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Abstract. Elevation changes of the Antarctic Ice Sheet (AIS) related to surface mass balance (SMB) and firn processes vary

strongly in space and time. Their sub-decadal natural variability is large and hampers the detection of long-term climate trends.

Firn models or satellite altimetry observations are typically used to investigate such firn thickness changes. However, there is

a large spread among firn models. Further, they do not fully explain observed firn thickness changes, especially on smaller

spatial scales. Reconciled firn thickness variations will facilitate the detection of long-term trends from satellite altimetry, the5

resolution of the spatial patterns of such trends and, hence, their attribution to the underlying mechanisms. This study has two

objectives: First, we quantify interannual Antarctic firn thickness variations on a 10 km grid scale. Second, we characterise

errors in both the altimetry products and firn models. To achieve this, we jointly analyse satellite altimetry and firn modelling

results in time and space. We use the timing of firn thickness variations from firn models and the satellite-observed amplitude

of these variations to generate a combined product (‘adjusted firn thickness variations’) over the AIS for 1992–2017. The10

combined product characterises spatially resolved variations better than either firn models alone or altimetry alone. We detect

highest absolute differences between the adjusted and modelled variations at lower elevations near the AIS margins, probably

influenced by the lower resolution and the less precise spatial distribution of the modelled variations. In a relative sense, the

largest mismatch between the adjusted and modelled variations is found in the dry interior of the East Antarctic Ice Sheet

(EAIS), in particular across large megadune fields. Here, the low signal-to-noise ratio poses a challenge for both models and15

altimetry to resolve firn thickness variations. A large part of the variance in the altimetric time series is not explained by the

adjusted firn thickness variations. Analysis of the altimetric residuals indicate that they contain both firn model errors, such as

firn signals not captured by the models, and altimetry errors, such as time-variable radar penetration effects but also errors in

intermission calibration.

1 Introduction20

The global mean sea level rose by 3.05± 0.24mmyr−1 during the period 1993–2016 (Horwath et al., 2022). Ice-mass loss

from Antarctica contributed ∼ 6% to this rise (Horwath et al., 2022), and is likely to continue (IPCC, 2021). The evolution of

the Antarctic Ice Sheet (AIS) is of critical concern because the AIS contains the world’s largest reservoir of frozen freshwater
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(Fretwell et al., 2013), and projections of Antarctica’s future contribution to sea-level rise exhibit a large spread (Schlegel et al.,

2018; Fox-Kemper et al., 2021). In order to narrow this spread we need to better understand the ice-sheet processes through25

improved models and observational constraints.

The mass balance of a grounded ice sheet is commonly separated into three components: surface mass balance (SMB), ice

discharge and basal mass balance. SMB comprises total precipitation (snowfall, rainfall), total sublimation (from surface and

drifting snow), drifting snow erosion and meltwater runoff (van den Broeke et al., 2016; van Wessem et al., 2018). It refers to

processes occurring on the surface of the ice sheet in the snow and firn layer. Snow refers to the seasonal snow cover, i.e. it is30

less than a year old. Firn refers to multiyear snow and is defined as the transition from snow to glacier ice (van den Broeke,

2008). In the following, we refer to both snow and firn by the term firn layer. Ice discharge is the ice flow across the grounding

line. Basal mass balance is thought to be small (Otosaka et al., 2023a), and not considered here.

The mass loss of the AIS is dominated by ice discharge from outlet glaciers of the West Antarctic Ice Sheet (WAIS) (Otosaka

et al., 2023b). However, uncertainties in the long-term SMB limit the attribution of mass balance components when evaluating35

satellite data (Willen et al., 2021). On interannual to decadal timescales, variations in SMB (dominated by precipitation) control

the variability of the Antarctic mass balance (Rignot et al., 2019; Davison et al., 2023). The amplitudes of SMB variations,

just as the SMB itself, vary strongly over space. They are influenced by ice sheet topography and by oceanic and atmospheric

conditions and circulations (Lenaerts et al., 2019; Noble et al., 2020; Kaitheri et al., 2021). Over the satellite period, on a

decadal and multidecadal scale, climate trends are masked by the large interannual Antarctic SMB variability (Mottram et al.,40

2021; Gutiérrez et al., 2021). An improved quantification of interannual SMB variations in space and time is required in order

to robustly resolve long-term trends in the Antarctic SMB and overall mass balance (King and Watson, 2020). This is currently

lacking (e.g. Mottram et al., 2021).

To date, regional climate models (RCMs) are commonly used to simulate the SMB for the entire ice sheet (Lenaerts et al.,

2019). When the main goal of RCMs is to realistically simulate the ice sheet weather, as is the case here, they are forced45

by atmospheric reanalysis products and thoroughly evaluated against hundreds of in situ observations of SMB (van Wessem

et al., 2018; Agosta et al., 2019). Mottram et al. (2021) demonstrated that different RCMs provide similar outputs for annual to

decadal SMB variations on a continental scale (Antarctica), as long as they are driven by the same reanalysis product. However,

the spatial patterns of the different SMB estimates differ substantially on a regional and local scale. The results from RCMs

are used to force firn models, which simulate the temporal evolution of the Antarctic firn due to SMB and firn processes such50

as densification (Ligtenberg et al., 2011; Lundin et al., 2017). Firn elevation changes, or firn thickness changes, are an output

of firn models. There is a large spread between firn thickness changes from different firn model setups, mainly because the

uncertainty in the modelled SMB directly influences the modelled firn thickness (Verjans et al., 2021).

Besides modelling tools, satellite measurements are the only possibility to infer ice-sheet-wide changes in SMB and firn

thickness. Observations from satellite altimetry provide a high spatial resolution of several kilometres and go back to the year55

1992 for covering most of the AIS (Wingham et al., 1998). These measurements allow the derivation of ice-sheet surface

elevation changes due to volume changes of the AIS and to the deformation of the solid Earth, with the latter negligible

compared to the former (Willen et al., 2021). Most of the altimetry missions utilise radar waves (e.g. Envisat, CryoSat-2).
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Since 2003 laser altimeters are also used (e.g. ICESat). While laser altimeters rely on good atmospheric conditions (no thick

clouds or blowing snow) radar altimetry is independent of weather conditions (Otosaka et al., 2023a). On the other hand, laser60

signals are reflected at or near the surface, independently of its properties, while radar signals penetrate into the upper firn layer.

This may cause biases and artificial variations in radar altimetry results depending on the time-variable dielectric properties of

the firn and the data processing choices to account for them (Davis and Ferguson, 2004; Rémy et al., 2012).

Using SMB and firn modelling outputs alone to quantify interannual variations in SMB and firn thickness introduces large

uncertainties: the inter-model spread is large, and the model outputs also differ from satellite observations (Veldhuijsen et al.,65

2023). The latter is particularly true at local spatial scales (supplement to Shepherd et al., 2019). Likewise, interannual varia-

tions analysed using only data from satellite observations are strongly affected by their errors (Horwath et al., 2012; Mémin

et al., 2015; Su et al., 2018; Shi et al., 2022). Moreover, it is difficult to relate the observed variations to their physical causes.

Therefore, the studies of Sasgen et al. (2010), Bodart and Bingham (2019), Kim et al. (2020), Kaitheri et al. (2021) and Zhang

et al. (2021) compared or combined space-based geodetic observations with meteorological fields from atmospheric reanaly-70

sis data or RCMs. However, their derived interannual variations are coarsely resolved in space (at about 400 km) and mainly

limited to the period of the satellite gravimetry missions GRACE and GRACE-FO.

This study focuses on the interannual variations in firn thickness on a regional to local scale. Knowledge of interannual

variations is required to isolate long-term trends in ice volume or mass changes. To identify the underlying glaciological

processes and separate SMB and firn signals from ice dynamics, the spatial patterns of interannual variations and long-term75

trends need to be resolved. As the analysis of basin integrals is not sufficient for this purpose, we work at 10 km grid-scale level.

We characterise and quantify firn thickness variations in space and time by combining results from satellite altimetry and firn

modelling. By combining both data sets, we expect to reduce uncertainties compared to the variations derived from altimetry or

models alone. For the first time, the full spatial and temporal information present in the altimetry products is exploited together

with the modelling results. Apart from determining firn thickness variations empirically, our analysis provides information on80

the error characteristics of both the altimetry products and the model outputs.

2 Data

2.1 Altimetry

We use the altimetry products from Schröder et al. (2019a) and Nilsson et al. (2022). Both studies provide monthly resolved

elevation changes of the grounded AIS from a multi-mission satellite altimetry analysis. By elevation changes, or elevation85

anomalies, we refer to the difference between the elevation at time t and the elevation at a chosen reference epoch. We use

elevation changes over the time period May 1992 to December 2017 containing data from pulse-limited radar altimetry ERS-

1, ERS-2, Envisat and CryoSat-2 low resolution mode (LRM), from radar altimetry CryoSat-2 in synthetic aperture radar

interferometric (SARIn) mode and from laser altimetry ICESat. While the orbit configurations of the missions entail different

limits of coverage close to the poles, all mentioned missions cover at least up to 81.5° S. We exclude grid cells with large gaps90
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in the altimetry time series, such as the area south of 81.5° S and the Antarctic Peninsula. The upper time limit December 2017

is set to ensure coverage by both products.

