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Abstract. Estimating snow mass in the mountains remains a major challenge for for spaceborne remote sensing 

methods.  Airborne LiDAR can retrieve snow depth, and some promising results have recently been shown from spaceborne 

platforms, yet density estimates are required to convert snow depth to snow water equivalent (SWE). However, the retrieval 15 

of snow bulk density remains unsolved, and limited data is available to evaluate model estimates of density in mountainous 

terrain. Toward the goal of landscape-scale retrievals of snow density, we estimated bulk density and length-scale variability 

by combining ground-penetrating radar (GPR) two-way travel-time observations and airborne LiDAR snow depths collected 

during the mid-winter NASA SnowEx 2020 campaign at Grand Mesa, Colorado, USA. Key advancements of our approach 

include an automated layer picking method that leverages GPR reflection coherence and distributed LiDAR–GPR retrieved 20 

bulk density with machine learning. The root-mean-square error between the distributed estimates and in situ observations is 

11 cm for depth, 27 kg/m3 for density, and 46 mm for SWE. The median relative uncertainty in distributed SWE is 13 %. 

Interactions between wind, terrain, and vegetation display corroborated controls on bulk density that show model and 

observation agreement. Knowledge of the spatial patterns and predictors of density is critical for accurate assessment of SWE 

and essential snow research applications. Spatially continuous snow density and SWE estimated over approximately 16 km2 25 

may serve as necessary calibration and validation for stepping prospective remote sensing techniques toward broad-scale SWE 

retrieval. 

1 Introduction 

Throughout the past half-century, snowpacks in the western U.S. declined ~ 20 % because of ongoing warming (Pierce et al., 

2008; Mote et al., 2018). By the end of the 21st century, projections suggest snow water equivalent (SWE) in this region will 30 

decline by an additional ~ 50 % (Siirila-Woodburn et al., 2021). Decreased snow water supply and increased demand motivates 

new innovations for SWE measurement and modelling (e.g., Lettenmaier et al., 2015). Ground observations of SWE, such as 

those from snow telemetry (SNOTEL) sites or manual measurements performed during snow surveys provide useful 
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information in the context of a historical record. However, as a strategy for adapting to changing snow-climatological 

conditions, building the relationship between these observations and snow distribution patterns across watersheds requires 35 

innovative spatiotemporal datasets and snow hydrology models to advance. 

In this pursuit, NASA’s snow experiment (SnowEx; 2017-23) campaign tested a suite of remote sensing instruments with 

potential to measure global SWE if deployed on a future satellite platform (Marshall et al., 2019). The work presented here 

was part of SnowEx and was designed to expand the spatial scale over which snow depth and density can be observed and 

reliably extrapolated. Our work provides a validation dataset for SnowEx SWE retrieval methods and yields new insights to 40 

spatial patterns and driving factors of snow density at Grand Mesa, Colorado.  

Spaceborne snow depth estimates have been achieved from passive microwave sensors (Tedesco et al., 2010), Sentinel-1 radar 

returns (Lievens et al., 2019, 2022), high-resolution satellite stereo imagery (Marti et al., 2016; McGrath et al., 2019), and light 

detection and ranging (LiDAR; e.g., Deschamps-Berger et al., 2023; Hu et al., 2021) aboardwith ICESat (Treichler and Kääb, 

2017) and ICESat-2 (; e.g., Deschamps-Berger et al., 2023; Hu et al., 2021; Deschamps-Berger et al., 2023; Abdalati et al., 45 

2010Besso et al., 2024). LiDAR and photogrammetry techniques can measure snow depth, by differencing repeated 

acquisitions during periods with and without snow cover (e.g., Deems et al., 2013). Because of the advantages of greater spatial 

resolution and flexible scheduling to target acquisitions during periods of interest, airborne LiDAR constitutes a prominent 

method for estimating snow depth, anddepth and is being flown operationally for integration with hydrologic modelling at the 

catchment scale (Painter et al., 2016; Hedrick et al., 2018). Regardless of the choice in snow depth retrieval, an estimate of 50 

snow density is required to convert snow depths to SWE, and bulk density often provides the greatest source of uncertainty in 

SWE estimates, especially in deeper snow (Raleigh & Small, 2017).  

Excavating and weighing snow samples of a known volume remains the state-of-the-art approach for measuring snow density, 

even though the labour intensivelabour-intensive work limits the number of possible observations. Because snow depth varies 

more in space than density (e.g., Elder et al., 1991; Sturm et al., 2010; López-Moreno et al., 2013) and depth measurements 55 

may be collected more rapidly, density is observed far less frequently (e.g., Rovansek et al., 1993; Elder et al., 1998). As a 

result, snow sampling strategies tend to be too coarse to examine the 100 – 103 m scale spatial variability of snow density (e.g., 

Fassnacht et al., 2010), and the spatial nature of snow density remains largely unknown.  

Often, empirical models are used to spatially distribute density in SWE estimates.  (e.g., Elder et al., 1998; Wetlaufer et al., 

2016; Broxton et al., 2019). Linear regression models developed using snow depth alone are often unsuccessful, because the 60 

snow load only has a linear effect on bulk density while grain-bondsnow type characteristics (e.g., faceted crystals versus 

rounded-grain snow) can have an exponential effect (Sturm & Holmgren, 1998). Successful regression models parameterized 

by snow depth have been split up into elevation and month of year classes (Jonas et al., 2009), accumulation and melt seasons 

(Hill et al., 2019), or day of year and snow cover classification (Sturm et al., 2010) and account for the effects of snow depth 

and snow age on density (McCreight & Small, 2014). Snow density often depends on environmental (i.e., slope, aspect, 65 

elevation, and vegetation) and climatological (i.e., precipitation, solar radiation, temperature, and wind) factors (Meløysund et 

al., 2007), which makes these constituents candidates as features for predicting distribution patterns (e.g., Winstral et al., 2002). 
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Machine learning (ML) approaches utilising environmental or climatological features (e.g., Elder et al., 1998; Wetlaufer et al., 

2016; Broxton et al., 2019) are often distributed over vast areas with little validation, or consideration to the underlying physical 

processes, required, requiring verification to gain an acceptable level of model confidence. 70 

Snow density can also be distributed with process-based snow models, which may account for changes in bulk snow density 

due to new snowfall, metamorphism, and compaction. The representations of snow densification range in complexity, with 

some models utilising simpler time-dependent compaction curves and other models representing snow compaction 

dynamically as a function of snow viscosity and overburden pressure (Essery et al., 2013). Dynamic models offer more 

consistent and accurate characterizations of snowpacks, however even for a single physics-based model, performance in snow 75 

density simulations varies across snow climates and watersheds (e.g., Marks et al., 1992; Lv & Pomeroy, 2020). The choice 

of snow density model (empirical or physical) produces differences in spatial distributions and basin mean estimates of snow 

density (Raleigh and Small, 2017). 

Despite numerous techniques for modelling snow density, few studies characterise spatial variations in snow density and the 

underlying processes driving variability, largely due to limited density datasets. The labour-intensive nature of in situ 80 

observations severely limits spatial analyses, requiring the development of broad scale snow density retrieval. Relationships 

between snow density, dielectric permittivity, and radar signals (e.g., Tiuri et al., 1984), provide radar-retrieved snow density. 

Yet, many radar remote sensing retrievals require appropriate constraints on the snow depth, density, stratigraphy, and 

microstructure to be presently reliable (Tsang et al., 2022). Our research utilizes ground-penetrating radar (GPR), LiDAR, and 

ML to define an approach to map snow density at resolutions appropriate for air- and space-borne remote sensing calibration 85 

and validation. 

Ground-penetrating radar records the amplitude and travel-time of a series of echoes from short-pulse electromagnetic waves 

as an image in range-time and position coordinates. Provided a constraint on the snow depth, GPR analysis can estimate the 

snow density, or by exploiting a ray path function of travel-time versus antenna separation (offset) the snow depth and density 

can be estimated independently (e.g., Griessinger et al., 2018; Meehan et al., 2021). By combining snow depths from drone-90 

based aerial photogrammetry or LiDAR with GPR travel-times, snow density has been estimated along 100 m scale transects, 

then analysed as a time series to understand the densification process (McGrath et al., 2022; Valence et al., 2022; Bonnell et 

al., 2023) and explore extrapolation across the study-plot scale (Yildiz et al., 2021). 

Our work leverages airborne LiDAR snow depths in process with GPR two-way travel-times (TWT) to facilitate density 

estimates. These data then become input to multiple ML regression approaches to develop and compare spatially continuous 95 

estimates of bulk snow density and SWE across the entire LiDAR domain. Sensitivity testing among regression models 

informed model repeatability and forcing processes for spatial density patterns at Grand Mesa, Colorado, USA. As part of this 

workflow, we developed a reliable, automated, radar coherence approach for automatically interpreting TWTs needed to 

retrieve snow density. This work highlights interactions between snow, terrain, vegetation, and wind ion the densification 

process, as well as the importance of careful ML model parameterizations and validation approaches. Our work addresses the 100 

need for high accuracy, distributed density measurements to as assimilation data fore parameterizations of snow densification, 
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thereby reducing runoff model uncertainty. Additional knowledge of the spatial patterns and predictors of density may improve 

calibration, validation, and parameterization of radar remote sensing SWE retrievals.  

2 Methods 

2.1 Study area 105 

Grand Mesa, Colorado, is a high-elevation subalpine plateau with an average elevation of ~3,200 m and an area of ~1,300 km2. 

Grand Mesa has a cold and dry continental snow climate, low relief, and varying vegetation cover from shrub steppe and 

subalpine meadow to dense conifer forest. These factors, along with the proximity to a regional airport make Grand Mesa a 

near-ideal study area for evaluating airborne snow remote-sensing techniques and developing many challenging snow remote-

sensing advancements (e.g., Boyd et al., 2022; Singh et al., 2023).  110 

The Grand Mesa NASA SnowEx Intensive Observation Period (IOP) spanned 27 January – 12 February 2020. During that 

time, more than 150 snow pits were excavated and nearly 38,000 in situ snow depth measurements were collected. Snow pits 

were distributed within forested and open areas along the swaths of the three airborne remote-sensing campaign flight lines 

(Fig. 1).  

