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Abstract. Elevation changes of the Antarctic Ice Sheet (AIS) related to surface mass balance (SMB) and firn processes vary
strongly in space and time. Their shert-term-sub-decadal natural variability is large and hampers the detection of long-term
climate trends. Firn models or satellite altimetry observations are typically used to investigate such firn thickness changes.
However, there is a large spread among firn models. Further, they do not fully explain observed firn thickness changes, es-
pecially on smaller temperal-and-spatial scales. Reconciled firn thickness variations will facilitate the detection of long-term
trends from satellite altimetry, the resolution of the spatial patterns of such trends and, hence, their attribution to the underlying
mechanisms. This study has two objectives: First, we quantify interannual Antarctic firn thickness variations on a 10 km grid
scale. Second, we characterise errors in both the altimetry products and firn models. To achieve this, we jointly analyse satellite
altimetry and firn modelling results in time and space. We use the timing of firn thickness variations from firn models and the
satellite-observed amplitude of these variations to generate a combined product (‘adjusted firn thickness variations’) over the
AIS for 1992-2017. The combined product characterises spatially resolved variations better than either firn models alone or
altimetry alone. We detect highest absolute differences between the adjusted and modelled variations at lower elevations near
the AIS margins, probably influenced by the lower resolution —more-blurred-and the less precise spatial distribution of the
modelled variations. In a relative sense, the largest mismatch between the adjusted and modelled variations is found in the dry
interior of the East Antarctic Ice Sheet (EAIS), in particular across large megadune fields. Here, the low signal-to-noise ratio
poses a challenge for both models and altimetry to resolve firn thickness variations. The-altimetrie-residuals-still-contain-a-A
large part of the aitimetry-varianee-and-inetude-firn-variance in the altimetric time series is not explained by the adjusted fim
captured by the models, and altimetry errors—Apartfrom-, such as time-variable penetration-effects-of radar-altimetry-signals;
stduals-diselosepe -indieati ertatnties-radar penetration effects but also errors in intermission calibration.

1 Introduction

The global mean sea level rose by 3.054 0.24 mmyr~! during the period 1993-2016 (Horwath et al., 2022). Ice-mass loss
from Antarctica contributed ~ 6 % to this rise (Horwath et al., 2022), and is likely to continue (Horwath-et-al- 2022 TPCC, 2021



25

30

35

40

45

50

55

IPCC, 2021). The evolution of the Antarctic Ice Sheet (AIS) is of critical concern because the AIS contains the world’s

largest reservoir of frozen freshwater —the-equivalent-of~58m—in—global-mean—seatevel(Fretwell et al., 2013), and pro-
jections of Antarctica’s future contribution to the-sea-level rise exhibit a large spread GSeh{egekeFal—zG%Sa—Re}aﬁve—te

—(Schlegel et al., 2018; Fox-Kemper et al., 2021). In order to narrow the-range-of future-sea-level-rise-projections;-this spread
we need to better understand the ice-sheet processes &ﬂd—feﬁhﬂ—tmpfev&glgggglvlvlmmodels and observational con-

straintsto-gtanti

The mass balance of a grounded ice sheet is commonly separated into three processescomponents: surface mass balance
(SMB), ice discharge and basal mass balance;-and-ice-discharge. SMB comprises total precipitation (snowfall, rainfall), total
sublimation (from surface and drifting snow), drifting snow erosion and meltwater runoff (van den Broeke et al., 2016; van

Wessem et al., 2018). It refers to processes occurring on the surface of the ice sheet in the snow and firn layer. Snow refers to

the seasonal snow cover, i.e. it is less than a year old. Firn refers to multiyear snow and is defined as the transition from snow to
lacier ice (van den Broeke, 2008). In the following, we refer to both snow and firn by the term firn layer. Ice discharge is the

ice flow across the grounding lines . Basal mass balance

is thought to be small (Otosaka et al., 2023a), and not considered here.

The eurrent-overat-mass—batance-mass loss of the AIS is dominated by an-inereasein—masstoss-through-ice-discharge
resulting from-an-aceeleration-of glacier-flow, primarity-from-ice discharge from outlet glaciers of the West Antarctic Ice Sheet
(WAIS) (Velicognaetal;2020; Rignotetal;2049)(Otosaka et al., 2023b). However, uncertainties in the long-term SMB limit

the attribution of mass balance components when evaluating satellite data (Willen et al., 2021). On interannual to decadal

timescales, variations in SMB (dominated by precipitation) control the variability of the Antarctic mass balance en-interanntat
to-deecadal-timeseales-(Rignot et al., 2019; Davison et al., 2023). The amplitudes of SMB variations, as—well-as—just as the

SMB itself, vary strongly over space. They are influenced by ice sheet topography and atmespheﬁwnekeee&mc—eeﬁeh&eﬂs

by oceanic and atmospheric conditions

Lenaerts et al., 2019; Noble et al., 2020; Kaitheri et al., 2021). Over the satellite period, on a decadal and

multidecadal scale, possible-climate trends are masked by the large short-term-interannual Antarctic SMB variability (Mottram

and circulations

et al., 2021; Gutiérrez et al., 2021). An improved quantification of interannual SMB variations in space and time is required

in order to robustly resolve long-term SMB-trends-trends in the Antarctic SMB and overall mass balance (King and Watson,
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2020). This is currently lacking (e.g. Mottram et al., 2021).

are commonly used to simulate the SMB for the entire ice sheet (Lenaerts et al., 2019). When the main goal of RCMs is

to realistically simulate the ice sheet weather, as is the case here, they are forced by atmospheric reanalysis products whieh

and thoroughly evaluated against hundreds of in situ observations of SMB (van Wessem et al., 2018; Agosta et al., 2019).
Mottram et al. (2021) demonstrated that different RCMs provide similar outputs for annual to decadal SMB variations on a

continental scale (Antarctica), as long as they are driven by the same reanalysis product. However, spatial-variationsin-SMB

i of il . led AJS-
Resultsresults from RCMs are used to force firn models, that-which simulate the temporal evolution of the Antarctic firn due
to SMB and firn processes such as densification (Ligtenberg et al., 2011; Lundin et al., 2017). Firn elevation changes, or firn

thickness changes, are an output of firn models. Verjans-et-al(2021)-examined-differences-intinear-trends-of There is a large
spread between firn thickness changes between-a-range-of-54-from different firn model setupsfor-the- EALS—On-a-basin-seale;

mainly because the uncertainty in the modelled SMB directly influences the modelled firn thickness (Verjans et al., 2021).

Besides modelling tools, satellite measurements are the only possibility to infer ice-sheet-wide changes in SMB and firn

thickness. Observations from the
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By-contrast-observationsfrom-satellite-satellite altimetry provide a higherhigh spatial resolution of several kilometres and
go back to the year 1992 for covering most of the AIS (Wingham et al., 1998). They-These measurements allow the derivation

tve-ice-sheet surface elevation changes due to
volume changes of the AIS and to the deformation of the solid Earth, with the latter negligible compared to the former (Willen

et al., 2021). Most of the altimetry missions utilise {&)-radar waves (e.g. Envisat, CryoSat-2). Since 2003 laser altimeters are
also used (e.g. ICESat-2ICESat). While laser altimeters rely on good atmospheric conditions (no thick clouds or blowing snow)
radar altimetry is independent of weather conditions (Otosaka et al., 2023a). On the other hand, laser signals are reflected at

or near the ice-sheet-surface, independently of its properties, while radar signals penetrate into the upper snow/firntayers:
Radar-altimetry-results-can-thus-be-biased-by-firn layer. This may cause biases and artificial variations in radar altimetry results

depending on the time-variable dielectric properties of the

—firn and the data processing choices to account for them (Davis and Ferguson, 2004; Rémy et al., 2012).

120

125

Using SMB and firn modelling outputs alone to quantify interannual variations in SMB and firn thickness introduces large
uncertainties: the inter-model spread is large, and the model outputs also differ from ebservational-data(Seetion—t2)-satellite
. Likewise, interannual variations analysed using only data from gravimetry-and-altimetry-satellite observations are strongly
affected by their errors (Horwath et al., 2012; Mémin et al., 2015; Su et al., 2018; Shi et al., 2022). Moreover, it is difficult
to relate the variations-derived-from-observations-alone-observed variations to their physical causes. Therefore, the studies of
Sasgen et al. (2010), Bodart and Bingham (2019), Kim et al. (2020), Kaitheri et al. (2021) and Zhang et al. (2021) compared or
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combined ebservational-and-medelling/meteorological-dataspace-based geodetic observations with meteorological fields from
atmospheric reanalysis data or RCMs. However, their derived interannual variations are spatially-coarsely-resolved-coarsely

resolved in space (at about 400 km) and mainly limited to the GRACE/period of the satellite gravimetry missions GRACE and
GRACE-FOpetiod.

14—Purpese

This study focuses on the interannual variations in firn thickness on a regional to local scale. Knowledge of interannual varia-
tions is required to isolate long-term trends in ice volume or mass changestSeetion-+-1). To identify the underlying glaciological
processes and separate SMB and firn signals from ice dynamics, the spatial patterns of interannual variations and long-term
trends need to be resolved. As the analysis of basin integrals is not sufficient for this purpose, we work at 10 km grid-scale
level. We characterise and quantify firn thickness variations in space and time by combining results from satellite altimetry and
firn modelling. By combining both data sets, we expect to reduce uncertainties and-errors-compared-with-compared to the vari-
ations derived from altimetry or models alone. For the first time, the entire-spatial-full spatial and temporal information present
in beth-the altimetry products and-modelling-outputs;-is exploited together with the high-(monthly)-temperal-reselution-of
gridded-altimetry produects;isjointly-explottedmodelling results. Apart from determining firn thickness variations empirically,

our analysis provides information on the error characteristics of both the altimetry products and the model outputs.