Schröder et al. (2019a) applied their own retracking and slope correction to the return signal (waveform) of the pulse-limited

radar altimeters to derive elevation measurements. Data from the CryoSat-2 SARIn mode was processed by Helm et al. (2014).

Nilsson et al. (2022) used the pre-processed elevation measurements of the ‘Geophysical Data Record’ (Brockley et al., 2017)95

for ERS-1, ERS-2 and Envisat. They applied their own processing to the CryoSat-2 data (Nilsson et al., 2016). The elevation

measurements were analysed using repeat-track altimetry on a polar-stereographic grid to derive elevation time series. For this

analysis, Schröder et al. (2019a) and Nilsson et al. (2022) used different grid spacing and search radii. Further differences refer

to the removal of time-invariant topography and the correction for time-variable radar signal penetration and scattering effects.

While Schröder et al. (2019a) performed these steps in one least-squares fit, Nilsson et al. (2022) fitted them separately.100

To derive a continuous time series of elevation changes, intermission and intermode calibration offsets must be solved.

While Schröder et al. (2019a) used overlapping epochs or subtracted a technique-specific reference elevation, Nilsson et al.

(2022) used a least-squares adjustment and then selected overlapping epochs with special treatment of the less than four months

Envisat-CryoSat-2 overlap. Moreover, Nilsson et al. (2022) scaled the seasonal amplitudes of the time series of ERS-1, ERS-2

and Envisat to the seasonal amplitudes derived from CryoSat-2 to mitigate artificial seasonal variations caused by time-variable105

signal penetration. Finally, Schröder et al. (2019a) smoothed the processed data by a three-month moving average and a 10 km

one-σ Gaussian weighting function. This reduced the spatial grid resolution to 10 km x 10 km. Nilsson et al. (2022) interpolated

the processed data with collocation (max. search radius of 50 km, correlation length of 20 km) on a spatial grid with a formal

resolution of 1920m x 1920m. We interpolate the data from Nilsson et al. (2022) to conform to the product from Schröder

et al. (2019a). Therefore, we average the data spatially over 10 km x 10 km and temporally over three months. We only use110

those points in time and space where data are available from both products.

Since we focus on the interannual to decadal time scales, we fit and remove the offset, linear, quadratic and seasonal signals

from the monthly elevation changes for every 10km x 10km grid cell. Seasonal signals are modelled by annual and semi-annual

cosine and sine functions. Thereby, we fit different seasonal amplitudes for the time periods before and after 2003. In this way

we account for the inconsistency in the seasonal amplitudes between the older pulse-limited radar altimetry missions (ERS-115

1, ERS-2) and the newer missions (Envisat, ICESat, CryoSat-2) (Nilsson et al., 2022), as the corrections for time-variable

penetration effects on the radar return signal are imperfect in reducing unrealistic seasonal amplitudes in particular for the

older missions (Ligtenberg et al., 2012). The fitted parameters are presented in Fig. S1–S4. After subtracting the offset, linear,

quadratic and seasonal signals, we are left with the interannual elevation changes, which we refer to as altimetric variations,

hvA.120

2.2 Firn models

We use the firn thickness changes from the firn models IMAU-FDM v1.2A of Veldhuijsen et al. (2023), which is an update of

Ligtenberg et al. (2011), and GSFC-FDMv1.2.1 of Medley et al. (2022a), which uses the Community Firn Model framework

of Stevens et al. (2020, 2021). Firn thickness changes represent firn thickness anomalies, as they refer to the difference between

4



firn thickness at time t and the mean firn thickness over a certain reference period (see below). Outputs from Veldhuijsen et al.125

(2023) are given every ten days and on a regular grid with a spacing of 27 km from 1979 to 2020. Outputs from Medley et al.

(2022a) are given every five days and on a regular grid with a spacing of 12.5 km from 1980 to 2021. In accordance with

the altimetry data, we use firn thickness changes from May 1992 to December 2017 and from the grounded AIS excluding

the Antarctic Peninsula. We adapt the temporal resolution to that of the altimetry product by calculating monthly means and

applying a three-month moving average smoothing.130

The firn model from Veldhuijsen et al. (2023) is forced with three-hourly fields of surface temperature, 10m wind speed

and SMB components (snowfall, rainfall, sublimation, snowdrift erosion, snowmelt) from RACMO2.3p2 (van Wessem et al.,

2018). RACMO2.3p2 uses a spatial resolution of 27 km x 27 km and is forced by the ERA5 atmospheric reanalysis data

(Hersbach et al., 2020). The firn model from Medley et al. (2022a) is forced with hourly fields of snowfall, total precipitation,

evaporation, 2m air temperature and skin temperature from a downscaled version (12.5 km x 12.5 km) of the MERRA-2135

atmospheric reanalysis data (Gelaro et al., 2017; Tian et al., 2017). The firn layer was initialised by looping over the forcing

data of the reference period 1979–2020 (for Veldhuijsen et al., 2023) and 1980–2019 (for Medley et al., 2022a) until the firn

column was refreshed at least once. This implies the assumption that the reference period represents stable climatic conditions

and the current firn layer is in equilibrium.

Both firn models use the same semi-empirical equation of Arthern et al. (2010) to model dry-snow densification but their140

procedures for deriving the empirical correction terms differ. Veldhuijsen et al. (2023) derived this empirical correction from

observations in Antarctica, while Medley et al. (2022a) employed observations from both Antarctica and Greenland. Further-

more, the two firn models use a different parameterisation for surface snow density. Veldhuijsen et al. (2023) use the formulation

of Lenaerts et al. (2012), which depends on instantaneous surface temperature and 10m wind speed, but with updated con-

stants derived from their own calibration. Medley et al. (2022a) built a new parameterisation depending on snow accumulation,145

air temperature, total wind speed, and specific humidity. Overall, they follow the approach from Helsen et al. (2008), which

incorporates mean annual parameters. Both firn models include the processes of meltwater percolation and refreezing.

We subtract the offset, linear, quadratic and seasonal signals from the modelled firn thickness changes in the same way as

we do for the altimetric time series, except that we assume constant seasonal amplitudes for the entire period. The subtracted

parameters are presented in Fig. S1–S4. This leaves us with firn thickness variations on interannual time scales, which we refer150

to as modelled firn thickness variations, fvM.

3 Methods

3.1 Basic approach

We jointly analyse the interannual elevation changes from satellite altimetry and firn modelling results. Fig. 1 gives an overview

of the workflow. The new combination approach is a regression of the altimetric variations, hvA, against dominant signals in155

the firn thickness variations, fvM. Our regression approach relies on the ability of firn models to capture the timing of dominant

variations in SMB and firn processes across basins. However, the amplitudes and spatial patterns of the variations are adjusted
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Figure 1. Workflow of the analysis. Grey boxes: the results, their notation and the section where they are first presented. White boxes: the

main methodological steps to derive these results and the sections where they are explained.

to satellite altimetry results. We give more trust to the temporal patterns of the firn model than to their spatial patterns for the

following reasons. Mottram et al. (2021) as well as Lenaerts et al. (2019) and Gutiérrez et al. (2021) have pointed out that the

spatial patterns of RCMs, which force firn models, show a large spread between models while there is less spread between160

the temporal patterns. While spatially resolved differences (between models, between observations and between models and

observations) are substantial, the differences are reduced when basin averages are used (Agosta et al., 2019; Shepherd et al.,

2019; Willen et al., 2021). The overall good agreement of basin-mean time series of fvM and hvA is supported in Fig. 2.

3.2 Principal component analysis of modelled firn thickness variations

We identify dominant temporal patterns in firn thickness variations by principal component analysis (PCA). PCA, also called165

empirical orthogonal function (EOF) analysis, is applied to identify dominant modes of variability, represented by pairs of a
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Figure 2. Basin-mean time series of modelled firn thickness variations from Veldhuijsen et al. (2023), fvMa, (solid, black), of altimetric

variations from Schröder et al. (2019a), hvA1, (dotted, cyan), and of adjusted firn thickness variations based on A1a, fvA1a, (solid, cyan).

Basin definitions are shown in Fig. 3.
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Figure 3. Drainage basins of the EAIS and WAIS used in this study (thick black lines), slightly modified from the definition of Rignot et al.

(2011a, b). The outline of Antarctic Peninsula is indicated by a thin black line. Contour lines of the ice sheet surface are shown at 1000m,

2000m and 3000m. We use the polar stereographic projection EPSG:3031 (WGS84, latitude of true scale: 71° S, central meridian: 0°). All

further maps are displayed in the same projection and with the same spacing of longitude grid lines (every 45°) and latitude grid lines (every

10°).

principal component (PC) and an EOF, which represent the temporal and spatial patterns, respectively (Preisendorfer, 1988;

Jolliffe, 2002; Forootan and Kusche, 2012; Boergens et al., 2014).

