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Abstract. Elevation changes of the Antarctic Ice Sheet (AIS) related to surface mass balance (SMB) and firn processes vary

strongly in space and time. Their short-term natural variability is large and hampers the detection of long-term climate trends.

Firn models or satellite altimetry observations are typically used to investigate such firn thickness changes. However, there is

a large spread among firn models. Further, they do not fully explain observed firn thickness changes, especially on smaller

temporal and spatial scales. Reconciled firn thickness variations will facilitate the detection of long-term trends from satellite5

altimetry, the resolution of the spatial patterns of such trends and, hence, their attribution to the underlying mechanisms. This

study has two objectives: First, we quantify interannual Antarctic firn thickness variations on a 10 km grid scale. Second, we

characterise errors in both the altimetry products and firn models. To achieve this, we jointly analyse satellite altimetry and

firn modelling results in time and space. We use the timing of firn thickness variations from firn models and the satellite-

observed amplitude of these variations to generate a combined product (‘adjusted firn thickness variations’) over the AIS for10

1992–2017. The combined product characterises spatially resolved variations better than either firn models alone or altimetry

alone. We detect highest absolute differences between the adjusted and modelled variations at lower elevations near the AIS

margins, probably influenced by the lower resolution, more blurred spatial distribution of the modelled variations. In a relative

sense, the largest mismatch between the adjusted and modelled variations is found in the dry interior of the East Antarctic Ice

Sheet (EAIS), in particular across large megadune fields. Here, the low signal-to-noise ratio poses a challenge for both models15

and altimetry to resolve firn thickness variations. The altimetric residuals still contain a large part of the altimetry variance

and include firn model errors, such as firn signals not captured by the models, and altimetry errors. Apart from time-variable

penetration effects of radar altimetry signals, the residuals disclose patterns indicating uncertainties in intermission calibration.

1 Introduction

The global mean sea level rose by 3.05± 0.24 mmyr−1 during the period 1993–2016 (Horwath et al., 2022). Ice-mass loss20

from Antarctica contributed ∼ 6% to this rise, and is likely to continue (Horwath et al., 2022; IPCC, 2021). The evolution of

the Antarctic Ice Sheet (AIS) is of critical concern because the AIS contains the world’s largest reservoir of frozen freshwater,
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the equivalent of ∼ 58m in global mean sea level (Fretwell et al., 2013), and projections of Antarctica’s future contribution

to the sea-level rise exhibit a large spread (Schlegel et al., 2018). Relative to 1995–2014, by 2100, Antarctica is expected to

contribute 0.03 to 0.27 m and 0.03 to 0.34 m (likely ranges) to the global mean sea level rise under the low and very high25

greenhouse gas emissions scenario, respectively (Fox-Kemper et al., 2021). In order to narrow the range of future sea-level rise

projections, we need to better understand the ice-sheet processes and, for this, improve models and observational constraints

to quantify the associated volume and mass changes with higher accuracy.

1.1 Antarctic mass balance and the role of SMB variations

The mass balance of a grounded ice sheet is commonly separated into three processes: surface mass balance (SMB), basal mass30

balance, and ice discharge. SMB comprises total precipitation (snowfall, rainfall), total sublimation (from surface and drifting

snow), drifting snow erosion and meltwater runoff (van den Broeke et al., 2016; van Wessem et al., 2018). It refers to processes

occurring on the surface of the ice sheet in the snow and firn layer. Ice discharge is the ice flow across the grounding line and

is linked to processes occurring in the ice layer (Willen et al., 2021). Basal mass balance is thought to be small (Otosaka et al.,

2023a), and not considered here.35

The current overall mass balance of the AIS is dominated by an increase in mass loss through ice discharge resulting from

an acceleration of glacier flow, primarily from outlet glaciers of the West Antarctic Ice Sheet (WAIS) (Velicogna et al., 2020;

Rignot et al., 2019). However, variations in SMB (dominated by precipitation) control the variability of the Antarctic mass

balance on interannual to decadal timescales (Rignot et al., 2019; Davison et al., 2023). The amplitudes of SMB variations, as

well as the SMB itself, vary strongly over space. They are influenced by ice sheet topography and atmospheric and oceanic40

conditions (Lenaerts et al., 2019). Antarctic SMB variability is associated with large-scale atmospheric circulation, such as the

Amundsen Sea Low, the Southern Annular Mode and the El Niño Southern Oscillation (e.g. Cullather et al., 1996; Lenaerts

et al., 2019; Noble et al., 2020; Kaitheri et al., 2021). The strong interannual Antarctic SMB variability hampers the detection of

statistically significant trends in the Antarctic (surface) mass balance. To separate long-term trends from short-term variability,

the time period considered is essential (Wouters et al., 2013). Ice cores indicate an increase in SMB, in particular in West45

Antarctica, over the twentieth century (Thomas et al., 2017; Wang et al., 2019; Medley and Thomas, 2019). Over the shorter

satellite period, on a decadal and multidecadal scale, possible trends are masked by the large short-term variability (Mottram

et al., 2021; Gutiérrez et al., 2021). An improved quantification of interannual SMB variations in space and time is required in

order to robustly resolve long-term SMB trends (King and Watson, 2020). This is currently lacking (e.g. Mottram et al., 2021).

1.2 Modelling and observing SMB and firn thickness changes50

To date, the SMB for the entire ice sheet is commonly simulated using regional climate models (RCMs) that are thoroughly

evaluated against hundreds of in situ observations of SMB. Earth system models have recently caught up in this regard (Lenaerts

et al., 2019). RCMs specialise in the physics of polar ice sheets (van Wessem et al., 2018; Agosta et al., 2019). They are forced

by atmospheric reanalysis products which typically provide data from 1979 onwards (Gossart et al., 2019). Mottram et al.

(2021) compared Antarctic SMB simulations from an ensemble of five different RCMs all forced by ERA-Interim (Dee et al.,55
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2011). Model differences comprise e.g. the topography model, horizontal resolution and complexity in (sub)surface, snow and

firn schemes. Mottram et al. (2021) find that different RCMs provide similar outputs for annual to decadal SMB variations

on a continental scale, as long as they are driven by the same reanalysis product. However, spatial variations in SMB show

a poorer agreement. On a basin scale, the largest deviations are found for the Antarctic Peninsula and the basin that includes

the Transantarctic Mountains and part of the interior of the East Antarctic Ice Sheet (EAIS) (basin 8 in this study; Fig. 3). For60

this basin, the ensemble standard deviation (std) of 40 Gtyr−1 amounts to 37 % of the ensemble mean. Moreover, even when

models provide similar basin-wide SMB estimates, their spatial patterns differ substantially on a regional and local scale. The

largest deviations between the models are mainly at the coastal margin of the entire grounded AIS.

Results from RCMs are used to force firn models, that simulate the temporal evolution of the Antarctic firn due to SMB

and firn processes such as densification (Ligtenberg et al., 2011; Lundin et al., 2017). Firn elevation changes, or firn thickness65

changes, are an output of firn models. Verjans et al. (2021) examined differences in linear trends of firn thickness changes be-

tween a range of 54 different firn model setups for the EAIS. On a basin scale, the ensemble stds range from 0.2 to 1.0 cmyr−1

and amount to 15 to 300 % of the ensemble mean trends of their respective basins. Over the entire EAIS, the choice of cli-

mate forcing (RCM), firn compaction and surface snow density contribute to the ensemble spread by 72 %, 20 % and 4 %,

respectively, which highlights the importance and need for more precise RCMs.70

Besides modelling tools, satellite measurements are the only possibility to infer ice-sheet-wide changes in SMB. Observa-

tions from the satellite gravimetry missions GRACE and GRACE-FO are widely used to estimate Antarctic ice mass changes

(e.g. Horwath and Dietrich, 2009; Velicogna and Wahr, 2013; Barletta et al., 2013; Groh et al., 2019). Comparisons between

gravimetric ice-mass balance estimates and modelled SMB results (with additional consideration of ice-dynamics changes)

were made for the entire AIS, its main regions, drainage basins, or glacier catchments (Mohajerani et al., 2018; Velicogna75

et al., 2020; Groh and Horwath, 2021). However, gravimetric mass-balance estimates have to be corrected for superimposed

signals such as glacial isostatic adjustment, involving large uncertainties (Shepherd et al., 2018; Whitehouse et al., 2019; Willen

et al., 2020; Groh and Horwath, 2021). Moreover, GRACE/GRACE-FO cannot resolve mass changes on smaller spatial scales

and their observations are restricted to the period after 2002.

By contrast, observations from satellite altimetry provide a higher spatial resolution of several kilometres and go back to80

the year 1992 for covering most of the AIS (Wingham et al., 1998). They allow the derivation of temporal changes of the ice

sheet’s surface elevation and are therefore sensitive to volume changes of the AIS and to the deformation of the solid Earth, with

the latter negligible compared to the former (Willen et al., 2021). Most of the altimetry missions utilise(d) radar waves (e.g.

Envisat, CryoSat-2). Since 2003 laser altimeters are also used (e.g. ICESat-2). While laser altimeters rely on good atmospheric

conditions (no thick clouds or blowing snow) radar altimetry is independent of weather conditions (Otosaka et al., 2023a). On85

the other hand, laser signals are reflected at or near the ice sheet surface, independently of its properties, while radar signals

penetrate into the upper snow/firn layers. Radar altimetry results can thus be biased by the time-variable dielectric properties

of the ice sheet surface (Davis and Ferguson, 2004; Rémy et al., 2012). If elevation changes due to changing ice flow can either

be neglected or subtracted, altimetric elevation changes can be compared to modelled elevation changes due to SMB and firn

processes provided by firn models (Kuipers Munneke et al., 2015; Medley et al., 2022a).90
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While the rates of modelled and observed elevation changes agree well when averaged over large drainage basins and over

25 years, the correlation diminishes significantly on a grid scale and over 5 years (supplement to Shepherd et al., 2019).

Recently, Veldhuijsen et al. (2023) reported that agreement between altimetry and firn modelling results improved when an

updated firn model was employed. Nevertheless, discrepancies still remain. (See Section 2.3 for further details on comparisons

between altimetry and firn models.) Inconsistencies between models and altimetry also affect the derivation of altimetric ice95

mass changes, as this depends on modelling results. Using the models in a rigorous, deterministic manner (Kuipers Munneke

et al., 2015) resulted in altimetric mass changes characterised by widespread signals of dynamic imbalance that are not deemed

fully realistic (supplement to McMillan et al., 2016; Shepherd et al., 2019; Kappelsberger et al., 2021). The reason likely

lies in errors in the involved altimetry and modelling results. Therefore, a simplified approach using a (steady-state) density

model is commonly applied (e.g. Sørensen et al., 2011; McMillan et al., 2016; Schröder et al., 2019a; Shepherd et al., 2019;100

Kappelsberger et al., 2021).