As part of the SnowEx campaigns at Grand Mesa, five meteorological stations were installed between 2016 and 2017 and 115 

operated through the 2021 water year (Houser et al., 2022). Of these sites, 3 m elevation wind speed and direction data 

measured at Mesa Middle (MM) and Mesa West (MW) were examined as validation for snow transport potential and to 

quantify differences in exposed and sheltered terrain (Appendix C.1). The MW station was in exposed western terrain of the 

mesa, 350 m west of the study domain boundary (Fig. 1). The MM station is sheltered within a dense stand of conifer trees 

18.7 km east of the study domain boundary.  120 

2.2 GPR data acquisition 

Two GPR instruments were operated during the first week of the Grand Mesa IOP. To acquire data within forested areas of 

central Grand Mesa, a conventional L-band GPR was pulled by ski during 30 January – 1 February and 5 February (Webb, 

2021). This unit was equipped with a Global Positioning Satellite (GPS) receiver with 2.5 m horizontal accuracy. In open 

areas, we deployed a multi-polarization L-band GPR fastened within a sled that was pulled by a snowmobile at approximately 125 

3 m/s in the open areas of the central and south regions of western Grand Mesa on 28 and 29 January, and 4 February 2020 

(Meehan, 2021). The snowmobile was driven along the edges of forested stands but could not travel through densely treed 

areas. The multichannel L-band GPR was configured with one transmitting antenna and two receiving antennas that were 

oriented parallel (H) and orthogonal (V) to the transmitter (H). The transmit and receive antennas were separated by 25 cm. 

Using this GPR configuration we simultaneously acquired the radar imagery in co- and cross-polarizations (HH & HV). A 130 

Global Navigation Satellite Systems (GNSS) receiver with approximately 1 m horizontal position uncertainty, was located on 

the snowmobile 5 m away from the GPR array. We applied a geometric correction to relocate the coordinate positions to the 
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antenna midpoint of each channel. The GPR data were acquired within a few metres of, but not directly beside the snow pit 

walls, which necessitated a radius for pairing retrieved or modelled data with validation observations. The GPR systems were 

operated continuously, collecting approximately 30 traces per second, given the duration of the time window for each trace 135 

(30 ns), the sample interval (0.1 ns), and the number of stacks acquired (2). Due to differences in the travel speed, the spatial 

interval of the GPR traces collected via snowmobile is approximately 10 ± 1 cm, while the interval for traces collected by ski 

is 5 ± 1 cm. We used piecewise cubic Hermite interpolating polynomials (Kahaner et al., 1989) to fix a geolocation to every 

acquired trace, as the GPS acquisition rate was 1 Hz. Throughout this week, we acquired 144 km of quasi-gridded and spiralled 

snowmobile-driven radar transects, and 16 km of skied spiral transects in the forest. Spiral transects were coincident with depth 140 

measurements. We used a 4.5 km by 3.5 km portion of the snow-on LiDAR acquisition to bound the GPR transects (Fig. 1) 

and omitted any transects acquired beyond the LiDAR boundary. 

2.3 GPR data processing 

Multi-polarization radargrams were processed using the following automated routine. We applied a frequency-wavenumber 

(F-K) filter as a 2D band-pass filter (Kim et al., 2007).  Time-zero correction was performed automatically using the Modified 145 

Energy Ratio first break picker (Wong et al., 2009). We removed coherent noise by subtracting the median trace from the 

radargrams (Kim et al., 2007).  The trace amplitudes were corrected for spherical divergence by applying t-squared scaling as 

a signal gain function (Yilmaz, 2001). In a step of random noise removal, we then applied edge preserving smoothing 

(Kuwahara et al., 1976). This routine emphasised the continuity and amplitude of the ground reflection, which benefitted the 

method for automatically picking the travel-times. The GPR data within forests were processed with a bandpass filter, time-150 

zero correction, and background subtraction prior manual interpretation using a semiautomatic algorithm and are available 

through the National Snow and Ice Data Center (Webb, 2021). The slower paced data acquisition by ski improves the quality 

of the radargram, which benefits the tracking of the ground surface in the more variable forest environment. 

2.3.1 Multi-polarization coherence for automatic two-way travel-time determination 

The rough ground depolarized the L-Band radar signal and thus we used the coherence between the co- and cross-polarized 155 

channels as a filter that illuminates the ground reflections and removes the planar reflections of the snow stratigraphy. We 

paired the co- and cross-polarization radargrams into shot gathers, which are the bins of traces that share the same transmitter 

location. The automatic travel-time pick is determined by maximising the coherence between the co- and cross-polarization 

shot gathers. For each pair of traces, we applied the unnormalized cross-correlation sum to measure the coherence, 

𝐶(𝑡) =  
1

2
 ∑ {[∑ 𝑆𝑖,𝑡𝑗

𝑀
𝑖=1 ]

2
− ∑ 𝑆𝑖,𝑡𝑗

2𝑀
𝑖=1 }

𝑁𝑡+𝑁/2
𝑗=1t−𝑁/2  ,         160 

 (1) 

which is half of the summed difference between the energy of the stacked traces and the energy of the input traces (Neidell & 

Taner, 1971). The calculation in Equation 1 is performed in a sliding window over 𝑁 = 11 samples that is evaluated at every 
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sample (𝑗𝑡) of the GPR signal (𝑆𝑖,𝑗𝑡) for channels 𝑖 (𝑀 = 2).  The HH-HV coherence (𝐶𝐻𝐻−𝐻𝑉) at each shot location is then 

normalised by the maximum coherence, (C): 165 

𝐶𝐻𝐻−𝐻𝑉 =  
𝐶(𝑡)𝐶

max 𝐶(𝑡)(𝐶) 
 .           

 (2) 

Small (one-wavelength) offsets introduce waves that have approximately normal incidence to the reflection horizons, such that 

nonlinear effects of travel-time moveout are negligible and snow depth can be directly retrieved from the measurement of 

TWT. Because the offsets are equal, the travel-times to the ground for each channel are equal within a small error (due to 170 

variability of the ground surface inside the radar footprint), and therefore the two channels sum coherently. 

We automatically chose the travel-time with the maximum coherence of each trace and subtracted 1 ns (1/2 wavelet) to estimate 

the first break of the reflection (Booth et al., 2010). We then applied a median filter to remove outliers and reviewed the 

automatic picks for any systematic errors.  

2.4 Observed, Derived, and Explanatory Data 175 

2.4.1 In situ measurements 

Snow pit observations and manual depth probe measurements were collected throughout the 27 January – 12 February 2020 

IOP to serve as validation for SWE and snow depth retrieved by airborne remote sensing. Snow pits were measured for the 

snow depth, density, water equivalent, temperature, wetness, liquid water content, grain size, and stratigraphy (Vuyovich et 

al., 2021). Snow density (ρs,pit) was measured continuously every 10 cm from the snow surface to the ground using a 1000 cm3 180 

wedge sampler, with duplicate samples. If the difference between the two measurements at a given depth exceeded 10 %, the 

density was sampled a third time, and bulk density was then calculated by averaging all measurements for each snow pit. 

Because the density snapshot we retrieved is valid for the time of the LiDAR flight, we corrected measured density to 12:00 

PM on 1 February using densification rates determined by linear regression for both open and forested areas. Liquid water 

content was estimated by combining the density and in situ measurements of dielectric permittivity in an empirical formula, 185 

which showed that the snowpack remained almost completely dry throughout the IOP (Webb et al., 2021). Snow depth 

measurements (hs,probe) were collected using geolocated probes (± 3 m spatial accuracy) along spiral transects (∼60 m radius) 

centred around pits (Hiemstra et al., 2020). 

2.4.2 LiDAR snow depth 

Snow depth (Hs,LiDAR) was estimated from repeated airborne LiDAR point cloud surface elevations of snow-free and snow-190 

covered terrain (e.g., Lague et al., 2013). The Airborne Snow Observatory (ASO) performed the snow-free acquisition on 26 

September 2016 (Painter et al., 2016; Painter & Bormann, 2020), and NV5 Geospatial (formerly Quantum Spatial Inc.) 

acquired snow-covered surface elevations during the IOP, both with a point density of approximately 20 points/m2. We selected 

the 1-2 February 2020 flight to minimise temporal differences with the GPR and resulting errors due to snow redistribution 
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and densification. We transformed the 2016 snow-free vertical datum into NAVD88/Geoid 12B (the same as 2020 snow-on) 195 

using NOAA VDatum 4.3 software (NOAA, 2021). Then, we applied the point cloud differencing method to estimate snow 

depth on a 1 m grid (Appendix B.1). Negative snow depth values were filtered as no data values. After computing the snow 

depth, the 3 m ASO bare-earth and vegetation data products were resampled using the nearest-neighbour approximation to the 

1 m resolution of the snow-covered SnowEx 2020 LiDAR acquisitions and the coordinate system was transformed from UTM 

zone 13 N to UTM zone 12 N. As a comparison between our LiDAR snow depths and data processed using raster differencing, 200 

we used the 1-2 February 2020 ASO acquired snow depths and upscaled Hs,LiDAR to 3 m using the nearest-neighbour method.  

 

2.4.3 LiDAR – GPR estimated density 

We combined the LiDAR snow depths with the GPR TWTs to calculate the radar wave velocity, which in dry snow is only a 

function of density. We applied a k-d tree searcher (Bentley, 1975) to co-registerfind the LiDAR coordinates within a 1 m 205 

radius of the GPR TWTs. We then used the median values of the TWTs within a 1 m radius of these coordinates to interpolate 

to the LiDAR grid. 

The average electromagnetic wave speed in the snowpack was estimated using 

𝑣𝑠,𝐿𝑖𝐷𝐴𝑅−𝐺𝑃𝑅 =  2
𝐻𝑠,𝐿𝑖𝐷𝐴𝑅

𝜏
  ,          (3) 

for each of the coincident LiDAR snow depths (𝐻𝑠,𝐿𝑖𝐷𝐴𝑅) and GPR two-way travel-times (𝜏). We then related the 210 

electromagnetic wave speed to the dry snow density using the Complex Refractive Index Method (CRIM; Wharton et al., 

1980) 

𝜌𝑠,𝐿𝑖𝐷𝐴𝑅−𝐺𝑃𝑅 =  𝜌𝑖 (1 − 
𝑣𝑎(𝑣𝑖−𝑣𝑠,𝐿𝑖𝐷𝐴𝑅−𝐺𝑃𝑅)

𝑣𝑠,𝐿𝑖𝐷𝐴𝑅−𝐺𝑃𝑅(𝑣𝑖−𝑣𝑎)
) .        (4) 

The CRIM equation relies on the known wave speeds of the pore-space (va = 0.3 m/s) and ice matrix (vi = 0.169 m/ns), the 

measured bulk wave speed of the snowpack (vs𝑣𝑠,𝐿𝑖𝐷𝐴𝑅−𝐺𝑃𝑅; Equation 3), and the density of ice (ρi = 917 kg/m3) to determine 215 

the dry snow density (𝜌𝑠,𝐿𝑖𝐷𝐴𝑅−𝐺𝑃𝑅  ; Equation 4).  