The PCA is performed on the modelled firn thickness variations, fvM, after their standardisation. We standardise the time

series of fvM for each grid cell, i.e. we shift and scale it such that it has zero mean and a standard deviation (std) of one, because170

we aim to equally represent the patterns of temporal evolution regardless of location or absolute amplitudes. Otherwise, PCA

results would mainly reflect patterns that are dominant at the margins where the amplitudes of SMB and firn thickness variations

are much larger than in the interior (van Wessem et al., 2018; Lenaerts et al., 2019). To regain interpretable magnitudes of

the EOFs, the EOFs are multiplied by the std of the time series of fvM for each grid cell, which was previously used for

standardisation. After this restoration of the signal amplitudes, we no longer speak of EOFs but of modelled scaling factors,175

eM.

We separately apply the PCA to fvM for 10 basins that together cover the East Antarctic Ice Sheet (EAIS) and the WAIS

(Fig. 3). To define the basins, we make use of the drainage basin definition by Rignot et al. (2011a, b) and aggregate neigh-

bouring basins smaller than ∼ 600,000 km2. The decision which of the original 15 basins are aggregated is guided by the

correlations between the first three PCs of a preliminary PCA per original basins. For each of the 10 basins, we choose the first180

N modes that explain at least 90% of the total variance of the (standardised) data. In addition, North’s rule of thumb (North
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et al., 1982) is applied to test whether the eigenvalues of these N patterns are well separated with respect to their errors. The

first N dominant temporal patterns, PCM
1...N , enter the regression approach in normalised form.

3.3 Regression approach

For each 10km x 10km grid cell, we describe the time series of monthly altimetric variations, hvA, by185

hvA(t) = a+

N∑
n=1

eA
nPC

M
n (t)+ rA(t). (1)

The scaling factors eA
1...N and the offset a are estimated by least squares adjustment. The dominant temporal patterns in

modelled firn thickness variations, PCM
n (t), refer to the basin to which the grid cell belongs. The residuals of the fit are rA.

We define a combined product by the linear combination of Eq. 1, evaluated per grid cell and time:

fvA(t) =

N∑
n=1

eA
nPC

M
n (t). (2)190

We refer to fvA(t) as the ‘adjusted firn thickness variations’.

The stochastic model of our regression in Eq. 1 prescribes a different weighting of observations from two time periods.

As results from the older altimetry missions generally have a higher noise level (Schröder et al., 2019a; Nilsson et al., 2022),

hvA after 2003 are weighted by 1, while hvA before 2003 are given a different (usually lower) weight, which is defined,

individually for every grid point, by the ratio of the noise variance of hvA before and after 2003. We assess the noise by the195

high-pass filtered version of hvA separately for both periods (cf. Groh et al., 2019). The high-pass filtering consists of removing

a low-pass filtered version of hvA, where the low-pass filter is a Gaussian filter with a 6σ = 12 months filter width.

To assess the goodness of fit, we calculate the values of R-squared, R2, as

R2
A = 1− SS(rA)

SS(hvA)
= 1− SS(rA)

SS(fvA + rA)
, (3)

where SS(rA) and SS(hvA) are the residual and total sum of squares, respectively. SS(rA)/SS(hvA) describes the proportion200

of unexplained variance. We calculate R2 for every grid cell individually.

3.4 Different versions of adjusted firn thickness variations

We derive two different sets of PCM depending on the firn model incorporated. Our annotation distinguishes the firn models by

superscripts ‘Ma’ and ‘Mb’ for the model by Veldhuijsen et al. (2023) and Medley et al. (2022a), respectively. The regression

approach (Eq. 1) is applied with each set of PCM and equally to each of the two products of hvA from Schröder et al. (2019a)205

and Nilsson et al. (2022), which we distinguish by superscripts ‘A1’ and ‘A2’, respectively. All combinations of data sets

used result in four applications of the regression approach (Table 1). Thus, we obtain four versions of adjusted firn thickness

variations (fvA1a, fvA2a, fvA1b, fvA2b), altimetric residuals (rA1a, rA2a, rA1b, rA2b) and R-squared (R2
A1a, R2

A2a, R2
A1b, R2

A2b).

In Appendix A1, we additionally assess three alternative ways of defining ‘adjusted’ firn thickness variations. These alter-

natives are: (E1) Accept the modelled firn thickness variations, fvM, without any adjustment to altimetry. (E2) Instead of using210
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Table 1. Names of the four different versions of regression results derived by applying the regression approach Eq. 1 with different data sets.

Name hvA from PCM from *

A1a A1 (Schröder et al., 2019a) Ma (Veldhuijsen et al., 2023)

A2a A2 (Nilsson et al., 2022) Ma (Veldhuijsen et al., 2023)

A1b A1 (Schröder et al., 2019a) Mb (Medley et al., 2022a)

A2b A2 (Nilsson et al., 2022) Mb (Medley et al., 2022a)

* standardised fvM (Sect. 3.2)

PCA-based dominant temporal patterns use the modelled time series of firn thickness variations at every grid cell and scale it

to fit the altimetry. We refer to the results as scaled firn thickness variations, fvE2. (E3) Omit the standardisation step prior to

the PCA and proceed according to Eq. 1 and 2. We refer to the result as modified adjusted firn thickness variations, fvE3. Note,

that we do not introduce fvE1 as this would correspond to fvM.

3.5 Assessment methods215

3.5.1 Uncertainty of adjusted firn thickness variations

We assess the impact of the choice of data sets and thus the influence of different errors on the adjusted firn thickness variations,

fvA, by using differences between the time series of the various versions of firn thickness variations. For each time series of

differences we can calculate the temporal root mean square (rms). This is done for time series per grid cell and also for time

series of basin averages. To assess the uncertainty of fvA we consider the maximum deviation within the different versions of220

fvA (Table 1). For this purpose, we form the six possible differences from fvA1a, fvA2a, fvA1b, and fvA2b, and take the maximum

of the rms differences.

3.5.2 Robustness of adjusted firn thickness variations

We refer to the differences between adjusted and modelled firn thickness variations as ‘the adjustments’ (fvA − fvM). We

consider these ‘adjustments’ to be ‘improvements’ over the firn models, if the differences within different versions of fvA are225

significantly smaller than the adjustments. We test for significance by comparing the distributions of their temporal rms. We

use a two-sample, one-sided Kolmogorov-Smirnov test which is a non-parametric hypothesis test as the differences in fv do

not follow a normal distribution. The Kolmogorov-Smirnov test uses the empirical cumulative distribution function (cdf) to

compare the distributions of two samples (Massey, 1951; Miller, 1956; Marsaglia et al., 2003). The null hypothesis (H0) reads:

both samples, the data of both differences to be compared, are from the same continuous distribution. Thus, the alternative230

hypothesis (H1) reads: the empirical cdf of sample one (the differences within fvA), is larger than the empirical cdf of sample

two (the adjustments), that is the differences within fvA tend to be smaller than the differences between fvA and fvM.
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3.5.3 Spectral analysis of regression results

We analyse the time series of altimetric residuals, rA, and adjusted firn thickness variations, fvA, in the spectral domain through

their power spectral density (psd) and their spectral indices, κ (Bos et al., 2012). As rA and fvA do not yield a white noise235

behaviour we use the formulation of power-law noise to approximate their stochastic properties. For example, power-law with

κ=−1 and κ=−2 represents flicker and random walk noise, respectively.

3.5.4 Principal component analysis of altimetric residuals

The altimetric residuals, rA, are further analysed in the spatio-temporal domain. First, we perform PCA on the altimetric resid-

uals themselves to further identify dominant signals related to ice sheet processes not considered or incorrectly represented by240

the firn models. Note that the residuals may additionally contain signals related to variations in ice flow dynamics or subglacial

hydrology. Second, we perform PCA on the residual differences to further detect and investigate prevailing uncertainties in

the altimetry analysis. Only data after 2003 is used because of the higher noise level in the altimetry measurements of the

older satellite missions. Test experiments showed that errors of pre-2003 data bias the dominant modes and hardly helps to

distinguish between signal and error. We standardise the time series of residuals and residual differences, as we did previously245

when identifying dominant patterns in modelled firn thickness variations (Sect. 3.2).

The first PCA is applied to four versions of standardised residuals (rA1a, rA1b, rA2a, rA2b). The second PCA is applied to two

versions of standardised residual differences (rA1a−rA2a and rA1b−rA2b). For each PCA, we set up one aggregated ‘super data

matrix’ in which we arrange the time series for each grid cell and each version into a single set of time series. Specifically, our

data sets comprisesm= 90638 points in space (entire area under investigation) and p= 108 points in time (2003–2017). Thus,250

for the first and second PCA, the super data matrix has the size of 4m x p and 2m x p, respectively. The PCA is conducted

to identify the dominant temporal patterns (PCs), which are shared by all versions, together with their space-dependent and

version-dependent spatial patterns (EOFs). Each identified mode thus consists of one joint PC (1 x p) and four, or two, EOFs

(4m x 1 or 2m x 1) in the case of the first, or second, PCA, respectively.

