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Abstract. Elevation changes of the Antarctic Ice Sheet (AIS) related to surface mass balance (SMB) and firn processes vary

strongly in space and time. Their short-term
:::::::::
sub-decadal

:
natural variability is large and hampers the detection of long-term

climate trends. Firn models or satellite altimetry observations are typically used to investigate such firn thickness changes.

However, there is a large spread among firn models. Further, they do not fully explain observed firn thickness changes, es-

pecially on smaller temporal and spatial scales. Reconciled firn thickness variations will facilitate the detection of long-term5

trends from satellite altimetry, the resolution of the spatial patterns of such trends and, hence, their attribution to the underlying

mechanisms. This study has two objectives: First, we quantify interannual Antarctic firn thickness variations on a 10 km grid

scale. Second, we characterise errors in both the altimetry products and firn models. To achieve this, we jointly analyse satellite

altimetry and firn modelling results in time and space. We use the timing of firn thickness variations from firn models and the

satellite-observed amplitude of these variations to generate a combined product (‘adjusted firn thickness variations’) over the10

AIS for 1992–2017. The combined product characterises spatially resolved variations better than either firn models alone or

altimetry alone. We detect highest absolute differences between the adjusted and modelled variations at lower elevations near

the AIS margins, probably influenced by the lower resolution , more blurred
:::
and

:::
the

::::
less

::::::
precise

:
spatial distribution of the

modelled variations. In a relative sense, the largest mismatch between the adjusted and modelled variations is found in the dry

interior of the East Antarctic Ice Sheet (EAIS), in particular across large megadune fields. Here, the low signal-to-noise ratio15

poses a challenge for both models and altimetry to resolve firn thickness variations. The altimetric residuals still contain a
::
A

large part of the altimetry variance and include firn
:::::::
variance

::
in

:::
the

::::::::
altimetric

::::
time

:::::
series

::
is

:::
not

:::::::::
explained

::
by

:::
the

:::::::
adjusted

::::
firn

:::::::
thickness

:::::::::
variations.

::::::::
Analysis

::
of

:::
the

::::::::
altimetric

:::::::
residuals

:::::::
indicate

:::
that

::::
they

::::::
contain

::::
both

:::
firn

:
model errors, such as firn signals not

captured by the models, and altimetry errors. Apart from
:
,
::::
such

::
as

:
time-variable penetration effects of radar altimetry signals,

the residuals disclose patterns indicating uncertainties
::::
radar

:::::::::
penetration

::::::
effects

:::
but

::::
also

:::::
errors in intermission calibration.20

1 Introduction

The global mean sea level rose by 3.05± 0.24mmyr−1 during the period 1993–2016 (Horwath et al., 2022). Ice-mass loss

from Antarctica contributed∼ 6% to this rise
::::::::::::::::::
(Horwath et al., 2022), and is likely to continue (Horwath et al., 2022; IPCC, 2021)
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:::::::::::
(IPCC, 2021). The evolution of the Antarctic Ice Sheet (AIS) is of critical concern because the AIS contains the world’s

largest reservoir of frozen freshwater , the equivalent of ∼ 58m in global mean sea level (Fretwell et al., 2013), and pro-25

jections of Antarctica’s future contribution to the sea-level rise exhibit a large spread (Schlegel et al., 2018). Relative to

1995–2014, by 2100, Antarctica is expected to contribute 0.03 to 0.27m and 0.03 to 0.34m (likely ranges) to the global

mean sea level rise under the low and very high greenhouse gas emissions scenario, respectively (Fox-Kemper et al., 2021)

.
::::::::::::::::::::::::::::::::::::::
(Schlegel et al., 2018; Fox-Kemper et al., 2021)

:
. In order to narrow the range of future sea-level rise projections,

:::
this

::::::
spread

we need to better understand the ice-sheet processes and, for this, improve
::::::
through

::::::::
improved

:
models and observational con-30

straintsto quantify the associated volume and mass changes with higher accuracy.

1.1 Antarctic mass balance and the role of SMB variations

The mass balance of a grounded ice sheet is commonly separated into three processes
::::::::::
components: surface mass balance

(SMB),
::
ice

::::::::
discharge

::::
and basal mass balance, and ice discharge. SMB comprises total precipitation (snowfall, rainfall), total

sublimation (from surface and drifting snow), drifting snow erosion and meltwater runoff (van den Broeke et al., 2016; van35

Wessem et al., 2018). It refers to processes occurring on the surface of the ice sheet in the snow and firn layer.
:::::
Snow

:::::
refers

::
to

::
the

::::::::
seasonal

::::
snow

::::::
cover,

::
i.e.

::
it
::
is

:::
less

::::
than

:
a
::::
year

::::
old.

::::
Firn

:::::
refers

::
to

::::::::
multiyear

::::
snow

::::
and

:
is
:::::::
defined

::
as

:::
the

::::::::
transition

::::
from

:::::
snow

::
to

:::::
glacier

:::
ice

::::::::::::::::::::
(van den Broeke, 2008).

::
In

:::
the

:::::::::
following,

:::
we

::::
refer

::
to

::::
both

:::::
snow

::::
and

:::
firn

::
by

:::
the

:::::
term

:::
firn

:::::
layer. Ice discharge is the

ice flow across the grounding lineand is linked to processes occurring in the ice layer (Willen et al., 2021). Basal mass balance

is thought to be small (Otosaka et al., 2023a), and not considered here.40

The current overall mass balance
::::
mass

::::
loss

:
of the AIS is dominated by an increase in mass loss through ice discharge

resulting from an acceleration of glacier flow, primarily from
::
ice

::::::::
discharge

:::::
from outlet glaciers of the West Antarctic Ice Sheet

(WAIS) (Velicogna et al., 2020; Rignot et al., 2019)
:::::::::::::::::::
(Otosaka et al., 2023b). However,

:::::::::::
uncertainties

::
in

:::
the

::::::::
long-term

:::::
SMB

::::
limit

::
the

::::::::::
attribution

::
of

:::::
mass

:::::::
balance

::::::::::
components

:::::
when

:::::::::
evaluating

:::::::
satellite

::::
data

:::::::::::::::::
(Willen et al., 2021)

:
.
:::
On

::::::::::
interannual

::
to

:::::::
decadal

:::::::::
timescales, variations in SMB (dominated by precipitation) control the variability of the Antarctic mass balance on interannual45

to decadal timescales (Rignot et al., 2019; Davison et al., 2023). The amplitudes of SMB variations, as well as
:::
just

:::
as the

SMB itself, vary strongly over space. They are influenced by ice sheet topography and atmospheric and oceanic conditions

(Lenaerts et al., 2019). Antarctic SMB variability is associated with large-scale atmospheric circulation, such as the Amundsen

Sea Low, the Southern Annular Mode and the El Niño Southern Oscillation (e.g. Cullather et al., 1996; Lenaerts et al., 2019; Noble et al., 2020; Kaitheri et al., 2021)

. The strong interannual Antarctic SMB variability hampers the detection of statistically significant trends in the Antarctic50

(surface) mass balance. To separate long-term trends from short-term variability, the time period considered is essential

(Wouters et al., 2013). Ice cores indicate an increase in SMB, in particular in West Antarctica, over the twentieth century

(Thomas et al., 2017; Wang et al., 2019; Medley and Thomas, 2019). Over the shorter
::
by

:::::::
oceanic

:::
and

:::::::::::
atmospheric

:::::::::
conditions

:::
and

::::::::::
circulations

:::::::::::::::::::::::::::::::::::::::::::::::::::
(Lenaerts et al., 2019; Noble et al., 2020; Kaitheri et al., 2021).

:::::
Over

:::
the

:
satellite period, on a decadal and

multidecadal scale, possible
::::::
climate trends are masked by the large short-term

:::::::::
interannual

::::::::
Antarctic

:::::
SMB variability (Mottram55

et al., 2021; Gutiérrez et al., 2021). An improved quantification of interannual SMB variations in space and time is required

in order to robustly resolve long-term SMB trends
:::::
trends

::
in

:::
the

::::::::
Antarctic

:::::
SMB

::::
and

::::::
overall

::::
mass

:::::::
balance

:
(King and Watson,
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2020). This is currently lacking (e.g. Mottram et al., 2021).

1.2 Modelling and observing SMB and firn thickness changes

To date, the SMB for the entire ice sheet is commonly simulated using regional climate models (RCMs) that are thoroughly60

evaluated against hundreds of in situ observations of SMB . Earth system models have recently caught up in this regard

(Lenaerts et al., 2019). RCMs specialise in the physics of polar ice sheets (van Wessem et al., 2018; Agosta et al., 2019). They

are
:::::::::
commonly

::::
used

::
to
::::::::

simulate
:::
the

:::::
SMB

:::
for

:::
the

::::::
entire

:::
ice

:::::
sheet

::::::::::::::::::
(Lenaerts et al., 2019)

:
.
:::::
When

:::
the

:::::
main

::::
goal

:::
of

::::::
RCMs

::
is

::
to

::::::::::
realistically

:::::::
simulate

:::
the

:::
ice

:::::
sheet

:::::::
weather,

::
as

::
is
:::

the
:::::

case
::::
here,

::::
they

:::
are

:
forced by atmospheric reanalysis products which

typically provide data from 1979 onwards (Gossart et al., 2019). Mottram et al. (2021) compared Antarctic SMB simulations65

from an ensemble of five different RCMs all forced by ERA-Interim (Dee et al., 2011). Model differences comprise e.g. the

topography model, horizontal resolution and complexity in (sub)surface, snow and firn schemes. Mottram et al. (2021) find

:::
and

:::::::::
thoroughly

:::::::::
evaluated

::::::
against

:::::::::
hundreds

::
of

::
in
::::

situ
:::::::::::
observations

:::
of

:::::
SMB

:::::::::::::::::::::::::::::::::::::
(van Wessem et al., 2018; Agosta et al., 2019)

:
.

::::::::::::::::::
Mottram et al. (2021)

::::::::::
demonstrated

:
that different RCMs provide similar outputs for annual to decadal SMB variations on a

continental scale
::::::::::
(Antarctica), as long as they are driven by the same reanalysis product. However, spatial variations in SMB70

show a poorer agreement. On a basin scale, the largest deviations are found for the Antarctic Peninsula and the basin that

includes the Transantarctic Mountains and part of the interior of the East Antarctic Ice Sheet (EAIS) (basin 8 in this study;

Fig. 3). For this basin, the ensemble standard deviation (std) of 40Gtyr−1 amounts to 37% of the ensemble mean. Moreover,

even when models provide similar basin-wide SMB estimates , their spatial patterns
:::
the

:::::
spatial

:::::::
patterns

:::
of

:::
the

:::::::
different

:::::
SMB

:::::::
estimates

:
differ substantially on a regional and local scale. The largest deviations between the models are mainly at the coastal75

margin of the entire grounded AIS.

Results
::::::
results from RCMs are used to force firn models, that

:::::
which simulate the temporal evolution of the Antarctic firn due

to SMB and firn processes such as densification (Ligtenberg et al., 2011; Lundin et al., 2017). Firn elevation changes, or firn

thickness changes, are an output of firn models. Verjans et al. (2021) examined differences in linear trends of
:::::
There

::
is

:
a
:::::
large

:::::
spread

:::::::
between

:
firn thickness changes between a range of 54

::::
from different firn model setupsfor the EAIS. On a basin scale,80

the ensemble stds range from 0.2 to 1.0 cmyr−1 and amount to 15 to 300% of the ensemble mean trends of their respective

basins. Over the entire EAIS, the choice of climate forcing (RCM), firn compaction and surface snow density contribute to

the ensemble spread by 72%, 20% and 4%, respectively, which highlights the importance and need for more precise RCMs
:
,

::::::
mainly

::::::
because

:::
the

::::::::::
uncertainty

::
in

:::
the

::::::::
modelled

::::
SMB

:::::::
directly

:::::::::
influences

:::
the

::::::::
modelled

:::
firn

::::::::
thickness

:::::::::::::::::
(Verjans et al., 2021).