2.4.4 Wind and terrain exposure 

Wind data were examined from 1 October 2019 through the end of the SnowEx IOP on 12 February 2020. Hourly air 

temperature data parameterized an empirical relationship to determine the threshold for snow-transportable wind speed (Li 

and Pomeroy, 1997). For values exceeding this threshold, minus the 95 % confidence interval, we then determined the median 220 

wind speed and direction for snow transport (Fig. C.1b).We). We utilised the maximum upwind slope (Sx) and wind factor 

parameters (Winstral et al., 2002; Appendix C.1) as explanation of the patterns and processes captured by the ML regression 

ensemble, rather than incorporating this information as model predictors of snow density. To verify validate the GPR-LiDAR 

estimated training data and the modelled results, we calculated the correlation between the model input and output and the Sx 

and wind factor rasters for all wind directions.  Agreement between the prevailing wind direction responsible for snow transport 225 
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measured at the MW station and the wind direction expressing the strongest correlation with model inputs and outputs, we 

suggest, would bolster the method of solving for snow density by integrating GPR and LiDAR information and support the 

spatial patterns predicted by regression model outputs, which were not trained with wind information.  

2.5 Spatial scales of variability for snow depth, travel-time, density, and SWE 

We examined the differences in snow properties between forested and open areas using generalised relative semi-variograms 230 

(Isaaks & Srivastava, 1989). The generalised relative semi-variogram describes the average percent variability, relative to the 

mean, as a function of separation distance between observations. To estimate the spatial variability of the snow depth, TWT, 

density, and the resulting SWE of the 1 m gridded data along the radar transects, the experimental variograms were first 

calculated in 1 m bins up to a 250 m lag, and then fitted with exponential models via least-squares to estimate the range, sill, 

and nugget parameters (e.g., Cressie, 1985). We used an exponential variogram model, for which the correlation length is 235 

equal to three times the range parameter. We created 250 realisations of the experimental variogram calculation using Monte 

Carlo simulation with 10 % random subsampling to assess the mean and standard deviation of the variogram parameters (Efron 

& Tibshirani, 1986).  

2.6 Modelling of spatial snow density 

2.6.1 Machine learning model ensemble 240 

To distribute the spatial observations of average snow density to areas without GPR observations, we tested three regression 

techniques: Multiple Linear Regression (MLR; Andrews, 1974; Appendix A.1.1), Random Forest Regression (RF; Breiman 

(2001); Appendix A.1.2), and Artificial Neural Network Regression (ANN; Jain et al., (1996); Appendix A.1.2). We examined 

the ∼16 km2 area of the LiDAR domain, which closely bounded the extent of the GPR survey. A set of normalised predictor 

variables, notated with capital lettering, were developed using the elevations of four LiDAR rasters: bare earth elevation (Zg), 245 

snow-covered elevation (Zs Zs), snow depth (Hs Hs), and vegetation height (Hveg Hveg); the aspect, slope, X and Y derivatives 

of the elevation rasters (excluding HvegHveg); and the distance to the nearest vegetation ≥ 0.5 m (Sveg Sveg). Aspect rasters 

were transformed by the cosine to remove wrapping ambiguity around north. We smoothed the elevation, vegetation height, 

and snow depth rasters using a median filter with a 5 m x 5 m window, and the derivatives of these rasters (slope, aspect, dxdx, 

and dydy) with a 25 m x 25 m window. Regression models were trained on the LiDAR–GPR estimated snow density using 250 

cross-validation and were applied to the surrounding terrain. By retraining the model architectures on random subsets of data, 

50M model ensembles were generated and then averaged for both RF and ANN regressions. by retraining on random subsets 

of data. The model hyperparameters were developed such that the variance of the predictions in pixels where training data 

exists matches that of the predictions. The appropriate hyperparametrisation coincided with an R2 of approximately 0.8. A ML 

snow density ensemble (𝜌𝑠,𝐸𝑛𝑠̅̅ ̅̅ ̅̅ ) was composed by averaging the MLR, RF, and ANN outputs. For detail on the model 255 

hyperparameterisation and predictor importance see Appendix A.  
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2.6.2 Random Gaussian field model 

To serve as a baseline for model assessment, a random gaussian field snow density model was synthesised from the statistics 

of in situ density measurements and the correlation length of snow density estimated via variogram analysis. Provided the 

empirical variogram function, a covariance matrix was determined between all pairs of points in the ~16 km2 domain. Using 260 

Cholesky decomposition, the large covariance matrix was efficiently inverted to determine a matrix of weights with the desired 

covariance properties (Vecherin et al., 2022). The synthetic snow density model was then generated by multiplying a normal 

random vector with zero mean and standard deviation of the in situ observations by the weighting matrix and adding the mean 

value of the density observations. 

2.7 Distributed snow water equivalent and uncertainty 265 

Multiplying Hs,LiDAR by 𝜌𝑠,𝐸𝑛𝑠̅̅ ̅̅ ̅̅  yieldsed SWE (𝑏𝑠,𝐿𝑖𝐷𝐴𝑅−𝐸𝑛𝑠̅̅ ̅̅ ̅̅ ) distributed throughout the LiDAR domain. As a benchmark 

statistical examples drawn from in situ sampling, we also distributed SWE using the average snow density (276 kg/m3), the 

average density of both open (280 kg/m3) and forest (257 kg/m3) areas, and the Gaussian random field model (𝑏𝑠,𝐿𝑖𝐷𝐴𝑅−𝑅𝑎𝑛𝑑). 

See Appendix B.3 for additional details. W We upscaled 𝑏𝑠,𝐿𝑖𝐷𝐴𝑅−𝐸𝑛𝑠̅̅ ̅̅ ̅̅  to 50 m resolution using nearest-neighbour 

approximation for comparison with the 50 m ASO SWE. 270 

Using simple linear regression, we modelled the snow density errors for 𝜌𝑠,𝐸𝑛𝑠̅̅ ̅̅ ̅̅ . No correlation between error and snow depth 

was found, and the RMSE (11 cm) was used to estimate the random error. Using random errors in snow depth, linear errors in 

density, and linear error propagation, we estimated the uncertainty in 𝑏𝑠,𝐿𝑖𝐷𝐴𝑅−𝐸𝑛𝑠̅̅ ̅̅ ̅̅  to first order (Raleigh & Small, 2017). 

Appendix B.4 has further information on SWE uncertainties regarding sampling errors estimated from in situ measurements. 

3 Results 275 

3.1 Snow depth 

The LiDAR-derived snow depths show an overall trend increasing from west to east, in addition to smaller scale patterns near 

vegetation, with deeper snow around the perimeter of treed areas and shallow snow on the ground beneath tree canopies (Fig. 

2). This pattern is consistent with previous snow depth distribution studies of Grand Mesa (e.g., McGrath et al., 2019). The 

mean LiDAR snow depth for the entire domain is 92 cm with a standard deviation of 18 cm. In open areas (Hveg < 0.5 m), the 280 

mean LiDAR snow depth is 96 ± 15 cm, while in the forest (Hveg  ≥ 0.5 m), the mean LiDAR snow depth is 79 ± 23 cm. At 

validation snow depth observations (hs,Pit and hs,Probe) the average snow depth over the LiDAR domain is 95 ± 16 cm (R2 = 0.61, 

RMSE = 11 cm, ME = 0 cm). LiDAR and GPR estimated snow depths, within the open and forested domains individually, are 

also compared to in situ snow depths (Table 1). In snow depth comparisons between Hs,LiDAR, Hs,ASO , and Hs,Probe, either LiDAR 

processing method shared similar correlation (R2 ≈ 0.6) and root-mean-square error (RMSE ≈ 12 cm). However, Hs,ASO  285 

(86 ± 16 cm) underestimates snow depth by 7 cm and Hs,LiDAR (93 ± 16  cm) is unbiased on average (Fig. S1; Table S1). 
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3.2 GPR travel-time 

Ground-penetrating radar travel-time data analysed at cross-over locations exhibited a root-mean-square deviation of 1 ns with 

a bias of 0 ns and no systematic bias between the two GPR instruments was found. Approximately 90 % of the travel-time 

data applied in this work was automatically determined using the coherence method, where less than 1 % of the automatic 290 

picks required manual correction. To illustrate this, automated picks are overlaid on the radargrams of a 900-metre-long 

transect in Fig. 3. The resulting TWT data produced from this method and used in this study are available through the National 

Snow and Ice Data Center (Meehan, 2021). 

3.3 LiDAR – GPR estimated density  

The LiDAR–GPR retrieved average snow density shows repeatable structure at the many crossover locations and greater 295 

variability in the open terrain than areas sheltered by forest canopies (Fig. 4). The integrated LiDAR and GPR data resolve 

lower spatial frequency patterns than the snow pit observations, which are sparse and have limited spatial support. When 

compared to snow pit observations, the relative RMSE among the 37 snow pits that are within 12.5 m of the GPR transects is 

35 kg/m3 or 13 % (Table 2). The 𝜌𝑠,𝑃𝑖𝑡 and 𝜌𝑠,𝐿𝑖𝐷𝐴𝑅−𝐺𝑃𝑅  data are both normally distributed as evidenced by Z-test (Appendix 

B.3) with overlapping standard deviations. The maximum upwind slope and wind factor parameters evaluated on GPR 300 

transects show the strongest correlation (R = -0.45 and R = 0.48, respectively) in the directions 225 and 220 degrees (Fig. S2; 

Table S2).  