1.3 Previous work

Using SMB and firn modelling outputs alone to quantify interannual variations in SMB and firn thickness introduces large

uncertainties: inter-model spread is large, and the model outputs also differ from observational data (Section 1.2). Likewise,

interannual variations analysed using only data from gravimetry and altimetry are strongly affected by their errors (Horwath105

et al., 2012; Mémin et al., 2015; Su et al., 2018; Shi et al., 2022). Moreover, it is difficult to relate the variations derived from

observations alone to their physical causes. Therefore, the studies of Sasgen et al. (2010), Bodart and Bingham (2019), Kim

et al. (2020), Kaitheri et al. (2021) and Zhang et al. (2021) compared or combined observational and modelling/meteorological

data. However, their derived interannual variations are spatially coarsely resolved (at about 400 km) and mainly limited to the

GRACE/GRACE-FO period.110

1.4 Purpose

This study focuses on the interannual variations in firn thickness on a regional to local scale. Knowledge of interannual varia-

tions is required to isolate long-term trends in ice volume or mass changes (Section 1.1). To identify the underlying glaciological

processes and separate SMB and firn signals from ice dynamics, the spatial patterns of interannual variations and long-term

trends need to be resolved. As the analysis of basin integrals is not sufficient for this purpose, we work at 10 km grid-scale115

level. We characterise and quantify firn thickness variations in space and time by combining results from satellite altimetry

and firn modelling. By combining both data sets, we expect to reduce uncertainties and errors compared with the variations

derived from altimetry or models alone. For the first time, the entire spatial information present in both the altimetry products

and modelling outputs, together with the high (monthly) temporal resolution of gridded altimetry products, is jointly exploited.

Apart from determining firn thickness variations empirically, our analysis provides information on the error characteristics of120

both the altimetry products and the model outputs.

4

https://doi.org/10.5194/tc-2023-140
Preprint. Discussion started: 13 October 2023
c© Author(s) 2023. CC BY 4.0 License.



2 Data

2.1 Altimetry

We use the altimetry product from Technische Universität Dresden (TUD) (Schröder et al., 2019a), referred to as TUD altime-

try. As an alternative data set, we use the product from Jet Propulsion Laboratory (JPL) (Nilsson et al., 2022), referred to as125

JPL altimetry. Schröder et al. (2019a) and Nilsson et al. (2022) derived monthly resolved elevation changes of the grounded

AIS from a multi-mission satellite altimetry analysis. The elevation changes represent elevation anomalies, as they refer to the

difference between the elevation at time t and the elevation at a reference epoch t0. We use elevation changes over the time

period May 1992 to December 2017 containing data from pulse-limited radar altimetry ERS-1, ERS-2, Envisat and CryoSat-2

low resolution mode (LRM), from radar altimetry CryoSat-2 in synthetic aperture radar interferometric (SARIn) mode and130

from laser altimetry ICESat. As each altimetry mission differs in its orbit configuration, its maximum southern latitude differs.

Thus, the lower time limit May 1992 is set to ensure spatial data coverage up to 81.5° S. Grid cells with large gaps in the al-

timetry time series, such as the area south of 81.5° S and the Antarctic Peninsula are excluded. The upper time limit December

2017 is set to ensure an overlapping period of TUD and JPL altimetry. In the following, the main altimetry processing steps

are summarised and differences between TUD and JPL pointed out.135

Schröder et al. (2019a) and Nilsson et al. (2022) corrected the measurements from pulse-limited radar altimetry for sloping

terrain with the relocation method (Roemer et al., 2007; Nilsson et al., 2016) using different digital elevation models (Helm

et al. (2014) versus Fretwell et al. (2013)). Both studies applied a threshold retracker for the ‘offset center of gravity’ amplitude

(Wingham et al., 1986) to the radar return signal (waveform). While the TUD product adopts a very low threshold at 10 %

to reduce the sensitivity to variations in firn pack properties (Schröder et al., 2019a), the JPL product is based on a 30 %140

threshold for ERS-1, ERS-2 and Envisat data. CryoSat-2 LRM data were treated similarly for both products (using a 10 %

threshold). Data from the CryoSat-2 SARIn mode was processed by Helm et al. (2014) and Nilsson et al. (2016) for TUD

and JPL, respectively. The height measurements were analysed using repeat-track altimetry on a polar-stereographic grid to

derive elevation time series. For this analysis, Schröder et al. (2019a) and Nilsson et al. (2022) used different grid spacing and

different search radii (constant versus varying/mission-dependent). Further differences refer to the removal of time-invariant145

topography (bilinear surface versus varying models/mean, bilinear or biquadratic surface) and the correction for time-variable

radar signal penetration and scattering effects (backscatter correction versus backscatter, leading edge width and trailing edge

slope correction). While Schröder et al. (2019a) performed these two steps in one least-squares fit, Nilsson et al. (2022)

implemented two separate fits for this purpose.

To derive a continuous time series of elevation changes, intermission/intermode calibration offsets must be solved. This is150

a major difference between both altimetry products: TUD is based on overlapping epochs or subtracting a technique-specific

reference elevation and JPL used a least-squares adjustment based on all altimetric measurements. In general, also the weighting

between measurements from different missions, in particular the weighting ratio between Envisat and ICESat (Table 1 Schröder

et al. (2019a) versus Table 1 Nilsson et al. (2021)) differs. Moreover, Nilsson et al. (2022) scaled the seasonal amplitudes of the

time series of ERS-1, ERS-2 and Envisat to the seasonal amplitudes derived from CryoSat-2. Finally, Schröder et al. (2019a)155
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smoothed the processed data by a three-month moving average and a 10 km σ Gaussian weighting function. This reduced the

spatial grid resolution to 10 km x 10 km. Nilsson et al. (2022) interpolated the processed data with collocation (max. search

radius of 50 km, correlation length of 20 km) on a spatial grid with a formal resolution of 1920 m x 1920 m. We interpolate

the JPL product to the spatial grid of TUD by averaging the data over 10 km x 10 km. We smooth the JPL time series by a

three-month moving average in order to conform to the TUD product. The use of the JPL altimetry data is further restricted to160

those points in time and space where TUD altimetry data is available.

In addition to TUD and JPL, Shepherd et al. (2019) published a long-term, multi-mission altimetry product. However, we

do not use their product because it is not resolved on a monthly basis (consecutive 5-year intervals are provided).

2.2 Firn models

We use the firn model IMAU-FDM v1.2A of Veldhuijsen et al. (2023), referred to as IMAU (Institute for Marine and Atmo-165

spheric Research Utrecht) firn model, which is an update of v1.1 (Ligtenberg et al., 2011). As an alternative data set we involve

the GSFC-FDM v1.2.1 of Medley et al. (2022a), referred to as GSFC (Goddard Space Flight Center) firn model. It uses the

Community Firn Model framework of Stevens et al. (2020, 2021). Here, one output of the models is used, the firn thickness

changes. Firn thickness changes represent firn thickness anomalies, as they refer to the difference between firn thickness at

time t and the mean firn thickness over a certain reference period (see below). The IMAU model outputs are given every ten170

days and on a regular grid with a spacing of 27 km from 1979 to 2020. The GSFC model outputs are given every five days and

on a regular grid with a spacing of 12.5 km from 1980 to 2021. In accordance with the altimetry data, we involve firn thickness

changes from the grounded AIS excluding the Antarctic Peninsula and the period May 1992 to December 2017. We adapt the

temporal resolution to that of the altimetry product by calculating monthly means and applying a three-month moving average

smoothing. In the following, the main firn model set ups are summarised and differences between IMAU and GSFC pointed175

out.

The IMAU firn model is forced with 3-hourly fields of surface temperature, 10 m wind speed and SMB components (snow-

fall, rainfall, sublimation, snowdrift erosion, snowmelt) from the ERA5 atmospheric reanalysis data (Hersbach et al., 2020)

dynamically downscaled with RACMO2.3p2 (van Wessem et al., 2018) to a spatial resolution of 27 km x 27 km. The GSFC

firn model is forced with hourly fields of snowfall, total precipitation, evaporation, 2 m air temperature, skin temperature and180

runoff from the MERRA-2 atmospheric reanalysis data (Gelaro et al., 2017) downscaled to a spatial resolution of 12.5 km

x 12.5 km. The firn layer was initialised by looping over the forcing data of the reference period 1979–2020 (for the IMAU

model) and 1980–2019 (for the GSFC model) until the firn column was refreshed at least once. This implies the assumption

that the reference period represents stable climatic conditions and the current firn layer is in equilibrium. However, Veldhuijsen

et al. (2023) noted that the assumption of a steady-state firn layer “may be a poor assumption” in regions where precipitation185

has increased over the last centuries, such as the Antarctic Peninsula and Ellsworth Land.

Both firn models use the same semi-empirical equation of Arthern et al. (2010) to model dry-snow densification but their

procedure for deriving the empirical correction terms differs. IMAU derives this empirical correction from observations in

Antarctica, while GSFC employs observations from both Antarctica and Greenland. Furthermore, the two firn models use a
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different parameterisation for surface snow density. Veldhuijsen et al. (2023) use the formulation of Lenaerts et al. (2012),190

which depends on instantaneous surface temperature and 10 m wind speed, but with updated constants derived from their own

calibration. Medley et al. (2022a) built a new model depending on snow accumulation, air temperature, total wind speed, and

specific humidity. In general, they follow the approach from Helsen et al. (2008), which incorporates mean annual parameters.

Both firn models take into account the processes of meltwater percolation and refreezing.

2.3 Previous comparisons between altimetry and firn models195

The data sets used in this study have been compared mainly on the basis of multi-year to decadal rates and seasonal amplitudes.

The results of these comparisons are briefly summarised below.

Nilsson et al. (2022) reported that elevation change rates of TUD, JPL and Shepherd et al. (2019) are generally in good

agreement and within their uncertainties (over 1992–2016). By excluding regions of dynamic imbalance, they also compared

rates between altimetric elevation changes and modelled firn thickness changes derived from the IMAU-FDM v1.1 (Ligtenberg200

et al., 2011) forced by ERA-Interim reanalysis data. In Dronning Maud Land and Enderby Land the thickening patterns of

modelled and observed rates are in good overall agreement, except that the observed rates show stronger magnitudes than the

modelled rates of FDM v1.1. However, in the region of Wilhelm II Land and Wilkes Land the differences between observed and

modelled rates are larger. Rates are of opposite sign (altimetry: positive rates; FDM v1.1: negative rates). The three altimetry

products agree in magnitude and sign (Nilsson et al., 2022). Recently, the update from FDM v1.1 to v1.2A (forced by ERA5205

reanalysis data; Section 2.2) lead to an improved agreement with the observed rates (evaluated by the TUD product over 2003–

2015). With the update, the modelled rates were found to be more positive in Dronning Maud Land and Enderby Land and

less negative in Wilhelm II Land and Wilkes Land. However, discrepancies between altimetric and modelled rates remain, in

particular for the Antarctic Peninsula and Ellsworth Land (Veldhuijsen et al., 2023).

Estimates of the average ice sheet seasonal amplitude in firn thickness give discrepant results for different altimetry products,210

firn models and time periods (with the latter also involving different spatial coverage): 5.1, 2.7 and 2.9 cm for TUD altimetry,

JPL altimetry and the IMAU-FDM v1.1, respectively, over 1992–2016 (Nilsson et al., 2022), and, 5.2, 3.1 and 3.0 cm for TUD

altimetry, the IMAU firn model (v1.2A) and the GSFC firn model, respectively, over 2003–2015 (Veldhuijsen et al., 2023).

2.4 Illustration of data sets

In this section, we illustrate and compare the original data sets through basin-mean time series and root mean square (rms)215

maps. This recalls typical ways of previous comparisons between altimetry and firn modelling results and serves as a reference

for our subsequent exploration of a wider range of spatio-temporal scales.