Besides modelling tools, satellite measurements are the only possibility to infer ice-sheet-wide changes in SMB
:::
and

::::
firn85

:::::::
thickness. Observations from the satellite gravimetry missions GRACE and GRACE-FO are widely used to estimate Antarctic

ice mass changes (e.g. Horwath and Dietrich, 2009; Velicogna and Wahr, 2013; Barletta et al., 2013; Groh et al., 2019). Comparisons

between gravimetric ice-mass balance estimates and modelled SMB results (with additional consideration of ice-dynamics

changes) were made for the entire AIS, its main regions, drainage basins, or glacier catchments (Mohajerani et al., 2018; Velicogna et al., 2020; Groh and Horwath, 2021)

. However, gravimetric mass-balance estimates have to be corrected for superimposed signals such as glacial isostatic adjustment,90

involving large uncertainties (Shepherd et al., 2018; Whitehouse et al., 2019; Willen et al., 2020; Groh and Horwath, 2021). Moreover,
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GRACE/GRACE-FO cannot resolve mass changes on smaller spatial scales and their observations are restricted to the period

after 2002.

By contrast, observations from satellite
::::::
satellite

:
altimetry provide a higher

::::
high spatial resolution of several kilometres and

go back to the year 1992 for covering most of the AIS (Wingham et al., 1998). They
::::
These

::::::::::::
measurements

:
allow the derivation95

of temporal changes of the ice sheet’s surface elevation and are therefore sensitive
:::::::
ice-sheet

::::::
surface

::::::::
elevation

:::::::
changes

::::
due to

volume changes of the AIS and to the deformation of the solid Earth, with the latter negligible compared to the former (Willen

et al., 2021). Most of the altimetry missions utilise (d) radar waves (e.g. Envisat, CryoSat-2). Since 2003 laser altimeters are

also used (e.g. ICESat-2
::::::
ICESat). While laser altimeters rely on good atmospheric conditions (no thick clouds or blowing snow)

radar altimetry is independent of weather conditions (Otosaka et al., 2023a). On the other hand, laser signals are reflected at100

or near the ice sheet surface, independently of its properties, while radar signals penetrate into the upper snow/firn layers.

Radar altimetry results can thus be biased by
:::
firn

:::::
layer.

::::
This

::::
may

:::::
cause

:::::
biases

:::
and

:::::::
artificial

:::::::::
variations

::
in

::::
radar

::::::::
altimetry

::::::
results

::::::::
depending

:::
on the time-variable dielectric properties of the ice sheet surface (Davis and Ferguson, 2004; Rémy et al., 2012). If

elevation changes due to changing ice flow can either be neglected or subtracted, altimetric elevation changes can be compared

to modelled elevation changes due to SMB and firn processes provided by firn models (Kuipers Munneke et al., 2015; Medley et al., 2022a)105

.
:::
firn

:::
and

:::
the

::::
data

:::::::::
processing

::::::
choices

:::
to

::::::
account

:::
for

:::::
them

::::::::::::::::::::::::::::::::::::::
(Davis and Ferguson, 2004; Rémy et al., 2012).

:

While the rates of modelled and observed elevation changes agree well when averaged over large drainage basins and over 25

years, the correlation diminishes significantly on a grid scale and over 5 years (supplement to Shepherd et al., 2019). Recently,

Veldhuijsen et al. (2023) reported that agreement between altimetry and firn modelling results improved when an updated firn

model was employed. Nevertheless, discrepancies still remain. (See Section 2.3 for further details on comparisons between110

altimetry and firn models. ) Inconsistencies between models and altimetry also affect the derivation of altimetric ice mass

changes, as this depends on modelling results. Using the models in a rigorous, deterministic manner (Kuipers Munneke et al., 2015)

resulted in altimetric mass changes characterised by widespread signals of dynamic imbalance that are not deemed fully

realistic (supplement to McMillan et al., 2016; Shepherd et al., 2019; Kappelsberger et al., 2021). The reason likely lies in errors

in the involved altimetry and modelling results. Therefore, a simplified approach using a (steady-state) density model is115

commonly applied (e.g. Sørensen et al., 2011; McMillan et al., 2016; Schröder et al., 2019a; Shepherd et al., 2019; Kappelsberger et al., 2021)

.

1.3 Previous work

Using SMB and firn modelling outputs alone to quantify interannual variations in SMB and firn thickness introduces large

uncertainties:
:::
the inter-model spread is large, and the model outputs also differ from observational data (Section 1.2).

::::::
satellite120

::::::::::
observations

:::::::::::::::::::::
(Veldhuijsen et al., 2023).

::::
The

::::
latter

::
is

:::::::::
particularly

::::
true

::
at

::::
local

::::::
spatial

:::::
scales

::::::::::::::::::::::::::::::
(supplement to Shepherd et al., 2019)

:
. Likewise, interannual variations analysed using only data from gravimetry and altimetry

::::::
satellite

::::::::::
observations

:
are strongly

affected by their errors (Horwath et al., 2012; Mémin et al., 2015; Su et al., 2018; Shi et al., 2022). Moreover, it is difficult

to relate the variations derived from observations alone
:::::::
observed

:::::::::
variations to their physical causes. Therefore, the studies of

Sasgen et al. (2010), Bodart and Bingham (2019), Kim et al. (2020), Kaitheri et al. (2021) and Zhang et al. (2021) compared or125

4



combined observational and modelling/meteorological data
::::::::::
space-based

:::::::
geodetic

:::::::::::
observations

::::
with

:::::::::::::
meteorological

::::
fields

:::::
from

::::::::::
atmospheric

::::::::
reanalysis

::::
data

:::
or

::::::
RCMs. However, their derived interannual variations are spatially coarsely resolved

:::::::
coarsely

:::::::
resolved

::
in

:::::
space (at about 400 km) and mainly limited to the GRACE/

:::::
period

::
of

:::
the

::::::
satellite

::::::::::
gravimetry

:::::::
missions

:::::::
GRACE

::::
and

GRACE-FOperiod.

1.4 Purpose130

This study focuses on the interannual variations in firn thickness on a regional to local scale. Knowledge of interannual varia-

tions is required to isolate long-term trends in ice volume or mass changes(Section 1.1). To identify the underlying glaciological

processes and separate SMB and firn signals from ice dynamics, the spatial patterns of interannual variations and long-term

trends need to be resolved. As the analysis of basin integrals is not sufficient for this purpose, we work at 10 km grid-scale

level. We characterise and quantify firn thickness variations in space and time by combining results from satellite altimetry and135

firn modelling. By combining both data sets, we expect to reduce uncertainties and errors compared with
::::::::
compared

::
to the vari-

ations derived from altimetry or models alone. For the first time, the entire spatial
:::
full

::::::
spatial

:::
and

::::::::
temporal information present

in both the altimetry products and modelling outputs,
:
is

::::::::
exploited

:
together with the high (monthly) temporal resolution of

gridded altimetry products, is jointly exploited
::::::::
modelling

::::::
results. Apart from determining firn thickness variations empirically,

our analysis provides information on the error characteristics of both the altimetry products and the model outputs.140

2 Data

2.1 Altimetry

We use the altimetry product from Technische Universität Dresden (TUD) (Schröder et al., 2019a), referred to as TUD altimetry.

As an alternative data set, we use the product from Jet Propulsion Laboratory (JPL) (Nilsson et al., 2022), referred to as JPL

altimetry.
:::::::
products

:::::
from

:
Schröder et al. (2019a) and Nilsson et al. (2022)derived .

:::::
Both

::::::
studies

:::::::
provide

:
monthly resolved145

elevation changes of the grounded AIS from a multi-mission satellite altimetry analysis. The elevation changesrepresent
:::
By

:::::::
elevation

::::::::
changes,

::
or

:
elevation anomalies, as they

::
we

:
refer to the difference between the elevation at time t and the elevation

at a reference epoch t0 :::::
chosen

::::::::
reference

:::::
epoch. We use elevation changes over the time period May 1992 to December 2017

containing data from pulse-limited radar altimetry ERS-1, ERS-2, Envisat and CryoSat-2 low resolution mode (LRM), from

radar altimetry CryoSat-2 in synthetic aperture radar interferometric (SARIn) mode and from laser altimetry ICESat. As each150

altimetry mission differs in its orbit configuration, its maximum southern latitude differs. Thus, the lower time limit May 1992

is set to ensure spatial data coverage
:::::
While

:::
the

::::
orbit

::::::::::::
configurations

::
of

:::
the

::::::::
missions

:::::
entail

:::::::
different

:::::
limits

::
of

::::::::
coverage

:::::
close

::
to

::
the

::::::
poles,

::
all

:::::::::
mentioned

::::::::
missions

:::::
cover

::
at

::::
least up to 81.5° S. Grid

::
We

:::::::
exclude

::::
grid cells with large gaps in the altimetry time

series, such as the area south of 81.5° S and the Antarctic Peninsulaare excluded. The upper time limit December 2017 is set to

ensure an overlapping period of TUD and JPL altimetry. In the following, the main altimetry processing steps are summarised155

and differences between TUD and JPL pointed out.
:::::::
coverage

::
by

::::
both

::::::::
products.

:

5



Schröder et al. (2019a) and Nilsson et al. (2022) corrected the measurements from pulse-limited radar altimetry for sloping

terrain with the relocation method (Roemer et al., 2007; Nilsson et al., 2016) using different digital elevation models (Helm et al. (2014)

versus Fretwell et al. (2013)). Both studies applied a threshold retracker for the offset center of gravityamplitude (Wingham et al., 1986)

to the radar
::::::
applied

::::
their

::::
own

:::::::::
retracking

:::
and

:::::
slope

::::::::
correction

::
to

:::
the

:
return signal (waveform) . While the TUD product adopts a160

very low threshold at 10% to reduce the sensitivity to variations in firn pack properties (Schröder et al., 2019a), the JPL product

is based on a 30% threshold for ERS-1, ERS-2 and Envisat data. CryoSat-2 LRM data were treated similarly for both products

(using a 10% threshold).
::
of

:::
the

::::::::::::
pulse-limited

:::::
radar

::::::::
altimeters

:::
to

:::::
derive

::::::::
elevation

:::::::::::::
measurements.

:
Data from the CryoSat-

2 SARIn mode was processed by Helm et al. (2014)and Nilsson et al. (2016) for TUD and JPL, respectively. The height
:
.

:::::::::::::::::
Nilsson et al. (2022)

:::
used

:::
the

::::::::::::
pre-processed

::::::::
elevation

::::::::::::
measurements

::
of

:::
the ‘

::::::::::
Geophysical

::::
Data

::::::
Record’

:::::::::::::::::::
(Brockley et al., 2017)165

::
for

:::::::
ERS-1,

::::::
ERS-2

:::
and

:::::::
Envisat.

:::::
They

::::::
applied

::::
their

::::
own

::::::::::
processing

::
to

:::
the

::::::::
CryoSat-2

::::
data

::::::::::::::::::
(Nilsson et al., 2016).