4 Results255

4.1 Dominant patterns in modelled firn thickness variations

We can explain at least 90% of the total variance of the modelled firn thickness variations, fvMa, with two modes (basin 5),

three modes (basins 1, 3 and 6), four modes (basins 2, 4 and 8) and five modes (basins 7, 9 and 10). The modes (i.e. the PC–EOF

pairs) reveal a typical hierarchy of an autocorrelated geophysical signal, as shown in Fig. 4 for the region of Dronning Maud

Land (basin 3). The first EOF is almost uniform over the entire basin (Fig. 4a). The spatial features of the second EOF follow260

the topography from north to south (Fig. 4b) and the third EOF exhibits an east-west gradient (Fig. 4c). The first PC shows

a longer wavelength signal than the following PCs. All three PCs fluctuate over time similar to an integrated random walk

process (Fig. 4d). In the case of basin 3, 74% of the variance is explained by the first mode, which captures the accumulation
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Figure 4. PCA results of basin 3: dominant patterns in firn thickness variations identified from standardised firn modelling data (Ma). (a–

c) First three spatial patterns (EOFs). (d) First three temporal patterns (PCs). (e) Associated percentages of the basin’s total data variance.

Results for all basins and for both firn models, Ma and Mb, are given by Fig. S5–S9.

events in 2009 and 2011 (Boening et al., 2012; Lenaerts et al., 2013) as shown by the characteristic increase in the PC during

these years (Fig. 4d). All subsequent modes are more difficult to interpret as a geophysical signal because their determination265

is governed by the mathematical orthogonality property of PCs.

4.2 Regression results

4.2.1 Time series for a selected grid point

Fig. 5 exemplifies the derivation of adjusted firn thickness variations for a selected grid point, P1, and based on the regression

A1a (Table 1). P1 (37.7° E, 70.2° S) is located in basin 3 close to the ice sheet margin at ∼ 1080m height (Fig. 3). There,270

the adjusted and modelled firn thickness variations, fvA1a and fvMa, have a std of 40.5 and 51.5 cm, respectively (Fig. 5a). By

construction, the scaling factors e1...3 equal the std of the associated scaled dominant temporal patterns. In the presence of data

gaps in the altimetry time series, this equality holds approximately. Both fvA1a and fvMa are dominated by PCMa
1 (Fig. 5b),

as this pattern is scaled by eA1a
1 = 39.2 cm (altimetry) and eMa

1 = 48.4 cm (firn model). The second pattern, PCMa
2 (Fig. 5c) is

very small in the firn model (eMa
2 = 0.2 cm), while somewhat larger and of opposite sign for altimetry (eA1a

2 = −7.7 cm), but275

still small enough to contribute little to fvA1a.

The std of altimetric residuals, rA1a, is 31.7 cm, less than the std of fvA1a (Fig. 5a). The R-squared value R2
A1a (Eq. 3) is

0.601. When calculated separately for the time before and after 2003, R2
A1a equals −0.004 and 0.831, respectively. Thus, the

adjusted firn thickness variations, fvA1a, describe less of the altimetry variance before 2003 while after 2003 they explain 82%.
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Figure 5. Regression results for the grid point P1 (Fig. 3). (a) Modelled firn thickness variations, fvMa (solid, black), adjusted firn thickness

variations, fvA1a (solid, cyan), and altimetric residuals, rA1a (dash-dotted, cyan). (b–d) Scaled first, second, and third PCM from the regression

version A1a (cyan) and the model Ma (black). The solid cyan curve in (a) is the sum of the cyan curves in (b–d). Time series of a larger

subset of selected grid points (Fig. S10) are shown in Fig. S11 and S12.

Because of the different weighting of hvA before and after 2003 (Sect. 3.3), R2
A can indeed be negative and distinguishing the280

two periods is reasonable.

4.2.2 Scaling factors e

The scaling factors eA1a
1...3 and eMa

1...3 per grid cell are mapped for the example of basin 3 in Fig. 6. The patterns of the factors,

like the EOFs (Fig. 4), follow a typical hierarchy discussed in Sect. 4.1. Overall, the patterns of eMa
1...3 agree for a large part

with eA1a
1...3. However, the first spatial pattern from the model extends further into the ice sheet interior than the pattern from285

altimetry (Fig. 6d versus Fig. 6a). In general, scaling factors from the model show a smoother and more blurred pattern than

the ones adjusted to altimetry. Patterns from altimetry reveal a higher level of detail and a more localised spatial distribution.

At certain regions the spatial distributions also differ, e.g. for the second pattern in the vicinity of P1 (Fig. 6b versus Fig. 6e).

The spatial variation of the scaling factors along two selected profiles is given by Fig. S13 and a comprehensive representation

of the scaling factors for all basins with the different choices of input data is given by Fig. S5 and S14.290

4.2.3 Firn thickness variations and their sensitivity to the choice of data sets

In general, the spatial patterns of the rms of the adjusted firn thickness variations, fvA, and the modelled firn thickness varia-

tions, fvM, are similar (Fig. 7a and 7b). Rms values are largest at the ice sheet margin and smallest over the plateau of the EAIS.

For grid cells in the elevation ranges (1) below 1000m, (2) 1000 to 2000m, (3) 2000 to 3000m and (4) above 3000m, median

rms values are in the range of (1) 12.2 to 16.4 , (2) 8.3 to 10.9 , (3) 3.5 to 5.1 and (4) 2.1 to 2.3 cm, respectively. Differences295
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fvA1a − fvMa divided by the rms of fvMa. All versions of fvA and fvM are illustrated in Fig. S15 and S16.

between adjusted and modelled variations reveal highest absolute rms values at lower elevations, near the AIS margins with

median rms differences in the range of 13.4 to 14.7 cm below 1000m (Fig. 7c). In a relative sense, largest mismatch is found

in the interior of the EAIS but also at some locations at the ice sheet margin (Fig. 7d).

To evaluate the sensitivity of fv to the choice of data sets, we calculate the difference between various versions of fv

(Sect. 3.5.1), and compare the distributions of the rms of these differences (Fig. 8). In total, differences within fvA are smallest,300
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Vertical lines in the box indicate median values. Corresponding rms maps of differences are displayed in Fig. S15–S17.

followed by differences within fvM while differences between fvA and fvM are largest (Fig. 8, Table 2). Differences within fvA

indicate a smaller influence by different firn model data than by different altimetry data. Differences between fvA and fvM are

smallest for A1a (adjustment over the firn model Ma through altimetry A1), largest for A2b (adjustment over the firn model

Mb through altimetry A2) in a relative sense and largest for A1b (adjustment over the firn model Mb through altimetry A1)

in an absolute sense (Table 2). The differences between the various versions of fv reflect errors in the firn models and in the305

altimetry products. These are further discussed in Sect. 5.3 and 5.4.

4.2.4 Goodness of fit

The altimetric residuals are used to calculate the goodness of fit or R-squared (Eq. 3). The rms of the altimetric residual time

series and the values of R-squared based on the regression A1a,R2
A1a, are presented in Fig. 9a and b, respectively, for the period

after 2003. The rms of the residuals after 2003 is generally smaller than before 2003 (Fig. S18) due to the different noise levels310

and weighting of the altimetry observations in the two periods (Sect. 3.3), so that R2 is generally higher after 2003 than before

2003 (Fig. S19).

After the individual calculation of R2 for each grid cell, basin-mean values are derived and listed in Table 3 for all versions

of regression. Averaged over the entire area, R2
A1a is 0.40 after 2003 (Table 3). This means that on average 40% of the variance

of altimetric variations is captured by the regression model, i.e. by fvA1a. Depending on the basin, fvA1a captures 26% (basins315

4 and 8) to 58% (basin 10) of the data variance. In general, we find less agreement with altimetry when incorporating the Mb

firn model instead of the Ma firn model (Table 3, column A1a versus A1b and column A2a versus A2b).

The impact of methodological changes to the regression approach (E1, E2 and E3 as summarised in Sect. 3.4) is elaborated in

Appendix A2. The methodological changes result in smaller averageR2 values (Fig. A1, Table A1), so less of the data variance
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Table 2. Overview of the comparison between various versions of firn thickness variations, as detailed in Fig. 8. Column 1 indicates the

addressed comparison: between versions of adjusted firn thickness variations fvA (row 1–4), between modelled firn thickness variations fvM

(row 5), and between fvA and fvM (row 6–9). For each comparison, column 2 gives the median (over all grid cells) of the rms (over time) of

differences between the two time series evaluated at each grid cell. The table is ordered by the median values (from small to large). Column

3 also gives the median of the rms of differences but as a relative measure. For each grid cell, the rms of differences are divided by the rms

of fvMa. Then, the median over all grid cells is calculated. Column 4 gives a short description or possible causes.