Fig. 1 (dash-dotted lines) shows the basin-mean time series for the original elevation changes from TUD altimetry, hA1,

and the IMAU firn model, fMa. (For the JPL altimetry, hA2, and the GSFC firn model, fMb, similar time series are shown in

Fig. S1.) Agreement between hA1 and fMa is generally good on interannual scales. Differences appear in the long-term trends.220

The trend differences are greatest for basin 10 (Amundsen Sea Embayment region). This is due to the effect of changing ice

flow (Mouginot et al., 2014; Gardner et al., 2018; Diener et al., 2021), reflected in hA1, while this effect is purposely not
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Figure 1. Basin-mean time series of the original elevation changes from the IMAU firn model (Ma), fMa, (dash-dotted, black line) and from

TUD altimetry (A1), hA1, (dash-dotted, cyan line). Basin-mean time series of modelled firn thickness variations from Ma, fvMa, (solid, black

line) and of adjusted firn thickness variations based on A1a, fvA1a, (solid, cyan line).
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Figure 2. Root mean square (rms) of the original time series of elevation change over the entire period for (a) TUD altimetry, hA1, and (b)

the IMAU firn model, fMa. The color scale is logarithmic.

considered by fMa. A further difference is that, prior to 2003 the seasonal amplitudes of altimetry exceed those of the firn

model (Ligtenberg et al., 2012; Nilsson et al., 2022).

Fig. 2 shows maps of rms values for hA1 and fMa over the entire period 1993-2017. The rms values include the effect of a225

linear component which dominates e.g. hA1 in the Amundsen Sea Embayment region. Besides long-term influences, the overall

spatial patterns of hA1 and fMa are related to the spatial variability of the SMB, with values increasing from the AIS interior to

the margin (Van Wessem et al., 2014; Lenaerts et al., 2019). The rms values of hA1 are generally larger than those of fMa. This

is mainly due to the higher noise level in altimetry measurements before 2003 (Schröder et al., 2019a; Nilsson et al., 2022).

For the period after 2003, the rms values of altimetry and the firn model are in better agreement (Fig. S2). (Fig. S2 also shows230

the rms for all data sets used (A1, A2, Ma, Mb) separately for the periods before and after 2003.)

3 Methods

3.1 Regression approach

We jointly analyse satellite altimetry and firn modelling results while focusing on interannual to decadal time scales. The new

combination approach is a regression of altimetric elevation changes against several signals explained in the following. For235
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each 10km x 10km grid cell, we describe the time series of monthly elevation changes from altimetry hA by

hA(t) = a+ bt+ c(0.5 t2)

+ H1(t) [d1 cos(ωt) + d2 sin(ωt) + d3 cos(2ωt) + d4 sin(2ωt)]

+ H2(t) [d5 cos(ωt) + d6 sin(ωt) + d7 cos(2ωt) + d8 sin(2ωt)]

+
N∑

n=1

eA
n PC M

n (t)240

+ rA(t) (1)

with H1(t) =





1, if t < 2003

0, if t > 2003
and H2(t) =





0, if t < 2003

1, if t > 2003.

The regression parameters a (offset), b (linear trend), c (acceleration), d1,...,8 (amplitudes of annual and semi-annual harmonic

signals, with ω = 2π/1yr) and eA
1,...,N (scaling factors for dominant temporal patterns in modelled firn thickness variations)

are estimated by least squares adjustment. They are adjusted w.r.t. the reference epoch, t0, September 2010 no matter of data245

coverage. The definition of N dominant temporal patterns in modelled firn thickness variations PC M
1 , ...,PC M

N depends on the

drainage basin to which the considered location belongs. It is explained in Section 3.1.1. The residuals rA are the difference

between the elevation changes hA and the fitted model.

Seasonal signals are modelled by annual and semi-annual cosine and sine functions. By applying the masks H1 and H2,

we fit different seasonal amplitudes for the time periods before and after 2003. In this way we account for the inconsistency250

in the seasonal amplitudes between the older pulse-limited radar altimetry missions (ERS-1, ERS-2) and the newer missions

of different techniques (Envisat, ICESat, CryoSat-2) (Nilsson et al., 2022). The corrections for the influence of the ice sheet

surface dielectric properties on the radar return signal (Section 2.1) are only partly able to reduce artificially large seasonal

amplitudes in particular for the older missions (Ligtenberg et al., 2012).

We subtract the adjusted offset, linear, quadratic and seasonal signals from hA to derive elevation changes on interannual255

time scales from altimetry according to

hvA(t) = hA(t)−

{a+ bt+ c(0.5 t2)

+ H1(t) [d1 cos(ωt) + d2 sin(ωt) + d3 cos(2ωt) + d4 sin(2ωt)]

+ H2(t) [d5 cos(ωt) + d6 sin(ωt) + d7 cos(2ωt) + d8 sin(2ωt)]} (2)260

The interannual elevation changes are termed altimetric variations, hvA.

We perform a weighted regression. Observations hA after 2003 are weighted by 1, while observations prior to 2003 are

given a different (usually lower) weight, according to the finding of a generally higher noise level of the results from the older

altimetry missions (Schröder et al., 2019a; Nilsson et al., 2022). The weight prior to 2003 is defined (individually for every
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grid point) by the ratio of the noise variance of hA prior to 2003 and after 2003. The noise variance ratio is assessed empirically265

from the variance of the high-pass filtered time series (cf. Groh et al., 2019). The high-pass filtering (performed separately for

the period prior to 2003 and after 2003) consists in removing linear and seasonal signals and subsequently removing a low-pass

filtered version of the time series, where the low-pass filter is a Gaussian filter with a 6σ = 12 months filter width.

3.1.1 Adjusted firn thickness variations

Our regression approach relies on the ability of firn models to capture the timing of dominant variations in SMB and firn270

processes across basins. However, the amplitudes and spatial patterns of the variations are adjusted to satellite altimetry results.

We trust the temporal more than the spatial patterns of the firn model for the following reasons. Mottram et al. (2021) as well as

Lenaerts et al. (2019) and Gutiérrez et al. (2021) have pointed out that the spatial patterns of RCMs, which force firn models,

show a large spread between models but not their temporal patterns (Section 1.2). While spatially resolved differences (between

models, between observations and between models and observations) are substantial, the differences have been shown to be275

reduced when basin averages are used (Agosta et al., 2019; Shepherd et al., 2019; Willen et al., 2021). Also, the overall good

agreement of basin-mean time series on interannual scales (between the data sets used here) has also been noted in Section 2.4,

Fig. S1.

For each grid cell, the adjusted firn thickness variations fvA are determined by the linear combination in Eq. 1:

fvA(t) =
N∑

n=1

eA
n PC M

n (t). (3)280

The dominant temporal patterns in firn thickness variations, PC M
n , are identified by principal component analysis (PCA) of the

firn modelling data. PCA, also called empirical orthogonal function (EOF) analysis, is applied to identify dominant modes of

variability, represented by pairs of a principal component (PC) and an EOF, where EOFs and the corresponding, uncorrelated

PCs represent the spatial and temporal patterns, respectively. Comprehensive and general references for PCA are Preisendorfer

(1988) and Jolliffe (2002), while e.g. Forootan and Kusche (2012) or Boergens et al. (2014) apply PCA and extensions of PCA285

to geodetic data.

Prior to applying PCA to the firn modelling data, we remove offset, linear, quadratic and seasonal signals from the modelled

firn thickness changes fM according to

fM(t) = a+ bt+ c(0.5 t2)

+ d1 cos(ωt) + d2 sin(ωt) + d3 cos(2ωt) + d4 sin(2ωt)290

+ fvM(t), (4)

where a,b,c,d1,...,4 are estimated by an ordinary least-squares adjustment. The residuals, fvM, are referred to as firn thickness

variations. The PCA is performed on these firn thickness variations after their standardisation. We standardise the time series

of fvM for each grid cell, i.e. we shift and scale it that it has zero mean and a std of one, because we aim to equally represent

the patterns of temporal evolution regardless of location or absolute amplitudes. Otherwise, PCA results would mainly reflect295
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Figure 3. Drainage basins of the EAIS and WAIS used in this study (thick black lines) following Rignot et al. (2011a, b). The outline

of Antarctic Peninsula is indicated by a thin black line. Contour lines of the ice sheet surface are shown at 1000m, 2000m and 3000m.

Highlighted in red are the circle at constant latitude of 72° S (profile 1) and the line at constant longitude at 115° E (profile 2). Grid point

P1 is located at lon = 37.7° E, lat = 70.2° S. We use the polar stereographic projection EPSG:3031 (WGS84, latitude of true scale: 71° S,

central meridian: 0°). All further maps are displayed in the same projection and with the same spacing of longitude grid lines (every 45°) and

latitude grid lines (every 10°).

patterns that are dominant at the margins as SMB and firn thickness variations exhibit much larger amplitudes at the margins

than in the interior (van Wessem et al., 2018; Lenaerts et al., 2019).

PCA is applied individually to fvM for 10 selected regions (Fig. 3). To define the regions, we make use of the drainage basin

definition by Rignot et al. (2011a, b). We aggregate basins smaller than ∼ 600,000 km2 with those neighbouring basins where

we find strongest correlation between their first three PCs. This step reduces the original number of 15 drainage basins for the300

EAIS and WAIS to 10. For each (aggregated) basin, we choose the first N modes that contain at least 90 % of the total variance

of the (standardised) data. In addition, North’s rule of thumb (North et al., 1982) is applied to test whether the eigenvalues of

these N patterns are well separated with respect to their errors. The first N dominant temporal patterns PC M
n enter Eq. 1 in

normalised form.

3.1.2 Goodness of fit305

To examine how well a regression fits the observations, we calculate the coefficient of determination, R2 (‘R squared’), as

R2 = 1− SS(r)
SS(htot)

. (5)
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Table 1. Names of different versions of adjusted firn thickness variations, fvA, derived by applying the regression approach Eq. 1 with

different data sets. Differences to A1a are indicated in bold.

Name hA from PC M from

A1a TUD altimetry (A1) IMAU firn model (Ma)*

A2a JPL altimetry (A2) IMAU firn model (Ma)*

A1b TUD altimetry (A1) GSFC firn model (Mb)*

A2b JPL altimetry (A2) GSFC firn model (Mb)*

* standardised fvM (Section 3.1.1)

SS(r) and SS(htot) are the residual and total sum of squares, respectively. SS(r)/SS(htot) describes the proportion of unex-

plained variance. Here, we calculate R2 for every grid cell individually and exclude the adjusted linear, seasonal and quadratic

signals in htot. Thus, Eq. 5 specifies to310

R2
A = 1− SS(rA)

SS(hvA)
= 1− SS(rA)

SS(fvA + rA)
. (5a)

3.2 Different versions of adjusted firn thickness variations

We derive two different sets of PC M depending on the firn model incorporated. In our annotation, we distinguish the firn

models by superscripts ‘Ma’ and ‘Mb’ for the IMAU and GSFC model, respectively. The regression approach (Eq. 1) is

applied with each set of PC M and equally to each of the two altimetry products hA from TUD and JPL, which we distinguish315

by superscripts ‘A1’ and ‘A2’, respectively. Thus, depending on the combination of data sets used, we obtain four versions of

adjusted firn thickness variations (fvA1a, fvA2a, fvA1b and fvA2b). This also results in four versions of altimetric residuals (rA1a,

rA2a, rA1b and rA2b) and of associated coefficients of determination (R2
A1a, R2

A2a, R2
A1b and R2

A2b). Table 1 gives an overview of

the applications of the regression approach.