::::
The

::::::::
elevation

measurements were analysed using repeat-track altimetry on a polar-stereographic grid to derive elevation time series. For

this analysis, Schröder et al. (2019a) and Nilsson et al. (2022) used different grid spacing and different search radii(constant

versus varying/mission-dependent)
:::::
search

::::
radii. Further differences refer to the removal of time-invariant topography (bilinear

surface versus varying models/mean, bilinear or biquadratic surface) and the correction for time-variable radar signal pene-170

tration and scattering effects(backscatter correction versus backscatter, leading edge width and trailing edge slope correction).

While Schröder et al. (2019a) performed these two steps in one least-squares fit, Nilsson et al. (2022) implemented two separate

fits for this purpose
:::::
fitted

::::
them

:::::::::
separately.

To derive a continuous time series of elevation changes, intermission /
:::
and intermode calibration offsets must be solved. This

is a major difference between both altimetry products: TUD is based on
:::::
While

:::::::::::::::::::
Schröder et al. (2019a)

::::
used overlapping epochs175

or subtracting
::::::::
subtracted

:
a technique-specific reference elevationand JPL

:
,
:::::::::::::::::
Nilsson et al. (2022) used a least-squares adjust-

ment based on all altimetric measurements. In general, also the weighting between measurements from different missions, in

particular the weighting ratio between Envisat and ICESat (Table 1 Schröder et al. (2019a) versus Table 1 Nilsson et al. (2021)

) differs
:::
and

::::
then

:::::::
selected

::::::::::
overlapping

:::::::
epochs

::::
with

::::::
special

::::::::
treatment

::
of

:::
the

::::
less

::::
than

::::
four

::::::
months

::::::::::::::::
Envisat-CryoSat-2

::::::
overlap.

Moreover, Nilsson et al. (2022) scaled the seasonal amplitudes of the time series of ERS-1, ERS-2 and Envisat to the seasonal180

amplitudes derived from CryoSat-2
:
to

:::::::
mitigate

:::::::
artificial

:::::::
seasonal

:::::::::
variations

::::::
caused

::
by

:::::::::::
time-variable

:::::
signal

::::::::::
penetration. Finally,

Schröder et al. (2019a) smoothed the processed data by a three-month moving average and a 10 km
:::
one-σ Gaussian weighting

function. This reduced the spatial grid resolution to 10 km x 10 km. Nilsson et al. (2022) interpolated the processed data with

collocation (max. search radius of 50 km, correlation length of 20 km) on a spatial grid with a formal resolution of 1920m

x 1920m. We interpolate the JPL product to the spatial grid of TUD by averaging the data
:::
data

:::::
from

:::::::::::::::::
Nilsson et al. (2022)

::
to185

:::::::
conform

::
to

:::
the

::::::
product

:::::
from

::::::::::::::::::
Schröder et al. (2019a)

:
.
:::::::::
Therefore,

::
we

:::::::
average

:::
the

::::
data

:::::::
spatially over 10 km x 10 km . We smooth

the JPL time series by a three-month moving average in order to conform to the TUD product. The use of the JPL altimetry

data is further restricted to
:::
and

:::::::::
temporally

::::
over

:::::
three

:::::::
months.

:::
We

::::
only

:::
use those points in time and space where TUD altimetry

data is available
::::
data

:::
are

:::::::
available

:::::
from

::::
both

:::::::
products.

In addition to TUD and JPL, Shepherd et al. (2019) published a long-term, multi-mission altimetry product. However, we do190

not use their product because it is not resolved on a monthly basis (consecutive 5-year intervals are provided)
::::
Since

:::
we

:::::
focus
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::
on

:::
the

:::::::::
interannual

::
to
:::::::
decadal

::::
time

::::::
scales,

:::
we

::
fit

:::
and

:::::::
remove

:::
the

:::::
offset,

::::::
linear,

::::::::
quadratic

:::
and

:::::::
seasonal

::::::
signals

:::::
from

:::
the

:::::::
monthly

:::::::
elevation

:::::::
changes

:::
for

:::::
every

:::::
10km

::
x

:::::
10km

::::
grid

::::
cell.

:::::::
Seasonal

::::::
signals

:::
are

::::::::
modelled

:::
by

:::::
annual

::::
and

::::::::::
semi-annual

::::::
cosine

:::
and

::::
sine

::::::::
functions.

::::::::
Thereby,

:::
we

::
fit

:::::::
different

::::::::
seasonal

:::::::::
amplitudes

:::
for

:::
the

:::::
time

::::::
periods

::::::
before

::::
and

::::
after

:::::
2003.

::
In

::::
this

::::
way

:::
we

:::::::
account

::
for

::::
the

:::::::::::
inconsistency

::
in
::::

the
:::::::
seasonal

::::::::::
amplitudes

:::::::
between

:::
the

:::::
older

:::::::::::
pulse-limited

:::::
radar

::::::::
altimetry

::::::::
missions

:::::::
(ERS-1,

:::::::
ERS-2)195

:::
and

:::
the

::::::
newer

:::::::
missions

::::::::
(Envisat,

:::::::
ICESat,

::::::::::
CryoSat-2)

:::::::::::::::::
(Nilsson et al., 2022)

:
,
::
as

:::
the

::::::::::
corrections

:::
for

:::::::::::
time-variable

::::::::::
penetration

:::::
effects

:::
on

:::
the

::::
radar

::::::
return

:::::
signal

:::
are

::::::::
imperfect

::
in

::::::::
reducing

:::::::::
unrealistic

:::::::
seasonal

:::::::::
amplitudes

::
in
:::::::::

particular
:::
for

:::
the

::::
older

::::::::
missions

:::::::::::::::::::
(Ligtenberg et al., 2012)

:
.
::::
The

::::
fitted

::::::::::
parameters

:::
are

::::::::
presented

::
in

::::
Fig.

::::::
S1–S4.

:::::
After

:::::::::
subtracting

:::
the

::::::
offset,

:::::
linear,

::::::::
quadratic

::::
and

:::::::
seasonal

::::::
signals,

:::
we

:::
are

:::
left

::::
with

:::
the

::::::::::
interannual

::::::::
elevation

:::::::
changes,

:::::
which

:::
we

::::
refer

::
to
:::
as

::::::::
altimetric

:::::::::
variations,

:::
hvA.

2.2 Firn models200

We use the firn model
::::::::
thickness

:::::::
changes

::::
from

:::
the

::::
firn

::::::
models

:
IMAU-FDM v1.2A of Veldhuijsen et al. (2023), referred to as

IMAU (Institute for Marine and Atmospheric Research Utrecht) firn model, which is an update of v1.1 (Ligtenberg et al., 2011)

. As an alternative data set we involve the GSFC-FDM v1
:::::::::::::::::::
Ligtenberg et al. (2011)

:
,
:::
and

:::::::::::::
GSFC-FDMv1.2.1 of Medley et al.

(2022a), referred to as GSFC (Goddard Space Flight Center) firn model. It
:::::
which uses the Community Firn Model framework of

Stevens et al. (2020, 2021). Here, one output of the models is used, the firn thickness changes. Firn thickness changes represent205

firn thickness anomalies, as they refer to the difference between firn thickness at time t and the mean firn thickness over a certain

reference period (see below). The IMAU model outputs
::::::
Outputs

::::
from

:::::::::::::::::::::
Veldhuijsen et al. (2023) are given every ten days and on

a regular grid with a spacing of 27 km from 1979 to 2020. The GSFC model outputs
:::::::
Outputs

::::
from

::::::::::::::::::
Medley et al. (2022a) are

given every five days and on a regular grid with a spacing of 12.5 km from 1980 to 2021. In accordance with the altimetry data,

we involve
:::
use firn thickness changes from

::::
May

::::
1992

::
to
:::::::::
December

:::::
2017

:::
and

:::::
from the grounded AIS excluding the Antarctic210

Peninsulaand the period May 1992 to December 2017. .
:
We adapt the temporal resolution to that of the altimetry product by

calculating monthly means and applying a three-month moving average smoothing. In the following, the main firn model set

ups are summarised and differences between IMAU and GSFC pointed out.

The IMAU firn model
:::
firn

::::::
model

::::
from

:::::::::::::::::::::
Veldhuijsen et al. (2023) is forced with 3-hourly

::::::::::
three-hourly

:
fields of surface tem-

perature, 10m wind speed and SMB components (snowfall, rainfall, sublimation, snowdrift erosion, snowmelt) from the215

ERA5 atmospheric reanalysis data (Hersbach et al., 2020) dynamically downscaled with RACMO2.3p2 (van Wessem et al.,

2018)to
:
.
::::::::::::
RACMO2.3p2

::::
uses

:
a spatial resolution of 27 km x 27 km . The GSFC firn model

:::
and

::
is

::::::
forced

:::
by

:::
the

::::::
ERA5

::::::::::
atmospheric

::::::::
reanalysis

::::
data

:::::::::::::::::::
(Hersbach et al., 2020)

:
.
:::
The

::::
firn

:::::
model

:::::
from

::::::::::::::::::
Medley et al. (2022a) is forced with hourly fields of

snowfall, total precipitation, evaporation, 2m air temperature , skin temperature and runoff from
:::
and

::::
skin

::::::::::
temperature

:::::
from

:
a
::::::::::
downscaled

:::::::
version

::::::::
(12.5 km

:
x
::::::::
12.5 km)

:::
of the MERRA-2 atmospheric reanalysis data (Gelaro et al., 2017) downscaled220

to a spatial resolution of 12.5 km x 12.5 km
::::::::::::::::::::::::::::::
(Gelaro et al., 2017; Tian et al., 2017). The firn layer was initialised by looping

over the forcing data of the reference period 1979–2020 (for the IMAU model)
:::::::::::::::::::::::
(for Veldhuijsen et al., 2023) and 1980–2019

(for the GSFC model)
:::::::::::::::::::::
(for Medley et al., 2022a) until the firn column was refreshed at least once. This implies the assump-

tion that the reference period represents stable climatic conditions and the current firn layer is in equilibrium. However,
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Veldhuijsen et al. (2023) noted that the assumption of a steady-state firn layer in regions where precipitation has increased225

over the last centuries, such as the Antarctic Peninsula and Ellsworth Land.

Both firn models use the same semi-empirical equation of Arthern et al. (2010) to model dry-snow densification but their

procedure
:::::::::
procedures

:
for deriving the empirical correction terms differs. IMAU derives

:::::
differ.

:::::::::::::::::::::
Veldhuijsen et al. (2023)

::::::
derived

this empirical correction from observations in Antarctica, while GSFC employs
:::::::::::::::::
Medley et al. (2022a)

::::::::
employed

:
observations

from both Antarctica and Greenland. Furthermore, the two firn models use a different parameterisation for surface snow density.230

Veldhuijsen et al. (2023) use the formulation of Lenaerts et al. (2012), which depends on instantaneous surface temperature

and 10m wind speed, but with updated constants derived from their own calibration. Medley et al. (2022a) built a new model

:::::::::::::
parameterisation

:
depending on snow accumulation, air temperature, total wind speed, and specific humidity. In general

::::::
Overall,

they follow the approach from Helsen et al. (2008), which incorporates mean annual parameters. Both firn models take into

account
::::::
include the processes of meltwater percolation and refreezing.235

2.3 Previous comparisons between altimetry and firn models

The data sets used in this study have been compared mainly on the basis of multi-year to decadal rates and seasonal amplitudes.

The results of these comparisons are briefly summarised below.