Difference Median Description/Cause

absolute relative

A2a−A2b 2.3 cm 0.47 influence of different firn model setups based on A2

A1a−A1b 2.7 cm 0.52 influence of different firn model setups based on A1

A1a−A2a 2.7 cm 0.54 different altimetry analysis based on Mb

A1b−A2b 2.8 cm 0.54 different altimetry analysis based on Ma

Ma−Mb 3.5 cm 0.65 different firn model setups

A1a−Ma 3.8 cm 0.73 adjustment over Ma through A1*

A2a−Ma 4.1 cm 0.80 adjustment over Ma through A2*

A2b−Mb 4.4 cm 0.87 adjustment over Mb through A1*

A1b−Mb 4.5 cm 0.85 adjustment over Mb through A2*

* due to firn signals not correctly represented by the models (firn model errors) and/or due to errors in the altimetry

products

(a)

 0.01  0.1   1  (m)

(b)

0 0.5 1

Figure 9. (a) Rms of the residual altimetric time series, rA1a, for the period after 2003. (b) Values of R-squared for the regression A1a, R2
A1a,

considering the period after 2003. Colour bar arrows indicate that the value range exceeds the limits of the colour scale.
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Table 3. Explained variance or R2 for each basin and each version of regression (Table 1) over the period after 2003. Apart from the last

column A1a, R2 is first calculated for each grid cell according to Eq. 3 and then averaged over each basin. Values of A1a are calculated by

first averaging the regression results over each basin and then applying Eq. 3. Basin averages of R2 for the period before 2003 are listed by

Table S1.

Basin A1a A2a A1b A2b A1a

01 0.42 0.40 0.29 0.32 0.79

02 0.50 0.45 0.39 0.40 0.92

03 0.45 0.46 0.43 0.44 0.93

04 0.26 0.36 0.13 0.26 0.11

05 0.27 0.33 0.24 0.35 0.54

06 0.32 0.27 0.21 0.25 0.74

07 0.52 0.43 0.40 0.34 0.92

08 0.26 0.37 0.11 0.31 0.58

09 0.54 0.46 0.45 0.44 0.96

10 0.58 0.53 0.44 0.44 0.96

01–10* 0.40 0.40 0.29 0.34 0.79

* refers to the entire area (considered as a single basin)

can be explained. For this reason, the modified approaches are not preferable to the chosen regression approach presented in320

Sect. 3.3.

By now, the presentedR2 values are based on calculations per grid cell in accordance with the regression approach Eq. 1. For

basin average time series, R2 becomes larger. Fig. 2 shows the basin averages of adjusted firn thickness variations, which we

may compare to the basin-averages of the altimetric variations through the values of R-squared given in Table 3, last column.

Indeed, fvA1a captures up to 96% (basins 9 and 10; West AIS) of the variance of basin average altimetry variations. Basin-mean325

time series of all regression results and versions are presented in Fig. S20 and S21.

However, on the level of individual grid cells the altimetric residuals, rA, still contain a large proportion of the variance of

altimetric variations. For example, for A1a and the period after 2003, an average ratio of 60% of the altimetric variations are

unexplained. Therefore, the residuals rA are further investigated in the following Sect. 4.3 and 4.4.

4.3 Spectral analysis of regression results330

We find a stronger autocorrelation for the time series of fvA1a than for that of rA1a, i.e. rA1a is closer to white noise behaviour

than fvA1a, since the power spectral density (psd) for fvA1a shows a steeper decrease with frequency than for rA1a (Fig. 10a). At

low frequencies the psd of fvA1a generally exceeds the psd of rA1a, while above a certain frequency (∼ 0.5 yr−1 for P1) the psd

of rA1 exceeds that of fvA1a (Fig. 10a). The spectral indices κ determined for rA1a and fvA1a are −1.75 and −3, respectively,
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Figure 10. (a) Lomb-Scargle power spectral density (psd) of altimetric residuals, rA1a, (blue) and adjusted firn thickness variations, fvA1a,

(green) for grid point P1. See Fig. S22 and S23 for the larger subset of selected grid points. (b) Spectral index κ for power-law noise adjusted

to rA1a of every grid cell. Colour bar arrows indicate that the value range exceeds the limits of the colour scale.

at P1. Over the entire area, the mean value of κ for rA1a is −1.72 (Fig. 10b), which indicates temporally correlated residuals335

with characteristics close to random-walk noise. For fvA1a, in contrast, the value of κ is −3 at each grid cell. The employed

software to estimate κ (Bos et al., 2012) has −3 as its minimum output value. Hence, fvA1a has κ≤−3 and therefore a stronger

autocorrelation than rA1a.

4.4 Dominant patterns in altimetric residuals

The first three dominant modes explain 23% of the variance of altimetric residuals (Fig. 11e) and 19% of the variance of340

residual differences (Fig. 12e). The first mode of the residual differences captures 10% and its temporal pattern reveals a

prominent drop between July 2010 and January 2011 (Fig. 12d). Due to the data standardisation prior to PCA, the EOFs

cannot be directly interpreted as amplitudes in elevation change. For their presentation (Fig. 11a–c and 12a–c), we restored the

signal amplitudes for each grid cell by multiplying the std of the time series, which was used beforehand to normalise the time

series.345

5 Discussion

5.1 Interannual firn thickness variations

In general, adjusted firn thickness variations fvA (e.g. Fig. 7a for version A1a) and modelled firn thickness variations fvM (e.g.

Fig. 7b for Ma) share the same spatial patterns. The largest magnitudes are found at lower elevations near the ice sheet margins

with median rms values in the range of decimetres. The smallest magnitudes are found over the plateau of the EAIS with350

median rms values in the range of centimetres (Sect. 4.2.3). This general spatial pattern was to be expected, as it is related to

the spatial variability of SMB. Snowfall, the main driver of Antarctic SMB variability, increases from the dry, relatively flat

and homogeneous interior to the steep and complex topography of the wetter coastal conditions. High snowfall at the ice sheet
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Figure 11. PCA results of standardised altimetric residuals for the period after 2003. (a–c) First three spatial patterns (EOFs) – version-

dependent, shown here for rA1a and with restored signal amplitudes for each grid cell. The EOFs of all versions are illustrated in Fig. S24 and

S25. (d) First three temporal patterns (PCs) determined from the aggregated data sets of rA1a, rA1b, rA2a and rA2b. (e) Associated percentages

of the total residual variance considering the respective PC–EOF pairs.

margins occurs due to orographic precipitation, influenced by the winds and topography of the AIS (van Wessem et al., 2014;

Lenaerts et al., 2019).355

The adjusted firn thickness variations fvA reveal a strong temporal autocorrelation through the strong decrease of their psd

with frequency, with spectral indices κ≤−3 for a power-law noise model (Sect. 4.3). This is in line with the findings of King

and Watson (2020). They estimated the power-law noise parameter κ in the range of −2.3 to −2.2 and −3.0 to −2.6 based on

SMB estimates from RACMO2.3p2 and ice core composites, respectively. Unlike our analysis, they only co-estimated a linear

trend.360

In the following, we compare how much variance of altimetric variations (for the period after 2003) can be explained

according to the applied approach and the two different spatial considerations used previously, namely, first, the percentages

assessed from grid cell time series and then averaged over the entire area, and second, the percentages from time series averaged

over the entire area (‘mean Antarctic’ time series, Fig. 13). The modelled firn thickness variations, fvMa, explain 11% and

64% for the two spatial considerations, respectively (Table A1, columns E1 and E1). The scaled firn thickness variations, fvE2,365

explain 31% and 71% (Table A1, columns E2 and E2), respectively. The modified adjusted firn thickness variations, fvE3,

explain 37% and 79% (Table A1, columns E3 and E3). Finally, the adjusted firn thickness variations, fvA1a, explain 40% and

79% for the two spatial considerations (Table 3, columns A1a and A1a). Our regression approach (Eq. 1), which generates

fvA1a, explains a larger part of the variance of altimetric variations than the other approaches. The spatial scale investigated
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Figure 12. PCA results of standardised altimetric residual differences for the period after 2003. (a–c) First three spatial patterns (EOFs) –

version-dependent, shown here for rA1a −rA2a and with restored signal amplitudes for each grid cell. The EOFs of all versions are illustrated

in Fig. S26 and S27. (d) First three temporal patterns (PCs) – the joint basis of rA1a − rA2a and rA1b − rA2b. (e) Associated percentages of the

total variance of residual differences considering the respective PC–EOF pairs.
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Figure 13. Mean Antarctic interannual elevation changes depending on the applied approach. Modelled firn thickness variations (fvMa),

altimetric variations (hvA1), adjusted firn thickness variations (fvA1a), scaled firn thickness variations (fvE2) and modified adjusted firn

thickness variations (fvE3).
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Figure 14. (a) Rms of (the time series of) the differences fvA1a − fvA1b. (b) Rms of the differences fvA1a − fvA2a. (c) Uncertainty estimate

of fvA: maximum rms of any combination of differences within versions of fvA. (d) Rms of the residual differences rA1a − rA2a considering

only the period after 2003. All rms maps (a–d) are normalised by the rms of fvMa.

is crucial for the results, as the estimates from the basin-mean time series explain more of the altimetry variance than the370

estimates considering each grid cell equally. However, the latter are needed to understand the spatial patterns of firn variations.