2 Data

2.1 Altimetry

attimetry—products from Schroder et al. (2019a) and Nilsson et al. (2022)derived—. Both studies provide monthly resolved

elevation changes of the grounded AIS from a multi-mission satellite altimetry analysis. The-elevation-changesrepresent-By
elevation changes, or elevation anomalies, as-they-we refer to the difference between the elevation at time ¢ and the elevation

at a referenee-epoch-tychosen reference epoch. We use elevation changes over the time period May 1992 to December 2017
containing data from pulse-limited radar altimetry ERS-1, ERS-2, Envisat and CryoSat-2 low resolution mode (LRM), from

radar altimetry CryoSat-2 in synthetic aperture radar interferometric (SARIn) mode and from laser altimetry ICESat. As-each

is-set-to-ensure-spatial-dataeeverage-While the orbit configurations of the missions entail different limits of coverage close to

the poles, all mentioned missions cover at least up to 81.5° S. Grid-We exclude grid cells with large gaps in the altimetry time
series, such as the area south of 81.5° S and the Antarctic Peninsulaare-exeladed. The upper time limit December 2017 is set to

and»dfﬁefeﬂees—bemfeeiﬁ(}l}ﬂﬂd%—pemfeéem—covera e by both products.
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(using-a—10-%-threshold)—of the pulse-limited radar altimeters to derive elevation measurements. Data from the CryoSat-
2 SARIn mode was processed by Helm et al. (2014)and-Nilsson-etal«(20+6)-for TUb-andJPL;respeetively—The-height-,

Nilsson et al. (2022) used the pre-processed elevation measurements of the “Geophysical Data Record” (Brockley et al,, 2017)
for ERS-1, ERS-2 and Envisat, They applied their own processing to the CryoSat-2 data (Nilsson et al., 2016). The elevation

measurements were analysed using repeat-track altimetry on a polar-stereographic grid to derive elevation time series. For
this analysis, Schroder et al. (2019a) and Nilsson et al. (2022) used different grid spacing and differentsearchradii(eonstant
versus-varying/mission-dependent)search radii. Further differences refer to the removal of time-invariant topography (bilinear
%&ffaeﬂeﬁwmf}m%gﬁmde}%hﬁeaﬂ—bfhﬁeaﬁeﬁbiq&adfa&&wffaee%and the correction for time-variable radar 31gna1 pene-

tration and scattering effects(ba

While Schroder et al. (2019a) performed these twe-steps in one least-squares fit, Nilsson et al. (2022) implemented-two-separate
fitsfor-this-purpesefitted them separately.

To derive a continuous time series of elevation changes, intermission /and intermode calibration offsets must be solved. Fhis

r-While Schroder et al. (2019a) used overlapping epochs
or subtracting-subtracted a technique-specific reference elevationand—-JPL-, Nilsson et al. (2022) used a least-squares adjust-

y-differsand then selected overlapping epochs with special treatment of the less than four months Envisat-CryoSat-2 overlap.

Moreover, Nilsson et al. (2022) scaled the seasonal amplitudes of the time series of ERS-1, ERS-2 and Envisat to the seasonal
amplitudes derived from CryoSat-2 to mitigate artificial seasonal variations caused by time-variable signal penetration. Finally,
Schroder et al. (2019a) smoothed the processed data by a three-month moving average and a 10 km one-o Gaussian weighting
function. This reduced the spatial grid resolution to 10 km x 10 km. Nilsson et al. (2022) interpolated the processed data with
collocation (max. search radius of 50 km, correlation length of 20 km) on a spatial grid with a formal resolution of 1920 m

x 1920 m. We interpolate the

a-data from Nilsson et al. (2022) to
conform to the product from Schroder et al. (2019a) Therefore, we average the data spatially over 10 km x 10 km —We-smeooth

data-tsfurtherrestricted-to-and temporally over three months. We only use those points in time and space where TUD-altimetry
data-is-available-data are available from both products.
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on the interannual to decadal time scales, we fit and remove the offset, linear, quadratic and seasonal signals from the monthl
elevation changes for every 10km x 10km grid cell. Seasonal signals are modelled by annual and semi-annual cosine and sine

functions. Thereby, we fit different seasonal amplitudes for the time periods before and after 2003. In this way we account

in the seasonal amplitudes between the older pulse-limited radar altimetry missions (ERS-1, ERS-2

Envisat, ICESat, CryoSat-2) (Nilsson et al.

for the inconsistenc

and the newer missions 2022), as the corrections for time-variable penetration

3

effects on the radar return signal are imperfect in reducing unrealistic seasonal amplitudes in particular for the older missions

Ligtenberg et al., 2012). The fitted parameters are presented in Fig. S1-S4. After subtracting the offset, linear, quadratic and

seasonal signals, we are left with the interannual elevation changes, which we refer to as altimetric variations, hv* .

2.2  Firn models

We use the firn medel-thickness changes from the firn models IMAU-FDM v1.2A of Veldhuijsen et al. (2023), referred-to-as

MAG-(Institute-for- Marine-and-Atmospherie Researeh-Utrecht-firn-medel-which is an update of vi-1-+(Ligtenberg-et-al 204+
—As-an-alternative-data-set-we-involve-the- GSFC-FBDM-v1Ligtenberg et al. (2011), and GSFC-FDMv1.2.1 of Medley et al.
(2022a), referredto-as-GSEC(Goddard-Space Flight CenterHirn-model-tt-which uses the Community Firn Model framework of
Stevens et al. (2020, 2021). Here;-one-output-of-the-models-is-used;-thefirn-thicknessehanges-Firn thickness changes represent
firn thickness anomalies, as they refer to the difference between firn thickness at time ¢ and the mean firn thickness over a certain
reference period (see below). The- IMAU-model-outputs-Outputs from Veldhuijsen et al. (2023) are given every ten days and on
a regular grid with a spacing of 27 km from 1979 to 2020. The-GSEC-medel-outputs-Outputs from Medley et al. (2022a) are

given every five days and on a regular grid with a spacing of 12.5 km from 1980 to 2021. In accordance with the altimetry data,

we involve-use firn thickness changes from May 1992 to December 2017 and from the grounded AIS excluding the Antarctic

Peninsulaand-the-period-May1992-to-December2047—, We adapt the temporal resolution to that of the altimetry product by
calculating monthly means and applying a three-month moving average smoothing. In-the fellowingthe-main-firn-meodel-set

The IMAU-firn-medekfirn model from Veldhuijsen et al. (2023) is forced with 3-heurly-three-hourly fields of surface tem-
perature, 10m wind speed and SMB components (snowfall, rainfall, sublimation, snowdrift erosion, snowmelt) from the
h-RACMO2.3p2 (van Wessem et al.,

2018)to-. RACMO2.3p2 uses a spatial resolution of 27 km x 27 km —Fhe-GSFCHirn-model-and is forced by the ERAS
atmospheric reanalysis data (Hersbach et al., 2020). The firn model from Medley et al, (2022a) s forced with hourly fields of
snowfall, total precipitation, evaporation, 2 m air temperature ;-skin-temperature-and-runofffrom-and skin temperature from
a downscaled version (12.5km x 12.5km) of the MERRA-2 atmospheric reanalysis data (Gelaro-et-al5-2017)-downsealed
to-a-spatial-resolution-of +2-5kmx+2-5km(Gelaro et al., 2017; Tian et al., 2017). The firn layer was initialised by looping
over the forcing data of the reference period 1979-2020 (for-the IMAU-modeb-(for Veldhuijsen et al., 2023) and 1980-2019
{for-the-GSHEC-moedeh-(for Medley et al., 2022a) until the firn column was refreshed at least once. This implies the assump-

tion that the reference period represents stable climatic conditions and the current firn layer is in equilibrium. Hewever;
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Both firn models use the same semi-empirical equation of Arthern et al. (2010) to model dry-snow densification but their

proeedure-procedures for deriving the empirical correction terms differs-HMAU-derives-differ, Veldhuijsen et al. (2023) derived
this empirical correction from observations in Antarctica, while GSECempleys-Medley et al. (2022a) employed observations
from both Antarctica and Greenland. Furthermore, the two firn models use a different parameterisation for surface snow density.

Veldhuijsen et al. (2023) use the formulation of Lenaerts et al. (2012), which depends on instantaneous surface temperature
and 10 m wind speed, but with updated constants derived from their own calibration. Medley et al. (2022a) built a new model
parameterisation depending on snow accumulation, air temperature, total wind speed, and specific humidity. Ia-generalOverall,
they follow the approach from Helsen et al. (2008), which incorporates mean annual parameters. Both firn models take-inte

aceountinclude the processes of meltwater percolation and refreezing.

rates-between-altimetrie-elevation-changes-and-We subtract the offset, linear, quadratic and seasonal signals from the modelled
firn thickness changes deri he- 1M Ay o ' Aterim-reanalysi

assume constant seasonal amplitudes for the entire period. The subtracted parameters are presented in Fig. S1-S4. This leaves
us with firn thickness variations on interannual time scales, which we refer to as modelled firn thickness variations, oM,
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3 Methods

3.1 Regression-approach Basic approach

We jointly analyse sa

interannual elevation changes from satellite altimetry and firn modelling results. Fig. 1 gives an overview of the workflow.The
new combination approach is a regression of alt

hA(t) = a+bt+c(0.5¢2)

+H; (t) [dy cos(wt) 4 da sin(wt) 4 ds cos(2wt) 4 dgsin(2wt)]

+Hy(¢) [d5 cos(wt) + dg sin(wt) + d7 cos(2wt) + dg sin(2wt)].

+Zn 1 ?LPCM( )

+ri(t)
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311 Adiusted firn thiel -

&Our regression approach relies on the ability of firn models to capture the timing of dominant variations in SMB and
firn processes across basins. However, the amplitudes and spatial patterns of the variations are adjusted to satellite altimetry
results. We trust-the-temporal-more-than-the-spatial-give more trust to the temporal patterns of the firn model than to their
spatial patterns for the following reasons. Mottram et al. (2021) as well as Lenaerts et al. (2019) and Gutiérrez et al. (2021)
have pointed out that the spatial patterns of RCMs, which force firn models, show a large spread between models but-not-their
temporal-patterns{(Seetion—-2)while there is less spread between the temporal patterns. While spatially resolved differences
(between models, between observations and between models and observations) are substantial, the differences have beensheown
to-be-are reduced when basin averages are used (Agosta et al., 2019; Shepherd et al., 2019; Willen et al., 2021). Adso;the-The

overall good agreement of basin-mean time series on

in-Seetion-2:4-of fu™ and hv” is supported in Fig. $+-2.

3.2 Principal component analysis of modelled firn thickness variations

We identify dominant temporal patterns in firn thickness variations ;PG -—are-identified-by principal component analy-
sis (PCA)ef—the—firn—medeling—data. PCA, also called empirical orthogonal function (EOF) analysis, is applied to iden-
tify dominant modes of variability, represented by pairs of a pr1n01pal component (PC) and an EOF, where EOFs-and-the

™M) = a+bt+c(0.5t?)