Nilsson et al. (2022) reported that elevation change rates of TUD, JPL and Shepherd et al. (2019) are generally in good

agreement and within their uncertainties (over 1992–2016). By excluding regions of dynamic imbalance, they also compared240

rates between altimetric elevation changes and
::
We

:::::::
subtract

:::
the

:::::
offset,

::::::
linear,

::::::::
quadratic

:::
and

:::::::
seasonal

::::::
signals

:::::
from

:::
the modelled

firn thickness changes derived from the IMAU-FDM v1.1 (Ligtenberg et al., 2011) forced by ERA-Interim reanalysis data. In

Dronning Maud Land and Enderby Land the thickening patterns of modelled and observed rates are in good overall agreement
::
in

::
the

:::::
same

::::
way

::
as

:::
we

::
do

:::
for

:::
the

::::::::
altimetric

::::
time

:::::
series, except that the observed rates show stronger magnitudes than the modelled

rates of FDM v1.1. However, in the region of Wilhelm II Land and Wilkes Land the differences between observed and modelled245

rates are larger. Rates are of opposite sign (altimetry: positive rates; FDM v1.1: negative rates). The three altimetry products

agree in magnitude and sign (Nilsson et al., 2022).Recently, the update from FDM v1.1 to v1.2A (forced by ERA5 reanalysis

data; Section 2.2) lead to an improved agreement with the observed rates (evaluated by the TUD product over 2003–2015). With

the update, the modelled rates were found to be more positive in Dronning Maud Land and Enderby Land and less negative in

Wilhelm II Land and Wilkes Land. However, discrepancies between altimetric and modelled rates remain, in particular for the250

Antarctic Peninsula and Ellsworth Land (Veldhuijsen et al., 2023).

Estimates of the average ice sheet seasonal amplitude in firn thickness give discrepant results for different altimetry products,

firn models and time periods (with the latter also involving different spatial coverage): 5.1, 2.7 and 2.9 cm for TUD altimetry,

JPL altimetry and the IMAU-FDM v1.1, respectively, over 1992–2016 (Nilsson et al., 2022), and, 5.2, 3.1 and 3.0 cm for TUD

altimetry, the IMAU firn model (v1.2A) and the GSFC firn model, respectively, over 2003–2015 (Veldhuijsen et al., 2023)
:::
we255

::::::
assume

:::::::
constant

:::::::
seasonal

::::::::::
amplitudes

::
for

:::
the

:::::
entire

:::::::
period.

:::
The

:::::::::
subtracted

:::::::::
parameters

:::
are

::::::::
presented

::
in

::::
Fig.

::::::
S1–S4.

::::
This

::::::
leaves

::
us

::::
with

:::
firn

::::::::
thickness

::::::::
variations

:::
on

:::::::::
interannual

::::
time

::::::
scales,

::::::
which

::
we

:::::
refer

::
to

::
as

::::::::
modelled

:::
firn

::::::::
thickness

:::::::::
variations,

::::
fvM.
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2.4 Illustration of data sets

In this section, we illustrate and compare the original data sets through basin-mean time series and root mean square (rms)

maps. This recalls typical ways of previous comparisons between altimetry and firn modelling results and serves as a reference260

for our subsequent exploration of a wider range of spatio-temporal scales.

Fig. 2 (dash-dotted lines) shows the basin-mean time series for the original elevation changes from TUD altimetry , hA1,

and the IMAU firn model, fMa. (For the JPL altimetry, hA2, and the GSFC firn model, fMb, similar time series are shown in

Fig. S1.) Agreement between hA1 and fMa is generally good on interannual scales. Differences appear in the long-term trends.

The trend differences are greatest for basin 10 (Amundsen Sea Embayment region). This is due to the effect of changing265

ice flow (Mouginot et al., 2014; Gardner et al., 2018; Diener et al., 2021), reflected in hA1, while this effect is purposely not

considered by fMa. A further difference is that, prior to 2003 the seasonal amplitudes of altimetry exceed those of the firn

model (Ligtenberg et al., 2012; Nilsson et al., 2022). Fig. 2 shows maps of rms values for hA1 and fMa over the entire period

1993-2017. The rms values include the effect of a linear component which dominates e.g. hA1 in the Amundsen Sea Embayment

region. Besides long-term influences, the overall spatial patterns of hA1 and fMa are related to the spatial variability of the SMB,270

with values increasing from the AIS interior to the margin (van Wessem et al., 2014; Lenaerts et al., 2019). The rms values of

hA1 are generally larger than those of fMa. This is mainly due to the higher noise level in altimetry measurements before 2003

(Schröder et al., 2019a; Nilsson et al., 2022). For the period after 2003, the rms values of altimetry and the firn model are in

better agreement (Fig. S2). (Fig. S2 also shows the rms for all data sets used (A1, A2, Ma, Mb) separately for the periods

before and after 2003.)275

3 Methods

3.1 Regression approach
::::
Basic

:::::::::
approach

We jointly analyse satellite altimetry and firn modelling results while focusing on interannual to decadal time scales. The
:::
the

:::::::::
interannual

::::::::
elevation

:::::::
changes

::::
from

:::::::
satellite

::::::::
altimetry

:::
and

:::
firn

:::::::::
modelling

::::::
results.

::::
Fig.

:
1
:::::
gives

::
an

::::::::
overview

::
of

:::
the

:::::::::
workflow.The

new combination approach is a regression of altimetric elevation changes against several signals explained in the following.280

For each 10km x 10km grid cell, we describe the time series of monthly elevation changes from altimetry hA by

hA(t) = a+ bt+ c(0.5 t2)

+H1(t) [d1 cos(ωt)+ d2 sin(ωt)+ d3 cos(2ωt)+ d4 sin(2ωt)]

+H2(t) [d5 cos(ωt)+ d6 sin(ωt)+ d7 cos(2ωt)+ d8 sin(2ωt)]

+
∑N

n=1 e
A
nPC

M
n (t)285

+rA(t)
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Figure 1. Basin-mean time series
:::::::
Workflow of the original elevation changes from

::::::
analysis.

:::::
Grey

:::::
boxes: the IMAU firn model (Ma)

::::
results,

fMa, (dash-dotted, black line)
::::
their

::::::
notation

:
and from TUD altimetry (A1), hA1, (dash-dotted, cyan line)

:::
the

::::::
section

:::::
where

::::
they

:::
are

:::
first

:::::::
presented. Basin-mean time series of modelled firn thickness variations from Ma, fvMa, (solid, black line)

::::
White

::::::
boxes:

::
the

:::::
main

:::::::::::
methodological

::::
steps

::
to

:::::
derive

::::
these

:::::
results and of adjusted firn thickness variations based on A1a, fvA1a, (solid, cyan line)

::
the

::::::
sections

:::::
where

:::
they

:::
are

:::::::
explained.
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with H1(t) =

1, if t < 2003

0, if t > 2003

and H2(t) =

0, if t < 2003

1, if t > 2003.
290

The regression parameters a (offset), b (linear trend), c (acceleration), d1,...,8 (amplitudes of annual and semi-annual harmonic

signals, with ω = 2π/1yr) and eA
1...N (scaling factors for dominant temporal patterns in modelled firn thickness variations)

are estimated by least squares adjustment. They are adjusted w.r.t. the reference epoch, t0, September 2010 no matter of data

coverage. The definition of N dominant temporal patterns in modelled
::
the

::::::::
altimetric

:::::::::
variations,

::::
hvA,

:::::::
against

::::::::
dominant

::::::
signals

::
in

:::
the firn thickness variationsPCM

1 , ...,PC
M
N depends on the drainage basin to which the considered location belongs. It is295

explained in Section 3.2. The residuals rA are the difference between the elevation changes hA and the fitted model.

Seasonal signals are modelled by annual and semi-annual cosine and sine functions. By applying the masks H1 and H2,

we fit different seasonal amplitudes for the time periods before and after 2003. In this way we account for the inconsistency

in the seasonal amplitudes between the older pulse-limited radar altimetry missions (ERS-1, ERS-2) and the newer missions

of different techniques (Envisat, ICESat, CryoSat-2) (Nilsson et al., 2022). The corrections for the influence of the ice sheet300

surface dielectric properties on the radar return signal (Section 2.1) are only partly able to reduce artificially large seasonal

amplitudes in particular for the older missions (Ligtenberg et al., 2012).

We subtract the adjusted offset, linear, quadratic and seasonal signals from hA to derive elevation changes on interannual

time scales from altimetry according to

hvA(t) = hA(t)−305

{a+ bt+ c(0.5 t2)

+H1(t) [d1 cos(ωt)+ d2 sin(ωt)+ d3 cos(2ωt)+ d4 sin(2ωt)]

+H2(t) [d5 cos(ωt)+ d6 sin(ωt)+ d7 cos(2ωt)+ d8 sin(2ωt)]}

The interannual elevation changes are termed altimetric variations, hvA.

We perform a weighted regression. Observations hA after 2003 are weighted by 1, while observations prior to 2003 are310

given a different (usually lower) weight, according to the finding of a generally higher noise level of the results from the older

altimetry missions (Schröder et al., 2019a; Nilsson et al., 2022). The weight prior to 2003 is defined (individually for every

grid point) by the ratio of the noise variance of hA prior to 2003 and after 2003. The noise variance ratio is assessed empirically

from the variance of the high-pass filtered time series (cf. Groh et al., 2019). The high-pass filtering (performed separately for

the period prior to 2003 and after 2003) consists in removing linear and seasonal signals and subsequently removing a low-pass315

filtered version of the time series, where the low-pass filter is a Gaussian filter with a 6σ = 12 months filter width.
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3.1.1 Adjusted firn thickness variations

::::
fvM. Our regression approach relies on the ability of firn models to capture the timing of dominant variations in SMB and

firn processes across basins. However, the amplitudes and spatial patterns of the variations are adjusted to satellite altimetry

results. We trust the temporal more than the spatial
:::
give

:::::
more

::::
trust

::
to
::::

the
:::::::
temporal

:
patterns of the firn model

:::
than

::
to
:::::

their320

:::::
spatial

:::::::
patterns

:
for the following reasons. Mottram et al. (2021) as well as Lenaerts et al. (2019) and Gutiérrez et al. (2021)

have pointed out that the spatial patterns of RCMs, which force firn models, show a large spread between models but not their

temporal patterns (Section 1.2)
:::::
while

::::
there

::
is

::::
less

::::::
spread

:::::::
between

:::
the

::::::::
temporal

:::::::
patterns. While spatially resolved differences

(between models, between observations and between models and observations) are substantial, the differences have been shown

to be
:::
are reduced when basin averages are used (Agosta et al., 2019; Shepherd et al., 2019; Willen et al., 2021). Also, the

:::
The325

overall good agreement of basin-mean time series on interannual scales (between the data sets used here) has also been noted

in Section 2.4,
::
of

:::
fvM

::::
and

:::
hvA

::
is
:::::::::
supported

::
in Fig. S1.

::
2.

For each grid cell, the adjusted firn thickness variations fvA are determined by the linear combination in Eq.1:

fvA(t) =

N∑
n=1

eA
nPC

M
n (t).

The330

3.2
:::::::

Principal
::::::::::
component

::::::::
analysis

::
of

::::::::
modelled

::::
firn

::::::::
thickness

:::::::::
variations

:::
We

:::::::
identify dominant temporal patterns in firn thickness variations , PCM

n , are identified by principal component analy-

sis (PCA)of the firn modelling data. PCA, also called empirical orthogonal function (EOF) analysis, is applied to iden-

tify dominant modes of variability, represented by pairs of a principal component (PC) and an EOF, where EOFs and the

corresponding, uncorrelated PCs represent the spatial and temporal
:::::
which

::::::::
represent

:::
the

::::::::
temporal

:::
and

::::::
spatial

:
patterns, respec-335

tively . Comprehensive and general references for PCA are Preisendorfer (1988) and Jolliffe (2002), while e.g. Forootan and Kusche (2012)

or Boergens et al. (2014) apply PCA and extensions of PCA to geodetic data.
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Preisendorfer, 1988; Jolliffe, 2002; Forootan and Kusche, 2012; Boergens et al., 2014)

:
.