5.2 Uncertainty and robustness of adjusted firn thickness variations

The adjusted firn thickness variations, fvA, include the effects of firn model errors and altimetry errors. The differences fvA1a−
fvA1b (Fig. 14a) and fvA2a− fvA2b, evaluated at every grid cell, are used to assess the influence of different firn model setups on

fvA. The median values (over all grid cells) of absolute and relative differences are in the range of 2.3 to 2.7 cm and 47 to 52%,375

respectively (Table 2, Fig. 8). The differences fvA1a − fvA2a (Fig. 14b) and fvA1b − fvA2b, evaluated at every grid cell, are used

to assess the influence of different altimetry analysis on fvA. The median values (over all grid cells) of absolute and relative

differences are in the range of 2.7 to 2.8 cm and ∼54%, respectively (Table 2, Fig. 8). Both the firn model and altimetry errors

are discussed in Sect. 5.3 and 5.4 separately.

To assess the combined influence of firn model and altimetry errors on fvA, the maximum deviation within the different380

versions of fvA is used (Sect. 3.5.1). Fig. 14c shows the map of the maximum rms values. The median values (over all grid

cells) of absolute and relative (maximum) differences are ∼4.2 cm and ∼80%, respectively. In addition, median values are

calculated for every basin separately. The absolute and relative uncertainties range from 2.2 cm (basin 8) to 10.6 cm (basin

10) and from 54% (basin 5) to 186% (basin 8), respectively. We consider these estimates to be rough, but rather conservative

uncertainty assessments for the adjusted firn thickness variations. In addition to the evaluation at grid cell level, the uncertainty385

of fvA is assessed by time series differences of the basin means. See Fig. S20 for the basin-mean time series of the four versions

of fvA. The associated uncertainties per basin range from 0.9 cm (basin 4) to 6.4 cm (basin 10). The relative uncertainties are

in the range of 20% (basin 2) to 108% (basin 8). For mean Antarctic fvA an absolute and relative uncertainty of ∼1.3 cm and

∼66%, respectively, are estimated.
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Figure 15. Histograms of the temporal rms of differences between various versions of firn thickness variations assessed at each grid cell of

basin 3.

We assess the robustness of fvA through statistical tests according to Sect. 3.5.2. For each basin, four tests are conducted, each390

comparing the temporal rms of the following pair of differences in firn thickness variations: Test (1) compares A1a−A2a to

A1a−Ma, test (2) compares A1a−A2a to A2a−Ma, test (3) compares A1b−A2b to A1b−Mb and test (4) compares A1b−A2b

to A2b−Mb. For all 40 tests, H0 is rejected (at the 5% significance level) and thus, H1 is accepted. This means that the dif-

ferences within fvA are significantly smaller than the adjustments, i.e. the differences between fvA and fvM, and that fvA can

be described as an improvement over fvM. Fig. 15 exemplifies the distributions of the differences for basin 3. The histograms395

and cumulative histograms for all basins are shown in Fig. S28 and S29, respectively. The results of the statistical tests demon-

strate that fvA is relatively robust to the choice of data sets, firn models and altimetry products. The choice of data sets does

not significantly influence fvA. Consequently, the assumption that fvA represents a significant improvement over the modelled

variations is reasonable. Limitations are discussed below.

5.3 Firn model errors400

Firn model errors arise from firn signals that are not simulated or not correctly represented by the firn model or its input from

RCMs and reanalysis data. They are partly reflected in the differences fvMa − fvMb (Fig. S16) and the adjustments over the

firn models, i.e. any version of fvA − fvM (Fig. S17). Partly, the adjustments also include errors of the altimetry products, as

discussed in Sect. 5.4. Firn models generally show a smoother, more blurred spatial pattern than altimetry (cf. Fig. 6d–f versus

6a–b and also Fig. 7b versus 7a). Reasons may be small-scale, mainly wind-driven processes that are missing in the model405

physics or not resolved in the same detail due to the coarser spatial resolution of the models (Lenaerts et al., 2012, 2019).

The spatial patterns of absolute differences within fvM and of the adjustments (e.g. Fig. 7c), follow the spatial pattern of

the signal itself. The greatest differences occur at the margins, where the climate is wetter and temperatures and accumulation

are higher than inland. Especially in these coastal regions of high-relief topography, the horizontal resolution of the models,

22



probably together with its physics, play an important role (Mottram et al., 2021). There, the differences between altimetry410

and firn models may be influenced by an incorrect or inaccurate spatial distribution of the modelled firn thickness variations

(Fig. 6).

The modelled SMB components and their uncertainties have a direct impact on the modelled firn thickness. By assessing the

spread of an ensemble of modelled firn thickness changes, Verjans et al. (2021) identified the RCMs as the largest contributor

to the ensemble uncertainty. A precise parameterisation of firn compaction and surface snow density gains in importance in415

regions with high snowfall and large spatial variability of climatic conditions, such as Dronning Maud Land and Enderby Land

(Verjans et al., 2021). However, the firn compaction rate in both firn models used here is determined by constant mean annual

accumulation and not by instantaneous overburden pressure. This lessens the actual firn compaction variability potentially

across all the areas of large accumulation variability (Kuipers Munneke et al., 2015).

In a relative sense, the adjustments (e.g. Fig. 7d) generally increase from the coast to the EAIS interior as the magnitude420

of the signal, the firn thickness variation, is very small in the interior due to the cold and dry climate. In these areas of low

snowfall, the relative uncertainties in the firn models are virtually unaffected by the formulation of firn densification and

surface snow density, but the input of RCM components is essential (Verjans et al., 2021). Scambos et al. (2012) argue that

RCMs might overestimate SMB in wind-glazed areas. These areas feature wind-polished glazed surfaces at the top of a coarsely

recrystallised firn layer and are formed by constant katabatic winds. They have near-zero SMB and occur on leeward faces of425

ice-sheet undulations and megadunes (Scambos et al., 2012). Large wind glazed areas are located across basin 4 and 8, where

all four versions of adjustments reveal highest relative values (Fig. S17e–h).

In basin 4, towards the boundary with basins 1 and 3, the large relative adjustments (Fig. S17e–h) indicate disagreement be-

tween the models and altimetry, whereas the four versions of altimetry agree (Fig. S15i–l) and the two models agree (Fig. S16d).

The reasons for this are not yet clear. Basin 8 is characterised by large megadune fields (Fahnestock et al., 2000; Dadic et al.,430

2013). Megadunes typically have an amplitude of 2 to 4m and wavelengths of 2 to 5 km and are formed by a complex inter-

action of surface topography, snow accumulation and redistribution due to highly persistent katabatic winds. While leeward

slopes are wind glazed, windward slopes accumulate and are characterised by sastrugi up to 1.5m in height (Fahnestock et al.,

2000; Frezzotti et al., 2002). The discrepancy between altimetry and the firn models across basin 8 can partly be explained by

the lacking modelling of the formation of the complex spatial pattern of megadunes and their migration over time in the firn435

models. In case of basin 8, models and altimetry disagree (Fig. S17e–h), as well as the different versions of fvM (Fig. S16d)

and the different versions of fvA (Fig. S15i–l). The latter is discussed in Sect. 5.4.

Discrepancies within the adjustments (i.e. within versions of fvA − fvM) can further indicate which firn model, or which

dominant patterns of one firn model, fits the altimetry better. Overall, the adjustments are smaller when involving Ma (Fig. 8,

Table 2). Amongst the different basins (see Fig. S28 and S29 solid green/brown versus dash-dotted green/brown), this applies in440

particular for basins 4–6. Across basin 2 the adjustments tend to be slightly smaller when involving Mb. Altimetric residuals,

rA, still include a non-negligible part (60% for A1a) of the variance of altimetric variations (Fig. 9c, Table 3). Since the

dominant patterns were chosen such that they cover at least 90% of the variance of fvM, rA could partially contain real firn

signals captured by firn models in the remaining ∼10% of the data variance. However, it is likely that a larger part of rA
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includes real firn signals not captured by the dominant temporal patterns of the firn models. The psd of the underlying time445

series of rA1a yield a spectral index of −1.7 (Sect. 4.3, Fig. 10b). The remaining autocorrelation in the residuals suggests that

temporally correlated signals such as real firn signals are still present. Also, the spatial patterns of the most dominant modes

of rA reveal topography-dependent magnitudes and patterns, as one would expect from SMB and its variations (Sect. 4.4,

Fig. 11a–c). Besides firn signals, the altimetric residuals additionally include altimetry errors (discussed in Sect. 5.4) and

probably also further signals related to variations in ice flow dynamics or subglacial hydrology (not discussed further).450

5.4 Altimetry errors

The differences between any version of fvA and fvM (the adjustments, e.g. Fig. 7c) may include effects of altimetry errors, in

addition to firn model errors. Noise in the altimetry measurements might explain another part of the fact that firn models show

a smoother spatial pattern of variations than altimetry. Noise in altimetry can be a problem, especially in the interior of the

EAIS where the signal-to-noise ratio is low. Over megadune areas (widely located in the interior across basin 8), conventional455

radar altimetry with pulse-limited footprints of 1.5 to 2.5 km in diameter may not be capable of adequately observing the

time-varying spatial patterns of megadunes.