“+d; cos(wt) + da sin(wt) + ds cos(2wt) + dy sin(2wt)

+M (1),

yeeny

variations—Fhe-The PCA is performed on these-the modelled firn thickness variations, wafter their standardisation. We

standardise the time series of fo™ for each grid cell, i.e. we shift and scale it such that it has zero mean and a sté-standard

12
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Ma (solid, black), of altimetric variations from Schroder et al. (2019a), hv?!,
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firn thickness variations based on Ala, fv® jtions are shown in Fig.
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Figure 3. Drainage basins of the EAIS and WALIS used in this study (thick black lines)fellewing-, slightly modified from the definition of
Rignot et al. (2011a, b). The outline of Antarctic Peninsula is indicated by a thin black line. Contour lines of the ice sheet surface are shown

at 1000 m, 2000 m and 3000 m. Highligh

o

—We use the polar stereographic projection EPSG:3031 (WGS84,
latitude of true scale: 71°S, central meridian: 0°). All further maps are displayed in the same projection and with the same spacing of

longitude grid lines (every 45°) and latitude grid lines (every 10°).

deviation (std) of one, because we aim to equally represent the patterns of temporal evolution regardless of location or absolute
amplitudes. Otherwise, PCA results would mainly reflect patterns that are dominant at the margins as-where the amplitudes
of SMB and firn thickness variations exhibit-much-largeramplitudes-at-the-margins-are much larger than in the interior (van
Wessem et al., 2018; Lenaerts et al., 2019). To regain interpretable magnitudes of the EOFs, the EOFs are multiplied by the std
of the time series of fv™" for each grid cell. which was previously used for standardisation. After this restoration of the signal
amplitudes, we no longer speak of EOFs but of modelled scaling factors, ™.
PCA-is-appliedindividually We separately apply the PCA to fu™ for 10 selected-regions-(basins that together cover the East
Antarctic Ice Sheet (EAIS) and the WAIS (Fig. 3). To define the regionsbasins, we make use of the drainage basin definition by
Rignot et al. (2011a, b) ~We-aggregate-and aggregate neighbouring basins smaller than ~ 600,000 km?with-these-reighbouring
WWMW%WMMW’W&WW&MM
by the correlations between the first three PCs —Fhi

WATLS-to-+0of a preliminary PCA per original basins. For each taggregated)-basinof the 10 basins, we choose the first N modes
that eentain-explain at least 90 % of the total variance of the (standardised) data. In addition, North’s rule of thumb (North

et al., 1982) is applied to test whether the eigenvalues of these N patterns are well separated with respect to their errors. The

14
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first N dominant temporal patternsP—G’%eﬂ{efEep—k PCM ., enter the regression approach in normalised form.

324 —Geodness-of fit
. o cons:
3.3 Regression approach

For each 10km x 10km erid cell, we describe the time series of monthly altimetric variations, ho™, b

N
mA(t) =a+Y_eh PCY(t) +12(1). (1)

n=1

A

The scaling factors e and the offset a are estimated by least squares adjustment. The dominant temporal patterns in
modelled firn thickness variations, PCM (¢ , refer to the basin to which the grid cell belongs. The residuals of the fit are 7,
We define a combined product by the linear combination of Eqg. 1, evaluated per grid cell and time:

N
ot (t) = Z e POM(t). ()
n=1

We refer to fu” (t) as the ‘adjusted firn thickness variations’.

The stochastic model of our regression in Eq. 1 prescribes a different weighting of observations from two time periods.
As results from the older altimetry missions generally have a higher noise level (Schroder et al., 2019a; Nilsson et al., 2022)
<" after 2003 are weighted by 1, while hv” before 2003 are given a different (usually lower) weight, which is defined,

individually for every grid point, by the ratio of the noise variance of hv™ before and after 2003. We assess the noise by the
high-pass filtered version of hv” separately for both periods (cf. Groh et al., 2019). The hi

a low-pass filtered version of hv™, where the low-pass filter is a Gaussian filter with a 6o = 12 months filter width,
To assess the goodness of fit, we calculate the coefficient-of-determinationvalues of R-squared, R*(R-squared)as-, as

h-pass filtering consists of removin

SS(r)y  SS(r?) _1 SS(rh)

B , 1 3
5500 550" S5 ) v

RZRy =1

55 )-and-SS (ho-where SS(r*) and SS(hv™) are the residual and total sum of squares, respectively. S:5(#)/5S o)
SS(rA)/SS(hv™) describes the proportion of unexplained variance. Herewe-We calculate R? for every grid cell individu-

allyand-exelude-the-adjusted-linear;seasonal-and-quad stemralsH-hor s Eg—S-speetfies-to
2 SS(rty SS(r™)
By =1-g55m = 1~ ssgoremy -
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Table 1. Names of the four different versions of adjaﬁed—ﬁfﬁ—ﬂﬁdeﬁesmﬁaﬁeﬁ%@g{gmderived by applying the regression
approach Eq. 1 with different data sets.Differences-to-Ata-are-indicated-inbold-

Name AA-h” from PCM from *

Ala  TUD-altimetry (Al }(Schroder ctal,, 2019%2) IMAU-firn-model-(Ma)* Ma (Veldhuijsen et al., 2023)
Ath Alb_ FUD-aktimetry-¢A1 H(Schroder et al,, 20192) GSFE firmmodelMby<Mb (Medley et al, 2022)

* standardised fo™ (Sect. 3.2)

385 3.4 Different versions of adjusted firn thickness variations

We derive two different sets of PC™ depending on the firn model incorporated. In-eur-annotation——we-—distingaish-Our
annotation distinguishes the firn models by superscripts ‘Ma’ and ‘Mb’ for the IMAU-and-GSFECmedelmodel by Veldhuijsen et al. (2023

and Medley et al. (2022a), respectively. The regression approach (Eq. 1) is applied with each set of PC™ and equally to each of
the two altimetry products-#from FUD-and-FPLproducts of hv” from Schroder et al. (2019a) and Nilsson et al. (2022), which
390 we distinguish by superscripts ‘A1’ and ‘A2’, respectively. Thus;-depending-on-the-combination-All combinations of data sets
used result in four applications of the regression approach (Table 1). Thus, we obtain four versions of adjusted firn thickness
variations (fu'?, fu®, fo*'Pand-, fo?")-This-also-results-in-four versions-of, altimetric residuals (212, A2, #Aand. A2)
and ef-assectated-coeffietents—of determinationR-squared (R3,,, R3,,, B3, and-, R3,.). Fabletgivesanoverviewof the

395

400

In Appendix Al, we additionally assess three alternative ways of defining ‘adjusted’ firn thickness variations. These alter-
natives are: (E1) Accept the modelled firn thickness variations, fu™, without any adjustment to altimetry. (E2) Instead of using
PCA-based dominant temporal patterns use the modelled time series of firn thickness variations at every grid cell and scale it

405 to fit the altimetry. Fhese-alternative-variations-are-ealled-We refer to the results as scaled firn thickness variations—We-refer
orthem by, A2 (B3) . . . L . .
standardisation-of-the-time-series-These-alternative-vartations-are-ecalled-Omit the standardisation step prior to the PCA and

roceed according to Eq. 1 and 2. We refer to the result as modified adjusted firn thickness variations—We-refer-to-them-by-,
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- Note, that we do not introduce fo"' as this

410  would correspond to fo™.

3.5 Assessment methods
3.5.1 Uncertainty of adjusted firn thickness variations

To-We assess the impact of the choice of data sets and thus the influence of different errors on the adjusted firn thickness

variations, fv", differences—between-by using differences between the time series of the various versions of firn thickness

415  variations:—fv{(Seetion-3-4)-are-used—In-generalfrom-, For each time series of differences we can calculate the temporal root
mean square (rms). This procedure-is-applied-to-timeseries-differences-evaluated-for-every-is done for time series per grid cell
and also for differences-in-basin-mean-time-series—

time series of basin averages. To assess the uncertainty of fhe—adjﬂsted—ﬁffr&&ekﬂes&vafiaﬁeﬂs,—va —we consider the
maximum deviation within the different versions of va (Table 1). For this purpose, we form ailrpesslb%&eembmaﬂeﬂyef

420

rms-values-where-we-choose-the-one-thatis-maximum-the six possible differences from vA and vAZb and take

the maximum of the rms differences.

3.5.2 Robustness of adjusted firn thickness variations

The-adjusted-We refer to the differences between adjusted and modelled firn thickness variations ,—va—,eaﬂJeeLc—eﬂ%idefed

425

demonstratethatas ‘the adjustments’ (fu® — fo™). We consider these ‘adjustments’ to be ‘improvements’ over the firn models,
if the differences within different versions of fv are significantly smaller than the m#ﬁeﬁeeﬁejﬁv—%ﬂﬂvesﬁga%e—fhﬁ—we

We-work-with-adjustments. We test for significance by comparing the distributions of their temporal rms. We use a two-
430 sample, one-sided Kolmogorov-Smirnov test which is a non-parametric hypothesis test as the differences in fv do not follow

a normal distribution. The Kolmogorov-Smirnov test uses the empirical cumulative distribution function (cdf) --whieh-is-the

integral-of the probability-density funetion(pdf);to compare the distributions of two samples (Massey, 1951; Miller, 1956; Marsaglia et al.,

. The null hypothesis (HO) reads: both samples, the data of both differences to be compared, are from the same continuous dis-

tribution. Thus, the alternative hypothesis (H1) reads: the empirical cdf of sample one (the differences within fu™), is larger

435  than the empirical cdf of sample two (the differences between fv"and-fv ™ adjustments), that is the differences within fo* tend
to be smaller than the differences between fv” and fo™

3.5.3 Spectral analysis of regression results

TFhe-We analyse the time series of altimetric residuals, *, and the-adjusted firn thickness variations, va, are-analysed-in the
spectral domain to-characterise-their stochastic-properties—We-caleulate-the-through their power spectral density (psd) and the
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465

470

their spectral indices,
to-estimate+(Bos et al,, 2012). As r* and va do not yield a white noise behaviour we use the formulation of power-law noise
to approximate their stochastic properties. {For example, power-law with kK = —1 and xk = —2 represents flicker and random

walk noise, respectively. )-
3.5.4 Principal component analysis of altimetric residuals

The four-versions-of altimetrierestduals(Seetion3-4)-altimetric residuals, r*, are further analysed in the spatio-temporal do-
main. First, we perform PCA on the altimetric residuals themselves to further identify dominant signals related to ice sheet
processes not considered or incorrectly represented by the firn models. {Note that the residuals may additionally contain sig-
nals related to variations in ice flow dynamics or subglacial hydrology. >-Second, we perform PCA on the residual differences
to further detect and investigate prevailing uncertainties in the altimetry analysis. Only data after 2003 is used because of
the higher noise level in the altimetry measurements of the older satellite missions. factasion-Test experiments showed that
errors of pre-2003 data would-result-in-mere-noisy-dominant-patierns-and-therefore-could-distort-detected-dominant-mode
bias the dominant modes and hardly helps to distinguish between signal and error. We standardise the time series of resid-
uals and residual differences, as we did previously when identifying dominant patterns in modelled firn thickness variations
(SeetionSect, 3.2).

The first PCA is applied to four versions of standardised residuals (rA18, rAIP rA23and- A2%) The second PCA is applied to

Ala _ A2 Alb _

two versions of standardised residual differences (r and r

rA20) For each PCA, we set up one aggregated ‘super

data matrix’ in which we arrange the time series

for each grid cell and each version into a single set of time series. PEA-Specifically, our data sets comprises m = 90638 points
2003-2017). Thus, for the first and second PCA, the

in space (entire area under investigation) and p = 108 points in time

super data matrix has the size of 4m x p and 2m x p, respectively. The PCA is conducted to identify the dominant temporal
patterns (PCs), which are shared by all versions, together with their space-dependent and version-dependent amplitades;ie-
(@m x 1 or 2m x 1) in the case of the first, or second, PCA, respectively.