Prior to applying PCA to the firn modelling data, we remove offset, linear, quadratic and seasonal signals from the modelled

firn thickness changes fM according to340

fM(t) = a+ bt+ c(0.5 t2)

+d1 cos(ωt)+ d2 sin(ωt)+ d3 cos(2ωt)+ d4 sin(2ωt)

+fvM(t),

where a,b,c,d1,...,4 are estimated by an ordinary least-squares adjustment. The residuals, fvM, are referred to as firn thickness

variations. The
:::
The

:
PCA is performed on these

::
the

::::::::
modelled

:
firn thickness variations,

::::
fvM,

:
after their standardisation. We345

standardise the time series of fvM for each grid cell, i.e. we shift and scale it
:::
such

:
that it has zero mean and a std

:::::::
standard
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Figure 2. Root mean square (rms) of the original time series of elevation change over the entire period for (a) TUD altimetry, hA1,

and (b) the IMAU firn model, fMa. The color scale is logarithmic.
:::::::::
Basin-mean

::::
time

::::
series

:::
of

:::::::
modelled

:::
firn

::::::::
thickness

:::::::
variations

:::::
from

::::::::::::::::::
Veldhuijsen et al. (2023),

:::::
fvMa,

:::::
(solid,

:::::
black),

:::
of

:::::::
altimetric

::::::::
variations

::::
from

:::::::::::::::::
Schröder et al. (2019a)

:
,
::::
hvA1,

:::::::
(dotted,

:::::
cyan),

:::
and

::
of

:::::::
adjusted

:::
firn

:::::::
thickness

:::::::
variations

:::::
based

::
on

::::
A1a,

::::
fvA1a,

:::::
(solid,

:::::
cyan).

:::::
Basin

::::::::
definitions

:::
are

:::::
shown

::
in

:::
Fig.

::
3.13
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Figure 3. Drainage basins of the EAIS and WAIS used in this study (thick black lines)following
:
,
::::::
slightly

::::::
modified

::::
from

:::
the

::::::::
definition

::
of

Rignot et al. (2011a, b). The outline of Antarctic Peninsula is indicated by a thin black line. Contour lines of the ice sheet surface are shown

at 1000m, 2000m and 3000m. Highlighted in red are the circle at constant latitude of 72° S (profile 1) and the line at constant longitude at

115° E (profile 2). Grid point P1 is located at lon = 37.7° E, lat = 70.2° S. We use the polar stereographic projection EPSG:3031 (WGS84,

latitude of true scale: 71° S, central meridian: 0°). All further maps are displayed in the same projection and with the same spacing of

longitude grid lines (every 45°) and latitude grid lines (every 10°).

:::::::
deviation

:::::
(std) of one, because we aim to equally represent the patterns of temporal evolution regardless of location or absolute

amplitudes. Otherwise, PCA results would mainly reflect patterns that are dominant at the margins as
:::::
where

:::
the

::::::::::
amplitudes

::
of SMB and firn thickness variations exhibit much larger amplitudes at the margins

:::
are

:::::
much

:::::
larger

:
than in the interior (van

Wessem et al., 2018; Lenaerts et al., 2019).
::
To

:::::
regain

:::::::::::
interpretable

:::::::::
magnitudes

:::
of

:::
the

:::::
EOFs,

:::
the

:::::
EOFs

:::
are

:::::::::
multiplied

::
by

:::
the

:::
std350

::
of

:::
the

::::
time

:::::
series

::
of

::::
fvM

:::
for

::::
each

::::
grid

::::
cell,

:::::
which

::::
was

:::::::::
previously

::::
used

:::
for

:::::::::::::
standardisation.

:::::
After

:::
this

:::::::::
restoration

::
of

:::
the

::::::
signal

:::::::::
amplitudes,

:::
we

:::
no

:::::
longer

:::::
speak

::
of

:::::
EOFs

::::
but

::
of

::::::::
modelled

::::::
scaling

::::::
factors,

:::
eM.

:

PCA is applied individually
::
We

:::::::::
separately

:::::
apply

:::
the

::::
PCA

:
to fvM for 10 selected regions (

:::::
basins

::::
that

:::::::
together

:::::
cover

:::
the

::::
East

:::::::
Antarctic

:::
Ice

:::::
Sheet

::::::
(EAIS)

::::
and

:::
the

:::::
WAIS

:
(Fig. 3). To define the regions

:::::
basins, we make use of the drainage basin definition by

Rignot et al. (2011a, b) . We aggregate
:::
and

::::::::
aggregate

:::::::::::
neighbouring basins smaller than∼ 600,000 km2with those neighbouring355

basins where we find strongest correlation between their
:
.
:::
The

:::::::
decision

::::::
which

::
of

::
the

:::::::
original

:::
15

:::::
basins

:::
are

:::::::::
aggregated

::
is

::::::
guided

::
by

:::
the

::::::::::
correlations

:::::::
between

:::
the

:
first three PCs . This step reduces the original number of 15 drainage basinsfor the EAIS and

WAIS to 10
::
of

:
a
::::::::::
preliminary

::::
PCA

:::
per

:::::::
original

::::::
basins. For each (aggregated) basin

:
of

:::
the

:::
10

:::::
basins, we choose the firstN modes

that contain
::::::
explain

:
at least 90% of the total variance of the (standardised) data. In addition, North’s rule of thumb (North

et al., 1982) is applied to test whether the eigenvalues of these N patterns are well separated with respect to their errors. The360
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first N dominant temporal patternsPCM
n enter Eq. 1

:
,
:::::::
PCM

1...N ,
:::::
enter

:::
the

:::::::::
regression

:::::::
approach

:
in normalised form.

3.2.1 Goodness of fit

To examine how well a regression fits the observations,

3.3
:::::::::

Regression
::::::::
approach

:::
For

::::
each

:::::
10km

::
x
:::::
10km

::::
grid

::::
cell,

:::
we

:::::::
describe

:::
the

::::
time

:::::
series

::
of

:::::::
monthly

::::::::
altimetric

:::::::::
variations,

:::::
hvA,

::
by

:
365

hvA(t) = a+

N∑
n=1

eA
nPC

M
n (t)+ rA(t).

::::::::::::::::::::::::::::::

(1)

:::
The

:::::::
scaling

::::::
factors

:::::
eA
1...N::::

and
:::
the

:::::
offset

::
a
::::

are
::::::::
estimated

:::
by

::::
least

:::::::
squares

::::::::::
adjustment.

::::
The

::::::::
dominant

::::::::
temporal

:::::::
patterns

:::
in

:::::::
modelled

::::
firn

::::::::
thickness

:::::::::
variations,

:::::::
PCM

n (t),::::
refer

:::
to

::
the

:::::
basin

::
to

::::::
which

:::
the

:::
grid

::::
cell

:::::::
belongs.

::::
The

:::::::
residuals

::
of

:::
the

::
fit

:::
are

:::
rA.

:

:::
We

:::::
define

:
a
:::::::::
combined

::::::
product

:::
by

:::
the

:::::
linear

::::::::::
combination

:::
of

:::
Eq.

::
1,

::::::::
evaluated

:::
per

::::
grid

:::
cell

:::
and

:::::
time:

:

fvA(t) =

N∑
n=1

eA
nPC

M
n (t).

::::::::::::::::::::

(2)370

:::
We

::::
refer

::
to

::::::
fvA(t)

::
as

:::
the ‘

:::::::
adjusted

:::
firn

::::::::
thickness

::::::::
variations’.

:

:::
The

:::::::::
stochastic

:::::
model

:::
of

:::
our

:::::::::
regression

::
in

::::
Eq.

:
1
:::::::::

prescribes
::
a
:::::::
different

:::::::::
weighting

::
of

:::::::::::
observations

:::::
from

:::
two

:::::
time

:::::::
periods.

::
As

::::::
results

:::::
from

:::
the

::::
older

::::::::
altimetry

::::::::
missions

::::::::
generally

::::
have

::
a
:::::
higher

:::::
noise

:::::
level

::::::::::::::::::::::::::::::::::::
(Schröder et al., 2019a; Nilsson et al., 2022)

:
,
:::
hvA

:::::
after

:::::
2003

:::
are

::::::::
weighted

::
by

:::
1,

:::::
while

::::
hvA

:::::
before

:::::
2003

:::
are

:::::
given

::
a
:::::::
different

::::::::
(usually

:::::
lower)

:::::::
weight,

::::::
which

::
is

:::::::
defined,

::::::::::
individually

:::
for

:::::
every

:::
grid

::::::
point,

::
by

:::
the

::::
ratio

:::
of

:::
the

:::::
noise

:::::::
variance

::
of

::::
hvA

::::::
before

:::
and

::::
after

::::::
2003.

:::
We

:::::
assess

:::
the

:::::
noise

:::
by

:::
the375

::::::::
high-pass

::::::
filtered

::::::
version

::
of

::::
hvA

::::::::
separately

:::
for

::::
both

::::::
periods

::::::::::::::::::
(cf. Groh et al., 2019)

:
.
:::
The

::::::::
high-pass

:::::::
filtering

:::::::
consists

::
of

::::::::
removing

:
a
:::::::
low-pass

:::::::
filtered

::::::
version

::
of

::::
hvA,

::::::
where

:::
the

:::::::
low-pass

:::::
filter

:
is
::
a
::::::::
Gaussian

::::
filter

::::
with

:
a
::::::::
6σ = 12

::::::
months

::::
filter

::::::
width.

::
To

:::::
assess

:::
the

::::::::
goodness

:::
of

::
fit,

:
we calculate the coefficient of determination

:::::
values

::
of

:::::::::
R-squared, R2(R squared), as

:
,
::
as

R2R2
A

::
= 1− SS(r)

SS(htot)
.
SS(rA)

SS(hvA)
= 1− SS(rA)

SS(fvA + rA)
,

::::::::::::::::::::::::::

(3)

SS(r) and SS(htot) :::::
where

:::::::
SS(rA)

::::
and

::::::::
SS(hvA)

:
are the residual and total sum of squares, respectively. SS(r)/SS(htot)380

:::::::::::::::
SS(rA)/SS(hvA) describes the proportion of unexplained variance. Here, we

:::
We calculate R2 for every grid cell individu-

allyand exclude the adjusted linear, seasonal and quadratic signals in htot. Thus, Eq. 5 specifies to

R2
A = 1− SS(rA)

SS(hvA)
= 1− SS(rA)

SS(fvA+rA)
.

:
.
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Table 1. Names of
::
the

::::
four different versions of adjusted firn thickness variations, fvA,

:::::::
regression

:::::
results

:
derived by applying the regression

approach Eq. 1 with different data sets.Differences to A1a are indicated in bold.