We additionally fit a regression similar to Eq. 1 to the firn model data, fM, after their interpolation to the altimetric grid of320

10 km spacing. The same deterministic model Eq. 1 is used, but no weighting is applied. In this way, the regression parameters

a,b,c,d1,...,8 and in particular the scaling factors adjusted to altimetry, eA
n, can be directly compared to the scaling factors

derived from the firn models, eM
n . Replacing eA

n by eM
n in Eq. 3 would then lead to a variant of modelled firn thickness variations,

restricted to the dominant temporal modes found in the PCA. We refer to this variant as truncated modelled firn thickness

variations, fvM
90. The suffix ‘90’ indicates that the dominant patterns were chosen such that they cover at least 90 % of the325

variance of standardised time series within the specific basin.

In Appendix A1, we additionally assess three alternative ways of defining ‘adjusted’ firn thickness variations. These alter-

natives are: (E1) Accept the modelled firn thickness variations, fvM, without any adjustment to altimetry. (E2) Instead of using

PCA-based dominant temporal patterns use the modelled time series of firn thickness variations at every grid cell and scale it to

fit the altimetry. These alternative variations are called scaled firn thickness variations. We refer to them by fvE2. (E3) Identify330

the dominant temporal patterns of modelled firn thickness variations by a PCA without prior standardisation of the time series.
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These alternative variations are called modified adjusted firn thickness variations. We refer to them by fvE3. See Table B1 for

an overview of the defined symbols and their terminology.

3.3 Assessment methods

3.3.1 Uncertainty of adjusted firn thickness variations335

To assess the impact of the choice of data sets and thus the influence of different errors on fvA, differences between time series

of the various versions of firn thickness variations, fv , (Section 3.2) are used. In general, from each time series of differences

we can calculate the temporal root mean square (rms). This procedure is applied to time series differences evaluated for every

grid cell and also for differences in basin-mean time series.

To assess the uncertainty of the adjusted firn thickness variations, fvA, we consider the maximum deviation within the340

different versions of fvA (Table 1). For this purpose, we form all possible combinations of differences between the four versions

of fvA. It results in six combinations of time series differences and thus, six (temporal) rms values, where we choose the one

that is maximum.

3.3.2 Robustness of adjusted firn thickness variations

The adjusted firn thickness variations, fvA, can be considered an improved representation of firn thickness variations compared345

with the modelled variations, fvM, if we can statistically demonstrate that the differences within different versions of fvA are

significantly smaller than the differences to fvM. To investigate this, we perform statistical tests comparing distributions of

temporal rms of differences within fvA to differences fvA− fvM.

We work with a two-sample, one-sided Kolmogorov-Smirnov test which is a non-parametric hypothesis test as the dif-

ferences in fv do not follow a normal distribution. The Kolmogorov-Smirnov test uses the empirical cumulative distribution350

function (cdf), which is the integral of the probability density function (pdf), to compare the distributions of two samples. The

null hypothesis (H0) reads: both samples, the data of both differences to be compared, are from the same continuous distribu-

tion. Thus, the alternative hypothesis (H1) reads: the empirical cdf of sample one (the differences within fvA), is larger than the

empirical cdf of sample two (the differences between fvA and fvM), that is the differences within fvA tend to be smaller than

the differences between fvA and fvM.355

3.3.3 Spectral analysis of regression results

The altimetric residuals, rA, and the adjusted firn thickness variations, fvA, are analysed in the spectral domain to characterise

their stochastic properties. We calculate the power spectral density (psd) and the spectral indices, κ, of the underlying time

series of rA and fvA. We use the software HECTOR v1.7.2 (Bos et al., 2012) to estimate κ. As rA and fvA do not yield a

white noise behaviour we use the formulation of power-law noise to approximate their stochastic properties. (For example,360

power-law with κ=−1 and κ=−2 represents flicker and random walk noise, respectively.)
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3.3.4 Principal component analysis of altimetric residuals

The four versions of altimetric residuals (Section 3.2) are further analysed in the spatio-temporal domain. First, we perform

PCA on the altimetric residuals themselves to further identify dominant signals related to ice sheet processes not considered or

incorrectly represented by the firn models. (Note that the residuals may additionally contain signals related to variations in ice365

flow dynamics or subglacial hydrology.) Second, we perform PCA on the residual differences to further detect and investigate

prevailing uncertainties in altimetry analysis. Only data after 2003 is used because of the higher noise level in the altimetry

measurements of the older satellite missions. Inclusion of pre-2003 data would result in more noisy dominant patterns and

therefore could distort detected dominant modes. We standardise the time series of residuals and residual differences, as we

did previously when identifying dominant patterns in modelled firn thickness variations (Section 3.1.1).370

The first PCA is applied to four versions of standardised residuals (rA1a, rA1b, rA2a and rA2b). The second PCA is applied to

two versions of standardised residual differences (rA1a−rA2a and rA1b−rA2b). For each PCA, we set up one aggregated ‘super

data matrix’ in which we arrange the time series of residuals/residual differences for all pixels and for the different versions

into a single set of time series. PCA is conducted to identify the dominant temporal patterns, which are shared by all versions,

together with their space-dependent and version-dependent amplitudes, i.e. their spatial patterns.375

4 Results

4.1 Dominant patterns in modelled firn thickness variations

Fig. 4 shows the PCA results for the example of basin 3 and the IMAU firn model input data, fvMa. The figure shows the

dominant spatial patterns (EOFs) and temporal patterns (PCs) together with their share of the total variance. We recall that

PCA is performed individually for each basin and that fvMa are standardised prior to PCA. A comprehensive presentation of380

results for all basins and for the two alternative input firn models IMAU and GSFC is given by Fig. S3 –S7. Depending on the

basin, different numbers of modes (i.e. PC–EOF pairs) are required to explain at least 90 % of the total variance: two modes

for basin 5, three modes for basins 1, 3 and 6, four modes for basins 2, 4 and 8 and five modes for basins 7, 9 and 10 (based

on Ma). The first, second, third, fourth and fifth modes describe 58 to 74 %, 11 to 21 %, 4 to 12 %, 3 to 5 % and 3 to 4 % of the

data variance, respectively (based on Ma).385

The PCs and EOFs reveal a typical hierarchy of modes of an autocorrelated geophysical signal. The first temporal patterns,

PC M
1 , show a longer wavelength signal than the following PCs. The first EOFs show an approximately uniform distribution,

while the following EOFs are more complex and change sign. For basin 3, the first three EOFs exhibit a uniform behaviour, a

north-south gradient and an east-west gradient, respectively (Fig. 4). The first mode of basins 2 and 3 (the region of Dronning

Maud Land and Enderby Land) capture the accumulation events in 2009 and 2011 (Boening et al., 2012; Lenaerts et al.,390

2013). Their temporal patterns, PC M
1 , show a characteristic increase during these years (Fig. 4). All subsequent modes are

more difficult to interpret as a geophysical signal because of the fact that their determination is governed by the mathematical

orthogonality property of PCs.
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Figure 4. PCA results of basin 3: dominant patterns in firn thickness variations identified from standardised firn modelling data (Ma).

(a, b, c) First, second and third spatial pattern (EOF). (d) First three temporal patterns (PCs). (e) Associated percentages of the basin’s total

data variance. We define the PCs as standardised time series (mean of zero, std of 1) and without a unit while the EOFs have the unit of

metre.

4.2 Regression results

4.2.1 Time series for a selected grid point395

Fig. 5 exemplifies the derivation of adjusted firn thickness variations for a selected grid point, P1, and based on the regression

A1a (Table 1). P1 (37.7° E, 70.2° S) is located in basin 3 close to the ice sheet margin at ∼ 1080m height (Fig. 3). There,

the adjusted and modelled firn thickness variations, fvA1a and fvMa, have a standard deviation (std) of 41.0 and 51.5 cm,

respectively (Fig. 5b). In addition to fvMa, we illustrate the time series of truncated modelled firn thickness variations, fvMa
90

(Section 3.2), which has a std of 49.1 cm. The difference between fvMa and fvMa
90 equals rMa and is shown in Fig. 5f.400

By construction, the scaling factors e1,...,3 equal the std of the respective scaled dominant temporal patterns. (In the case of

data gaps in the altimetry time series, this equality holds approximately.). Both fvA1a and fvMa
90 are dominated by PC M

1 of basin

3, as this pattern is scaled by eA1a
1 = 39.6 cm (altimetry) and eMa

1 = 48.4 cm (firn model). For e2, altimetry and the firn model

have opposite signs, yet small values, so that they contribute little to fv .

The std of altimetric residuals rA1a is 31.0 cm, less than the std of fvA1a. The coefficient of determination, R2
A1a (Eq. 5a)405

is 0.61. When calculated separately for the time before and after 2003, R2
A1a equals −0.06 and 0.84, respectively. Thus, the

adjusted firn thickness variations, fvA1a, describe less of the variance of altimetric variations before 2003 while after 2003 they

explain 84 %. Distinguishing the time before and after 2003 is reasonable as we include different weights for the altimetry

observations before and after 2003 (Section 3.1).
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Figure 5. Illustration of the generation of adjusted firn thickness variations fvA for the grid point P1 (Fig. 3). Cyan and black curves show

regression results from the adjustment to TUD altimetry (A1a) and, for a direct comparison, to the IMAU firn model (Ma), respectively.

(a) Original time series, hA1 and fMa. (b) Modelled firn thickness variations, fvMa (dashed, black), truncated modelled firn thickness vari-

ations, fvMa
90 (solid, black), and adjusted firn thickness variations, fvA1a (solid, cyan). (c), (d), (e) Scaled first, second, and third dominant

temporal patterns in fvMa. Hence, the solid black/cyan curve in (b) is the sum of the black/cyan curves in (c–e). (f) Time series of the

regression residuals. The black curve (rMa) equals fvM− fvMa
90 .

17

https://doi.org/10.5194/tc-2023-140
Preprint. Discussion started: 13 October 2023
c© Author(s) 2023. CC BY 4.0 License.



−0.2

0

0.2

0.4
2 3 4 5 6 7

e 1
(m

)

(a)

0

0.2

0.4
1 8 6

(b)

−0.2

0

0.2

0.4

e 2
(m

)

(c)

−0.1

−0.05

0

0.05
(d)

0 20 40 60 80 100 120 140 160
−0.2

0

0.2

0.4

longitude (◦)

e 3
(m

)

(e)
firn model (Ma) altimetry (A1a)

−80 −75 −70

−0.1

−0.05

0

0.05

latitude (◦)

(f)

Figure 6. Adjusted scaling factors along profile 1 (left) and profile 2 (right). (a, b) e1, (c, d) e2 and (e, f) e3. Cyan and black curves show the

scaling factors adjusted to TUD altimetry (A1a) and to the IMAU firn model (Ma), respectively. Note the different scaling of the y-axes of

profile 2.

For a larger subset of selected grid points (Fig. S8), time series of the original elevation changes h and the regression results410

are shown in Fig. S9–S12. While the following Section 4.2.2 focuses on the adjusted scaling factors e1,...,N , maps of the other

regression parameters (adjusted linear, quadratic and seasonal terms) are presented in Fig. S13–S15.

4.2.2 Scaling factors e

Fig. 6 shows the spatial variation of the scaling factors e1...3 along two selected profiles marked in Fig. 3. Profile 1 is along

the circle of latitude at 72° S. Profile 2 is along the meridian at 115° E. The absolute magnitude of both scaling factors (from415

A1a and Ma) is largest at the ice sheet margin. This applies for profile 1 across basin 2, in the middle part of basin 4 and at

the end part of basin 7 as well as for profile 2 at the end part of basin 6. Observed factors, eA1a
1...3, reveal stronger variations

along both profiles than modelled factors, eMa
1...3. Discontinuities across basin borders arise because the scaling factors refer to

basin-specific patterns.