3.4 Spatial variability of LiDAR snow depth, GPR travel-time, density, and SWE 

The generalised relative semi-variogram allows us to examine the differences in the length scales of variability among depth, 

density, SWE, and TWT within the forested and open areas of Grand Mesa (Fig. 5). Table S3 overviews the generalised relative 305 

semi-variogram parameter estimates (nugget, sill, and correlation length). TWT and SWE consistently exhibited similar 

correlation lengths (~ 100 m) and nugget variability within the forested (~ 35 %) and open (~ 15 %) areas. Snow depth and 

TWT reached comparable maximum variability in open areas (~ 25 %). Depth variability in the forested areas (~50 %) was 

greater than that of TWT and SWE (~ 45 %). The median distance between snow pits is ∼150 m, which indicates that average 

snow pit observations are independent of each other and unable to resolve spatial patterns at a finer scale.  310 

3.5 Machine-Learning Regression and Random Gaussian Field Modelled Density 

Using supervised ML regression, three models were generated from LiDAR information (Fig. S3 a, b, and c). Using prior 

information from the in situ snow pit observations a randomly distributed density was synthesised (Fig. S3 d). The mean of 

the regression-based ensemble was taken to generate  𝜌𝑠,𝐸𝑛𝑠̅̅ ̅̅ ̅̅  (Fig. 6). Generally, the regression models predict higher snow 

density in the open and exposed areas than in areas that are protected from the wind by trees. Each of these five models are 315 

evaluated against 𝜌𝑠,𝐿𝑖𝐷𝐴𝑅−𝐺𝑃𝑅 and 𝜌𝑠,𝑃𝑖𝑡 (Table 2). The ML regression snow densities are generally uncorrelated (R2 ≈ 0.05) 

having ~ 10 % RMSE with snow pit observations. The spatial similarity of these models is presented in Appendix A.3. 
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3.6 Model representation of wind, terrain, and vegetation effects 

Maximized correlations between terrain exposure parameters for all wind directions and ML regression modelled snow density 

agree with the median wind direction able to transport snow (6.4 m/s at 200 degrees; Fig. S2). The wind speed and direction 320 

data from the Mesa West meteorological station (Houser et al., 2022) is presented for all time-periods October 1 – February 12 

(Fig. S4 a) and time-periods where the wind was strong enough to transport snow (Fig. S4 b).  Upwind slope and wind factor 

parameters calculated at 200 degrees wind direction are provided for reference (Fig. S5). No correlation was evident between 

these wind exposure parameters and the random gaussian field distributed snow densities (Table S2).  

3.7 Spatially distributed snow water equivalent 325 

SWE distributed within the ~16 km2 domain (Fig. 7) underestimated the snow pit average SWE by 20 mm (R2 = 0.57;  

RMSE = 46  mm; Table 3; Fig. S6 a-c). Upscaling 𝑏𝑠,𝐿𝑖𝐷𝐴𝑅−𝐸𝑛𝑠̅̅ ̅̅ ̅̅  to 50 m resolution resulted in decorrelation (R2 = 0.03) and 

increased error (RMSE = 60 mm), and the bias remained nearly the same (-18 mm; Fig. S6 d-f). ASO SWE (bs, ASO; 50 m 

resolution) had similar errors (RMSE = 57 mm), bias (-21 mm), and low corelation (R2 = 0.1) to measurements (Fig. S6 g-i). 

Fifty metre 𝑏𝑠,𝐿𝑖𝐷𝐴𝑅−𝐸𝑛𝑠̅̅ ̅̅ ̅̅  had mean SWE and standard deviation of 245 ± 33 mm while bs, ASO was 236 ± 45. The average snow 330 

density of bs, ASO was 274 kg/m3 (versus 264 kg/m3 𝜌𝑠,𝐸𝑛𝑠̅̅ ̅̅ ̅̅ ). Distributing SWE using an average measured value showed lower 

bias (-9 mm) and root-mean-square error (38 mm) than 𝑏𝑠,𝐿𝑖𝐷𝐴𝑅−𝐸𝑛𝑠̅̅ ̅̅ ̅̅ . Using a constant density drives SWE spatial patterns and 

data correlation solely by snow depth. Tested against the random Gaussian distributed density (R2 = 0.49), the ML regression 

modelled densities explained more variation in the distributed SWE estimates (R2 = 0.56), about as much as snow depth alone. 

For comparison 𝑏𝑠,𝐿𝑖𝐷𝐴𝑅−𝐸𝑛𝑠̅̅ ̅̅ ̅̅  is presented alongside Hs,LiDAR and 𝜌𝑠,𝐸𝑛𝑠̅̅ ̅̅ ̅̅  (Fig. S7). 335 

3.8 Contributions of uncertainty 

3.8.1 LiDAR snow depth 

Hs,LiDAR snow depths were computed from point-cloud differencing, rather than raster differencing. The relative accuracy of 

the snow depth measurement was estimated at 7 cm, based on the maximum standard deviation of the point cloud differencing 

method, which agrees well with previous LiDAR error assessments using this approach (Hojatimalekshah et al., 2021). The 340 

absolute accuracy of the snow depths (11 cm) was determined by comparison to validation snow depth measurements, which 

shows 0 cm of bias on average over all measurements (Table 1). On ploughed roads, we observed snow depths ranging between 

0 and 5 cm (Figure S8). 

3.8.2 LiDAR – GPR co-registration 

We estimated the horizontal accuracy of the multi-polarization GPR positions, which had clear sky view and GNSS receiver, 345 

at ± 1 m. The GPR system operated within the forest stands, had lower GPS fidelity which we conservatively estimate at ± 3 

m. Ground validation showed less than 1 cm horizontal position uncertainty within the LiDAR point cloud. We found that 
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errors in the co-registration of the LiDAR and GPR data are the leading source of error in the estimated densities. The overall 

accuracy of the spatial registration between the LiDAR and GPR varies on the order of a few metres. 

Sensitivity analysis showed how measurement errors propagate into the LiDAR – GPR measured snow density (Appendix 350 

B.2). At the 1-sigma confidence interval, we found that measurement errors are on the order of 10 cm for LiDAR and 1 ns for 

GPR may translate into errors in the density estimate of 150 kg/m3 or greater. Variogram analyses shows that beyond 10 m 

these errors are spatially uncorrelated and can be treated with random noise filtering. Via median filtering and interpolating 

through outliers, error estimates reduced to 30 kg/m3 (Appendix B.2).  

3.8.3 Spatial and temporal support of density measurements 355 

Measurements accumulated over 12.5 m distance introduce inherent variability on the order of 10 % (Section 3.4). We found 

that the expected variability among co-located  𝜌𝑠,𝐿𝑖𝐷𝐴𝑅−𝐺𝑃𝑅 is approximately 2 %, which is consistent with replicated in situ 

density observations (𝜌𝑠,𝑃𝑖𝑡). The average density sampled from each of the snow pit columns (within 1 m) shows high 

repeatability with a root-mean-square deviation of 2.5 %. We observed linear temporal trends in snow densification of 

0.07  kg/m3/hr in forested areas and 0.13 kg/m3/hr in open areas. These trends were removed and were not considered within 360 

uncertainty analyses. 

3.8.4 SWE uncertainty 

The errors between Hs,LiDAR and hs,Probe are uncorrelated when compared to Hs,LiDAR (R2 = 0.04). However, the errors between 

𝜌𝑠,𝐸𝑛𝑠̅̅ ̅̅ ̅̅  and 𝜌𝑠,𝑃𝑖𝑡 are negatively correlated against 𝜌𝑠,𝐸𝑛𝑠̅̅ ̅̅ ̅̅  (R2 = 0.35, RMSE = 27 kg/m3). The errors among snow depth and 

density are uncorrelated (R2 = 0.03) with negligible covariance (Fig. S9). The distributed relative SWE uncertainty is presented 365 

in Fig. S10 and is negatively correlated with the distributed SWE (R2 = 0.57).  The distributed relative absolute SWE 

uncertainty (Fig. S11) is weakly positively correlated with 𝑏𝑠,𝐿𝑖𝐷𝐴𝑅−𝐸𝑛𝑠̅̅ ̅̅ ̅̅  (R2 = 0.22). The median SWE uncertainty is 13 % 

(30 mm), which breaks down to 15 % (29 mm) median uncertainty in the forest and 13 % (31 mm) median SWE uncertainty 

in the open areas. Relative uncertainty is greater within forests due to decreased total SWE within stands. Median snow density 

relative uncertainty equal is 4 % (10 kg/m3). Median snow depth relative uncertainty is 12 % (11 cm). Median LiDAR snow 370 

depth relative uncertainty is 12 % (11 cm) in open areas, while in the median depth uncertainty is 14 % (13 cm). Median snow 

density uncertainty is 4 % in both open and forested areas, where more extreme density values have greater uncertainty due to 

linear error modelling. Had snow density been modelled as a random variable, density contributes 10 % error (27 kg/m3), 

equating to 16 % uncertainty in SWE on average. 
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4. Discussion 375 

4.1 Mulitpolarization GPR 

This work advances the utility of GPR for seasonal snow applications, by resolving spatial snow density and SWE through the 

integration of remotely sensed LiDAR and GPR observations. Grand Mesa is a good site for testing our approach of combining 

LiDAR and GPR for density and SWE retrieval yet presents many challenges for GPR analysis because of the abrupt 

discontinuities along reflection horizons due to vegetation and boulders on the ground surface. By exploring effects of 380 

depolarization on L-Band GPR signals, we developed a new, automated GPR processing workflow that reliably identifies the 

ground surface beneath the snow-cover. This advance encourages the collection of large multi-polarization GPR datasets for 

operational use by removing the subjectivity involved in the GPR post-processing and interpretation and alleviating the labour 

of manually interpreting radargrams through an objective function.  

4.2 SWE uncertainty 385 

Our work characterised the measurement uncertainties and the resulting SWE uncertainty in pursuit of the goal for 10 % 

uncertainty in global SWE estimation (National Academies of Sciences, Engineering, and Medicine, 2018). We found that 

GPR TWT and LiDAR snow depth contribute approximately equal uncertainty to the retrieved snow density. The uncertainty 

in LiDAR snow depth tends to vary spatially and is dependent on landscape characteristics such as slope and vegetation (Deems 

et al., 2013). However, our evaluation of snow depth in forested and open areas did not suggest that LiDAR snow depth errors 390 

were greater beneath the tree canopy (Table 1). Relative SWE uncertainty resembles the snow depth distribution, where 

shallow snow within forest stands yields greater relative uncertainty. Absolute SWE uncertainty resembles the snow density 

patterns, especially in areas of anomalous snow density where the modelled errors are greatest.  Our uncertainty analysis 

(Fig. S10) suggests that, even using innovatory measurements from airborne and ground-based sensors, 10 % uncertainty is 

difficult to achieve. Having demonstrated the limitations and success of the joint LiDAR – GPR methodology for SWE retrieval 395 

at plot to forest stand scales makes this technique formidable for SWE remote sensing calibration and validation. 