Name hA
:::
hvA from PCM from

:
*

A1a TUD altimetry (A1 )
:::::::::::::::::
(Schröder et al., 2019a) IMAU firn model (Ma )*

::
Ma

:::::::::::::::::::
(Veldhuijsen et al., 2023)

A2a
:::
A2a JPL altimetry (A2)

::
A2

::::::::::::::::
(Nilsson et al., 2022) IMAU firn model (Ma )*

::
Ma

:::::::::::::::::::
(Veldhuijsen et al., 2023)

A1b
:::
A1b

:
TUD altimetry (A1 )

:::::::::::::::::
(Schröder et al., 2019a) GSFC firn model (Mb)*

::
Mb

:::::::::::::::::
(Medley et al., 2022a)

A2b
:::
A2b

:
JPL altimetry (A2)

::
A2

::::::::::::::::
(Nilsson et al., 2022) GSFC firn model (Mb)*

::
Mb

:::::::::::::::::
(Medley et al., 2022a)

* standardised fvM (Sect. 3.2)

3.4 Different versions of adjusted firn thickness variations385

We derive two different sets of PCM depending on the firn model incorporated. In our annotation , we distinguish
:::
Our

::::::::
annotation

:::::::::::
distinguishes

:
the firn models by superscripts ‘Ma’ and ‘Mb’ for the IMAU and GSFC model

:::::
model

:::
by

::::::::::::::::::::
Veldhuijsen et al. (2023)

:::
and

::::::::::::::::::
Medley et al. (2022a), respectively. The regression approach (Eq.

:
1) is applied with each set of PCM and equally to each of

the two altimetry products hA from TUD and JPL
:::::::
products

::
of

::::
hvA

::::
from

:::::::::::::::::::
Schröder et al. (2019a)

:::
and

:::::::::::::::::
Nilsson et al. (2022), which

we distinguish by superscripts ‘A1’ and ‘A2’, respectively. Thus, depending on the combination
:::
All

:::::::::::
combinations

:
of data sets390

used
:::::
result

::
in

::::
four

::::::::::
applications

::
of

:::
the

:::::::::
regression

::::::::
approach

:::::
(Table

:::
1).

:::::
Thus, we obtain four versions of adjusted firn thickness

variations (fvA1a, fvA2a, fvA1band ,
:
fvA2b). This also results in four versions of ,

:
altimetric residuals (rA1a, rA2a, rA1band ,

:
rA2b)

and of associated coefficients of determination
::::::::
R-squared

:
(R2

A1a, R2
A2a, R2

A1band ,
:
R2

A2b). Table 1 gives an overview of the

applications of the regression approach.

We additionally fit a regression similar to Eq. 1 to the firn model data, fM, after their interpolation to the altimetric grid of395

10 km spacing. The same deterministic model Eq. 1 is used, but no weighting is applied. In this way, the regression parameters

a,b,c,d1,...,8 and in particular the scaling factors adjusted to altimetry, eA
n, can be directly compared to the scaling factors

derived from the firn models, eM
n . Replacing eA

n by eM
n in Eq. 2 would then lead to a variant of modelled firn thickness variations,

restricted to the dominant temporal modes found in the PCA. We refer to this variant as truncated modelled firn thickness

variations, fvM
90. The suffix 90indicates that the dominant patterns were chosen such that they cover at least 90% of the variance400

of standardised time series within the specific basin.

In Appendix A1, we additionally assess three alternative ways of defining ‘adjusted’ firn thickness variations. These alter-

natives are: (E1) Accept the modelled firn thickness variations, fvM, without any adjustment to altimetry. (E2) Instead of using

PCA-based dominant temporal patterns use the modelled time series of firn thickness variations at every grid cell and scale it

to fit the altimetry. These alternative variations are called
::
We

:::::
refer

::
to

:::
the

::::::
results

::
as

:
scaled firn thickness variations. We refer405

to them by
:
, fvE2. (E3) Identify the dominant temporal patterns of modelled firn thickness variations by a PCA without prior

standardisation of the time series.These alternative variations are called
::::
Omit

:::
the

:::::::::::::
standardisation

::::
step

::::
prior

:::
to

:::
the

::::
PCA

::::
and

::::::
proceed

:::::::::
according

::
to

:::
Eq.

::
1
:::
and

::
2.
::::

We
::::
refer

::
to

:::
the

:::::
result

::
as

:
modified adjusted firn thickness variations. We refer to them by

:
,
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fvE3. See Table B1 for an overview of the defined symbols and their terminology.
:::::
Note,

:::
that

:::
we

:::
do

:::
not

::::::::
introduce

::::
fvE1

::
as

::::
this

:::::
would

:::::::::
correspond

::
to
:::::
fvM.410

3.5 Assessment methods

3.5.1 Uncertainty of adjusted firn thickness variations

To
::
We

:
assess the impact of the choice of data sets and thus the influence of different errors on

:::
the

:::::::
adjusted

::::
firn

::::::::
thickness

::::::::
variations,

:
fvA, differences between

::
by

:::::
using

::::::::::
differences

:::::::
between

:::
the

:
time series of the various versions of firn thickness

variations, fv , (Section 3.4) are used. In general, from .
::::
For each time series of differences we can calculate the temporal root415

mean square (rms). This procedure is applied to time series differences evaluated for every
:
is
:::::
done

::
for

:::::
time

:::::
series

:::
per grid cell

and also for differences in basin-mean time series .

::::
time

:::::
series

::
of

:::::
basin

:::::::::
averages. To assess the uncertainty of the adjusted firn thickness variations, fvA , we consider the

maximum deviation within the different versions of fvA (Table 1). For this purpose, we form all possible combinations of

differences between the four versions of fvA. It results in six combinations of time series differences and thus, six (temporal)420

rms values, where we choose the one that is maximum
::
the

:::
six

:::::::
possible

:::::::::
differences

:::::
from

:::::
fvA1a,

:::::
fvA2a,

:::::
fvA1b,

:::
and

::::::
fvA2b,

:::
and

::::
take

::
the

:::::::::
maximum

::
of

:::
the

::::
rms

:::::::::
differences.

3.5.2 Robustness of adjusted firn thickness variations

The adjusted
:::
We

::::
refer

:::
to

:::
the

:::::::::
differences

::::::::
between

:::::::
adjusted

::::
and

::::::::
modelled firn thickness variations , fvA, can be considered

an improved representation of firn thickness variations compared with the modelled variations, fvM, if we can statistically425

demonstrate that
:
as

:
‘
:::
the

::::::::::
adjustments’

::::::::::
(fvA− fvM).

:::
We

:::::::
consider

:::::
these ‘

::::::::::
adjustments’

:
to

:::
be ‘

:::::::::::
improvements’

::::
over

:::
the

:::
firn

:::::::
models,

:
if
:
the differences within different versions of fvA are significantly smaller than the differences to fvM. To investigate this, we

perform statistical tests comparing distributions of temporal rms of differences within fvA to differences fvA− fvM.

We work with
::::::::::
adjustments.

::::
We

:::
test

:::
for

::::::::::
significance

:::
by

:::::::::
comparing

:::
the

:::::::::::
distributions

::
of

::::
their

::::::::
temporal

::::
rms.

::::
We

:::
use

:
a two-

sample, one-sided Kolmogorov-Smirnov test which is a non-parametric hypothesis test as the differences in fv do not follow430

a normal distribution. The Kolmogorov-Smirnov test uses the empirical cumulative distribution function (cdf) , which is the

integral of the probability density function (pdf), to compare the distributions of two samples
::::::::::::::::::::::::::::::::::::::::::
(Massey, 1951; Miller, 1956; Marsaglia et al., 2003)

. The null hypothesis (H0) reads: both samples, the data of both differences to be compared, are from the same continuous dis-

tribution. Thus, the alternative hypothesis (H1) reads: the empirical cdf of sample one (the differences within fvA), is larger

than the empirical cdf of sample two (the differences between fvA and fvM
:::::::::
adjustments), that is the differences within fvA tend435

to be smaller than the differences between fvA and fvM.

3.5.3 Spectral analysis of regression results

The
::
We

:::::::
analyse

:::
the

::::
time

:::::
series

::
of

:
altimetric residuals, rA, and the adjusted firn thickness variations, fvA, are analysed in the

spectral domain to characterise their stochastic properties. We calculate the
::::::
through

::::
their

:
power spectral density (psd) and the
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::::
their spectral indices, κ , of the underlying time series of rA and fvA. We use the software HECTOR v1.7.2 (Bos et al., 2012)440

to estimate κ
::::::::::::::
(Bos et al., 2012). As rA and fvA do not yield a white noise behaviour we use the formulation of power-law noise

to approximate their stochastic properties. (For example, power-law with κ=−1 and κ=−2 represents flicker and random

walk noise, respectively. )

3.5.4 Principal component analysis of altimetric residuals

The four versions of altimetric residuals(Section 3.4)
::::::::
altimetric

::::::::
residuals,

:::
rA,

:
are further analysed in the spatio-temporal do-445

main. First, we perform PCA on the altimetric residuals themselves to further identify dominant signals related to ice sheet

processes not considered or incorrectly represented by the firn models. (Note that the residuals may additionally contain sig-

nals related to variations in ice flow dynamics or subglacial hydrology. ) Second, we perform PCA on the residual differences

to further detect and investigate prevailing uncertainties in
::
the

:
altimetry analysis. Only data after 2003 is used because of

the higher noise level in the altimetry measurements of the older satellite missions. Inclusion
:::
Test

::::::::::
experiments

:::::::
showed

::::
that450

:::::
errors of pre-2003 data would result in more noisy dominant patterns and therefore could distort detected dominant modes

:::
bias

:::
the

:::::::::
dominant

:::::
modes

::::
and

::::::
hardly

:::::
helps

::
to

:::::::::
distinguish

::::::::
between

:::::
signal

::::
and

::::
error. We standardise the time series of resid-

uals and residual differences, as we did previously when identifying dominant patterns in modelled firn thickness variations

(Section
::::
Sect. 3.2).

The first PCA is applied to four versions of standardised residuals (rA1a, rA1b, rA2aand ,
:
rA2b). The second PCA is applied to455

two versions of standardised residual differences (rA1a−rA2a and rA1b−rA2b). For each PCA, we set up one aggregated ‘super

data matrix’ in which we arrange the time series of residuals/residual differences for all pixels and for the different versions

::
for

::::
each

::::
grid

::::
cell

:::
and

::::
each

::::::
version

:
into a single set of time series. PCA

::::::::::
Specifically,

:::
our

:::
data

::::
sets

::::::::
comprises

::::::::::
m= 90638

::::::
points

::
in

:::::
space

::::::
(entire

::::
area

:::::
under

:::::::::::
investigation)

::::
and

:::::::
p= 108

::::::
points

::
in

::::
time

::::::::::::
(2003–2017).

:::::
Thus,

:::
for

:::
the

::::
first

:::
and

:::::::
second

:::::
PCA,

:::
the

::::
super

::::
data

::::::
matrix

:::
has

:::
the

::::
size

::
of

::::
4m

:
x
::
p
:::
and

::::
2m

:
x
::
p,
:::::::::::
respectively.

::::
The

::::
PCA

:
is conducted to identify the dominant temporal460

patterns
:::::
(PCs), which are shared by all versions, together with their space-dependent and version-dependent amplitudes, i.e.

their spatial patterns .
::::::
spatial

::::::
patterns

:::::::
(EOFs).

:::::
Each

::::::::
identified

:::::
mode

:::
thus

:::::::
consists

::
of

::::
one

::::
joint

:::
PC

::
(1

:
x
::
p)

::::
and

::::
four,

::
or

::::
two,

:::::
EOFs

:::
(4m

::
x
:
1
:::
or

:::
2m

:
x
:::
1)

::
in

:::
the

:::
case

:::
of

:::
the

::::
first,

::
or

::::::
second,

:::::
PCA,

:::::::::::
respectively.

4 Results

4.1 Dominant patterns in modelled firn thickness variations465

Fig. 4 shows the PCA results for the example of basin 3 and the IMAU firn model input data, fvMa. The figure shows the

dominant spatial patterns (EOFs) and temporal patterns (PCs) together with their share of the total variance. We recall that

PCA is performed individually for each basin and that fvMa are standardised prior to PCA. A comprehensive presentation of

results for all basins and for the two alternative input firn models IMAU and GSFC is given by Fig. S5 –S9. Depending on the

basin, different numbers of modes (i.e. PC–EOF pairs) are required to
::
We

::::
can explain at least 90% of the total variance : two470
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Figure 4. PCA results of basin 3: dominant patterns in firn thickness variations identified from standardised firn modelling data (Ma).