4 Results

4.1 Dominant patterns in modelled firn thickness variations

t or-a oasms-ana—+1o WO-a attv putHih vV o—anao

basin;-different-numbers-of-modes-(i-e- PC-EOF pairs)-are required-to-We can explai
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1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 2017

Figure 4. PCA results of basin 3: dominant patterns in firn thickness variations identified from standardised firn modelling data (Ma).
(a-br-ea—c) First ;second-and-third-three spatial pattern-patterns (EOFEEQFs). (d) First three temporal patterns (PCs). () Associated percent-

ages of the basin’s total data variance. We-define-the PCs-as-standardised-time-series(mean-of zeroResults for all basins and for both firn
models, std-ofH-Ma and without-a-tunit-white-the EOFs-have-the-unitof-metreMDb, are given by Fig. S5-S9.

medesfor-of the modelled firn thickness variations *, with two modes (basin 5), three modes for-(basins 1, 3 and 6), four
modes fe&(basms 2, 4 and 8) and five modes for-(basins 7, 9 and 10tbased-on-Ma). The first-second;-third;fourth-and-fifth

and-EOF is almost uniform over the entire basin (Fig. 4a). The spatial features of the second EOF follow the topography from
north to south (Fig. 4b) and the third EOF exhibits an east-west gradient srespeetively-(Fig. 4c). The first mode-ofbasins2-and

PC shows a longer wavelength signal than the following
PCs. All three PCs fluctuate over time similar to an integrated random walk process (Fig. 4d). In the case of basin 3, 74 % of
the variance is explained by the first mode, which captures the accumulation events in 2009 and 2011 (Boening et al., 2012;
Lenaerts et al., 2013) —Fhei sl istie- se-as shown by the characteristic increase in
the PC during these years (Fig. 4d). All subsequent modes are more difficult to interpret as a geophysical signal because of-the
fact-that-their determination is governed by the mathematical orthogonality property of PCs.
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Figure 5. %WWW%WM%W%M—me the grid point P1 (Fig. 3). €yan
3 a alti y—(Ata)y-and,—for-adirect-comparisen;—to—the IMAU-firn
medel—éMaHespeewe}y—éa) Original-timeseries A2 and (b} Modelled firn thickness variations, fu™* (dashedsolid, black), traneated
modeHed-adjusted firn thickness variations, ﬁa&“o—“wsolld blackcyan), and adjusted-firn-thickness—vartationsaltimetric residuals, Foila
I,AVI\A, (setiddash-dotted, cyan). (eb—d); td)e)-Scaled first, second, and third deﬂﬂﬂaﬂﬁempefal—pa&efns—mfw—ﬂ%eﬂewmm solid
regression version Ala (cyan) and the model Ma (black#). The solid cyan curve in (ba) is the sum of the black/cyan curves in (e—eb—d).

)-Time series of theregressionresiduals—The black-eurve-a larger subset of selected grid points (*MFig. $10) equa%sffﬁM—,fngT‘M

4.2 Regression results

4.2.1 Time series for a selected grid point

Fig. 5 exemplifies the derivation of adjusted firn thickness variations for a selected grid point, P1, and based on the regression
Ala (Table 1). P1 (37.7°E, 70.2°S) is located in basin 3 close to the ice sheet margin at ~ 1080 m height (Fig. 3). There, the
adjusted and modelled firn thickness variations, fo?* and vaa have a s&aﬂdafd—de\ﬁaﬂeﬁéstdﬁﬂf—%}std of 40.5 and 51.5 cm,

construction, the scaling factors er——3-¢;_ 3 equal the std of the respeetive-associated scaled dominant temporal patterns. (In
the-ease-In the presence of data gaps in the altimetry time series, this equality holds approximately. )-~Both fo?* and fvm—)afvvw
are dominated by PC  ef basin3PCY™ (Fig, 5b), as this pattern is scaled by }'* = 39:6-em-39.2 cm (altimetry) and e}t

48.4 cm (firn model). For-eo;-altimetry-and-The second pattern, PCY™ (Fig. 5¢) is very small in the firn model have-eppesite

S; < S5 Ma — () 9 cm), while somewhat larger and of opposite sign for altimetry (e5'2 = —7.7 cm

, but still small enough to contribute little to fﬁf}}vA\B.
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The std of altimetric residuals, 7*'%s-31-0-em, is 31.7 cm, less than the std of fu™'* —~The coefficient of determination;
(Fig. 5a). The R-squared value R%,, (Eq. 3) is 6-610.601. When calculated separately for the time before and after 2003, R3,,
equals —0:06-and-0-84—0.004 and 0.831, respectively. Thus, the adjusted firn thickness variations, fu*'*, describe less of the
Vaﬂaﬂe&efﬂ}&mefﬂevaﬂa&eﬂﬂrwalvgmbefore 2003 while after 2003 they explain 84-%-DBistinguishing-the-time

3 i tons-82 %. Because of the different
weighting of " before and after 2003 &M&gngmmmwmmm

is reasonable.

Ala

The scaling factors e'%; and e)® ; per grid cell are mapped for the example of basin 3 in Fig. 6. The patterns of the factors,

like the EOFs (Fig. 4), follow a typical hierarchy already-discussed-in-Seetiondiscussed in Sect. 4.1. Overall, the patterns of
e . are-ina-good-agreement-agree for a large part with ef!%,. However, the first spatial pattern from the model extends
further tewards-into the ice sheet interior than the pattern from altimetry —(Fig. 6d versus Fig. 6a). In general, scaling factors
from the model show a smoother and more blurred pattern than the ones adjusted to altimetry. Patterns from altimetry reveal
a higher level of detail and a more localised spatial distribution. At certain regions the spatial distributions also differsdn-the
WMMMP] Gm&fkeéﬂs—a—fﬁaﬂg}e)—a}Mﬂe&yebsefve&ﬂie—seeeﬂd

A-comprehensive-presentation-of-The spatial variation of the scaling factors along two selected profiles is given by Fig. S13
and a comprehensive representation of the scaling factors for all basins and-for-with the different choices of input data are-is

given by Fig. S5 and S14.

4.2.3 Firn thickness variations and their sensitivity to the choice of data sets
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Figure 6. Adjusted-sealing-Scaling factors for basin 3. (a—) ef!2, first three observed factors adjusted-to-FobD-aktimetryfrom the regression

Ala. (d-f) el 5, first three ‘modelled factors adjusted-to-from Ma, (d—f) is the IMAU-firn-modelsame as Fig. 4a—c but with restored signal
amplitudes for each grid cell. The location of P1 is shown by the black triangle.

are similar (Fig.
Rms values are largest at the ice sheet margin and smallest over the plateau of the EAIS. For grid cells in the elevation ranges
(1) below 1000 m, (2) 1000 to 2000 m, (3) 2000 to 3000 m and (4) above 3000 m, median rms values are in the range of (1)
13-2t0164-12.210 16.4, (2) WHQJ}M (3) 3-7to-51+-3.5t0 5.1 and (4) 2-2to-2-4em?2.1 to 2.3 cm, respectively.

ely—Differences between
adjusted and modelled variations reveal highest absolute rms values at lower elevations, near the ALS margins fwith median rms
differences in the range of +1-5-to-+2-7em-below1+666-m-13.4 to 14.7 cm below 1000 m (Fig. 7¢). In a relative sense, largest
mismatch is found in the interior of the EAIS but also at some locations at the ice sheet margin —(Fig. 7d).

To evaluate the sensitivity of fv to the choice of data sets, we calculate the difference between various versions of fv
(SeetionSect. 3.5.1)-—Fig—8-shows-, and compare the distributions of the rms of differences-between—various—versions-of-fv-
@mewwﬂmgﬁﬁfmp&eﬁdfffefeﬂees—af&dﬂplayeekﬂ%@g%%@lg SH-S19)—In-addition—to-the-distributions
-8). In total, differences within fu™ are smallest, followed by
differences within va while differences between fv* and fo™ are largest —(Fig. 8, Table 2). Differences within fv* indicate a

smaller influence by different firn model data than by different altimetry data. Differences between va and va are smallest

for Ala (adjustment over the IMAU-firn-model-through- TUD-altimetry)-and-firn model Ma through altimetry Al), largest for
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Figure 7. Root mean square (rms) of the times series of (a) adjusted firn thickness variations based on Ala, vala&and (b) modelled firn

Ala_vaa

thickness variations based on Ma, va"’. (c) Rms of the time series of the differences fv . (d) Rms of the time series of the differences

for'? — fuM2 divided by the rms of fo™?*. All versions of fv* and fo™ are illustrated in Fig. S15 and S16.
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Figure 8. Histograms of the temporal rms, assessed at each grid cell, of differences between various versions of firn thickness variations. {a)

Histegrams—Vertical lines in the box indicate median values. {b)-Cumulative-histogramsCorresponding rms maps of differences are displayed
in Fig. S15-S17.
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Table 2. Overview of the comparison between various versions of firn thickness variations, as detailed in Fig. 8. Column 1 indicates the
addressed comparison: between versions of adjusted firn thickness variations fo* (row 1-4), between modelled firn thickness variations fo™
(row 5), and between fv® and fu™ (row 6-9). For each comparison, column 2 gives the median (over all grid cells) of the rms (over time) of
differences between the two time series evaluated at each grid cell. The table is ordered by the median values (from small to large). Column
3 also gives the median of the rms of differences but as a relative measure. For each grid cell, the rms of differences are divided by the rms

of fu™*, Then, the median over all grid cells is calculated. Column 4 gives a short description or possible causes.

Difference Median Description/Cause

absolute relative
A2a—A2b 2.3cm 6-46-0.47  influence of different firn model setups based on A2
Ala—Alb 2Z6em2.7cm  6:5+0.52 influence of different firn model setups based on A1l
AtbAla—A2b-A2a 28em2.7cm 655054 different altimetry analysis based on Mb
AtaAlb—A2a-A2b  29em2.8cm  6:580.54 different altimetry analysis based on Ma
Ma—Mb 3.5cm 0.65 different firn model setups
Ala—Ma 3.8cm 0.73 Adjustmentadjustment over Ma through A1*
A2a—Ma 42em4.lcm  6:82-0.80 Adjustmentadjustment over Ma through A2*
A+bA2b—Mb 4.4cm 6:83-0.87 Adjastmentadjustment over Mb through A1*
A2bA1b—Mb 4.5cm 6:870.85 Adjastmentadjustment over Mb through A2*

* due to firn signals not correctly represented by the models (firn model errors) and/or due to errors in the altimetry products

A2b (adjustment over the GSECHfirn-model-through-JPL-altimetryfirn model Mb through altimetry A2) in a relative sense
and largest for A1b (adjustment over the firn model Mb through altimetry A1) in an absolute sense (Table 2). The differences

between the various versions of fv reflect errors in the firn models and in the altimetry products. These are further discussed in

SeetionsSect. 5.3 and 5.4.