4.3 Geolocation errors in sensor fusion 

Though the signal of LiDAR and GPR instruments is repeatable and coherent, the leading source of error in our density 

measurement is spatial misalignments (potentially sourced from geolocation inaccuracies, point cloud to raster processing, and 

coordinate transformations) that are on the scale of the 1 m resolution data products. In some locations the co-registration may 400 

be nearly exact between the two instruments, and the resulting error will be low. We found by cross-correlating the GPR and 

co-located LiDAR snow depth transects, that misalignments of approximately 1 – 5 m are possible. Utilizing 3 m resolution 

LiDAR snow depths paired with GPR TWT for snow density retrieval did not reduce the errors. To evaluate how spatial 

misalignments impact the training data, predictor data, and the regression model output, and to estimate the uncertainties 

introduced from integrating the cross-platform sensor data, we created multiple sets of training data by effectively perturbing 405 
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where LiDAR – GPR transects are aligned via cross-correlation lagging, and introduced common practice mistakes in the 

sensor integration, such as mixing the geographic coordinate system of the data between NAD83 and WGS84. We found that 

perturbing the sensor integration introduces less than 1 kg/m3 error in the modelled density on average (up to 5 kg/m3 in forest 

stands), that outlier filtering is robust to sensor integration errors, and this error is small relative to the overall SWE uncertainty.  

4.4 Spatial variability in snow hydrological properties 410 

Measurements retrieved from GPR profiles permitted us to quantify the spatial length scales of variability in TWT, snow depth, 

snow density, and SWE. We determined that density measurements up to ~100 m apart are correlated. These findings differ 

from a previous variogram analysis that found correlation lengths for snow density of less than 10 m at a smaller study site 

which limited the maximum lag separation to approximately 50 m (Yildiz et al., 2021). However, Vvariability is study site 

dependent (Bonnell et al., 2023), and it may be that we have identified an additional longer, lower spatial frequency scaling of 415 

snow density. Corollary to SWE, two-way travel-time in dry snow depends both on snow depth and density. We found that 

TWT and SWE consistently exhibited similar correlation lengths (~ 100 m) and nugget variability in the forested (~ 35 %) and 

open (~ 15 %) areas. This finding supports TWT as an informer of spatial SWE variability. We found that snow depth and 

TWT reached comparable maximum variability in open areas (~ 25 %). While depth variability in the forested areas (~50 %) 

was greater than that of TWT and SWE (~ 45 %).  420 

In situ snow density observations have limited spatial support and tend to examine shorter length-scales of variability than are 

expressed in distributed models or retrievable by remote sensing. As a random sampling strategy was targeted for the IOP, the 

median distance between snow pit observations in our study is beyond the length scale of variability for snow density. The 

observations are therefore spatially uncorrelated. Snow density exhibited 4 % greater variability in the open areas than in the 

forests, indicating that wind exposure increased the variability, and conversely, shelter provided by terrain and vegetation 425 

tended to reduce spatial density variability. The larger (roughly 10 m) spatial support of the LiDAR – GPR estimated densities 

cannot directly sense subpixel correlation lengths and potentially missed a zero-to-five-metre scale-break that is more 

comparable to the spatial support of in situ density observations. Differences between representative observation scales may 

explain the weak correlation between estimated density and the in situ measurements (R2 = 0.01 in open areas, R2 = 0.39 in 

forest stands; Table 2 b). Our analysis of the correlation length of LiDAR snow depths generally agrees with scale-breaks 430 

identified in previous studies within forested and open areas (Deems et al., 2006; Marshall et al., 2006; Trujillo et al., 2009). 

We observed decreased correlation and increased error when upscaling rasterized SWE to 50 m resolution. Which suggests, 

that evaluating 50 m SWE with sparse point measurements, may not be the most representative approach, and greater than 

20 % error can be expected due to spatial variability. 

4.5 Density modelling using ML regression 435 

The ML regression models developed from the LiDAR and GPR acquisitions during the SnowEx 2020 Grand Mesa IOP will 

likely have weak predictive capability at other field sites, requiring model recalibration. The SWE predictions, here, represent 
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a single snapshot in time of snow depth and density. The patterns in depth, density, and SWE may be characteristic for mid-

winter, dry snow conditions but other times of the year may exhibit different spatial patterns in all three (e.g., due to variable 

melt or liquid water during ripening). For each regression model, we identified the most important LiDAR features used to 440 

distribute density and found dependencies in predictor importance due to model choice and architecture (Appendix A.2). 

Vegetation height and proximity to vegetation greater than 0.5 m in height appeared prominent in the three regression models, 

whereas dependence on elevation, slope, and aspect for snow density at Grand Mesa was weakened. We used a “kitchen-sink” 

approach to our regression modelling but found comparable accuracy in models using fewer parameters. Evaluations against 

snow pit density did not depict an obvious best model choice, as so we averaged the regression models. 445 

To capture the range of processes terrain features (i.e., elevation, slope, aspect, and forest attributes) that influence snow 

densification, one field campaign in the western U.S. collected density measurements from 300 snow cores at 10 – 20 m 

intervals and 17 snow pits (Broxton et al., 2019). From these observations, bulk snow density was distributed at 1 m resolution 

using an ANN combined with airborne LiDAR-derived snow depth to estimate SWE. Broxton et al. (2019) highlighted the 

importance of representing the broader landscape with distributed densities for estimating SWE, finding ∼30 % differences 450 

between the distributed estimates and observations from a nearby SNOTEL station. Elder et al. (1998) used a simpler, three 

feature (net radiation, slope, and elevation, with an intercept) MLR model that was trained on density observations of five 

snow pits and averages of five snow core transects to predict basin-wide average density and SWE. More recently, a similar 

study used a sampling strategy to represent unique classes of basin-wide physiography, acquiring ~1000 snow core 

observations, and used MLR and binary-classification tree models to distribute density from elevation and incoming radiation 455 

(Wetlaufer et al., 2016). The dependence of density on net solar radiation may explain the good performance of these models, 

whereas terrain parameters, such as slope and aspect, indirectly relate to radiation.  

We tested the model sensitivity to training and learned how much data is required for ML density estimation. Using 

approximately 30,000 LiDAR – GPR derived densities (10 % of the total) from random subsets, we obtained density models 

that are statistically identical to those generated from the larger data set. Though random sampling is not a practical method 460 

for GPR data acquisition and analysis, this exercise showed that the amount of GPR information required to train the model 

parameters is not as important as collecting data in a variety of landscape and snow-cover characteristics. 

4.6 Model representation of snow, terrain, vegetation, and wind interactions 

The LiDAR predictors were inspired by theory of wind-terrain-vegetation interactions governing snow distribution (Winstral 

et al., 2002). Though to keep the model design innate to LiDAR information, we did not include wind data or predictors such 465 

as maximum upwind slope and wind factor. Instead, these wind parameters were utilised as a corroboratory metric for 

explaining spatial patterns retrieved by the LiDAR – GPR density and predicted in ML regression modelling. We support that 

spatial patterns are representative of snow exposure or shelter to wind provided by topography and vegetation. We found that 

the prevailing wind direction capable of transporting snow at Mesa West generated upwind slope and wind factor parameters 

that agree most strongly with the retrieved and ML modelled snow density. A larger correlation is observed for the wind factor 470 
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than maximum upwind slope, which suggests that the role of wind shelter by vegetation, and not only terrain, has an important 

quantifiable effect on snow density. The role of forest vegetation on snow density is evinced in this topographically simple 

environment because a large-scale topographic trend, such as one driven by elevation or aspect, does not saturate the signal in 

retrieved density. Our approach in validating wind effects on density is an explanatory simplification of the controls on snow 

density which may be further impacted by forest stands. Effects such as the blocking of short-wave and emitted long-wave 475 

radiation from forest canopies, delivery of canopy intercepted snow to the snowpack, or the loss of snow mass and thereby 

altered compaction due to sublimation of canopy intercepted snow were unaccounted for (Bonner et al., 2022).   

4.7 Value of pit observations for distributed SWE 

The Grand Mesa IOP is was one of the largest campaigns to examine the spatiotemporal patterns of SWE and provided a rich 

data source for snow density analysis. In most circumstances few snow pits are dug, and uncertainties arise from spatial 480 

sampling of the underlying density distribution. The distribution of density on Grand Mesa during the early February SnowEx 

2020 campaign appears as a random normal variable with mean and standard deviation of 276 ± 21 kg/m3, despite differences 

of roughly 25 kg/m3 between the average density of forested and open areas. The large sample size of snow pits allowed us to 

accurately quantify the mean snow density for distributed SWE estimates. While the uncertainty in any measurement of density 

was found to be 2.5 % on average, we sought to quantify the degree of uncertainty in the SWE distributed from the sampled 485 

population of snow density as a function of sample size. Our analysis suggests that 10 spatially random snow pit observations 

within the study domain are sufficient to reduce the median uncertainty in distributed SWE to within 10 ± 2 % (Appendix 

B.4). Although the differences are marginal, we have shown that on average this simpler approach for distributing density 

more accurately represents the in situ observations than the SWE distributed using our modelled estimates of density 

(Section 3.7) but resolves no information about spatial patterns of snow density, and is therefore not useful for understanding 490 

density patterns across the landscape. In situ snow campaigns targeting average SWE require far fewer pits than needed to 

resolve the spatial patterns. 

Snow pits are an invaluable source of calibration and validation observations but do not adequately scale spatially, incur human 

errors and biases, and are time intensive to sample. For example, a team of two can fully sample a one-metre-deep SnowEx 

pit in two hours, which for the approximately 100 snow pits in the study area, amounts to ~ 400 hours of labour (excluding 495 

the time to quality control (QC), curate the snow pit logs, and travel to and from the field site). The 160 km of GPR data used 

in this work required approximately 20 hours to collect and an additional 20 hours to QC TWTs, which amounts to ~ 40 hours, 

or roughly a 90 % reduction in field labour, excluding the labour for acquisition and processing of airborne LiDAR.  We must 

note the greater financial cost to obtain GPR equipment and outsource airborne LiDAR data collection. 

However, densities estimated from GPR TWTs and LiDAR snow depths are objective, repeatable, and offer the spatial 500 

continuity and areal coverage to provide insights to the spatial patterns of density. The expense of acquiring airborne remote 

sensing data is a crux of the technique, and it may not be feasible to fly entire catchments across the breadth of snow climates. 