(a, b, c
::
a–c) First , second and third

::::
three spatial pattern

::::::
patterns (EOF

::::
EOFs). (d) First three temporal patterns (PCs). (e) Associated percent-

ages of the basin’s total data variance. We define the PCs as standardised time series (mean of zero
:::::
Results

:::
for

::
all

:::::
basins

:::
and

:::
for

::::
both

:::
firn

:::::
models, std of 1)

::
Ma and without a unit while the EOFs have the unit of metre

:::
Mb,

:::
are

::::
given

:::
by

::
Fig.

:::::
S5–S9.

modes for
:
of

:::
the

::::::::
modelled

::::
firn

::::::::
thickness

::::::::
variations,

:::::
fvMa,

::::
with

::::
two

::::::
modes

:
(basin 5), three modes for

:
(basins 1, 3 and 6), four

modes for (basins 2, 4 and 8
:
)
:
and five modes for

:
(basins 7, 9 and 10(based on Ma). The first, second, third, fourth and fifth

modes describe 58 to 74%, 11 to 21%, 4 to 12%, 3 to 5% and 3 to 4% of the data variance, respectively (based on Ma).

The PCs and EOFs
:::::
modes

::::
(i.e.

:::
the

::::::::
PC–EOF

:::::
pairs) reveal a typical hierarchy of modes of an autocorrelated geophysical

signal. The first temporal patterns, PCM
1 , show a longer wavelength signal than the following PCs

:
,
::
as

:::::
shown

:::
in

:::
Fig.

::
4
:::
for

:::
the475

:::::
region

::
of

:::::::::
Dronning

:::::
Maud

:::::
Land

:::::
(basin

:::
3). The first EOFs show an approximately uniform distribution, while the following

EOFs are more complex and change sign. For basin 3, the first three EOFs exhibit auniform behaviour, a north-south gradient

and
::::
EOF

::
is

::::::
almost

:::::::
uniform

::::
over

:::
the

:::::
entire

:::::
basin

::::
(Fig.

:::
4a).

::::
The

::::::
spatial

:::::::
features

::
of

:::
the

::::::
second

::::
EOF

::::::
follow

:::
the

:::::::::
topography

:::::
from

::::
north

::
to

:::::
south

::::
(Fig.

:::
4b)

::::
and

:::
the

::::
third

::::
EOF

:::::::
exhibits

:
an east-west gradient , respectively (Fig. 4

:
c). The first mode of basins 2 and

3 (the region of Dronning Maud Land and Enderby Land) capture the
::
PC

::::::
shows

:
a
::::::
longer

:::::::::
wavelength

::::::
signal

::::
than

:::
the

::::::::
following480

::::
PCs.

:::
All

::::
three

::::
PCs

::::::::
fluctuate

::::
over

::::
time

::::::
similar

::
to

::
an

:::::::::
integrated

:::::::
random

::::
walk

:::::::
process

::::
(Fig.

::::
4d).

::
In

:::
the

::::
case

::
of

:::::
basin

::
3,

:::::
74%

::
of

::
the

::::::::
variance

::
is

::::::::
explained

:::
by

:::
the

:::
first

::::::
mode,

:::::
which

::::::::
captures

:::
the accumulation events in 2009 and 2011 (Boening et al., 2012;

Lenaerts et al., 2013) . Their temporal patterns, PCM
1 , show a characteristic increase

:
as

::::::
shown

:::
by

::
the

::::::::::::
characteristic

:::::::
increase

::
in

::
the

:::
PC

:
during these years (Fig. 4

:
d). All subsequent modes are more difficult to interpret as a geophysical signal because of the

fact that their determination is governed by the mathematical orthogonality property of PCs.485
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Figure 5. Illustration of the generation of adjusted firn thickness variations fvA
::::::::
Regression

:::::
results

:
for the grid point P1 (Fig. 3). Cyan

and black curves show regression results from the adjustment to TUD altimetry (A1a) and, for adirect comparison, to the IMAU firn

model (Ma), respectively. (a) Original time series, hA1 and fMa. (b) Modelled firn thickness variations, fvMa (dashed
::::
solid, black), truncated

modelled
::::::
adjusted

:
firn thickness variations, fvMa

90 ::::
fvA1a

:
(solid, black

:::
cyan), and adjusted firn thickness variations

:::::::
altimetric

:::::::
residuals, fvA1a

:::
rA1a (solid

::::::::
dash-dotted, cyan). (c

:::
b–d), (d), (e) Scaled first, second, and third dominant temporal patterns in fvMa. Hence,

::::
PCM

::::
from

:
the solid

:::::::
regression

::::::
version

::::
A1a

:::::
(cyan)

:::
and

:::
the

:::::
model

:::
Ma

:
(black/

:
).

:::
The

::::
solid

:
cyan curve in (b

:
a) is the sum of the black/cyan curves in (c–e

:::
b–d).

(f) Time series of the regression residuals. The black curve
:
a

::::
larger

:::::
subset

::
of

::::::
selected

::::
grid

::::
points

:
(rMa

:::
Fig.

:::
S10) equals fvM − fvMa

90:::
are

:::::
shown

:
in
:::
Fig.

:::
S11

:::
and

::::
S12.

4.2 Regression results

4.2.1 Time series for a selected grid point

Fig. 5 exemplifies the derivation of adjusted firn thickness variations for a selected grid point, P1, and based on the regression

A1a (Table 1). P1 (37.7° E, 70.2° S) is located in basin 3 close to the ice sheet margin at ∼ 1080m height (Fig. 3). There, the

adjusted and modelled firn thickness variations, fvA1a and fvMa, have a standard deviation (std ) of 41.0
::
std

::
of

::::
40.5 and 51.5 cm,490

respectively (Fig. 5b). In addition to fvMa, we illustrate the time series of truncated modelled firn thickness variations, fvMa
90

(Section 3.4), which has a std of 49.1 cm. The difference between fvMa and fvMa
90 equals rMa and is shown in Fig. 5f.

::
a).

:
By

construction, the scaling factors e1,...,3 ::::
e1...3 equal the std of the respective

::::::::
associated

:
scaled dominant temporal patterns. (In

the case
:
In
:::
the

::::::::
presence of data gaps in the altimetry time series, this equality holds approximately. ). Both fvA1a and fvMa

90 ::::
fvMa

are dominated by PCM
1 of basin 3

:::::
PCMa

1 ::::
(Fig.

:::
5b), as this pattern is scaled by eA1a

1 = 39.6 cm
:::::::
39.2 cm (altimetry) and eMa

1 =495

48.4 cm (firn model). For e2, altimetry and
:::
The

::::::
second

:::::::
pattern,

::::::
PCMa

2 ::::
(Fig.

:::
5c)

::
is

::::
very

:::::
small

::
in

:
the firn model have opposite

signs, yet small values, so that they
::::::
(eMa

2 =
::::::
0.2 cm

:
),
:::::
while

:::::::::
somewhat

:::::
larger

:::
and

::
of

:::::::
opposite

::::
sign

:::
for

::::::::
altimetry

::::::
(eA1a

2 =
::::::::
−7.7 cm

:
),
:::
but

::::
still

:::::
small

::::::
enough

::
to contribute little to fv

::::
fvA1a.
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The std of altimetric residuals,
:
rA1ais 31.0 cm,

:::
is

:::::::
31.7 cm, less than the std of fvA1a . The coefficient of determination,

::::
(Fig.

:::
5a).

::::
The

:::::::::
R-squared

::::
value

:
R2

A1a (Eq. 3) is 0.61
::::
0.601. When calculated separately for the time before and after 2003, R2

A1a500

equals −0.06 and 0.84
::::::
−0.004

::::
and

:::::
0.831, respectively. Thus, the adjusted firn thickness variations, fvA1a, describe less of the

variance of altimetric variations
::::::::
altimetry

:::::::
variance

:
before 2003 while after 2003 they explain 84%. Distinguishing the time

before and after 2003 is reasonable as we include different weights for the altimetry observations
::::
82%.

::::::::
Because

::
of

::
the

::::::::
different

::::::::
weighting

::
of

::::
hvA before and after 2003 (Section 3.3).

::::
Sect.

::::
3.3),

:::
R2

A::::
can

:::::
indeed

:::
be

:::::::
negative

:::
and

::::::::::::
distinguishing

:::
the

:::
two

:::::::
periods

:
is
::::::::::
reasonable.505

For a larger subset of selected grid points (Fig. S10), time series of the original elevation changes h and the regression results

are shown in Fig. S9–S12. While the following Section 4.2.2 focuses on the adjusted scaling factors e1,...,N , maps of the other

regression parameters (adjusted linear, quadratic and seasonal terms) are presented in Fig. S1–S3.

4.2.2 Scaling factors e

Figure 6. Adjusted scaling factors along profile 1 (left) and profile 2 (right). (a, b) e1, (c, d) e2 and (e, f) e3. Cyan and black510

curves show the scaling factors adjusted to TUD altimetry (A1a) and to the IMAU firn model (Ma), respectively. Note the

different scaling of the y-axes of profile 2.

Fig. 6 shows the spatial variation of the scaling factors e1...3 along two selected profiles marked in Fig. 3. Profile 1 is along

the circle of latitude at 72° S. Profile 2 is along the meridian at 115° E. The absolute magnitude of both scaling factors (from

A1a and Ma) is largest at the ice sheet margin. This applies for profile 1 across basin 2, in the middle part of basin 4 and at515

the end part of basin 7 as well as for profile 2 at the end part of basin 6. Observed factors, eA1a
1...3, reveal stronger variations

along both profiles than modelled factors, eMa
1...3. Discontinuities across basin borders arise because the scaling factors refer to

basin-specific patterns.

The scaling factors eA1a
1...3 and eMa

1...3 per grid cell are mapped for the example of basin 3 in Fig. 6. The patterns of the factors,

like the EOFs (Fig. 4), follow a typical hierarchy already discussed in Section
::::::::
discussed

::
in

:::::
Sect. 4.1. Overall, the patterns of520

eMa
1...3 are in a good agreement

::::
agree

:::
for

::
a

::::
large

::::
part

:
with eA1a

1...3. However, the first spatial pattern from the model extends

further towards
:::
into

:
the ice sheet interior than the pattern from altimetry .

::::
(Fig.

::
6d

::::::
versus

::::
Fig.

:::
6a).

:
In general, scaling factors

from the model show a smoother and more blurred pattern than the ones adjusted to altimetry. Patterns from altimetry reveal

a higher level of detail and a more localised spatial distribution. At certain regions the spatial distributions also differs.In the

area at and around
:::::
differ,

::::
e.g.

::
for

:::
the

::::::
second

::::::
pattern

:::
in

::
the

:::::::
vicinity

::
of

:
P1 (marked as a triangle), altimetry observes the second525

temporal pattern with a negative amplitude e2, while the firn model suggests an amplitude near zero.
::::
(Fig.

:::
6b

:::::
versus

::::
Fig.

::::
6e).

A comprehensive presentation of
:::
The

::::::
spatial

:::::::
variation

:::
of

:::
the

::::::
scaling

::::::
factors

:::::
along

:::
two

:::::::
selected

:::::::
profiles

::
is

:::::
given

::
by

::::
Fig.