The scaling factors eA1a
1...3 and eMa

1...3 per grid cell are mapped for the example of basin 3 in Fig. 7. The patterns of the factors,420

like the EOFs (Fig. 4), follow a typical hierarchy already discussed in Section 4.1. Overall, the patterns of eMa
1...3 are in a

good agreement with eA1a
1...3. However, the first spatial pattern from the model extends further towards the ice sheet interior

than the pattern from altimetry. In general, scaling factors from the model show a smoother and more blurred pattern than the
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Figure 7. Adjusted scaling factors for basin 3. (a–c) eA1a
1...3, first three factors adjusted to TUD altimetry. (d–f) eMa

1...3, first three factors adjusted

to the IMAU firn model. The location of P1 is shown by the black triangle.

ones adjusted to altimetry. Patterns from altimetry reveal a higher level of detail and a more localised spatial distribution. At

certain regions the spatial distributions also differs. In the area at and around P1 (marked as a triangle), altimetry observes the425

second temporal pattern with a negative amplitude e2, while the firn model suggests an amplitude near zero. A comprehensive

presentation of scaling factors for all basins and for different choices of input data are given by Fig. S3 and S16.

4.2.3 Firn thickness variations and their sensitivity to the choice of data sets

We calculate the rms of the time series of firn thickness variations, fv , for each grid cell. Fig. 8a and 8b show the rms of adjusted

firn thickness variations based on A1a, fvA1a (Table 1), and the rms of modelled firn thickness variations based on Ma, fvMa,430

respectively. (The rms of all versions of fvA and fvM is illustrated in Fig. S17a–d and Fig. S18a, b, respectively.) In general, the

spatial patterns of fvA and fvM are similar. Rms values are largest at the ice sheet margin and smallest over the plateau of the

EAIS. For grid cells in the elevation ranges (1) below 1000 m, (2) 1000 to 2000 m, (3) 2000 to 3000 m and (4) above 3000 m,

median rms values are in the range of (1) 13.2 to 16.4 , (2) 8.7 to 10.9 , (3) 3.7 to 5.1 and (4) 2.2 to 2.4 cm, respectively. Fig. 8c

and 8d show the rms of the differences fvA1a− fvMa in an absolute and relative way, respectively. Differences between adjusted435

and modelled variations reveal highest absolute rms values at lower elevations, near the AIS margins (median rms differences

in the range of 11.5 to 12.7 cm below 1000 m). In a relative sense, largest mismatch is found in the interior of the EAIS but

also at some locations at the ice sheet margin.

To evaluate the sensitivity of fv to the choice of data sets, we calculate the difference between various versions of fv

(Section 3.3.1). Fig. 9 shows the distributions of the rms of differences between various versions of fv . (Corresponding rms440

maps of differences are displayed in Fig. S17–S19). In addition to the distributions their median values are presented in
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Figure 9. Histograms of the temporal rms, assessed at each grid cell, of differences between various versions of firn thickness variations. (a)

Histograms. Vertical lines in the box indicate median values. (b) Cumulative histograms.
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Table 2. Overview of the comparison between various versions of firn thickness variations, as detailed in Fig. 9. Column 1 indicates the

addressed comparison: between versions of adjusted firn thickness variations fvA (row 1–4), between modelled firn thickness variations fvM

(row 5), and between fvA and fvM (row 6–9). For each comparison, column 2 gives the median (over all grid cells) of the rms (over time) of

differences between the two time series evaluated at each grid cell. The table is ordered by the median values (from small to large). Column

3 also gives the median of the rms of differences but as a relative measure. For each grid cell, the rms of differences are divided by the rms

of fvMa. Then, the median over all grid cells is calculated. Column 4 gives a short description or possible causes.

Difference Median Description/Cause

absolute relative

A2a−A2b 2.3 cm 0.46 influence of different firn model setups based on A2

A1a−A1b 2.6 cm 0.51 influence of different firn model setups based on A1

A1b−A2b 2.8 cm 0.55 different altimetry analysis based on Mb

A1a−A2a 2.9 cm 0.58 different altimetry analysis based on Ma

Ma−Mb 3.5 cm 0.65 different firn model setups

A1a−Ma 3.8 cm 0.73 Adjustment over Ma through A1*

A2a−Ma 4.2 cm 0.82 Adjustment over Ma through A2*

A1b−Mb 4.4 cm 0.83 Adjustment over Mb through A1*

A2b−Mb 4.5 cm 0.87 Adjustment over Mb through A2*

* due to firn signals not correctly represented by the models (firn model errors) and/or due to errors in the altimetry

products

Fig. 9 and listed in Table 2. In total, differences within fvA are smallest, followed by differences within fvM while differences

between fvA and fvM are largest. Differences within fvA indicate a smaller influence by different firn model data than by

different altimetry data. Differences between fvA and fvM are smallest for A1a (adjustment over the IMAU firn model through

TUD altimetry) and largest for A2b (adjustment over the GSFC firn model through JPL altimetry). The differences between the445

various versions of fv reflect errors in the firn models and in the altimetry products. These are further discussed in Sections 5.3

and 5.4.

4.2.4 Goodness of fit

The rms of the altimetric residual time series is presented in Fig. 10a (estimated per grid cell over the full period). The altimetric

residuals are used to calculate the goodness of fit (Section 3.1.2). Here, we distinguish between the periods before and after450

2003. As mentioned in Section 4.2.1, this is useful due to the different noise levels and weighting of altimetry observations

during the two periods (Section 3.1). The rms of the residuals after 2003 (Fig. 10b) are generally smaller than from the ones

over the full period.
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Figure 10. (a, b) Rms of the residual altimetric time series, rA1a, for (a) the full period and (b) the period after 2003. (c) Coefficients of

determination for the regression A1a, R2
A1a, considering the period after 2003.

Table 3. Explained variance or coefficients of determination,R2, for each basin and each version of regression (Table 1) over the period after

2003. Apart from the last column A1a, R2 is first calculated for each grid cell according to Eq. 5a and then averaged over each basin. Values

of A1a are calculated by first averaging the regression results over each basin and then applying Eq. 5a.

Basin A1a A2a A1b A2b A1a

01 0.46 0.43 0.41 0.36 0.79

02 0.53 0.48 0.49 0.42 0.94

03 0.48 0.48 0.48 0.46 0.94

04 0.36 0.41 0.27 0.33 0.51

05 0.40 0.39 0.36 0.39 0.79

06 0.42 0.29 0.36 0.30 0.82

07 0.57 0.47 0.51 0.41 0.94

08 0.30 0.37 0.30 0.37 0.66

09 0.57 0.50 0.53 0.47 0.97

10 0.62 0.56 0.56 0.48 0.97

01–10* 0.46 0.43 0.42 0.39 0.83

* refers to the entire area (considered as a single basin)

The spatial distribution of the coefficients of determination based on the regression A1a, R2
A1a, and for the period after 2003

is displayed by Fig. 10c. After the individual calculation of Rs for each grid cell, basin-mean values are derived and listed in455

Table 3 for all versions of regression. (Fig. S20 and Fig. S21 further shows maps of the residuals rms and of R2 for different

versions of regression and both time periods. Table S1 lists basin averages of R2 for the period before 2003.) Averaged over

the entire area, R2
A1a is 0.46 after 2003 (Table 3). This means that on average 46 % of the variance of altimetric variations is

captured by the regression model, i.e. by fvA1a. Depending on the basin, fvA1a capture 30 % (basin 8) to 62 % (basin 10) of the

data variance. In general, the goodness of fit decreases slightly when using JPL altimetry instead of TUD altimetry (column460
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Figure 11. (a) Lomb-Scargle power spectral density (psd) of altimetric residuals rA1a (blue) and adjusted firn thickness variations fvA1a

(green) for grid point P1. (b) Spectral index κ for power-law noise adjusted to the residuals rA1a of every grid cell.

A1a versus A2a and column A1b versus A2b of Table 3) or when incorporating the GSFC firn model instead of the IMAU firn

model (column A1a versus A1b and column A2a versus A2b).

The impact of methodological changes to the regression approach (E1, E2 and E3 as summarised in Section 3.2) is presented

in Appendix A2. There, Fig. A1 compares R2 values of the modified approaches to R2
A1a for each grid cell and Table A1 lists

basin-averaged R2 values of the modified approaches. The methodological changes result in smaller average R2 values, so less465

of the data variance could be explained. For this reason, the modified approaches are not preferable to the chosen regression

approach presented in Section 3.1.

By now, the presented R2 values are based on calculations per grid cell in accordance with the regression approach Eq. 1.

For basin average time series, R2 become larger. Fig. 1 shows the basin-averages of adjusted firn thickness variations, which

we may compare to the basin-averages of the altimetric variations through the coefficients of determination given in Table 3,470

last column. Indeed, fvA1a could capture 51 % (basin 4) to 97 % (basins 9 and 10) of the variance of basin average altimetry

variations. (Basin-mean time series of all regression results and versions are presented in Fig. S22–S24.) However, on the level

of individual grid cells the altimetric residuals, rA, still contain a large proportion of the variance of altimetric variations. For

example, for A1a and the period after 2003, an average ratio of 54 % of the altimetric variations are unexplained. Therefore,

the residuals rA are further investigated in the following Sections 4.3 and 4.4.475

4.3 Spectral analysis of regression results

Fig. 11a shows the power spectral density (psd) of the altimetric residuals, rA1a, and the adjusted firn thickness variations,

fvA1a, for the selected grid point P1. The underlying time series are displayed by Fig. 5. (For the larger subset of selected grid

points, Fig. S25 and S26 display the psd of the regression results from A1a and A2a, respectively.) The psd of both fvA1a and

rA1 generally decreases from low to high frequencies. The slope of the psd is steeper for fvA1a than for rA1. This means that the480

underlying time series of fvA1a have stronger autocorrelation than that of rA1a, or in other words, the underlying time series of

rA1a are closer to white noise behaviour than fvA1a. At low frequencies the psd of fvA1a generally exceeds the psd of rA1a, while
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above a certain frequency (∼ 0.5 yr−1 for P1) the psd of rA1 exceeds that of fvA1a. For P1 that means on time scales shorter

than ∼ 2 yr rA1a includes more power then fvA1a. At P1, the spectral indices κ adjusted to rA1a and fvA1a (Section 3.3.3) are

−1.75 and ≤−3, respectively. For each grid cell, κ of fvA1a is calculated to be −3 or more negative. (HECTOR only yields485

numerical stable results for κ≥−3.) For each grid cell, κ of rA1a are shown in Fig. 11b. The mean value over the entire area

amounts to −1.72. It indicates temporally correlated residuals with characteristics close to random-walk noise.

4.4 Dominant patterns in altimetric residuals

Fig. 12 and 13 show results of the PCA performed on the altimetric residuals and residual differences, respectively (Sec-

tion 3.3.4). The first three modes explain together 22 % of the residual variance and 20 % of the variance of residual differences.490

The first mode of the residual differences captures 10 % and its temporal pattern reveals a prominent drop between July 2010

and January 2011. Due to data standardisation prior to PCA the spatial patterns cannot be directly interpreted as amplitudes in

elevation change of the respective temporal patterns. For this reason, we rescale the spatial patterns by multiplying them with

the std of each time series (which was used beforehand to normalise the time series). Thereby, we regain interpretable magni-

tudes of the spatial patterns. Fig. 12a–f and 13a–f illustrate the version-dependent original and rescaled spatial patterns for rA1a495

and rA1a−rA2a, respectively. (For all versions and both PCA, the original and rescaled patterns are illustrated in Fig. S27–S29).