A further limitation in radar altimetry is that measurements refer to the local topographic maxima within their footprints.

Especially at the margins over complex topography, this can lead to sampling issues, as the elevation changes acquired there

cannot capture the larger changes often found in the valleys. Laser altimeters are not affected by this sampling issue. However,460

since ICESat operated in campaign mode (Abshire et al., 2005) the sampling in areas with steep slopes can vary strongly during

the period 2003–2009, with some months including laser altimetry and some months relying exclusively on radar altimetry.

Moreover, radar altimetry results are affected by the time-varying radar waveform shape due to time-varying signal penetration

(Davis and Ferguson, 2004; Rémy et al., 2012). Even though these effects are accounted for in the altimetry processing, related

residual errors may have an impact on the adjustments. These errors, which tend to be correlated in time, are likely included in465

the altimetric residuals rA, which may explain, to some part, the temporal correlation of rA (Sect. 4.3, Fig. 10b).

Discrepancies within the adjustments (i.e. within versions of fvA−fvM) can indicate which altimetry solution is closer to the

firn models. However, results are equivocal (Fig. 8, Table 2). When involving the Ma firn model, the adjustments through A1

are smaller than those through A2 for most basins (see Fig. S28 and S29 green solid versus brown solid). When involving the

Mb firn model instead, the adjustments are in the same order of magnitude for A1 and A2 and it depends on the basin whether470

the adjustments are smaller with A1 or A2.

Uncertainties due to a different analysis of the altimetry measurements are reflected by the differences in fvA (Fig. 14b) and

rA (Fig. 14d) between solutions based on the same firn model (A1a−A2a or A1b−A2b). The median values (over all grid

cells) of rms differences rA1a − rA2a in the time period after 2003 are ∼4.9 cm and ∼96%, in an absolute and relative sense,

respectively. If the entire period was considered, the median values would increase considerably (∼7.3 cm and ∼163%). For475

both periods, the residual differences are greater than the differences fvA1a − fvA2a (Table 2, Fig. 14b) and also greater than the

uncertainty estimate of fvA (Sect. 5.2, Fig. 14c).
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The differences between fvA1 and fvA2 as well as between rA1 and rA2 mostly result from the combined effect of the

various differences between the altimetry analysis of Schröder et al. (2019a) and Nilsson et al. (2022) (Sect. 2.1). The rms of

fvA1a − fvA2a is shown in Fig. 14b in a relative sense. The largest relative differences occur in regions of complex topography,480

such as in Victoria Land (at the margin of basin 7) and next to the Amery Ice Shelf (at the margin of basin 4) and over almost the

entire basin 8, for which we already discussed the possible influence of megadunes. In addition, stripes related to the satellite

ground tracks are visible in the region of basins 1 to 2 (Fig. 14b). They seem to appear predominantly in fvA2 (Fig. S15b and

d).

The following features may likely be quite clearly attributed to a difference in intermission and intermode calibration be-485

tween the two altimetry products. The mode change of CryoSat-2 (LRM/SARIn mode; see e.g. Fig. 5 in Slater et al. (2018) for

the mode boundaries) is reflected in the difference of the residuals (Fig. 14d). Here, the main influence seems to come from A2

altimetry, as the areas at the mode boundary in basins 5–7 and 9–10, characterised by a higher rms value, are mainly visible

in rA2 (Fig. S18f and h). In addition, the mode transition also appears to be reflected in fvA2 particularly at basins 5 and 6

(Fig. S15b and d). The PCA carried out on rA1a−rA2a and rA1b−rA2b reveal a prominent drop between July 2010 and January490

2011 together with overall linear trends before and after this drop in the first PC (Fig. 12d). The corresponding spatial pattern

(Fig. S26a and b) is most pronounced and coherent over the EAIS. The pattern of the first mode is an indicator for differences

and uncertainties in deriving intermission offsets, as CryoSat-2 measurements begin in July 2010. The errors in the altimetry

are not only seen in the first modes of the PCA of the residual differences. It is likely that the first modes of the PCA of the

residuals themselves also contain altimetry errors. A comparison of the dominant modes of the residuals (Fig. 11) with those495

of the residual differences (Fig. 12) indicates partly similar features, which suggests similar causes. For example, there are also

remarkably large fluctuations in the first temporal patterns of the residuals between July 2009 and January 2011 (Fig. 11d).

5.5 Limitations of the approach

In regions of low signal-to-noise ratio the regression approach has a limited capability to distinguish between signal and error.

This applies in particular for the interior of the EAIS (basin 8 and parts of basin 1 and 4). In these areas, the regression of500

the altimetry data to PCM may be dominated by noise in the altimetry data. In this study, we work with a constant spatial

grid resolution of 10km x 10km regardless of the signal magnitude. To improve the signal-to-noise ratio, further work may

choose a geographically varying spatial resolution adapted to the spatial variability of the glaciological processes, which would

probably imply a coarser resolution in the interior.

We included altimetry measurements only over the period May 1992 to December 2017 as this represents the common period505

of both altimetry products (Sect. 2). A2 altimetry data, however, are available until December 2020. Further investigations

may hence extend the period to the more recent past. These may incorporate accurate laser measurements from ICESat-2

characterised by low noise level and near-zero signal penetration (Nilsson et al., 2022; Otosaka et al., 2023a).

The stochastic model in the regression approach does not include temporal error covariances in altimetry (Sect. 3.3), al-

though errors in the altimetry time series exhibit temporal correlations, as shown by Ferguson et al. (2004) and also in this510

study (Sect. 4.3). The consideration of temporal correlations is essential for assessing more realistic uncertainties. In particular,
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this is the case for long-term trends (Williams et al., 2014). Thus, future work may extend the stochastic model. This requires

a comprehensive error characterisation for altimetry products, which is not provided up to now. An empirical error charac-

terisation could apply different noise models (e.g., power-law, Generalised Gauss Markov, auto-regressive) to the regression

approach (Bos et al., 2012; King and Watson, 2020). Alternatively, the spread of an ensemble of altimetry solutions could be515

considered (Willen et al., 2022).

5.6 Outlook

We do not aim here to compare our results with in situ data, as the ground-based SMB observations are mostly single point

measurements and have a very sparse spatial and temporal coverage (Eisen et al., 2008). However, future investigations may

assess the benefits of fvA in certain regions with in situ data, e.g. by making use of stake observations (Mottram et al., 2021;520

Richter et al., 2021).

To improve firn model outputs, it is important to refine the horizontal spatial resolution of RCMs and to simulate surface

processes at a higher spatial resolution (Lenaerts et al., 2019). For Greenland, Noël et al. (2016) statistically downscaled outputs

from RACMO2.3 at 5.5 and 11 km to a resolution of 1 km, which led to, e.g., increased melt over certain areas. Similar work

is in progress for Antarctica, downscaling RACMO2.3p2 at 27 km to 2 km (Noël et al., 2023). Furthermore, a more detailed525

physical parameterisation of the processes already considered and the inclusion of processes not yet simulated can improve the

models (Agosta et al., 2019; Gutiérrez et al., 2021). An update of RACMO2.3p2 to RACMO2.4 with enhanced physics may

soon be available. This includes several new and updated parameterisations, such as a cloud, aerosol and radiation scheme or

a new spectral albedo and radiative transfer scheme in the snow scheme (van Dalum and van de Berg, 2023).

To improve altimetry products, noise in the altimetry measurements and correlated altimetry errors related in particular to530

time-variable radar signal penetration and scattering effects need to be reduced. Helm et al. (2023) developed a new processing

scheme (retracker) based on a deep convolutional neural network architecture, resulting in presumably strongly reduced time-

variable signal penetration effects, which could significantly improve the elevation change products from the entire sequence

of radar altimetry missions. Moreover, the intermission calibration needs further investigation. The patterns of estimated in-

termission offsets are spatially variant and are related to the waveform parameters, possibly associated to topography and535

surface properties. However, this relation is not fully understood, so that no functional relationship has yet been found and in-

termission offsets are determined empirically (Zwally et al., 2005; Khvorostovsky, 2012; Schröder et al., 2019a; Nilsson et al.,

2022). Therefore, intermission calibration still remains one of the most challenging processing steps for inferring a long-term,

multi-mission satellite altimetry estimate.