4.2.4 Goodness of fit

The altimetric residuals are used to calculate the goodness of fit or R-squared (Eq. 3). The rms of the altimetric residual time
series is-and the values of R-squared based on the regression Ala, R3, , are presented in Fig. 9a (estimated-per—griceelt

and b, respectively, for the period after
MMMWQW%MM due to the different noise levels and
weighting of altimetry-observations-during-the altimetry observations in the two periods (Seetion-3-3)—The-rms-of-theresiduals
Sect. 3.3), so that R? is generally higher after 2003 than before 2003 (Fig. 9bjare-generalty-smatlerthan-from-the-ones-over-the
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Figure 9. (a;) Rms of the residual altimetric time series, 212 for {a)-the ful-period and-tb)-the-period-after 2003. (eb)Coeffictents- Values
of determination-R-squared for the regression Ala, R3,,. considering the period after 2003. Colour bar arrows indicate that the value range

Averaged over
the entire area, RAla is 0-46-0.40 after 2003 (Table 3). This means that on average 46-%-40 % of the variance of altimetric
variations is captured by the regression model, i.e. by folla, Depending on the basin, full? eapture-30-%-(basin-captures 26 %
MS) to 62%-58 % (basm 10) of the data variance. In general, the-goodness-offit-deereasesslightly-whenusing JPE

we find less agreement
with altimetry when incorporating the GSEE-Mb firn model instead of the BMAU-Ma firn model (Table 3, column Ala versus

A1b and column A2a versus A2b).
The impact of methodological changes to the regression approach (E1, E2 and E3 as summarised in SeetienSect. 3.4) is

presented-elaborated in Appendix A2.

—The methodological changes result in smaller
average R? values -(Fig. Al, Table Al), so less of the data variance eeuld-can be explained. For this reason, the modified
approaches are not preferable to the chosen regression approach presented in SeetienSect. 3.3.

By now, the presented R? values are based on calculations per grid cell in accordance with the regression approach Eq. 1. For
basin average time series, R? become-becomes larger. Fig. 2 shows the basin-averages-basin averages of adjusted firn thickness
variations, which we may compare to the basin-averages of the altimetric variations through the ceefficients-of-determination
values of R-squared given in Table 3, last column. Indeed, fu™*'* eould-eapture-51+%-(basin-4)-to-97 % captures up to 96 % _
(basins 9 and 10; West AIS) of the variance of basin average altimetry variations. (Basin-mean time series of all regression

results and versions are presented in Fig. S4—524--20 and S21.
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Table 3. Explained variance or eoefficients-of-determination—R> —for each basin and each version of regression (Table 1) over the period
after 2003. Apart from the last column Ala, R? is first calculated for each grid cell according to Eq. 3 and then averaged over each basin.

Values of Ala are calculated by first averaging the regression results over each basin and then applying Eq. 3. Basin averages of R* for the
eriod before 2003 are listed by Table S1.

Basin Ala A2a Alb A2b Ala
01 046042 043040 041029 636032 0.79
02 0:530.50 048045 049039 642040 0:94-0.92
03 0:48045 048046 048043 046044 0:940.93
04 0.26_ 0.36 0:410.13 027026 633051011
05 0:400.27 039033 636024 639035 0:79-0.54
06 0:42032 029027 036021 636025 0:82-0.74
07 0:570.52 047043 051040 64+034 0:94-0.92
08 0:36-0.26 0.37 036-0.11 637031 0:66-0.58
09 0:570.54 056046 053045 047044 0:97-0.96
10 0:620.58 056053 056044 048044 0:97-0.96

01-10% 046040 043040 042029 039034 083079

* refers to the entire area (considered as a single basin)

However, on the level of individual grid cells the altimetric residuals, *, still contain a large proportion of the variance of
altimetric variations. For example, for Ala and the period after 2003, an average ratio of 54%-60 % of the altimetric variations

are unexplained. Therefore, the residuals 7 are further investigated in the following SeetionsSect. 4.3 and 4.4.

4.3 Spectral analysis of regression results

mwtgmﬁla er—iﬂ—eﬂier—wefd&—the—midef}ymg—ﬂfﬂe—seﬂes-eﬁl e. rA1% are-is closer to white noise behaviour
than vala.' since the power spectral density (psd) for v™1% shows a steeper decrease with frequency than for 712 (Fig. 10a).

Ala A2 while above a certain frequency (~ 0.5 yr~! for P1) the

At low frequencies the psd of fv
psd of ! exceeds that of fu™'"* (Fig. 10a).
thenfv"1* At Ph-the The spectral indices « adjusted-to-determined for A and va“‘ GSee&en%é%%are —1.75 and <—3;

respeetively—Fereach-grid-eel;-—3, respectively, at P1. Over the entire area, the mean value of f@efj@e—we&}e&la%eé{e%e

generally exceeds the psd of r
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Figure 10. (a) Lomb-Scargle power spectral density (psd) of altimetric residuals, 7**, (blue) and adjusted firn thickness variations, fv
(green) for grid point P1. See Fig. S22 and S23 for the larger subset of selected grid points. (b) Spectral index « for power-law noise adjusted

to theresiduals*!* of every grid cell. Colour bar arrows indicate that the value range exceeds the limits of the colour scale.

are-shown-in
is —1.72 (Fig. 10b-—TFhe-mean-value-over-the-entire-area-amounts-to—1-72-1t), which indicates temporally correlated residuals

with characteristics close to random-walk noise. For fv'?, in contrast, the value of s is —3 at each grid cell. The employed
software to estimate  (Bos et al., 2012) has —3 as its minimum output value. Hence, vala has x < —3 and therefore a stronger

autocorrelation than r1%,

ig\g\:l”Ala

4.4 Dominant patterns in altimetric residuals

The first three ffmde&@ephﬂﬁegefhef%ﬂ%&meﬁéﬂﬁ%%ﬂaﬂeeﬁmd%%dommant modes explain 23 % of the variance
of altimetric residuals (Fig. 11e) and 19 % of the variance of residual differences —(Fig. 12¢). The first mode of the residual

differences captures 10 % and its temporal pattern reveals a prominent drop between July 2010 and January 264-4-Duete-2011
. 12d). Due to the data standardisation prior to PCAfheﬁpaﬁa}pa&em%vtvlchEQVEg cannot be directly 1nterpreted as ampli-

tudes in elevation chang

with-, For their presentation (Fig. 11a—c and 12a—c), we restored the signal amplitudes for each grid cell by multiplying the std
of eaeh—&me%em%m which was used beforehand to normalise the time serles}—¥hefebthe—regam1ﬂ{efpfe%able

5 Discussion

5.1 Interannual firn thickness variations
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Figure 11. PCA results of standardised altimetric residuals for the period after 2003. (a—c) First three spatial patterns (EOFs) — version-
dependent, shown here for r*'* and with restored signal amplitudes for each grid cell. {d—HResealedfirst-three-The EOFs fef—‘?&()\f\ﬁlflv

versions are illustrated in Fig. S24 and S25. (gd) First three temporal patterns (PCs) determined from the aggregated data sets of pAla pAID
A% and A%, (he) Associated percentages of the total residual variance considering the respective PC-EOF pairs. We-define-the PCs—as

Adjusted-In general, adjusted firn thickness variations fv* (e.g. Fig. 7a for version Ala) and modelled firn thickness variations
va (e.g. Fig. 7b for Ma) share the same general-spatial patterns. The largest magnitudes are found at lower elevations near the
ice sheet margins with median rms values in the range of decimetres. The smallest magnitudes are found over the plateau of the
EAIS with median rms values in the range of centimetres (SeetionSect. 4.2.3). This general spatial pattern was to be expected,
as it is related to the spatial variability of SMB. Snowfall, the main driver of Antarctic SMB variability, increases from the
dry, relatively flat and homogeneous interior to the steep and complex topography of the wetter eeastcoastal conditions. High
snowfall at the ice sheet margins occurs due to orographic precipitation, influenced by the winds and topography of the AIS

The power-speetral-density-(psd)-of-adjusted firn thickness variations fv* deereasesfromlow-to-highfrequencies-withreveal
a strong temporal autocorrelation through the strong decrease of their psd with frequency, with spectral indices x < —3 for a

power-law noise (Seetion4-3;Fig—10a)—The-strong-temporal-autocorrelation-observed-in-the-interannual-firn-signals-ge-model
Sect. 4.3). This is in line with the findings of King and Watson (2020). They estimated the power-law noise parameter & in the
range of —2.3 to —2.2 and —3.0 to —2.6 based on SMB estimates from RACMO2.3p2 and ice core composites, respectively.

{Unlike our analysis, they did-netco-estimate-a-quadratic-orseasonal-term—)-only co-estimated a linear trend.
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Figure 12. PCA results of standardised altimetric residual differences for the period after 2003. (a—c) First three spatial patterns (EOFs) —

version-dependent, shown here for A1 _ A% and with restored signal amplitudes for each grid cell. {d—HResealed-first-three-The EOFs

Ala A2a

forrA1l —pA2Gf g1] versions are illustrated in Fig, $26 and S27. (gd) First three temporal patterns (PCs) — the joint basis of 7™ — r** and

FALb _ A2

. (he) Associated percentages of the total variance of residual differences considering the respective PC-EOF pairs.

In the following, we compare how much variance of altimetric variations (for the period after 2003) can be explained accord-
ing to the applied approach and the two different spatial considerations used previously:First;-, namely, first, the percentages
assessed from grid cell time series and then averaged over the entire area—Seeend;-, and second, the percentages from time se-
ries averaged over the entire area (‘mean Antarctic’ time series, Fig. 13). The modelled firn thickness variations, vaa, explain
11 % and 63-%-64 % for the two spatial considerations, respectively (Table A1, columns E1 and E1). The scaled firn thickness
variations, fu™?, explain 35 %-and-73%-31 % and 71 % (Table Al, columns E2 and E2), respectively. The modified adjusted
firn thickness variations, fu™, explain 42-%-and-82%-37 % and 79 % (Table A1, columns E3 and E3). Finally, the adjusted firn
thickness variations, fu'*, explain 46 %-and-83%-40 % and 79 % for the two spatial considerations (Table 3, columns Ala and
Ala). Our regression approach (Eq. 1), which generates fulta, explains the-greatest-a larger part of the variance of altimetric
variations eompatred-with-than the other approaches. This-applies-not-onlyforthe-estimates-considering-each-grid-cell-equa

-The spatial scale in-

vestigated is crucial for the results, as the estimates from the basin-mean time series explain more of the altimetry variance

than the estimates considering each grid cell equally. However, the latter are needed to enable-the-investigation-and-further
interpretation-of regressionresults-based-on-theirspatial-patterns-understand the spatial patterns of firn variations.
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Figure 13. Mean Antarctic interannual elevation changes depending on the applied approach. Altimetrie-Modelled firn thickness varia-

tions (Ao fu™M), medeHed-firn-thickness-altimetric variations (f+™hv""), adjusted firn thickness variations (fo*'*), scaled firn thickness

variations (fv&?) and modified adjusted firn thickness variations (fv®?).
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Figure 14. (a) Rms of (the time series of) the differences fv®'* — fu!®. (b) Rms of the differences fo'* — fu?*. (c) Uncertainty estimate

of va: Maximum-maximum rms of any combination of differences within versions of va. (d) Rms of the residual differences r!1* — rA%

considering only the period after 2003. All rms maps (a—d) are normalised by the rms of fu™?.