5 Discussion

5.1 Interannual firn thickness variations

Adjusted firn thickness variations fvA (e.g. Fig. 8a for version A1a) and modelled firn thickness variations fvM (e.g. Fig. 8b for500

Ma) share the same general spatial patterns. The largest magnitudes are found at lower elevations near the ice sheet margins

with median rms values in the range of decimetres. The smallest magnitudes are found over the plateau of the EAIS with

median rms values in the range of centimetres (Section 4.2.3). This general spatial pattern was to be expected, as it is related

to the spatial variability of SMB. Snowfall, the main driver of Antarctic SMB variability, increases from the dry, relatively flat

and homogeneous interior to the steep and complex topography of the wetter coast. High snowfall at the ice sheet margins505

occurs due to orographic precipitation, influenced by the winds and topography of the AIS (Lenaerts et al., 2019).

The power spectral density (psd) of fvA decreases from low to high frequencies with spectral indices κ≤−3 for power-

law noise (Section 4.3, Fig. 11a). The strong temporal autocorrelation observed in the interannual firn signals go with the

findings of King and Watson (2020). They estimated the power-law noise parameter κ in the range of −2.3 to −2.2 and −3.0

to −2.6 based on SMB estimates from RACMO2.3p2 and ice core composites, respectively. (Unlike our analysis, they did not510

co-estimate a quadratic or seasonal term.)

In the following, we compare how much variance of altimetric variations (for the period after 2003) can be explained

according to the applied approach and the two different spatial considerations used previously: First, the percentages assessed
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Figure 12. PCA results of standardised altimetric residuals for the period after 2003. (a–c) First three spatial patterns (EOFs) – version-

dependent, shown here for rA1a. (d–f) Rescaled first three EOFs for rA1a. (g) First three temporal patterns (PCs) determined from the ag-

gregated data sets of rA1a, rA1b, rA2a and rA2b. (h) Associated percentages of the total residual variance considering the respective PC–EOF

pairs. We define the PCs as standardised time series (mean of zero, std of 1) and without a unit while the EOFs have the unit of metre.
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Figure 13. PCA results of standardised altimetric residual differences for the period after 2003. (a–c) First three spatial patterns (EOFs) –

version-dependent, shown here for rA1a− rA2a. (d–f) Rescaled first three EOFs for rA1a− rA2a. (g) First three temporal patterns (PCs) – the

joint basis of rA1a− rA2a and rA1b− rA2b. (h) Associated percentages of the total variance of residual differences considering the respective

PC–EOF pairs.
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Figure 14. Mean Antarctic interannual elevation changes depending on the applied approach. Altimetric variations (hvA1a), modelled firn

thickness variations (fvMa), adjusted firn thickness variations (fvA1a), scaled firn thickness variations (fvE2) and modified adjusted firn thick-

ness variations (fvE3).

from grid cell time series and then averaged over the entire area. Second, the percentages from time series averaged over the

entire area (‘mean Antarctic’ time series, Fig. 14). The modelled firn thickness variations, fvMa, explain 11 % and 63 % for515

the two spatial considerations, respectively (Table A1, columns E1 and E1). The scaled firn thickness variations, fvE2, explain

35 % and 73 % (Table A1, columns E2 and E2), respectively. The modified adjusted firn thickness variations, fvE3, explain

42 % and 82 % (Table A1, columns E3 and E3). Finally, the adjusted firn thickness variations, fvA1a, explain 46 % and 83 %

for the two spatial considerations (Table 3, columns A1a and A1a). Our regression approach (Eq. 1), which generates fvA1a,

explains the greatest part of the variance of altimetric variations compared with the other approaches. This applies not only520

for the estimates considering each grid cell equally, but also for the estimates based on time series averaged over basins or the

entire area. Furthermore, the spatial scale investigated is crucial for the results, as the estimates from the basin-mean time series

explain more of the altimetry variance than the estimates considering each grid cell equally. However, the latter are needed to

enable the investigation and further interpretation of regression results based on their spatial patterns.

5.2 Uncertainty and robustness of adjusted firn thickness variations525

The adjusted firn thickness variations, fvA, include the effects of firn model errors and altimetry errors. The differences fvA1a−
fvA1b (Fig. 15a) and fvA2a− fvA2b, evaluated at every grid cell, are used to assess the influence of different firn model setups

on fvA. The median values (over all grid cells) of absolute and relative differences (A1a–A1b) are ∼2.6 cm and ∼51 %,

respectively (Table 2, Fig. 9). The differences fvA1a− fvA2a (Fig. 15b) and fvA1b− fvA2b, evaluated at every grid cell, are used

to assess the influence of different altimetry analysis on fvA. The median values (over all grid cells) of absolute and relative530

differences (A1a–A2a) are ∼2.9 cm and ∼58 %, respectively (Table 2, Fig. 9). Both the firn model and altimetry errors are

discussed in Sections 5.3 and 5.4 separately.

To assess the combined influence of firn model and altimetry errors on fvA, the maximum deviation within the different

versions of fvA is used (Section 3.3.1). Fig. 15c shows the map of the maximum rms values. The median values (over all grid
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Figure 15. (a) Rms of (the time series of) the differences fvA1a− fvA1b. (b) Rms of the differences fvA1a− fvA2a. (c) Uncertainty estimate

of fvA: Maximum rms of any combination of differences within versions of fvA. (d) Rms of the residual differences rA1a− rA2a considering

only the period after 2003. All rms maps (a–d) are normalised by the rms of fvMa.

cells) of absolute and relative (maximum) differences are ∼4.3 cm and ∼82 %, respectively. In addition, median values are535

calculated for every basin, i.e. over all grid cells within the respective basins. The absolute and relative uncertainties range

from 2.3 cm (basin 8) to 10.9 cm (basin 10) and from 59 % (basin 5) to 189 % (basin 8), respectively. We consider these

estimates to be rough, but rather conservative uncertainty assessments for the adjusted firn thickness variations. In addition to

the evaluation at grid cell level, the uncertainty of fvA is assessed by time series differences of the basin means. (See Fig. S23

for the basin-mean time series of the four versions of fvA). The associated uncertainties per basin range from 1.0 cm (basin 4)540

to 6.7 cm (basin 10). The relative uncertainties are in the range of 21 % (basin 2) to 111 % (basin 8). For mean Antarctic fvA

an absolute and relative uncertainty of ∼1.4 cm and ∼71 %, respectively, are estimated.

To assess the robustness of fvA, statistical tests were carried out (Section 3.3.2). In particular, four tests per basin, each

comparing the temporal rms of the following pair of differences in firn thickness variations are conducted: Test (1) compares

A1a−A2a to A1a−Ma, test (2) compares A1a−A2a to A2a−Ma, test (3) compares A1b−A2b to A1b−Mb and test (4) com-545

pares A1b−A2b to A2b−Mb. For all 40 tests, H0 is rejected (at the 5 % significance level) and thus, H1 is accepted. This

means that the differences within fvA are significantly smaller than the differences between fvA and fvM. Fig. 16a exemplifies

the distributions of the differences for basin 3. (The histograms and cumulative histograms for all basins are shown in Fig. S30

and S31, respectively.) The results of the statistical tests demonstrate that fvA is relatively robust to the choice of data sets, firn

models and altimetry products. The choice of data sets does not significantly influence fvA. Consequently, the assumption that550

fvA represents a significant improvement over the modelled variations is reasonable. Limitations are discussed below.

5.3 Firn model errors

Firn model errors arise due to firn signals not (correctly) represented by either the firn model or its input from RCMs or

even reanalysis data. Differences between fvMa and fvMb (Fig. S19) as well as differences between any version of fvA and fvM

(Fig. S18) reflect firn model uncertainties and errors. Partly, fvA−fvM also include errors related to the altimetry measurements555
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Figure 16. Histograms of the temporal rms of differences between various versions of firn thickness variations assessed at each grid cell of

basin 3. (a) Histograms. (b) Cumulative histograms.

and analysis, as discussed in Section 5.4. (See also Table 2 for an overview of the various differences in firn thickness variations

fv and their description.) Firn models generally show a smoother spatial pattern than altimetry. This can be seen in the different

fv (Fig. 8b versus 8a) and also in the different scaling factors e (Fig. 7d–f versus 7a–b). One reason for this may be the lack of

small-scale, mainly wind-driven processes not resolved in the firn modelling outputs (Lenaerts et al., 2012, 2019), leading to a

blurred spatial distribution of modelled firn thickness variations.560

The spatial patterns of absolute differences within fvM and between any version of fvA and fvM (‘the adjustments’, e.g.

Fig. 8c), follow the spatial pattern of the signal itself. The greatest differences occur at the margins, where the climate is wetter

and temperatures and accumulation are higher than inland. Especially in these coastal regions of high-relief topography, the

horizontal resolution of the models, probably together with its physics, play an important role (Mottram et al., 2021). There,

the differences between altimetry and firn models may be influenced by an incorrect or inaccurate spatial distribution of the565

modelled firn thickness variations (Fig. 7). The modelled SMB components and their uncertainties have a direct impact on

the modelled firn thickness. By assessing the spread of an ensemble of modelled firn thickness changes, Verjans et al. (2021)

identified the RCMs as the largest contributor to the ensemble uncertainty. A precise parameterisation of firn compaction and

surface snow density gains in importance in regions with high snowfall and large spatial variability of climatic conditions, such

as Dronning Maud Land and Enderby Land (Verjans et al., 2021). However, the firn compaction rate in the IMAU and GSFC570

firn model is determined by constant mean annual accumulation and not by instantaneous overburden pressure. This lessens

the actual firn compaction variability potentially across all the areas of large accumulation variability (Kuipers Munneke et al.,

2015).

In a relative sense, the adjustments over the firn models (that is, any version of fvA− fvM, e.g. Fig. 8d) generally increase

from the coast to the EAIS interior as the magnitude of the signal, the firn thickness variation, is very small in the interior due575

to the cold and dry climate. In these areas of low snowfall, the relative uncertainties in the firn models are virtually unaffected

by the formulation of firn densification and surface snow density, but the input of RCM components is essential (Verjans
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et al., 2021). Scambos et al. (2012) argue that RCMs might overestimate SMB in wind-glazed areas. These areas feature wind-

polished glazed surfaces at the top of a coarsely recrystallised firn layer and are formed by constant katabatic winds. They have

near-zero SMB and occur on leeward faces of ice-sheet undulations and megadunes (Scambos et al., 2012). Large wind glazed580

areas are located across basin 4 and 8, where all four versions of adjustments reveal highest relative values (Fig. S18e–h).

In basin 4, towards the border to basins 1 and 3, the large relative adjustments (Fig. S18e–h) indicate disagreement between

the models and altimetry. Neither the uncertainties due to different altimetry analysis nor the influence of the different firn

model setups have a strong impact on fvA in this region (Fig. S17i–l). Furthermore, within fvM there are no large differences in

this region of basin 4 (Fig. S19d). The two models agree and the four versions of altimetry agree, but the models and altimetry585

do not agree. The reasons why discrepancies occur particularly in this region are not yet clear. Basin 8 is characterised by

large megadune fields (Fahnestock et al., 2000; Dadic et al., 2013). Megadune fields cover more than 500,000 km2 of the

East AIS plateau. The megadunes typically have an amplitude of 2 to 4 m and wavelengths of 2 to 5 km and are formed by

a complex interaction of surface topography, snow accumulation and redistribution due to highly persistent katabatic winds.