Less expensive techniques for estimating SWE distribution, such as drone-based radar retrievals of dielectric permittivity (e.g., 
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Valence et al., 2022), and in situ measurement campaigns combined with ML models (e.g., Wetlaufer et al., 2016; Broxton et 

al., 2019) should be utilised where appropriate and examined for physical representativeness. 505 

5. Conclusion 

We developed an innovative approach to estimate SWE across a ~16 km2 domain by evaluating GPR travel-times for bulk 

snow density given a snow depth constraint, then extrapolating across the domain using machine learning.  Our automatic and 

objective technique for interpreting radargrams reduces post-processing labour, which is a primary hindrance to widespread 

use of GPR in snow science. We leveraged LiDAR estimated snow depth to solve for snow density along ~160 km of GPR 510 

transects. From these along-track estimates, we calculated the length-scales of variability for depth, density, SWE and 

found that snow pit observations following the SnowEx 2020 Grand Mesa IOP sampling strategy  are independent and unable 

to resolve spatial patterns < 150 m scale. Radar travel-time informed dry-snow SWE variability better than either depth or 

density independently. Snow density distributed by machine learning revealed anomalies associated with localised terrain 

features and forest stands that shelter the snowpack from wind densification. Density spatial patterns show the best agreement 515 

in the direction of prevailing winds strong enough to transport snow, where roughly 60 % of density variability in our single 

mid-winter survey can be accounted for using a wind factor analysis. On average, distributed relative SWE uncertainty was 

less than 15 %. While our analysis suggests that measurements from one snow pit per km2 may reduce the SWE uncertainty 

to within 10 ± 2 %, using such a sampling strategy would not resolve spatial patterns and variability in snow properties. This 

pilot study provides a useful method for resolving explanatory spatial patterns in snow depth, density, and water equivalent 520 

with comparable uncertainty to in situ methods but with spatial continuity at resolutions practical for calibration or validation 

of air or spaceborne radar remote sensing retrievals of SWE. Spatial data generated and the validation data acquired during the 

NASA SnowEx 2020 IOP at Grand Mesa, Colorado, USA, provides a core set of observables that continue to inform essential 

snow research. 

Appendix A. 525 

A.1 Regression parameter optimization 

A.1.1 Multiple Linear Regression 

The MLR model has the form 

𝑦 =  𝑋𝛽 + 𝜖 ,            (A.1) 

where 𝑦 is the observed density along the GPR transects, 𝑋 is a matrix with columns containing the normalised LiDAR 530 

predictors at the coordinates along the GPR transects, 𝛽 is the vector of the regression coefficients which we seek to estimate, 
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and 𝜖 represents the model residual. From the method of least squares, the multiple linear regression coefficients are estimated 

as 

𝛽 = (𝑋𝑇𝑋)−1 𝑋𝑇𝑦   .           (A.2) 

Using cross-validation to assess the model accuracy and sensitivity, we estimated the MLR model parameters. We trained the 535 

model with 1000 Monte Carlo simulations by randomly sampling 90 % of the density observations and testing on the remaining 

10 %. Additionally, we repeated this process and randomly sampled only 10 % of the data and tested on the remaining 90 %. 

In doing so, we created two sets of parameters that robustly span the parameter space. Using these regression coefficients, 

Equation A.1 is computed to distribute the predicted densities. The modelled densities are insensitive to the training choice for 

parameter estimation, as the root-mean-square deviation between the two models is less than 1 kg/m3. 540 

A.1.2 Random Forest and Artificial Neural Network Regression 

Whereas MLR models are relatively inflexible and model overtraining is not a concern, techniques such as Random Forest 

and Artificial Neural Network regression are highly tuneable and may overfit the data. Hyperparameters determine the model 

architecture which is often designed subjectively or through an optimization process. The number of trees and the minimum 

leaf size of a tree were the hyperparameters adjusted for the Random Forest method. Neural networks offer a greater 545 

hyperparameter space, allowing for design of the number of and size of hidden layers, the neuron activation function, and 

model regularisation. The machine learning models were implemented using the MATLAB Regression Learner application, 

where it was determined that model hyperparameters which minimise the cross-validation mean squared-error overfit the data. 

Model overfitting was remedied by training ensembles of models with various hyperparameters. We calculated the averaged 

standard deviations of density data for each ensemble predicted along the GPR transects (𝜎𝑡𝑟𝑎𝑖𝑛̅̅ ̅̅ ̅̅ ̅) and elsewhere in LiDAR 550 

domain (𝜎𝑝𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅) and the coefficient of determination (𝑅2) of the training data and prediction. Optimal hyperparameters which 

do not overfit the data were then determined by minimising the objective function 

𝜑 =  
1

𝑅2

𝜎𝑝𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅

𝜎𝑡𝑟𝑎𝑖𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅
 .            (A.3) 

The ratio of the standard deviations asserts that an appropriate model will have similar variance throughout the modelled 

domain, by penalising overfit data in the training locations and rewarding the model which explains the data accurately.  We 555 

found that the best model parameterizations that are not overfit scored an 𝑅2 ≅ 0.8 with 𝑅𝑀𝑆𝐸 ≅ 15 kg/m3. The 

corresponding hyperparameters for the Random Forest Regression were 10 trees with a minimum leaf size of 200. The ANN 

architecture had two hidden layers each with 50 neurons and hyperbolic tangent activations and regularisation of  𝜆 =  0.015. 

A.2 Predictor importance 

A.2.1 Multiple linear regression 560 

We applied the “kitchen-sink” approach because the MLR model that was trained using the LiDAR–GPR densities, which 

utilised every LiDAR predictor, exhibited the largest correlation (R2 = 0.27) to the observations. However, various model 
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parameterizations which utilised few parameters yielded equivalent accuracies. To assess the importance of the individual 

predictors, we assembled all combinations of 1 to 17 predictor models, solved the regression for each combination, and cross-

validated against a test set of the LiDAR–GPR estimated densities. We considered optimal models as the top 1 % of outputs, 565 

and from these we tracked which predictors composed any model. We identified the relative importance of each predictor (Fig. 

A.1) by summing the number of appearances for a given predictor and dividing by the number of optimal models. Vegetation 

parameters and the east-west gradient of the ground surface elevation were featured in all the most accurate modelled 

predictions. Notably, snow density on Grand Mesa exhibits weak dependence on elevation, aspect, and slope.   

A.2.2 Random forest regression 570 

The permutation accuracy importance was calculated to determine which of the LiDAR derived predictor variables are most 

valuable in predicting the response. The permutation importance is assessed by comparing the accuracy of the prediction for a 

given learner (tree), then randomly permuting the predictor variable of interest and recalculating the prediction accuracy 

(Hapfelmeier et al., 2014). An important predictor will lose predictive capability after random permutation, while an 

unimportant predictor will be unaffected by the randomization. The prediction accuracy is calculated using “out of bag” 575 

observations that were excluded from the population used to build the decision tree (Breiman, 2001). The relative “out of bag” 

predictor importance for the ensemble of random forests generated using 10 trees with a minimum leaf size of 200 suggests 

that the slope of snow depth, snow surface elevation, ground surface elevation, proximity to vegetation, and vegetation height 

are the five leading predictors of snow density (Fig. A.2).  

A.2.3 Artificial neural network regression 580 

Approaches which partition the weights between neural connections to determine the relative importance of the predictors 

within an ANN have a classically simple architecture with a network expressing one hidden layer (Goh, 1995). This technique 

becomes obfuscated when applying an ANN with multiple hidden layers.  To determine the relative importance of predictors 

within an ensemble of networks with two hidden layers, we simply multiplied the matrices of weights connecting the input to 

the first hidden layer, the first to the second hidden layer, and second hidden layer to the output. The greater the overall 585 

weighting that is assigned to a predictor the greater the importance of the feature. This method suggests that vegetation height, 

proximity to vegetation, the north derivative of the ground surface elevations, the slope of the ground elevations, and east 

derivative of the snow surface elevations are the five leading predictors of snow density (Fig. A.3). 

A.3 Model similarity intercomparison 

Visual inspection reveals apparent structural similarity among the three regression-based models. As a quantified model 590 

intercomparison we applied the coefficient of determination measured by Pearson correlation calculated on a pixel-by-pixel 

basis. The structural similarity index (SSIM; Wang et al., 2004) is a normalized value between 0 and 1 that is defined by image 

luminance, contrast, and standard deviation. We calculated the SSIM in 100 m radius kernels (comparable to the estimated 
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correlation length of density) as a second means of determining the similarity among the model ensembles. Capturing various 

structural length scales examines the model similarities throughout the correlation length. Table A.1 overviews the R2 similarity 595 

matrix. Nearly 50 % of the features observed in the MLR model are explained within the RF model, and vice-versa. The SSIM 

similarity matrix suggests greater structural similarity at larger spatial support (Table A.1). The random field synthesised model 

exhibits no repeatable structure and is uncorrelated from the various regression models, as expected since it was randomly 

generated from the overall snow density statistics only.  

Appendix B. 600 

B.1 LiDAR point cloud processing 

Point cloud processing was performed using the Multiscale Model to Model Cloud Compare method (Lague et al., 2013). The 

point cloud differencing method operates directly on point cloud data by selecting core points from the point clouds and 

distinguishing between the reference point cloud (representing the ground) and the compared point cloud (depicting snow-

covered surfaces). Utilizing a user-defined radius, denoted as D, the algorithm fits a plane within a D/2 radius around each 605 

core point and determines the normal vector of the plane. Subsequently, based on the core point and the associated normal 

vector, the algorithm fits a cylinder with a radius of D/2, oriented along the normal vector, with the cylinder axis passing 

through the core point. This cylinder intersects both the reference (ground) and compared (snow) point clouds, resulting in two 

sets of points. The algorithm then projects the points within each set onto the normal vector and calculates the average and 

standard deviation for each set. These values represent the average position and roughness, respectively. In the presence of 610 

outliers, the algorithm substitutes the mean and standard deviation with the median and inter-quartile range, respectively. 