645 5.2 Uncertainty and robustness of adjusted firn thickness variations

The adjusted firn thickness variations, va, include the effects of firn model errors and altimetry errors. The differences vala —

valb (Fig. 14a) and vaZa - vaZb, evaluated at every grid cell, are used to assess the influence of different firn model setups on
fv™. The median values (over all grid cells) of absolute and relative differences (Ata—Atby-are—~2:6-em-and~5+%are in the
range of 2.3 to 2.7 cm and 47 to 52 %, respectively (Table 2, Fig. 8). The differences fu*'* — fu™** (Fig. 14b) and fo™'® — fu*,
650 evaluated at every grid cell, are used to assess the influence of different altimetry analysis on fv®. The median values (over all
grid cells) of absolute and relative differences (Adta—A2a)y-are~2-9-em-and-~58%are in the range of 2.7 to 2.8 cm and ~54 %

, respectively (Table 2, Fig. 8). Both the firn model and altimetry errors are discussed in SeetionsSect. 5.3 and 5.4 separately.
To assess the combined influence of firn model and altimetry errors on va, the maximum deviation within the different

versions of fv* is used (SeetionSect. 3.5.1). Fig. 14c shows the map of the maximum rms values. The median values (over
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Figure 15. Histograms of the temporal rms of differences between various versions of firn thickness variations assessed at each grid cell of

basin 3.{a)-Histograms—(b)-Cumulative-histograms-

all grid cells) of absolute and relative (maximum) differences are w%emﬁmdw%géw, respectively. In
addition, median values are calculated for every basin + i ithi ins—separately. The
absolute and relative uncertainties range from 2:3-em-2.2 cm (basin 8) to +6:9-em-10.6 cm (basin 10) and from 59-%-54 %
(basin 5) to +89-%-186 % (basin 8), respectively. We consider these estimates to be rough, but rather conservative uncertainty
assessments for the adjusted firn thickness variations. In addition to the evaluation at grid cell level, the uncertainty of ot
is assessed by time series differences of the basin means. {See Fig. S20 for the basin-mean time series of the four versions
of fu™). The associated uncertainties per basin range from +:6-em-0.9 cm (basin 4) to 6:7em-6.4 cm (basin 10). The relative
uncertainties are in the range of 24-%-20 % (basin 2) to +31-%-108 % (basin 8). For mean Antarctic va an absolute and relative
uncertainty of W%%MMMM% respectlvely, are estimated.

To-We assess the robustness of fv

arthrough statistical tests
according to Sect. 3.5.2. For each basin, four tests per-basinare conducted, each comparing the temporal rms of the following

pair of differences in firn thickness variationsare-condueted: Test (1) compares Ala—A2a to Ala—Ma, test (2) compares
Ala—A2a to A2a—Ma, test (3) compares A1b—A2b to Alb—Mb and test (4) compares Alb—A2b to A2b—Mb. For all 40
tests, HO is rejected (at the 5 % significance level) and thus, HI is accepted. This means that the differences within va are
significantly smaller than the adjustments, i.e. the differences between fo* and f”MMM‘M&Q
improvement over fo". Fig. 15 a-exemplifies the distributions of the differences for basin 3. ¢The histograms and cumulative
histograms for all basins are shown in Fig. S28 and S29, respectively. )- The results of the statistical tests demonstrate that fot
is relatively robust to the choice of data sets, firn models and altimetry products. The choice of data sets does not significantly
influence fv™. Consequently, the assumption that fol represents a significant improvement over the modelled variations is

reasonable. Limitations are discussed below.
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5.3 Firn model errors

Firn model errors arise due-to-firn-signalsnot-(eorreetly)represented-by-either-from firn signals that are not simulated or not
correctly represented by the firn model or its input from RCMs er-even-and reanalysis data. Differenees-between v and
#¢M>They are partly reflected in the differences fu™* — fu™ (Fig. S16) as-welk-as-differences-between-and the adjustments
over the firn models, i.e. any version of va—&nd—fﬁM—M (Fig. S17)refleet-firn-modeluneertainties-and-errors. Partly,

fv—f‘w—tj/lgvzlgigsvtlnv%also include errors ﬁlﬂ%d«t@&@ﬂl—fﬂﬂewmeasufemeﬂ%s—aﬂéﬂﬂa}yﬂsof the altimetry products, as
discussed in SeetienSect. 5.4.

=—(cf. Fig. 6d—f versus 6a—b)-Onereasonfor-this-maybe

thedaek-of-a—b and also Fig. 7b versus 7a). Reasons may be small-scale, mainly wind-driven processes that are missing in the
model physics or not resolved in the firn-m

of-modeHed-firnthickness-variationssame detail due to the coarser spatial resolution of the models (Lenaerts et al., 2012, 2019

The spatial patterns of absolute differences within fu™ and between-any-version-of fvandf+"—of the adjustments (the
adjustments—-e.g. Fig. 7c), follow the spatial pattern of the signal itself. The greatest differences occur at the margins, where

the climate is wetter and temperatures and accumulation are higher than inland. Especially in these coastal regions of high-
relief topography, the horizontal resolution of the models, probably together with its physics, play an important role (Mottram
et al., 2021). There, the differences between altimetry and firn models may be influenced by an incorrect or inaccurate spatial
distribution of the modelled firn thickness variations (Fig. 6).

The modelled SMB components and their uncertainties have a direct impact on the modelled firn thickness. By assessing the
spread of an ensemble of modelled firn thickness changes, Verjans et al. (2021) identified the RCMs as the largest contributor
to the ensemble uncertainty. A precise parameterisation of firn compaction and surface snow density gains in importance in
regions with high snowfall and large spatial variability of climatic conditions, such as Dronning Maud Land and Enderby Land
(Verjans et al., 2021). However, the firn compaction rate in the- IMAU-and-GSECHira-model-both firn models used here is
determined by constant mean annual accumulation and not by instantaneous overburden pressure. This lessens the actual firn
compaction variability potentially across all the areas of large accumulation variability (Kuipers Munneke et al., 2015).

In a relative sense, the adjustments eve%ﬂ%e—ﬁfmeéelﬁthaﬁs,—aﬁy%eﬁieﬁefﬁA—fbM—,@.g. Fig. 7d) generally increase
from the coast to the EAIS interior as the magnitude of the signal, the firn thickness variation, is very small in the interior due
to the cold and dry climate. In these areas of low snowfall, the relative uncertainties in the firn models are virtually unaffected
by the formulation of firn densification and surface snow density, but the input of RCM components is essential (Verjans
etal., 2021). Scambos et al. (2012) argue that RCMs might overestimate SMB in wind-glazed areas. These areas feature wind-
polished glazed surfaces at the top of a coarsely recrystallised firn layer and are formed by constant katabatic winds. They have
near-zero SMB and occur on leeward faces of ice-sheet undulations and megadunes (Scambos et al., 2012). Large wind glazed

areas are located across basin 4 and 8, where all four versions of adjustments reveal highest relative values (Fig. S17e-h).
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In basin 4, towards the berderto-boundary with basins 1 and 3, the large relative adjustments (Fig. S17e-h) indicate dis-

agreement between the models and altimetry-

(Fig. S15i-1) -
(Fig. S16d). The tw

reasons for this are not yet clear. Basin 8 is characterised by large

megadune fields (Fahnestock et al., 2000; Dadic et al., 2013). Megaé&ﬂe—ﬁe}ds—eevefmefeﬁ%mn—%@%ekmlef—fhe%%ﬂs
plateat—The-megadunes-Megadunes typically have an amplitude of 2 to 4 m and wavelengths of 2 to 5 km and are formed by

a complex interaction of surface topography, snow accumulation and redistribution due to highly persistent katabatic winds.
While leeward slopes are wind glazed, windward slopes accumulate and are characterised by streamlined-bumps-or-groeves
{sastrigi-)-sastrugi up to 1.5 m in height (Fahnestock et al., 2000; Frezzotti et al., 2002). The discrepancy between altimetry
and the firn models across basin 8§ can partly be explained by the lacking modelling of the formation of the complex spatial
pattern of megadunes and their migration over time in the firn models. Fer-In case of basin 8, net-only-do-the-models and
altimetry notmateh; but the relative differenees-betweenfv “and-fv""disagree (Fig. S17e-h), as well as the different versions
M(Fig. S16d) and between-the different versions of va (diseussed-in-Seetion5-4)-are-also-highFig. S15i-1). The latter is
discussed in Sect. 5.4.

Discrepancies within the four-versions-of-adjustments-adjustments (i.e. within versions of fu* — fu™) can further indicate
which firn model, or which dominant patterns of one firn modely, fits the altimetry better. Overall, the adjustments are smaller
when involving Ma -the IMAU-firn-model(Fig. 8, Table 2). Amongst the different basins -this-applies-in-particularfor-basins
4-6-(see Fig. S28 d-fand-29Sd-Hand 529 solid green/brown versus dash-dotted green/brown), this applies in particular for
basins 4—6. Across basin 1-2 the adjustments tend to be slightly smaller when involving Mb;-the-GSECfirp-mode-(Fig—S28a
and-529a)—

. Altimetric residuals, 72, still include a non-negligible part (53-%60 % for Ala) of the variance of altimetric variations
(Fig. 9c, Table 3). }t-Since the dominant patterns were chosen such that they cover at least 90 % of the variance of fo™, r*

could partially contain real firn signals captured by firn models in the remaining ~10 % of the data variance. However, it is
likely that a larger part of r* stilt-inelude-includes real firn signals not captured by the dominant temporal patterns of the

firn models. The psd of the underlying time series of 7A1? yield a spectral index of —1.7 (SeetionSect. 4.3, Fig. 10b). The
remaining autocorrelation in the residuals suggests that temporally correlated signals such as real firn signals are still present.
Also, the spatial patterns of the most dominant modes of r* reveal topography-dependent magnitudes and patterns, as one
would expect from SMB and its variations (SeetionSect. 4.4, Fig. 11d—fa—c). Besides otherfirn signals, the altimetric residuals
additionally include altimetry errors (discussed in SeetionSect. 5.4) and probably also further signals related to variations in

ice flow dynamics or subglacial hydrology (not further-discussed-discussed further).
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5.4 Altimetry errors

The differences between any version of fv* and fo™ (the-adjustmentsthe adjustments, e.g. Fig. 7c) may include effects of
altimetry errors, in addition to firn model errors. Measurementnoise-in-altimetry-Noise in the altimetry measurements might
explain another part of the fact that firn models show a smoother spatial pattern of variations than altimetry. Noise in altimetry
can be a problem, especially in the interior of the EAIS where the signal-to-noise ratio is low{Seetion—-5-5). Over megadune
areas (widely located in the interior across basin 8), conventional radar altimetry with pulse-limited footprints of 1.5 to 2.5 km
in diameter may not be capable of adequately observing the time-varying spatial patterns of megadunes.