Future developments in firn modelling, satellite altimetry analysis and altimetry mission sensors will allow to identify in-540

terannual firn signals and, thereby, to better isolate and quantify long-term trends. This will improve long-term estimates and

reduce their uncertainties. The regression approach presented in this study may set the stage for isolating long-term signals in

satellite altimetry from the large interannual variations. To this end, future studies should extend the approach with an appropri-

ate stochastic model that accounts for covariances in altimetry to derive statistically significant long-term trends over 25 to 30

years. With longer time series, trend uncertainties will be further reduced (Wouters et al., 2013). In this way, large uncertainties545

26



in inferring mass balance estimates of the EAIS (Otosaka et al., 2023b) may be reduced and the question whether the EAIS is

currently thickening or thinning (Nilsson et al., 2021) may be answered in the future.

6 Conclusions

We developed a new approach that combines satellite altimetry and firn modelling results to resolve Antarctic firn thickness

variations at a high temporal and spatial resolution, namely by monthly 10 km grids. On the one hand, our approach incorpo-550

rates the strengths of the firn models, above all the capability to capture the timing of firn thickness variations. On the other

hand, our approach compensates for shortcomings of the firn models, foremost in the simulation of the location-dependent

amplitudes of the variations. To do so, we fitted dominant temporal patterns of interannual to decadal variations in Antarctic

firn thickness inferred from the firn models from Veldhuijsen et al. (2023) and Medley et al. (2022a) to satellite altimetry

observations from Schröder et al. (2019a) and Nilsson et al. (2022). In this way, we generated a new, combined product, which555

we named the adjusted firn thickness variations, fvA.

Our guiding question was: How well can satellite altimetry and firn models resolve Antarctic firn thickness variations? Well,

it depends. This study shows that firn models and altimetry products provide complementary information on firn thickness

variations. The combined data set, fvA, characterises spatially resolved variations better than either (1) firn models alone or

(2) altimetry alone. (1) The adjusted firn thickness variations, fvA, outperform the modelled firn thickness variations, fvM.560

Compared with fvM, fvA improves the amplitudes of the variations because they are observed by the altimeter satellites and

their patterns actually indicate more meaningful information. However, the improved observed amplitudes may also include

effects of altimetry errors due to firn penetration, as both the time-variable signal and these errors are influenced by the SMB

and firn processes and are thus temporally correlated. (2) The adjusted firn thickness variations, fvA, outperform the altimetric

variations, hvA, because fvA eliminates a large part of the altimetry errors. If one were to take hvA alone, this would also565

incorporate all the errors of hvA. Over Antarctica, or rather the entire area studied, this would introduce median absolute and

relative uncertainties of ∼7.3 cm and ∼163%, respectively (evaluated at grid cell level). However, by choosing fvA instead of

hvA, part of the observed firn signal is ignored.

How well fvA resolves real Antarctic firn thickness variations depends strongly on the region under investigation. Over all

grid cells of Antarctica, median absolute and relative uncertainties of fvA are ∼4.2 cm and ∼80%, respectively. Over all grid570

cells of individual basins, the median relative uncertainties are lowest for basin 5 (the region of Queen Mary Land), and highest

for basin 8. The large uncertainty in basin 8 is likely due to the presence of megadune fields. We find the smallest adjustment

that fvA requires over fvM when using the altimetry data from Schröder et al. (2019a) and the firn model Veldhuijsen et al.

(2023) and this is most prominent for basins 5 and 6. From the spectral analysis of the altimetry residuals, rA, we find still

autocorrelated signals that we could not attribute to firn thickness variations using the firn models. We attribute this to a575

combination of altimetry errors, in particular time-variable signal penetration and errors in intermission offsets, and to firn

model errors, that is, incorrectly simulated processes or missing processes.
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We identified regions of discrepancy between the firn models and the altimetry products and within the models or altimetry,

and discussed the underlying errors in both the models and the altimetry. These results shall help modellers and altimetry data

processors to improve their simulations and processing methods (Sect. 5.6), and help users to better understand the nature of580

the modelling and altimetry data and to apply and interpret them knowing their strengths and limitations.

Appendix A: Impact of methodological changes

A1 Methods

To investigate the impact of methodological changes on determining adjusted firn thickness variations, fvA, three modifications

to the original regression approach are tested.585

In the first experiment E1, we simply subtract the modelled firn thickness variations, fvM, from the altimetric variations,

hvA, according to

rE1(t) = hvA(t)− fvM(t). (A1)

In the second experiment E2, fvM at any grid cell is simply scaled to fit the altimetric variations. The regression reads

hvA(t) = e fvM(t)+ rE2(t), (A2)590

where e is the scaling factor. We refer to e fvM = fvE2 as scaled firn thickness variations. In the third experiment E3, we do not

change the principle of the deterministic model Eq. 1 but we modify the dominant temporal patterns PCM. Originally, PCM

are derived from standardised fvM by PCA. In E3, fvM are not standardised prior to the PCA. The resulting modified adjusted

firn thickness variations are referred to by fvE3.

We consider that regression method as best whose R-squared value, R2, is maximum, i.e. which is able to describe most of595

the data variance. For the three experiments, Eq. 3 modifies to

R2
E1 = 1− SS(rE1)

SS(fvMa + rE1)
, (A3a)

R2
E2 = 1− SS(rE2)

SS(e fvMa + rE2)
= 1− SS(rE2)

SS(fvE2 + rE2)
, (A3b)

R2
E3 = 1− SS(rE3)

SS(fvE3 + rE3)
. (A3c)

A2 Results600

The impact of methodological choices on the goodness of fit is tested based on the three modifications/experiments E1–E3

(Sect. A1). The results are given for using the Ma firn model and A1 altimetry and should, therefore, be compared to the results

from the regression approach A1a.

For every grid cell, Fig. A1 compares the R-squared values from the regression approach A1a, R2
A1a, to the R-squared values

R2
E1, R2

E2 and R2
E3. R2

A1a is larger than R2
E1, R2

E2 and R2
E3 over 88, 78 and 66% of the total area, respectively. After calculating605
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Figure A1. Differences between the R-squared values from A1a and the experiments E1, E2 and E3. (a) A1a−E1, (b) A1a−E2 and

(c) A1a−E3. Colour bar arrows indicate that the value range exceeds the limits of the colour scale.

Table A1. Explained variance or R2 for each basin and each experiment E1, E2, E3 of methodological changes to the regression approach

over the period after 2003. R2 is first calculated for each grid cell according to Eq. A3a–A3c and after averaged over each basin. Values of

E1, E2 and E3 are calculated by first averaging the results from the experiments over each basin and then applying Eq. A3a–A3c.

Basin E1 E2 E3 E1 E2 E3

01 0.20 0.34 0.38 0.71 0.73 0.78

02 0.21 0.38 0.45 0.77 0.88 0.88

03 0.21 0.42 0.47 0.89 0.94 0.95

04 -0.29 0.12 0.24 -5.52 -0.22 0.06

05 0.06 0.26 0.26 -0.19 0.36 0.31

06 0.21 0.29 0.32 0.73 0.76 0.80

07 0.23 0.40 0.49 0.72 0.87 0.92

08 -0.08 0.11 0.17 0.23 0.48 0.50

09 0.32 0.39 0.47 0.94 0.93 0.96

10 0.27 0.46 0.56 0.93 0.97 0.96

01–10* 0.11 0.31 0.37 0.64 0.71 0.79

* refers to the entire area (considered as a single basin)
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R2
E1, R2

E2 and R2
E3 for each grid cell, (basin) mean values are derived and listed by Table A1, columns 2–4. Averaged over

the entire area, E1, E2 and E3 have mean R2 values of 0.11, 0.31 and 0.37. For all three modifications, R2 is smaller than

R2
A1a (Table 3, column A1a) and thus, their regression approaches describe less of the data variance than the original regression

approach A1a. E3 describes slightly more of the data variance than A1a for one out of 10 basins (basin 3: 47 versus 45%).

Moreover, Table A1 (columns 6–7) lists values of R2 derived from basin averages time series (E1, E2 and E3). Values derived610

from basin averages time series are larger than values based on the calculations per grid cell, similar to the regression approach

A1a (Table 3, column A1a versus A1a).

The simple scaling factor e adjusted during the regression approach after experiment E2 is displayed in Fig. S30.

Data availability. The altimetry products from Schröder et al. (2019a) and Nilsson et al. (2022) are available at https://doi.pangaea.de/10.
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model data from Medley et al. (2022a) is available at https://doi.org/10.5281/zenodo.7054574 (Medley et al., 2022b). The code of the firn

model from Veldhuijsen et al. (2023) is available at https://github.com/brils001/IMAU-FDM and https://zenodo.org/records/5172513 (Brils
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