorrection of the biases (shown in figure 13, panel C, where the median of the corrected range biases 550 

is less than zero) but a reduction in the spread of the corrected biases.  Implementing a threshold-based simplification of the 

bias model that assigns a constant value to the corrections for small grain size removes this bias and further reduces the spread 

of the residuals.  However, the optimum parameters of this threshold model are likely determined in large part by the 

characteristics of the input data, including the distribution of grain sizes included in the surveys and the accuracy of the satellite 

grain-size estimates on the particular days during which each survey was conducted.  Researchers interested in applying the 555 

same correction to a different set of satellite-based grain-size estimates would need to perform a similar analysis to calibrate 

the threshold values.  To calibrate a new dataset of independent grain-size estimates against the ATM-based biases, researchers 

would need to repeat the analysis that is summarized in figure 13:    

1. Generate grain-size estimates for each ATM data point (rest,sat) 

2. Generate bias estimates for each grain-size estimate (Best,sat) 560 

3. For a range of threshold values, calculate the median and spread of 𝐵!&0(𝑟567) − 𝐵)4-(𝑟%#)) (equation 7) 

4. Select the threshold value that gives the minimum spread for a zero median 

In our case, the threshold values that gave a zero median residual included those that gave a nearly optimal spread, but this 

would not necessarily be the case for other datasets, which would require more careful consideration of the trade-off between 

bias and spread in the correction.  This kind of analysis is only feasible for satellite data that have temporal overlap with the 565 

existing ATM survey. 

5. Conclusions 

 

In this study we have demonstrated a technique for the retrieval of ice-sheet surface grain size using the shape of pulses returned 

by a green-light laser.  We showed that the shapes of the measured waveforms agree with the results of a simplified theoretical 570 

model of how subsurface scattering should affect the shape of green laser pulses, and experiments with synthetic data suggest 

that matching waveforms with the model results should allow accurate estimates of grain size over a wide range of conditions.  

We showed that measurements are consistent between two independent and slightly different versions of the same instrument 

flown on the same aircraft at the same time, showing that the grain-size recovery is repeatable, and is not strongly sensitive to 

the geometry of the measurements.  Comparisons with reflectance-based estimates of grain size show agreement between the 575 

trends in the data, but not especially close point-for-point agreement between the ATM measurements and the reflectance-

based measurements.  However, comparisons between different reflectance-based measurements also do not show point-for-

point agreement, and we are unsure whether we should claim to have validated the novel ATM-based measurements with the 
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better-established reflectance-based techniques or whether we should claim that our ATM-based measurements provide 

relatively precise ground truth for the reflectance-based measurements. 580 

 

Returning to the original goal of this study, which was to predict biases in ICESat-2 data based on ATM measurements, we 

feel that the close agreement between ATM waveforms and the shapes predicted by our model validates our use of the model 

to predict ICESat-2 biases due to subsurface scattering.  The widespread large grain sizes we estimate in the low-elevation 

parts of Greenland suggest that there are large areas of the ice sheet for which we can expect decimeter-scale biases in ICESat-585 

2 data.  To date, our efforts to identify ICESat-2 data that clearly show the effects of subsurface scattering have been stymied 

by the need to collect data from tens or hundreds of pulses to resolve the shape of the return waveform, which is difficult over 

the rough surfaces typical of low-elevation Greenland in the summer.  This suggests to us that routine correction of ICESat-2 

data based on ICESat-2 return-pulse characteristics will not be feasible.  However, the synthesis of the ATM and satellite-

based predictions of scattering delays (figures 12B, 13) suggests that a correction based on satellite-derived estimates of grain 590 

size is feasible for the large grain sizes where biases are largest, and that an empirical adjustment of the relation between grain-

size estimates and predicted biases can be used to find a correction that yields an unbiased estimate with smaller variance than 

either the raw predicted biases or the unmodified correction model.  Improvements in satellite-derived and model-derived 

estimates (Mei et al., 2021; Painter et al., 2009) of grain size are a potential way to improve the precision of a correction of 

this kind; the satellite images on which the corrections we used are based are available at half-kilometer resolution, which 595 

could help the per-point accuracy of the correction; a similar correction using LANDSAT and/or Sentinel-2 data could provide 

data at 30-meter resolution, although with less frequent collection of imagery and with a less optimal selection of spectral 

bands.  Another possible data source for corrections of this type would be grain-size predictions driven by a grain-size-

evolution model driven by meteorological data or model output, which would have the advantage over purely satellite-driven 

grain-size estimates of providing estimates that would not be limited by the availability of cloud-free observations.  Any such 600 

comparison would require careful consideration of the relationship between physical grain size (calculated in the grain-size 

model) and the effective grain sizes considered in our scattering model, which might best be handled by calibrating model 

output overlapping the Greenland ATM surveys against ATM data.  A final possibility would be to apply algorithms such as 

those tested here to ICESat-2 photon-return-time distributions.  At present, attempts at such retrievals over coastal Greenland 

have been stymied by the need to aggregate photons from large numbers of ICESat-2 pulses over complex topography, but 605 

such techniques might be possible for limited areas with very flat and smooth surface topography. 

Data availability: 

ATM waveform data are available from the National Snow and Ice Data Center (Studinger, 2018a, b). Ground calibration data 

used to derive the ATM instrument response is available at: https://zenodo.org/record/7225937.  Satellite-based grain-size 

estimates are available through GEUS dataverse (Vandecrux et al., 2022a)  AVIRIS grain-size estimates are available by FTP 610 
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from https://popo.jpl.nasa.gov/avng/y19/, and ATM-based grain-size estimates are in the process of submission to the 

National Snow and Ice Data Center (NSIDC), and will be accessible by the time this manuscript is published. 
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