Ultimately, the local distance between the average positions of the two sets provides the snow depth. However, in cases where 

surfaces are rough and the surface orientation does not align consistently with the normal direction, the measured distance 

(snow depth) uncertainty increases. This point cloud differencing method could prove beneficial for flat areas, given the 

effectiveness of the method on both rough and smooth surfaces. 615 

The Cloud Compare Caractérisation de Nuages de Points method was employed to distinguish vegetation from ground and 

snow returns following methods in Štroner et al., (2021). This process involves a combination of training and classification 

which defines the dimensionality of point clouds (1D for a line, 2D for a plane, or 3D for a volume) around specific points 

within a sphere at various scales (radii). The expectation is that branches exhibit a more linear (1D) structure, leaves display 

2D surfaces at small scales (e.g., centimetre scales), and trees manifest in 3D at larger scales (e.g., metre scales). Both snow 620 

and ground surfaces tend to exhibit more of a 2D nature at both small and large scales. The determination of dimensionality is 

based on principle component analysis within the algorithm. The combination of point dimensionality at different scales is 

used to define object categories, and in this instance, remove vegetation. 
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B.2 Error analysis of LiDAR – GPR estimated density 

We conducted a sensitivity analysis to evaluate how the errors in radar travel-time and LiDAR snow depth affect the estimated 625 

snow density. This involved establishing a level curve through the average snow values of the study area (mean density 276 

kg/m3, mean TWT 8 ns, and mean snow depth 96 cm) and applying perturbations to evaluate the density error (Fig. B.1). 

Perturbations of up to ± 1 ns were added to the TWT and ± 15 cm were added to the depth. After the TWT and depth 

perturbations were applied, the densities were evaluated, and the mean (276 kg/m3) was subtracted from this result to measure 

the density perturbations. The error bars of Fig. B.1 represent the LiDAR root-mean-square deviation evaluated by co-located 630 

depth probing (11 cm) and at the GPR TWT crossovers (0.9 ns). At the 1-sigma level, errors of approximately ± 150 kg/m3 

can be expected from this sensor integration method.   

The combined measurement and geolocation errors in LiDAR-derived snow depths and GPR TWTs may translate to errors in 

the retrieved density that are larger than the range of densities observed in the snow pits. By filtering outliers, random error 

reduced to ± 30 kg/m3 and retrieved a meaningful density signal. We chose the interquartile range of the LiDAR – GPR 635 

retrieved densities as the threshold for determining outliers, because the 25th and 75th percentiles envelop the range of snow 

densities observed in the snow pits. We then applied a 2D median window with a 12.5 m radius (chosen to extend beyond the 

correlation length of the errors) to smooth the densities and interpolate those at the outlying locations.  

Although we only included GPR observations within 100 hours of the 1 February LiDAR flight, seeking a potential bias related 

to effects of densification and redistribution, we regressed 𝜌𝑠,𝐿𝑖𝐷𝐴𝑅−𝐺𝑃𝑅 against hours elapsed prior to and after 1 February. 640 

Separate linear trends were identified in the forested and open regions traversed with the GPR. As conducted for the snow pit 

density observations, the trends were centred about February 1, and removed from the retrieved density observations. 

B.3 Statistics of in situ, LiDAR – GPR retrieved, and modelled snow density 

To show that the retrieved and modelled densities are within the range of measurements observed in the snow pits we provided 

the distribution of these three data sets for the entire study area domain (Fig. B.2). The means of the distributions are 645 

overlapping within the standard deviations of the datasets. The LiDAR – GPR retrieved densities suggest a broader distribution 

of densities than observed in pits or modelled. Sampling biases may explain the small disagreement between mean values. The 

sample size and spatial representation of each data set varies on many orders of magnitude. The distributions are unequally 

represented by vegetation class, as 18 % of the snow pits (17 of 96), 23 % of the modelled domain (3,665,343 of 15,753,500), 

and 7 % of the GPR transects (19,978 of 278,627) were located within the forest stands. However, other than a bias of 650 

- 10 kg/m3
 the distribution of modelled estimates closely resembles that of the snow pit measurements. Z-tests confirm that the 

snow density data are normally distributed about the mean and standard deviations listed with high confidence. 
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B.4 Sample Uncertainty of Density and SWE 

To estimate the uncertainty in average density due to sample size and to propagate this uncertainty in terms of SWE, we 

conducted Monte Carlo simulations by randomly subsampling density observations.  Utilising 1,000 Monte Carlo realisations 655 

as a function of sample size, we incrementally increased the number of randomly sampled snow pits to estimate the mean and 

the standard deviation of the distributed average snow density (Fig. B.3). We set the sampled standard deviation as the spatial 

uncertainty in density and summed in quadrature the distributed errors in LiDAR snow depth as described in Section 2.7 to 

propagate the SWE uncertainty (Fig. B.2). Our analysis suggests that 10 snow pit observations are sufficient to reduce the 

median uncertainty in SWE to within 10 ± 2 %. 660 

Appendix C. 

C.1 Maximum upwind slope and wind factor parameters 

To infer the physical bases underlying the snow density patterns of 𝜌𝑠,𝐸𝑛𝑠̅̅ ̅̅ ̅̅ , we computed two parameters (maximum upwind 

slope and wind factor parameters; Winstral et al., 2002) from the 1-2 February LiDAR-derived snow surface elevations. The 

maximum upwind slope characterises the degree of wind exposure for a given pixel. A wind sheltered pixel has positive slope, 665 

indicating that higher terrain exists upwind of the pixel. Conversely, wind exposed terrain has a negative slope value, with 

lower elevation terrain in the upwind direction. The maximum upwind slope parameter (Sx) was calculated for each azimuth 

from 0 to 355 degrees in 5-degree increments, averaged over ± 15-degree overlapping bins (Winstral et al., 2002). A search 

distance of 25 m was applied in the calculation of local Sx, while a 250 m distance was used to calculate the outlier length 

scale Sx between 25 and 250 m from the pixel. The local and outlying Sx parameters were differenced to calculate the slope 670 

break parameter, Sb (Winstral et al., 2002). Because pixels with high wind exposure have negative Sx values, and we 

hypothesise that wind exposed terrain will have greater snow density (e.g., due to formation of wind slabs), the wind direction 

expressing the largest negative correlation was recognized as the best explanation of density patterns determined by Sx.  

The wind factor parameter determines the degree of wind exposure or shelter for a given pixel, based on Sx, Sb, vegetation 

proximity, and the average scalar multiple by which wintertime winds at the MW station exceeded those at the MM station 675 

(Winstral et al., 2002). The value 2.18 determined from the wind speed data at MW and MM is in close agreement with the 

value of 2.3 determined by Winstral et al. (2002) and was applied to compute the wind factor by inversely rescaling Sx to the 

range between 1 and 2.18, where the larger values indicate more wind exposure. Vegetated, wind-sheltered zones were 

identified as pixels within a 3 m buffer of LiDAR vegetation greater than 0.5 m height. The wind factors of sheltered vegetated 

areas and regions of Sb which exceeded the 97.5th percentile were arbitrarily reduced by 10 % to enhance the effective wind 680 

shelter provided by vegetation. Because the wind factor was inversely rescaled, the wind direction expressing the largest 

positive correlation with the snow density was recognized as the best explanation of density patterns determined by the wind 

factor parameter. 
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Code availability 

The processing software developed for the multi-polarization GPR analysis is available at 685 

https://github.com/tatemeehan/SnowEx2020_BSU_pE_GPR.  

Data availability 

Snow pit observations (Vuyovich et al., 2021), snow depth observations (Hiemstra et al., 2020), and GPR travel-time 

observations (Meehan, 2021; Webb, 2021) acquired during the SnowEx 2020 Grand Mesa IOP are publicly available through 

the National Snow and Ice Data Center (NSIDC). Data products resulting from this work, comprised of the LiDAR–GPR 690 

estimated density observations; LiDAR estimated snow depth, terrain, and vegetation model predictors, the ensemble of 

modelled snow density, and the SWE and uncertainty estimated therefrom are will be archived within the NSIDC at 

https://nsidc.org/data/snowex DOI: 10.5067/LANQ53RTJ2DR pending the review of this manuscript. Additional ASO 

datasets evaluated within this manuscript are hosted on the NSIDC landing page https://nsidc.org/data/aso. 
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 940 
Figure 1: a) Study area map of snow pit locations (yellow circles), Mesa West weather station (brown circle), GPR transects (black 

lines), and LiDAR boundary (grey wireframe). Landcover classification identifies the forested areas as green and lakes as blue. b) 

inset map of Grand Mesa, Colorado depicting the extent of the dataset acquired during the NASA SnowEx 2020 Intensive 

Observation Period at Grand Mesa, Colorado (Hiemstra et al., 2021). c) inset map of the contiguous U.S. which identifies the location 

of Grand Mesa, Colorado. Land cover classification data were accessed from the 2016 National Land Cover Database (Homer et al., 945 
2020). Slope hillshade data were accessed from the USGS 3D Elevation Program (Lukas & Baez, 2021). Cartographic boundary files 

were accessed from the Census Bureau’s MAF/TIGER geographic database (U.S. Census Bureau, 2020). The geographic coordinate 

projection of these maps is UTM Zone 12 N; EPSG code 32612. 
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Figure 2: One-metre resolution snow depths from the February 1, 2020 LiDAR flight. The western half of the domain is relatively 950 
unforested, shrub steppe (lakes are masked black) while the eastern half has stands of dense forest (see Fig. 1). The colourmap is 

centred on the mean value. 
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Figure 3: A 900 m GPR transect with autopicks in magenta for a) HH and b) HV profiles of travel time, and c) the coherence of 

these radargrams (Equations 1, 2).  955 
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Figure 4: Bulk snow density along radar profiles estimated by combining LiDAR snow depths with GPR TWTs.  Average density 

measured in the 96 snow pits within the LiDAR boundary are overlaid as larger makers. Forested areas (grey) and lakes (black) are 

shown. The colourmap is centred on the mean value. 

 960 
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Figure 5: Generalised relative semi-variograms in a) open and b) forested areas for LiDAR snow depth, GPR TWT, average density 

retrieved along the GPR transects, and resulting SWE. Experimental variograms were fitted with an exponential model to determine 

the variogram parameters. The larger markers represent the average nugget, sill, and correlation length estimated by Monte Carlo 

subsampling.  965 
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Figure 6: Snow density distributed spatially using the ML regression ensemble average (𝑏𝑠,𝐿𝑖𝐷𝐴𝑅−𝐸𝑛𝑠̅̅ ̅̅ ̅̅ ). The colourmap is centred on 

the mean value. 
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 970 

Figure 7: Spatially distributed snow water equivalent estimated using the regression ensemble mean density (𝑏𝑠,𝐿𝑖𝐷𝐴𝑅−𝐸𝑛𝑠̅̅ ̅̅ ̅̅ ) and 

LiDAR snow depths (Hs,LiDAR). Forests and wind scoured areas tend to have lower SWE, and forest perimeters have higher SWE. 