A further limitation in radar altimetry is that measurements refer to the local topographic maxima within their footprints.
Especially at the margins over complex topography, this can lead to sampling issues, as the elevation changes acquired there
cannot capture the larger changes often found in the valleys. Laser altimeters are not affected by this sinee-theirfootprints-are

much-smaller-(inthe range-of deetmetres)sampling issue. However, ICESathad-to-be-since ICESat operated in campaign mode
(Abshire et al., 2005) —Fhus;-the sampling in areas with steep slopes can vary strongly during the period 2003-2009as—seme

with some months including laser altimetry and some months relying exclusively on radar altimetry. Moreover, radar altimetry
results are affected by the time-varying radar waveform shape due to time-varying signal penetration (Davis and Ferguson,

2004; Rémy et al., 2012). Even though errersrelated-te-these effects are accounted for in the altimetry processing, they-are-not
fully-eliminated-and-related residual errors may have an impact on the adjustments. tn-addition;-these-time-vartableerrorsare

alse-tikely-to-be These errors, which tend to be correlated in time, are likely included in the altimetric residuals ;72, beeauser2
are-temporatly correlated justas-the-errors(Seetionwhich may explain, to some part, the temporal correlation of 7% (Sect. 4.3,
Fig. 10b).

Discrepancies within the adjustments (any-version-i.e. within versions of fu® — fo™) can indicate which altimetry solution

is closer to the firn models. ; However, results are

equivocal (Fig. 8, Table 2). When involving the Ma
firn model, the adjustments through Al are smaller than those through A2 for most basins (see Fig. S28 bre-fand S29 bresf):
Aeross basin S the-adjustments-tend-to-be smatter-when-invetving-green solid versus brown solid). When involving the Mb firn
model instead, the adjustments are in the same order of magnitude for Al and A2 -IPL-altimetry-and it depends on the basin
whether the adjustments are smaller with Al or A2.

Uncertainties due to a different analysis of the altimetry measurements are reflected by the differences in va (Fig. S28hand
S29h)—

>

s—14b) and r* ~(Fig. 14d) between solutions based on the same firn model
(Ala—A2aor Alb—A2b)s i ; : . I

analysis-of the-altimetry-measurements—, The median values (over all grid cells) of the-absetute-andrelative restduat-differences
Ala _ A2

pAL_pAZ are ~4-7emrms differences rA!? in the time period after 2003 are ~4.9 cm and ~96 %, respeetively—Fhe

ed—in an absolute and
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relative sense, respectively. If the entire period was considered, the median values would increase considerably (~7-2-em-
and—~162%~7.3 cm and ~163 %). For both periods, the residual differences are greater than the differences fv*—fv%
fo'® — fu** (Table 2, Fig. 14b) and also greater than the uncertainty estimate of fo* (SeetionSect. 5.2, Fig. 14c). Thus;the

Al and 42 mostly result from the combined effect of the

various differences between the altimetry analysis of TUD-and-JPEA(SeetionSchroder et al. (2019a) and Nilsson et al. (2022)

(Sect. 2.1). The rms of fo® — f A% is shown in Fig. 14b in a relative sense. The largest relative differences occur in regions of

The differences between fo*! and fv? as well as between r

complex topography, such as in Victoria Land (at the margin of basin 7) and next to the Amery Ice Shelf (at the margin of basin
4) and over almost the entire basin 8, for which we already discussed the possible influence of megadunes. In addition, stripes
related to the satellite ground tracks are visible in the region of basins 1 to 2 (Fig. 14b). They seem to appear predominantly in
fv™? (Fig. S15b and d).

The following features may likely be quite clearly attributed to a difference in intermission fand intermode calibration
between TUD-and-JPL-altimetry-the two altimetry products. The mode change of CryoSat-2 (LRM/SARIn mode; see e.g.
Fig. 5 in Slater et al. (2018) for the mode boundaries) is reflected in the difference of the residuals (Fig. 14d). Here, the main
influence seems to come from #PE-A2 altimetry, as the areas at the mode boundary in basins 5-7 and 9-10, characterised by a
higher rms value, are mainly visible in 742 (Fig. S18f and h). In addition, the mode transition also appears to be reflected in fu*?
particularly at basins 5 and 6 (Fig. S15b and d). The PCA carried out on 412 — A% and A1 — 1-A20 reveal a prominent drop
between July 2010 and January 2011 together with overall linear trends before and after this drop in the first PC (Fig. 12gd).
The corresponding spatial pattern (Fig. +2a-326a and b) is most pronounced and coherent over the EAIS. The pattern of the first
mode is an indicator for uneertainties/differenees-differences and uncertainties in deriving intermission offsets, as CryoSat-2
measurements begin in July 2010. The errors in the altimetry are not only seen in the first modes of the PCA of the residual
differences. It is likely that the first modes of the PCA of the residuals themselves are-also-affected-by-also contain altimetry
errors. A comparison of the dominant modes of the residuals (Fig. 11) with those of the residual differences (Fig. 12) indicates
partly similar features, which suggests similar causes. For example, there are also remarkably large fluctuations in the first

temporal patterns of the residuals between July 2009 and January 2011 (Fig. 11gd).
5.5 Limitations of the approach

In regions of low signal-to-noise ratio the regression approach has a limited capability to distinguish between signal and error.
This applies in particular for the interior of the EAIS (basin 8 and parts of basin 1 and 4). In these areas, the regression of

the altimetry data to PC™M

tons)-may be dominated by noise
in the altimetry data. In this study, we work with a constant spatial grid resolution of 10km x 10km regardless of the signal
magnitudein-each-grid-eell. To improve the signal-to-noise ratio, further work may geegraphicallyvary-and-adjust-thespatial
resolution-choose a geographically varying spatial resolution adapted to the spatial variability of the glaciological processes,
thatistn-general-a-higher resolution-on-the-eoast-and-a-which would probably imply a coarser resolution in the interior.
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We included altimetry measurements only over the period May 1992 to December 2017 as this represents the common
period of TUB-and-JPL-altimetry(Seetionboth altimetry products (Sect. 2). JPE-A2 altimetry data, however, are available until
December 2020. Further investigations may inctude-the JPE-data-after Pecember264+7-hence extend the period to the more
recent past. These may incorporate accurate laser measurements from ICESat-2 characterised by low noise level and near-zero
signal penetration (Nilsson et al., 2022; Otosaka et al., 2023a).

The stochastic model in the regression approach does not include ee-variances—temporal error covariances in altimetry
(SeettenSect. 3.3), although errors in the altimetry time series exhibit temporal correlations, as shown by Ferguson et al.
(2004) and also in this study (SeetionSect. 4.3). The consideration of temporal correlations is essential for a-properrealistie

uneertainty-estimation-of-assessing more realistic uncertainties. In particular, this is the case for long term trends ﬂffpame&hﬁc

(Williams et al., 2014). Thus, y—future

work may extend the stochastic model. This requires a comprehensive error characterisation for altimetry products, which
is not given-provided up to now. Nevertheless:-An empirical error characterisation could apply different noise models (e.g.,
power-law, Generalized-Generalised Gauss Markov, auto-regressive) eould-be-considered-to-empirically-identify-and-apply-the
bestHfitting-noise-model-to-the-to_the regression approach (Bos et al., 2012; King and Watson, 2020). Anether-pessibility-for
mmwu}%mmmof an ensemble of altimetry solutions and-their-spread

5.6 Outlook

We do not aim here to compare our results with in situ data, as the ground-based SMB observations are mostly single point
measurements and have a very sparse spatial and temporal coverage (Eisen et al., 2008) Thus;-a-validation-However, future

investigations may assess the benefits of fu*

Antaretica-and-Richteret-al(202D-in-the-loake-Vostokregionin certain regions with in situ data, e.g. by making use of stake
observations (Mottram et al., 2021; Richter et al., 2021).

5:6—Outleok

To improve firn model outputs, we—underline-the-importance-ofrefining-the-it is important to refine the horizontal spatial

resolution of RCMs and to simulate surface processes at a higher spatial distribution-resolution (Lenaerts et al., 2019). For
Greenland, Noél et al. (2016) statistically downscaled outputs from RACMO2.3 at 5.5 and 11 km to a high-reselutionproduet
resolution of 1km, eading-which led to, e.g.te-, increased melt over certain areas. Similar work is in progress for Antarctica,
downscaling RACMO2.3p2 at 27 km to 2km (Noél et al., 2023). Furthermore, a more detailed physical parameterisation of
the processes already considered and the inclusion of processes not yet simulated can improve the models (Agosta et al., 2019;

Gutiérrez et al., 2021). An update of RACMO2.3p2 to RACMO2.4 with enhanced physics may soon be available. This includes
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several new and updated parameterisations, such as a cloud, aerosol and radiation scheme or a new spectral albedo and radiative
transfer scheme in the snow scheme (van Dalum and van de Berg, 2023).

To improve altimetry products, meastrement-roisenoise in the altimetry measurements and correlated altimetry errors
related in particular to time-variable radar signal penetration and scattering effects eould-bereducedby-improvingthe-methods
of-analysisneed to be reduced. Helm et al. (2023) developed a new retrackerprocessing scheme (retracker) based on a deep
convolutional neural network architecture, resulting in presumably strongly reduced time-variable signal penetration —The-new
retracker-effects, which could 51gn1ﬁcantly improve the aeeufaeyﬁf'elevatlon change products from the entire sequence of radar

altimetry missions.

sMoreover, the intermission calibration needs further investigation. The patterns of estimated
intermission offsets are spatially variant and are related to the waveform parameters(, possibly associated to topography and

surface propertiesptay—a-—role-here). However, this relation is not fully understood, so that no functional relationship has yet
been found and intermission offsets are determined empirically (Zwally et al., 2005; Khvorostovsky, 2012; Schroder et al.,
2019a; Nilsson et al., 2022). Therefore, intermission calibration still remains one of the most challenging processing steps for
inferring a long-term, multi-mission satellite altimetry estimate.