While leeward slopes are wind glazed, windward slopes accumulate and are characterised by streamlined bumps or grooves590

(sastrugi) up to 1.5 m in height (Fahnestock et al., 2000; Frezzotti et al., 2002). The discrepancy between altimetry and the

firn models across basin 8 can partly be explained by the lacking modelling of the formation of the complex spatial pattern of

megadunes and their migration over time in the firn models. For basin 8, not only do the models and altimetry not match, but

the relative differences between fvMa and fvMb (Fig. S19d) and between the different versions of fvA (discussed in Section 5.4)

are also high.595

Discrepancies within the four versions of adjustments can further indicate which firn model (or which dominant patterns of

one firn model) fits the altimetry better. Overall, the adjustments are smaller when involving Ma, the IMAU firn model (Fig. 9,

Table 2). Amongst the different basins, this applies in particular for basins 4–6 (Fig. S30d-f and 31Sd-f). Across basin 1 the

adjustments tend to be slightly smaller when involving Mb, the GSFC firn model (Fig. S30a and S31a).

Altimetric residuals, rA, still include a non-negligible part (53 % for A1a) of the variance of altimetric variations (Fig. 10c,600

Table 3). It is likely that rA still include real firn signals not captured by the dominant temporal patterns of the firn models. The

psd of the underlying time series of rA1a yield a spectral index of −1.7 (Section 4.3, Fig. 11b). The remaining autocorrelation

in the residuals suggests that temporally correlated signals such as real firn signals are still present. Also, the spatial patterns

of the most dominant modes of rA reveal topography-dependent magnitudes and patterns, as one would expect from SMB and

its variations (Section 4.4, Fig. 12d–f). Besides other firn signals, the altimetric residuals additionally include altimetry errors605

(discussed in Section 5.4) and probably also further signals related to variations in ice flow dynamics or subglacial hydrology

(not further discussed).

5.4 Altimetry errors

The differences between any version of fvA and fvM (‘the adjustments’, e.g. Fig. 8c) may include effects of altimetry errors,

in addition to firn model errors. Measurement noise in altimetry might explain another part of the fact that firn models show610

a smoother spatial pattern of variations than altimetry. Noise in altimetry can be a problem, especially in the interior of the
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EAIS where the signal-to-noise ratio is low (Section 5.5). Over megadune areas (widely located in the interior across basin

8), conventional radar altimetry with pulse-limited footprints of 1.5 to 2.5 km in diameter may not be capable of adequately

observing the time-varying spatial patterns of megadunes.

A further limitation in radar altimetry is that measurements refer to the local topographic maxima within their footprints.615

Especially at the margins over complex topography, this can lead to sampling issues, as the elevation changes acquired there

cannot capture the larger changes often found in the valleys. Laser altimeters are not affected by this since their footprints are

much smaller (in the range of decimetres). However, ICESat had to be operated in campaign mode (Abshire et al., 2005). Thus,

the sampling in areas with steep slopes can vary strongly during the period 2003–2009 as some of the months rely only on radar

altimetry measurements while other months include measurements from radar and laser altimetry. Moreover, radar altimetry620

results are affected by the time-varying radar waveform shape due to time-varying signal penetration (Davis and Ferguson,

2004; Rémy et al., 2012). Even though errors related to these effects are accounted for in the altimetry processing, they are

not fully eliminated and may have an impact on the adjustments. In addition, these time-variable errors are also likely to be

included in the altimetric residuals, rA, because rA are temporally correlated just as the errors (Section 4.3, Fig. 11b).

Discrepancies within the adjustments (any version of fvA− fvM) can indicate which altimetry solution is closer to the firn625

models. Overall, the adjustments are smaller when involving A1, TUD altimetry (Fig. 9, Table 2). Amongst the different basins

this applies in particular for basins 1, 5 and 6 (Fig. S30b, e, f and S31b, e, f). Across basin 8 the adjustments tend to be smaller

when involving A2, JPL altimetry (Fig. S30h and S31h).

The differences in fvA and the altimetric residuals, rA, between solutions based on the same firn model (A1a−A2a or

A1b−A2b) are displayed in Fig. 15b and d, respectively. They mirror the altimetry uncertainties due to a different analysis of630

the altimetry measurements. The median values (over all grid cells) of the absolute and relative residual differences rA1− rA2

are ∼4.7 cm and ∼96 %, respectively. The residual differences are evaluated for every grid cell and only the time period after

2003 is considered. If the entire period was considered, the median values would increase considerably (∼7.2 cm and∼162 %).

For both periods, the residual differences are greater than the differences fvA1− fvA2 (Table 2, Fig. 15b) and also greater than

the uncertainty estimate of fvA (Section 5.2, Fig. 15c). Thus, the altimetry uncertainties in the residuals are greater than the635

combined uncertainties of firn modelling and altimetry affecting the adjusted firn thickness variations.

The differences between fvA1 and fvA2 as well as between rA1 and rA2 mostly result from the combined effect of the various

differences between the altimetry analysis of TUD and JPL (Section 2.1). The rms of fvA1a− fvA2a is shown in Fig. 15b in a

relative sense. The largest relative differences occur in regions of complex topography, such as in Victoria Land (at the margin

of basin 7) and next to the Amery Ice Shelf (at the margin of basin 4) and over almost the entire basin 8, for which we already640

discussed the influence of megadunes. In addition, stripes related to the satellite ground tracks are visible in the region of basins

1 to 2 (Fig. 15b). They seem to appear predominantly in fvA2 (Fig. S17b and d).

The following features may likely be quite clearly attributed to a difference in intermission/intermode calibration between

TUD and JPL altimetry. The mode change of CryoSat-2 (LRM/SARIn mode; see e.g. Fig. 5 in Slater et al. (2018) for the

mode boundaries) is reflected in the difference of the residuals (Fig. 15d). Here, the main influence seems to come from645

JPL altimetry, as the areas at the mode boundary in basins 5–7 and 9–10, characterised by a higher rms value, are mainly
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visible in rA2 (Fig. S20f and h). In addition, the mode transition also appears to be reflected in fvA2 particularly at basins

5 and 6 (Fig. S17b and d). The PCA carried out on rA1a− rA2a and rA1b− rA2b reveal a prominent drop between July 2010

and January 2011 together with overall linear trends before and after this drop in the first PC (Fig. 13g). The corresponding

spatial pattern (Fig. 13a) is most pronounced and coherent over the EAIS. The pattern of the first mode is an indicator for650

uncertainties/differences in deriving intermission offsets, as CryoSat-2 measurements begin in July 2010. The errors in the

altimetry are not only seen in the first modes of the PCA of the residual differences. It is likely that the first modes of the PCA

of the residuals themselves are also affected by altimetry errors. A comparison of the dominant modes of the residuals (Fig. 12)

with those of the residual differences (Fig. 13) indicates partly similar features, which suggests similar causes. For example,

there are also remarkably large fluctuations in the first temporal patterns of the residuals between July 2009 and January 2011655

(Fig. 12g).

5.5 Limitations of the approach

In regions of low signal-to-noise ratio the regression approach has a limited capability to distinguish between signal and error.

This applies in particular for the interior of the EAIS (basin 8 and parts of basin 1 and 4). In these areas, the regression of

the altimetry data to PC M (the dominant temporal patterns in modelled firn thickness variations) may be dominated by noise660

in the altimetry data. In this study, we work with a constant spatial grid resolution of 10km x 10km regardless of the signal

magnitude in each grid cell. To improve the signal-to-noise ratio, further work may geographically vary and adjust the spatial

resolution to the spatial variability of the glaciological processes, that is in general a higher resolution on the coast and a coarser

resolution in the interior.

We included altimetry measurements only over the period May 1992 to December 2017 as this represents the common665

period of TUD and JPL altimetry (Section 2). JPL altimetry data, however, are available until December 2020. Further inves-

tigations may include the JPL data after December 2017. These may incorporate accurate laser measurements from ICESat-2

characterised by low noise level and near-zero signal penetration (Nilsson et al., 2022; Otosaka et al., 2023a).

The stochastic model in the regression approach does not include co-variances in altimetry (Section 3.1), although errors in

the altimetry time series exhibit temporal correlations, as shown by Ferguson et al. (2004) and also in this study (Section 4.3).670

The consideration of temporal correlations is essential for a proper, realistic uncertainty estimation of long-term trends in partic-

ular (Williams et al., 2014). Thus, for inferring potentially statistically significant long-term signals in satellite altimetry future

work may extend the stochastic model. This requires a comprehensive error characterisation for altimetry products, which is not

given up to now. Nevertheless, different noise models (e.g., power-law, Generalized Gauss Markov, auto-regressive) could be

considered to empirically identify and apply the best fitting noise model to the regression approach (Bos et al., 2012; King and675

Watson, 2020). Another possibility for characterising errors could be the consideration of an ensemble of altimetry solutions

and their spread as demonstrated by Willen et al. (2022).

Our study does not include independent observations to validate the benefits of fvA. Most of the ground-based SMB ob-

servations are single point measurements and have a very sparse spatial and temporal coverage (Eisen et al., 2008). Thus, a

validation of fvA could only be performed for selected, distinctly local regions and/or certain time intervals. A conceivable680
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comparison could make use of stakes observations, as in the studies of Mottram et al. (2021) across Antarctica and Richter

et al. (2021) in the Lake Vostok region.

5.6 Outlook

To improve firn model outputs, we underline the importance of refining the horizontal spatial resolution of RCMs to simulate

surface processes at a higher spatial distribution (Lenaerts et al., 2019). For Greenland, Noël et al. (2016) statistically down-685

scaled outputs from RACMO2.3 at 5.5 and 11 km to a high-resolution product of 1 km, leading e.g. to increased melt over

certain areas. Similar work is in progress for Antarctica, downscaling RACMO2.3p2 at 27 km to 2 km (Noël et al., 2023). Fur-

thermore, a more detailed physical parameterisation of the processes already considered and the inclusion of processes not yet

simulated can improve the models (Agosta et al., 2019; Gutiérrez et al., 2021). An update of RACMO2.3p2 to RACMO2.4 with

enhanced physics may soon be available. This includes several new and updated parameterisations, such as a cloud, aerosol690

and radiation scheme or a new spectral albedo and radiative transfer scheme in snow scheme (van Dalum and van de Berg,

2023).

To improve altimetry products, measurement noise and correlated altimetry errors related in particular to time-variable

signal penetration and scattering effects could be reduced by improving the methods of analysis. Helm et al. (2023) developed

a new retracker based on a deep convolutional neural network architecture, resulting in strongly reduced time-variable signal695

penetration. The new retracker could significantly improve the accuracy of elevation change products from the entire sequence

of radar altimetry missions. Furthermore, improving the methods for intermission calibration would reduce uncertainties in

altimetry estimates at various time scales. The patterns of estimated intermission offsets are spatially variant and related to the

waveform parameters (topography and surface properties play a role here). However, this relation is not fully understood, so

that no functional relationship has yet been found and intermission offsets are determined empirically (Zwally et al., 2005;700

Khvorostovsky, 2012; Schröder et al., 2019a; Nilsson et al., 2022). Therefore, intermission calibration still remains one of the

most challenging processing steps for inferring a long-term, multi-mission satellite altimetry estimate.