The metre-scale stippled texture is the result of low-stature vegetation (Hveg < 0.5) and boulders, which both reduce snow depth and 

decrease the snow density. Large markers are SWE values measured at snow pits. Lakes are masked in black. The colourmap is 

centred on the mean value. 975 
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Figure A.1: The relative importance of the LiDAR derived predictors: Hs snow depth, aspctHs aspect of snow depth, slpHs slope of 

snow depth, dyHs north component of snow depth gradient, dxHs east component of snow depth gradient, Zs the snow surface 

elevation and derivatives, Zg the ground elevation and derivatives, Hveg vegetation height, and Sveg the distance to vegetation with 980 
height greater than 0.5 m. The predictor importance was determined from the top 1 % of models. 

 

Figure A.2: Relative importance of LiDAR predictors calculated using the “out of bag” technique for random forest regression. 

Uncertainties were developed using random subsets of training data in a Monte Carlo simulation. 
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 985 

Figure A.3: Relative importance of LiDAR predictors within the ANN comprised of two hidden layers. 

 

Figure B.1: Perturbations were added to the mean values 8 ns TWT and 96 cm depth then the density was evaluated to estimate 

potential errors resulting from sensor integration (coloured area and contours). The error bars represent the RMSE of LiDAR 

evaluated by probing (11 cm) and the RMSD of the GPR TWT crossovers (0.9 ns). At one standard deviation, combined snow density 990 
errors of ± 150 kg/m3 can be expected from sensor integration, which are reduced to within ± 30 kg/m3 by outlier filtering. 
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Figure B.2: Histograms of the snow pit measured, LiDAR – GPR retrieved, and regression model ensemble densities. 995 
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Figure B.3: Monte Carlo uncertainty analysis for a) mean snow density, b) standard deviation of snow density, and c) propagated 

SWE uncertainty as functions of sample size. 

Table 1: a) The mean and standard deviation of snow pit and probe measured snow depths. b) Co-located estimates by LiDAR and 

GPR techniques gathered from within a 1 m radius of the in situ observations are compared to the in situ observations. 1000 

a) 

Snow Depth (cm) 

Method 

All Domain 

μ ± σ 

Open Domain 

μ ± σ 

Forested Domain 

μ ± σ  

Snow Pit (hs,Pit) 97 ± 17 99 ± 17 87 ± 13 

Probe (hs,Probe) 95 ± 17 98 ± 16 84 ± 18 

 

b) 

Snow Depth (cm) 

Method 

All Domain 

μ ± σ | R2 | RMSE |Bias 

Open Domain 

μ ± σ| R2 | RMSE | Bias 

Forested Domain 

μ ± σ | R2 | RMSE | Bias 

LiDAR (Hs,LiDAR) 95 ± 16 | 0.61 | 11 | 0 99 ± 14 | 0.57 | 11 |  1 81 ± 16 | 0.60 | 12 | -4 

GPR (hs,𝐸𝑛𝑠̅̅ ̅̅ ̅̅ -GPR) 97 ± 19 | 0.26 | 17 | 1 97 ± 19 | 0.26 | 17 |  1 99 ± 17 | 0.22 | 17 | -1 

 

Table 2: a) Mean and standard deviation for snow pit, LiDAR – GPR (Sections 2.4.1 and 2.4.3), and modelled densities. Snow pit 1005 
mean and standard deviations are estimated from all available data, N = 96 snow pits for the entire domain, N = 79 for the open 

domain, and N = 17 for the forested domain. b) Comparison between snow pit densities and estimated densities. Statistics (R2, RMSE, 

and Bias) are measured from a subset of snow pits within 12.5 m of the GPR transects:  N = 42 for all the domain, N = 36 for the 

open domain, and N = 6 for the forested domain. c)  𝜌
𝒔,𝑳𝒊𝑫𝑨𝑹−𝑮𝑷𝑹

 estimated densities are evaluated against modelled results. 

a) 1010 

Snow Density (kg/m3)  

Method 

All Domain 

μ ± σ  

Open Domain 

μ ± σ 

Forested Domain 

μ ± σ 

Snow Pit (𝜌𝑠,𝑃𝑖𝑡) 276 ± 21 280 ± 19 257 ± 20 

LiDAR – GPR (𝜌𝑠,𝐿𝑖𝐷𝐴𝑅−𝐺𝑃𝑅) 271 ± 32 273 ± 32 246 ± 19 

MLR Model (𝜌𝑠,𝑀𝐿𝑅) 268 ± 21 273 ± 19 253 ± 18 

RF Model (𝜌𝑠,𝑅𝐹) 269 ± 17 271 ± 18 262 ± 11 

ANN Model (𝜌𝑠,𝐴𝑁𝑁) 260 ± 25 266 ± 25 242 ± 14 

ML Ensemble (𝜌𝑠,𝐸𝑛𝑠̅̅ ̅̅ ̅̅ ) 264 ± 19 269 ± 19 248 ± 11 

Random Field (𝜌𝑠,𝑅𝑎𝑛𝑑) 275 ± 20 275 ± 20 274 ± 20 

 

b) 

Snow Density 

(𝝆𝒔,𝑷𝒊𝒕) 

All Domain 

R2 | RMSE |Bias 

Open Domain 

R2 | RMSE | Bias 

Forested Domain 

R2 | RMSE | Bias 

LiDAR – GPR (𝜌𝑠,𝐿𝑖𝐷𝐴𝑅−𝐺𝑃𝑅) 0.02 | 35 | -5 0.01 | 37 | -8 0.39 | 23 | -13 

MLR Model (𝜌𝑠,𝑀𝐿𝑅) 0.05 | 26 | -9   0.01 | 26 | -10 0.0 | 26 | -2 

RF Model (𝜌𝑠,𝑅𝐹) 0.01 | 26 | -8   0.0   | 27 | -10 0.0 | 22 |  4 

ANN Model (𝜌𝑠,𝐴𝑁𝑁)   0.06 | 30 | -11   0.03 | 31 | -12 0.0   | 23 | -8 

ML Ensemble (𝜌𝑠,𝐸𝑛𝑠̅̅ ̅̅ ̅̅ ) 0.05 | 27 |-11   0.02 | 28 | -12 0.0   | 22 | -4 

Random Field (𝜌𝑠,𝑅𝑎𝑛𝑑) 0.01 | 27 | -2 0.03 | 25 | -6 0.07 | 32 | 20 
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c) 

Snow Density  

(𝝆𝒔,𝑳𝒊𝑫𝑨𝑹−𝑮𝑷𝑹) 

All Domain 

R2 | RMSE |Bias 

Open Domain 

R2 | RMSE | Bias 

Forested Domain 

R2 | RMSE | Bias 

MLR Model (𝜌𝑠,𝑀𝐿𝑅) 0.27 | 27 | 0 0.25 | 27 | 0 0.04 | 22 | 5 

RF Model (𝜌𝑠,𝑅𝐹) 0.80 | 15 | 0 0.79 | 15 | 0 0.76 | 10 | 1 

ANN Model (𝜌𝑠,𝐴𝑁𝑁)  0.79 | 15 | 0 0.78 | 15 | 0 0.69 | 11 | 0 

ML Ensemble (𝜌𝑠,𝐸𝑛𝑠̅̅ ̅̅ ̅̅ )  0.72 | 18 | 0  0.71 | 18 | 0 0.59 | 13 | 2 

Random Field (𝜌𝑠,𝑅𝑎𝑛𝑑)  0.0   | 32 | 4  0.0   | 37 | 3   0.04 | 39 | 27 

 1015 

Table 3: a) Mean and standard deviation of snow water equivalent measured in snow pits and distributed by LiDAR snow depths 

using an average snow pit density value (276 kg/m3), the average of snow pit density in each respective domain (276, 280, 257 kg/m3), 

the regression ensemble densities, and the random field densities. In situ mean and standard deviations are estimated from all 

available data, N = 96 snow pits for the entire domain, N = 79 for the open domain, and N = 17 for the forested domain. b) Evaluation 

of SWE between snow pit observations and distributed estimates using LiDAR snow depths multiplied by the average density 1020 
measured from snow pits in the respective domains, the ML ensemble modelled densities, and the random field synthesized densities. 

a) 

Snow Water Equivalent (mm)  

Method 

All Domain 

μ ± σ 

Open Domain 

μ ± σ 

Forested Domain 

μ ± σ 

Snow Pit (𝑏𝑠,𝑃𝑖𝑡) 269 ± 57 278 ± 55 225 ± 45 

Average Pit Density (276 kg/m3) 255 ± 51 266 ± 41 219 ± 62 

Domain Pit Avg. (276, 280 & 257) 255 ± 51 275 ± 37 197 ± 44 

ML Ensemble (𝑏𝑠,𝐿𝑖𝐷𝐴𝑅−𝐸𝑛𝑠̅̅ ̅̅ ̅̅ ) 245 ± 53 259 ± 41 198 ± 57 

Random Field (𝑏𝑠,𝐿𝑖𝐷𝐴𝑅−𝑅𝑎𝑛𝑑) 254 ± 54 265 ± 45 218 ± 64 

 

b) 
Snow Water Equivalent (mm)  

Method 

All Domain 

R2 | RMSE |Bias 

Open Domain 

R2 | RMSE | Bias 

Forested Domain 

R2 | RMSE | Bias 

Pit Average (276, 280 & 257)            0.57 | 38 | -9            0.63 | 34 | -3 0.16 | 55 | -29 

ML Ensemble (𝑏𝑠,𝐿𝑖𝐷𝐴𝑅−𝐸𝑛𝑠̅̅ ̅̅ ̅̅ ) 0.56 | 46 | -20 0.61 | 42 | -18 0.19 | 56 | -27 

Random Field (𝑏𝑠,𝐿𝑖𝐷𝐴𝑅−𝑅𝑎𝑛𝑑) 0.49 | 42 | -10 0.52 | 39 | -10 0.10 | 55 | -14 

 1025 

Table A.1: Similarity matrix of R2 values for a pixel-by-pixel intercomparison and SSIM values for a model intercomparison 

estimated over 100 m radius (approximate correlation length of snow density). 

R2, SSIM MLR RF ANN Random Field 

MLR 1, 1 - - - 

RF 0.49, 0.61 1, 1 - - 

ANN 0.31, 0.46 0.39, 0.52 1, 1 - 

Random Field 0, 0 0, 0 0, 0 1, 1 
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