Future developments in firn modelling, satellite altimetry analysis and altimetry mission sensors will allow to identify in-
terannual firn signals to-be-identified-and-quantified-with-higher-aceuraeyand, thereby, to better isolate and quantify long-term
trends. This will furtherimpaetimprove long-term estimates and reduce their uncertainties. The regression approach presented
in this study may set the stage for isolating long-term signals in satellite altimetry from the large interannual variations. Fer
thisreasorTo this end, future studies should extend the approach with an appropriate stochastic model that accounts for covari-
ances in altimetry to derive statistically significant long-term trends over 25 to 30 years. Longer(altimetry)-time-serieswill-then
furtherreduce-trend-uncertainties-With longer time series, trend uncertainties will be further reduced (Wouters et al., 2013). In
this way, large uncertainties in inferring mass balance estimates of the EAIS (Otosaka et al., 2023b) may be reduced and the

question whether the EAIS is currently thickening or thinning (Nilsson et al., 2021) may be answered in the future.

6 Conclusions

We developed a new approach for-combining-that combines satellite altimetry and firn modelling estimates-results to resolve
Antarctic firn thickness variations at a high temporal {menthly)-and-spatial(grid-secale-of H0km)resolutionand spatial resolution,
namely by monthly 10 km grids. On the one hand, our approach incorporates the strengths of the firn medetmodels, above all
the capability to capture the timing of firn thickness variations. On the other hand, our approach compensates for shortcom-
ings of the firn modelforemost-the-aceurate-models, foremost in the simulation of the location-dependent amplitudes of the
variations. To do so, we fitted dominant temporal patterns of interannual to decadal variations in Antarctic firn thickness in-
ferred from the firn models BMAU-(Veldhuijsen-etal; 2023 and-GSEC-(Medley-et-al2022a)-from Veldhuijsen et al. (2023)
and Medley et al. (2022a) to satellite altimetry observations from FTUD-(Sehroderet-al; 2019 -andFPE-(Nilsson-etal;2022)
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Schroder et al. (2019a) and Nilsson et al. (2022). In this way, we generated a new, combined data-setproduct, which we named
875 the adjusted firn thickness variations, va.

Our guiding question was: How well can satellite altimetry and firn models resolve Antarctic firn thickness variations? Well,
it depends. This study shows that firn models and altimetry products provide complementary information on firn thickness
variations. The combined data set, fv®, characterises spatially resolved variations better than either (1) firn models alone or
(2) altimetry alone. (1) The adjusted firn thickness variations, fu®, outperform the modelled firn thickness variations, fu™;

880 beeause-, Compared with fu™, fo* improves the amplitudes of the variations eompared-with-f+"-The-amplitudes representan
improvement-because they are observed by the altimeter satellites and their patterns actually indicate more spatial-and-thereby
meaningful information. However, ene-ecaveatshould-benoted—The-the 1mpr0ved observed amplitudes may also include effects
of altimetry errors due to firn penetration—Fhis—
vartations-of-the-stgnal, as both the time-variable signal and the-these errors are influenced by the SMB and firn processes

885 and are thus temporally correlated. (2) The adjusted firn thickness variations vakoutperform the altimetric variations, th,
because fv”* eliminates a large part of the altimetry errors. If one were to take hv™ alone, this would also incorporate all the

errors of hv™. Over Antarctica, or rather the entire area studied, this would introduce median absolute and relative uncertainties
of ~72em-and—~162%~7.3 cn and ~163 %, respectively (evaluated on-at grid cell level). However, one-caveat-should-be
noted-—By-by choosing fv® instead of hv™, part of the observed firn signal is ignored.

890 How well the-fv resolveresolves real Antarctic firn thickness variations depends strongly on the region under investigation.

Over all grid cells of Antarctica, median absolute and relative uncertainties of fu are ~4-3-em-and~82 %; respeetively(evaluated
on-grid-cell-level)-Over-the-basin-areas~4.2 cm and ~80 %, respectively. Over all grid cells of individual basins, the me-
dian relative uncertainties range—from-59-%(are lowest for basin 5 y-to—1+89%(basin-8)—Across-basin-8;—we-also-spatially
resolved disagreements betweenfv"andf+"—(the region of Queen Mary Land), and highest for basin 8, The large uncertainty
895 and-the-disagreement-are-in basin 8 is likely due to the presence of megadune fields. Overall—the-differences-between-We
W@g@m fv aﬂekggggggs\p)jggfv are-smallest-when using the THBﬂ}Hme&yﬂﬂd%h&INIAU—ﬁfﬂ
Veldhuijsen et al. (2023) and this is most prominent for basins 5 and 6. From the spectral analysis of the altimetry residuals,

r®, we find still autocorrelated signals that we could not attribute to firn thickness variations using the firn models. We attribute

900 this to a combination of altimetry errorst, in particular time-variable signal penetration s-and errors in intermission offsets)

and-, and to firn model errorstincorreetly-simulated-/missingproeessesin-, that is, incorrectly simulated processes or missing
processes.
We identified regions of discrepancy between the firn models and the altimetry products and within the models or altimetry,
and discussed the underlying errors in both the models and the altimetry. These results shall help modellers and altimetry data
905  processors to improve their simulations and processing methods (Sect. 5.6), and help users to better understand the nature of
the modelling and altimetry data and to apply and interpret them knowing their strengths and limitations.
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Appendix A: Impact of methodological changes
Al Methods

To investigate the impact of methodological changes on determining adjusted firn thickness variations, fUA, three modifications
of-to the original regression approach are tested.

In the first experiment E1, we simply subtract the altimetrie-variations;+-modelled firn thickness variations, fv™, from
the modeled firn-thicknessvariations,f+"altimetric variations, hv”, according to

Pl () = ™ et (8) — oM (2). (A1)

h(t)A = a-+bt+c(0.5t2)

+H; (t) [dy cos(wt) + da sin(wt) + dg cos(2wt) + dy sin(2wt)]

+Hy(t) [d5 cos(wt) + dg sin(wt) + d7 cos(2wt) + dg sin(2wt)]

+ho (1),

In the second experiment E2, va at any grid cell is simply scaled to fit the altimetric variations. The regression reads

hho™ () = a+ bt + ¢(0.5t%)+H, (t) dy cos(wt) + dasin(wt) + ds cos(2wt) + dy sin(2wt)+Hy (t) ds cos(wt) + dg sin(wt) 4 d7 cos(2wt)

(A2)

where e is the scaling factor. We refer to e foM = fuF? as scaled firn thickness variations.

In the third experiment E3, we do not change the principle of the deterministic model Eq. 1 but we modify the dominant
temporal patterns PC™. Originally, PC™ are derived from standardised fo™ by PCA. In E3, fu™ are not standardised prior to
the PCA. The resulting modified adjusted firn thickness variations are referred to by fvE3. See-also-Table-B1-for-an-overview

We consider that regression method as best whose eeefficient-of determinationR-squared value, R?, is maximum, i.e. which
is able to describe most of the data variance. For the three experiments, the-general-from-of Eq-—5-speeifies-Eq. 3 modifies to

El El El
R —1- SSI\SIT ) 1 SS(r E]) . SS(r A) 7 (A3a)
SS(fo™* +rE) SS(hv™") SS(hv™)
E2 E2 E2 E2
R —1-— SSSI“ ) 1 SSE(ZT ) 1 SS(TEI) 1 SS(r A), (A3b)
SS(efo™ +rk2) SS(fv™ +rk?) SS(hv™) SS(hv™)
E3 E3 E3
R%L =1 SS(r) ~1— SS(r=) SS(rH) (A3c¢)

CSS(AP B SS(™) T SS(ht)
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Figure Al. Differences between the i Wfrom Ala and the experiments El1, E2 and E3.

(a) Ala—El, (b) Ala—E2 and (c) Ala—E3. Colour bar arrows indicate that the value range exceeds the limits of the colour scale.

A2 Results

The impact of methodological choices on the goodness of fit is tested based on the three modifications/experiments E1-E3
(SeettenSect. Al). The results are given for using the BAH-Ma firn model and FID-A1 altimetry and should, therefore, be
compared to the results from the regression approach Ala.

For every grid cell, Fig. A1 compares the ceefficients-of-determination-R-squared values from the regression approach Ala,
R3,,, to the eoefficients-of determination R-squared values RZ,, RZ, and RZ,. R3 |, is larger than RZ,, RZ, and RZ; over 96;
8+-and-69-%-88, 78 and 66 % of the total area, respectively. After calculating RZ,, RZ, and RZ, for each grid cell, (basin) mean
values are derived and listed by Table A1, columns 2—4. Averaged over the entire area, E1, E2 and E3 have mean R? values of
6:69:-6-35-and-0:430.11, 0.31 and 0.37. For all three modifications, R? is smaller than R3,, (Table 3, column Ala) and thus,
their regression approaches describe less of the data variance than the original regression approach Ala. E2-and-E3 deseribe
describes slightly more of the data variance than Ala for one out of 10 basins (Et; H-5: sus-13 %o E2-basi -basin 3:
49-versus47%A7 versus 45 %). Moreover, Table A1 (columns 6-7) lists values of R? derived from basin averages time series
(E1, E2 and E3). Values derived from basin averages time series are larger than values based on the calculations per grid cell,
similar to the regression approach Ala (Table 3, column Ala versus Ala).

The simple scaling factor e adjusted during the regression approach after experiment E2 is displayed in Fig. S30.

Appendix B: List-ef-symbels
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Table Al. Explained variance or eoefficients-of-determination—R2 —for each basin and each experiment E1, E2, E3 of methodological

changes to the regression approach over the period after 2003. R? is first calculated for each grid cell according to Eq. A3a—A3c and after

averaged over each basin. Values of E1, E2 and E3 are calculated by first averaging the results from the experiments over each basin and then

applying Eq. A3a—A3c.

Basin El E2 E3 El E2 E3

01 0.20 035034 043038 0.71 075073 0:79-0.78
02 0.21 041038 048045 076077 692088 0:9+0.88
03 0.21 044042 050047  0:880.89 0.94 0.95
04 -0.29 0450.12 027024 -563-552  -668-022  ©0460.06
05 002006 042026 034026 -650-0.19 666036 047031
06 020021 038029 046032 670073 686076 6:96-0.80
07 022023 044040 054049 068072 691087 0:94-0.92
08 -0.08 043011 0.17_ 0.23 019048  0:540:560.50
09 0.32 042039 050047 0.94 0:94-0.93 0:97-0.96
10 0.27 049046  0:590.56 692093  6:98097 0.96
01-10% 0.11 035031 042037 063064 673071 0:82-0.79

* refers to the entire area (considered as a single basin)

Data availability. The altimetry products from Schroder et al. (2019a) and Nilsson et al. (2022) are available at https://doi.pangaea.de/10.
1594/PANGAEA.897390 (Schroder et al., 2019b) and https://doi.org/10.5067/L3LSVDZS15ZV (Nilsson et al., 2021), respectively. The firn
model data from Medley et al. (2022a) is available at https://doi.org/10.5281/zenodo.7054574 (Medley et al., 2022b). The code of the firn
model from Veldhuijsen et al. (2023) is available at https://github.com/brils001/IMAU-FDM and https://zenodo.org/records/5172513 (Brils

et al., 2021). The firn model data from Veldhuijsen et al. (2023) and the results of this study can be obtained from the authors without

conditions.
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