Future developments in firn modelling, satellite altimetry analysis and altimetry mission sensors will allow interannual firn

signals to be identified and quantified with higher accuracy. This will further impact long-term estimates and reduce their

uncertainties. The regression approach presented in this study may set the stage for isolating long-term signals in satellite705

altimetry from the large interannual variations. For this reason, future studies should extend the approach with an appropriate

stochastic model that accounts for covariances in altimetry to derive statistically significant long-term trends over 25 to 30

years. Longer (altimetry) time series will then further reduce trend uncertainties (Wouters et al., 2013). In this way, large

uncertainties in inferring mass balance estimates of the EAIS (Otosaka et al., 2023b) may be reduced and the question whether

the EAIS is currently thickening or thinning (Nilsson et al., 2021) may be answered in the future.710
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6 Conclusions

We deliberately targeted spatially resolved variations in Antarctic firn thickness. For this purpose, we developed and presented a

new approach for combining satellite altimetry and firn modelling estimates at a high temporal (monthly) and spatial (grid scale

of 10 km) resolution. On the one hand, our approach incorporates the strengths of the firn model, above all the capability to

capture the timing of firn thickness variations. On the other hand, our approach compensates for shortcomings of the firn model,715

foremost the accurate simulation of the location-dependent amplitudes of the variations. To do so, we fitted dominant temporal

patterns of interannual to decadal variations in Antarctic firn thickness inferred from the firn models IMAU (Veldhuijsen et al.,

2023) and GSFC (Medley et al., 2022a) to satellite altimetry observations from TUD (Schröder et al., 2019a) and JPL (Nilsson

et al., 2022). In this way, we generated a new, combined data set, which we named the adjusted firn thickness variations, fvA.

Our guiding question was: How well can satellite altimetry and firn models resolve Antarctic firn thickness variations? This720

study shows that firn models and altimetry products provide complementary information on firn thickness variations. The com-

bined data set, fvA, characterises spatially resolved variations better than either (1) firn models alone or (2) altimetry alone.

(1) The fvA outperform the modelled firn thickness variations, fvM, because fvA improves the amplitudes of the variations

compared with fvM. The amplitudes represent an improvement because they are observed by the altimeter satellites and their

patterns actually indicate more spatial and thereby meaningful information. However, one caveat should be noted. The im-725

proved observed amplitudes may also include effects of altimetry errors due to firn penetration. This is because the temporal

variations of these errors correlate with the temporal variations of the signal, as both the time-variable signal and the errors

are influenced by the SMB and firn processes. (2) The fvA outperform the altimetric variations, hvA, because fvA eliminates a

large part of the altimetry errors. If one were to take hvA alone, this would also incorporate all the errors of hvA. Over Antarc-

tica, or rather the entire area studied, this would introduce median absolute and relative uncertainties of ∼7.2 cm and ∼162 %,730

respectively (evaluated on grid cell level). However, one caveat should be noted. By choosing fvA instead of hvA, part of the

observed firn signal is ignored.

How well the fvA resolve real Antarctic firn thickness variations depends strongly on the region under investigation. Over

Antarctica, median absolute and relative uncertainties of fvA are ∼4.3 cm and ∼82 %, respectively (evaluated on grid cell

level). Over the basin areas, the median relative uncertainties range from 59 % (basin 5) to 189 % (basin 8). Across basin 8, we735

also spatially resolved disagreements between fvA and fvM. The large uncertainty and the disagreement are due to the presence

of megadune fields. Overall, the differences between fvA and fvM are smallest when using the TUD altimetry and the IMAU

firn model. Amongst the different basins, this is especially true for basins 5 and 6. From the spectral analysis of the altimetry

residuals, rA, we find still autocorrelated signals that we could not attribute to firn thickness variations using the firn models.

We attribute this to a combination of altimetry errors (time-variable signal penetration, errors in intermission offsets) and firn740

model errors (incorrectly simulated/missing processes in the firn models).
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Appendix A: Impact of methodological changes

A1 Methods

To investigate the impact of methodological changes on determining adjusted firn thickness variations, fvA, three modifications

of the original regression approach are tested.745

In the first experiment E1, we simply subtract the altimetric variations, hvE1, from the modelled firn thickness variations,

fvM, according to

rE1(t) = hvE1(t)− fvM(t). (A1)

fvM is derived by least squares fit according to Eq. 4. hvE1 is derived by least squares fit according to

h(t)A = a+ bt+ c(0.5 t2)750

+ H1(t) [d1 cos(ωt) + d2 sin(ωt) + d3 cos(2ωt) + d4 sin(2ωt)]

+ H2(t) [d5 cos(ωt) + d6 sin(ωt) + d7 cos(2ωt) + d8 sin(2ωt)]

+ hvE1(t), (A2)

with the parameters a,b,c,d1,...,8 and the masks H1,H2 as in Eq. 1.

In the second experiment E2, fvM at any grid cell is simply scaled to fit the altimetric variations. The regression reads755

h(t)A = a+ bt+ c(0.5 t2)

+ H1(t) [d1 cos(ωt) + d2 sin(ωt) + d3 cos(2ωt) + d4 sin(2ωt)]

+ H2(t) [d5 cos(ωt) + d6 sin(ωt) + d7 cos(2ωt) + d8 sin(2ωt)]

+ e fvM(t)

+ rE2(t), (A3)760

where e is the scaling factor. We refer to e fvM = fvE2 as scaled firn thickness variations.

In the third experiment E3, we do not change the principle of the deterministic model Eq. 1 but we modify the dominant

temporal patterns PC M. Originally, PC M are derived from standardised fvM by PCA. In E3, fvM are not standardised prior to

the PCA. The resulting modified adjusted firn thickness variations are referred to by fvE3. See also Table B1 for an overview

of the defined symbols and their terminology.765
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Figure A1. Differences between the coefficients of determination from A1a and the experiments E1, E2 and E3. (a) A1a−E1, (b) A1a−E2

and (c) A1a−E3.

We consider that regression method as best whose coefficient of determination,R2, is maximum, i.e. which is able to describe

most of the data variance. For the three experiments, the general from of Eq. 5 specifies to

R2
E1 = 1− SS(rE1)

SS(fvMa + rE1)
= 1− SS(rE1)

SS(hvE1)
≈ 1− SS(rE1)

SS(hvA)
, (A4a)

R2
E2 = 1− SS(rE2)

SS(e fvMa + rE2)
= 1− SS(rE2)

SS(fvE2 + rE2)
≈ 1− SS(rE2)

SS(hvE1)
≈ 1− SS(rE2)

SS(hvA)
, (A4b)

R2
E3 = 1− SS(rE3)

SS(fvE3 + rE3)
≈ 1− SS(rE3)

SS(hvE1)
≈ 1− SS(rE3)

SS(hvA)
. (A4c)770

Assuming that the changes in the adjusted parameters b,c,d1,...,8 due to different versions of regression are negligible, the

following approximations are reasonable: (e fvMa + rE2)≈ (fvE3 + rE3)≈ hvE1 ≈ hvA.

A2 Results

The impact of methodological choices on the goodness of fit is tested based on the three modifications/experiments E1–E3

(Section A1). The results are given for using the IMAU firn model and TUD altimetry and should, therefore, be compared to775

the results from the regression approach A1a.

For every grid cell, Fig. A1 compares the coefficients of determination from the regression approach A1a, R2
A1a, to the co-

efficients of determination R2
E1, R2

E2 and R2
E3. R2

A1a is larger than R2
E1, R2

E2 and R2
E3 over 96, 81 and 69 % of the total area,

respectively. After calculating R2
E1, R2

E2 and R2
E3 for each grid cell, (basin) mean values are derived and listed by Table A1,

columns 2–4. Averaged over the entire area, E1, E2 and E3 have mean R2 values of 0.09, 0.35 and 0.43. For all three modifi-780

cations, R2 is smaller than R2
A1a (Table 3, column A1a) and thus, their regression approaches describe less of the data variance

than the original regression approach A1a. E2 and E3 describe slightly more of the data variance than A1a for one out of 10

basins (E1, basin 5: 44 versus 43 %; E2, basin 3: 49 versus 47 %). Moreover, Table A1 (columns 6–7) lists values ofR2 derived

from basin averages time series (E1, E2 and E3). Values derived from basin averages time series are larger than values based

on the calculations per grid cell, similar to the regression approach A1a (Table 3, column A1a versus A1a).785

The simple scaling factor e adjusted during the regression approach after experiment E2 is displayed in Fig. S32.
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Table A1. Explained variance or coefficients of determination,R2, for each basin and each experiment E1, E2, E3 of methodological changes

to the regression approach over the period after 2003. R2 is first calculated for each grid cell according to Eq. A4a–A4c and after averaged

over each basin. Values of E1, E2 and E3 are calculated by first averaging the results from the experiments over each basin and then applying

Eq. A4a–A4c.

Basin E1 E2 E3 E1 E2 E3

01 0.20 0.35 0.43 0.71 0.75 0.79

02 0.21 0.41 0.48 0.76 0.92 0.91

03 0.21 0.44 0.50 0.88 0.94 0.95

04 -0.29 0.15 0.27 -5.63 -0.08 0.10

05 0.02 0.42 0.34 -0.50 0.66 0.47

06 0.20 0.38 0.40 0.70 0.86 0.90

07 0.22 0.44 0.54 0.68 0.91 0.94

08 -0.08 0.13 0.23 0.19 0.54 0.56

09 0.32 0.42 0.50 0.94 0.94 0.97

10 0.27 0.49 0.59 0.92 0.98 0.97

01–10* 0.11 0.35 0.42 0.63 0.73 0.82

* refers to the entire area (considered as a single basin)
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Appendix B: List of symbols

Table B1. List of symbols and their terminology (columns 1–2). Sections and equations where the symbols are explained and defined (column

3). Different versions (see Table 1) of the respective symbols (column 4).

Symbol Terminology References Versions

hA Altimetric elevation changes* Section 3.1, Eq. 1 A1, A2

hvA Altimetric variations Section 3.1.2, Eq. 2 A1a, A2a, A1b, A2b

fM Modelled firn thickness changes* Section 3.1.1, Eq. 4 Ma, Mb

fvM Modelled firn thickness variations Section 3.1.1, Eq. 4 Ma, Mb

PC M
1...N N dominant temporal patterns in modelled firn thickness variations Section 3.1.1, Eq. 1, 3 Ma, Mb

eA
1...N N observed scaling factors Section 3.1, Eq. 1, 3 A1a, A2a, A1b, A2b

eM
1...N N modelled scaling factors Section 3.2 Ma, Mb

fvM
90 Truncated modelled firn thickness variations Section 3.2 Ma, Mb

fvA Adjusted firn thickness variations Section 3.1.1, Eq. 3 A1a, A2a, A1b, A2b

rA Altimetric residuals Section 3.1, Eq. 1 A1a, A2a, A1b, A2b

fvE2 Scaled firn thickness variations Appendix A1

fvE3 Modified adjusted firn thickness variations Appendix A1

* or rather anomalies (Section 2)

Data availability. The TUD and JPL altimetry products are available for download at https://doi.pangaea.de/10.1594/PANGAEA.897390

(Schröder et al., 2019b) and https://doi.org/10.5067/L3LSVDZS15ZV (Nilsson et al., 2021), respectively. The GSFC firn model is available

for download at https://doi.org/10.5281/zenodo.7054574 (Medley et al., 2022b). Results and data of this study can be obtained from the790

authors without conditions.
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