::::
S13

:::
and

:
a
:::::::::::::
comprehensive

::::::::::::
representation

::
of

:::
the

:
scaling factors for all basins and for

::::
with

:::
the

:
different choices of input data are

::
is

given by Fig. S5 and S14.

4.2.3 Firn thickness variations and their sensitivity to the choice of data sets530
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Figure 6. Adjusted scaling
:::::
Scaling

:
factors for basin 3. (a–c) eA1a

1...3, first three
::::::
observed

:
factors adjusted to TUD altimetry

:::
from

:::
the

::::::::
regression

:::
A1a. (d–f) eMa

1...3, first three
:::::::
modelled

:
factors adjusted to

::::
from

:::
Ma.

::::
(d–f)

::
is
:
the IMAU firn model

::::
same

::
as

:::
Fig.

::::
4a–c

:::
but

::::
with

::::::
restored

:::::
signal

::::::::
amplitudes

::
for

::::
each

::::
grid

:::
cell. The location of P1 is shown by the black triangle.

We calculate the rms of the time series of firn thickness variations, fv , for each grid cell. Fig. 7a and 7b show the rms of
::
In

::::::
general,

:::
the

::::::
spatial

:::::::
patterns

::
of

:::
the

:::
rms

::
of

:::
the adjusted firn thickness variationsbased on A1a, fvA1a (Table 1),

:::
fvA, and the rms of

modelled firn thickness variationsbased on Ma, fvMa, respectively. (The rms of all versions of fvA and fvM is illustrated in
:
,
::::
fvM,

::
are

:::::::
similar

:
(Fig. S15a–d and Fig. S17a , b, respectively.)In general, the spatial patterns of fvA and fvM are similar

::
7a

:::
and

:::
7b).

Rms values are largest at the ice sheet margin and smallest over the plateau of the EAIS. For grid cells in the elevation ranges535

(1) below 1000m, (2) 1000 to 2000m, (3) 2000 to 3000m and (4) above 3000m, median rms values are in the range of (1)

13.2 to 16.4
::::::::::
12.2 to 16.4 , (2) 8.7 to 10.9

:::::::::
8.3 to 10.9 , (3) 3.7 to 5.1

:::::::::
3.5 to 5.1 and (4) 2.2 to 2.4 cm

:::::::::::
2.1 to 2.3 cm, respectively.

Fig. 7c and 7d show the rms of the differences fvA1a− fvMa in an absolute and relative way, respectively. Differences between

adjusted and modelled variations reveal highest absolute rms values at lower elevations, near the AIS margins (
::::
with median rms

differences in the range of 11.5 to 12.7 cm below 1000m
:::::::::::::
13.4 to 14.7 cm

:::::
below

:::::::
1000m

::::
(Fig.

::
7c). In a relative sense, largest540

mismatch is found in the interior of the EAIS but also at some locations at the ice sheet margin .
::::
(Fig.

::::
7d).

To evaluate the sensitivity of fv to the choice of data sets, we calculate the difference between various versions of fv

(Section
::::
Sect. 3.5.1). Fig. 8 shows

:
,
:::
and

::::::::
compare the distributions of the rms of differences between various versions of fv .

(Corresponding rms maps of differences are displayed in
::::
these

:::::::::
differences

::
(Fig. S17–S19). In addition to the distributions

their median values are presented in Fig. 8 and listed in Table 2.
::
8).

:
In total, differences within fvA are smallest, followed by545

differences within fvM while differences between fvA and fvM are largest .
::::
(Fig.

::
8,

:::::
Table

:::
2). Differences within fvA indicate a

smaller influence by different firn model data than by different altimetry data. Differences between fvA and fvM are smallest

for A1a (adjustment over the IMAU firn model through TUD altimetry ) and
:::
firn

:::::
model

:::
Ma

:::::::
through

::::::::
altimetry

::::
A1),

:
largest for
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Figure 7. Root mean square (rms) of the times series of (a) adjusted firn thickness variations
::::
based

:::
on

::::
A1a, fvA1a,

:
and (b) modelled firn

thickness variations
::::

based
::
on

:::
Ma, fvMa. (c) Rms of the time series of the differences fvA1a−fvMa. (d) Rms of the time series of the differences

fvA1a − fvMa divided by the rms of fvMa.
::

All
::::::
versions

::
of

:::
fvA

:::
and

::::
fvM

::
are

::::::::
illustrated

::
in

:::
Fig.

:::
S15

:::
and

::::
S16.
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Figure 8. Histograms of the temporal rms, assessed at each grid cell, of differences between various versions of firn thickness variations. (a)

Histograms. Vertical lines in the box indicate median values. (b) Cumulative histograms
::::::::::
Corresponding

:::
rms

:::::
maps

::
of

::::::::
differences

::
are

::::::::
displayed

:
in
:::
Fig.

:::::::
S15–S17.
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Table 2. Overview of the comparison between various versions of firn thickness variations, as detailed in Fig. 8. Column 1 indicates the

addressed comparison: between versions of adjusted firn thickness variations fvA (row 1–4), between modelled firn thickness variations fvM

(row 5), and between fvA and fvM (row 6–9). For each comparison, column 2 gives the median (over all grid cells) of the rms (over time) of

differences between the two time series evaluated at each grid cell. The table is ordered by the median values (from small to large). Column

3 also gives the median of the rms of differences but as a relative measure. For each grid cell, the rms of differences are divided by the rms

of fvMa. Then, the median over all grid cells is calculated. Column 4 gives a short description or possible causes.

Difference Median Description/Cause

absolute relative

A2a−A2b 2.3 cm 0.46
:::
0.47

:
influence of different firn model setups based on A2

A1a−A1b 2.6 cm
:::::
2.7 cm 0.51

:::
0.52

:
influence of different firn model setups based on A1

A1b
:::
A1a−A2b

:::
A2a

:
2.8 cm

:::::
2.7 cm 0.55

:::
0.54

:
different altimetry analysis based on Mb

A1a
:::
A1b−A2a

:::
A2b

:
2.9 cm

:::::
2.8 cm 0.58

:::
0.54

:
different altimetry analysis based on Ma

Ma−Mb 3.5 cm 0.65 different firn model setups

A1a−Ma 3.8 cm 0.73 Adjustment
::::::::
adjustment

:
over Ma through A1*

A2a−Ma 4.2 cm
:::::
4.1 cm 0.82

:::
0.80

:
Adjustment

::::::::
adjustment

:
over Ma through A2*

A1b
:::
A2b−Mb 4.4 cm 0.83

:::
0.87

:
Adjustment

::::::::
adjustment

:
over Mb through A1*

A2b
:::
A1b−Mb 4.5 cm 0.87

:::
0.85

:
Adjustment

::::::::
adjustment

:
over Mb through A2*

* due to firn signals not correctly represented by the models (firn model errors) and/or due to errors in the altimetry products

A2b (adjustment over the GSFC firn model through JPL altimetry )
:::
firn

::::::
model

:::
Mb

:::::::
through

::::::::
altimetry

:::
A2)

:::
in

:
a
:::::::
relative

:::::
sense

:::
and

::::::
largest

:::
for

::::
A1b

::::::::::
(adjustment

::::
over

:::
the

:::
firn

:::::
model

::::
Mb

::::::
through

::::::::
altimetry

::::
A1)

::
in

::
an

::::::::
absolute

::::
sense

::::::
(Table

::
2). The differences550

between the various versions of fv reflect errors in the firn models and in the altimetry products. These are further discussed in

Sections
::::
Sect. 5.3 and 5.4.

4.2.4 Goodness of fit

The
:::::::
altimetric

::::::::
residuals

:::
are

::::
used

::
to

::::::::
calculate

:::
the

::::::::
goodness

::
of

::
fit

:::
or

::::::::
R-squared

::::
(Eq.

:::
3).

::::
The rms of the altimetric residual time

series is
:::
and

:::
the

::::::
values

:::
of

:::::::::
R-squared

:::::
based

:::
on

:::
the

:::::::::
regression

::::
A1a,

:::::
R2

A1a,
::::

are presented in Fig. 9a (estimated per grid cell555

over the full period ). The altimetric residuals are used to calculate the goodness of fit (Section 3.1.2). Here, we distinguish

between the periods before and after 2003. As mentioned in Section 4.2.1, this is useful
:::
and

::
b,

::::::::::
respectively,

:::
for

:::
the

::::::
period

::::
after

:::::
2003.

:::
The

::::
rms

::
of

:::
the

:::::::
residuals

::::
after

:::::
2003

::
is

::::::::
generally

::::::
smaller

::::
than

::::::
before

::::
2003

:::::
(Fig.

::::
S18) due to the different noise levels and

weighting of altimetry observations during
:::
the

::::::::
altimetry

::::::::::
observations

::
in

:
the two periods (Section 3.3). The rms of the residuals

::::
Sect.

::::
3.3),

::
so

::::
that

:::
R2

:
is
::::::::
generally

::::::
higher after 2003

:::
than

::::::
before

::::
2003

:
(Fig. 9b)are generally smaller than from the ones over the560

full period.
:::::
S19).
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Figure 9. (a, b)
:
Rms of the residual altimetric time series, rA1a, for (a) the full period and (b) the period after 2003. (c

:
b)Coefficients

::::::
Values

of determination
::::::::
R-squared for the regression A1a, R2

A1a, considering the period after 2003.
:::::
Colour

:::
bar

:::::
arrows

::::::
indicate

:::
that

:::
the

::::
value

:::::
range

::::::
exceeds

::
the

:::::
limits

::
of

::
the

::::::
colour

::::
scale.

The spatial distribution of the coefficients of determination based on the regression A1a, R2
A1a, and for the period after 2003

is displayed by Fig. 9c. After the individual calculation of Rs :::
R2 for each grid cell, basin-mean values are derived and listed

in Table 3 for all versions of regression. (Fig. S18 and Fig. S19 further shows maps of the residuals rms and of R2 for different

versions of regression and both time periods. Table S1 lists basin averages of R2 for the period before 2003.) Averaged over565

the entire area, R2
A1a is 0.46

:::
0.40

:
after 2003 (Table 3). This means that on average 46%

:::::
40% of the variance of altimetric

variations is captured by the regression model, i.e. by fvA1a. Depending on the basin, fvA1a capture 30% (basin
:::::::
captures

:::::
26%

::::::
(basins

:
4
::::
and 8) to 62%

::::
58% (basin 10) of the data variance. In general, the goodness of fit decreases slightly when using JPL

altimetry instead of TUD altimetry (column A1a versus A2a and column A1b versus A2b of Table 3) or
::
we

:::
find

::::
less

:::::::::
agreement

::::
with

:::::::
altimetry

:
when incorporating the GSFC

:::
Mb

:
firn model instead of the IMAU

::
Ma

:
firn model (

:::::
Table

::
3, column A1a versus570

A1b and column A2a versus A2b).

The impact of methodological changes to the regression approach (E1, E2 and E3 as summarised in Section
::::
Sect. 3.4) is

presented
:::::::::
elaborated in Appendix A2. There, Fig. A1 compares R2 values of the modified approaches to R2

A1a for each grid

cell and Table A1 lists basin-averaged R2 values of the modified approaches. The methodological changes result in smaller

average R2 values ,
::::
(Fig.

:::
A1,

:::::
Table

:::::
A1), so less of the data variance could

:::
can

:
be explained. For this reason, the modified575

approaches are not preferable to the chosen regression approach presented in Section
::::
Sect. 3.3.

By now, the presentedR2 values are based on calculations per grid cell in accordance with the regression approach Eq. 1. For

basin average time series,R2 become
:::::::
becomes

:
larger. Fig. 2 shows the basin-averages

::::
basin

:::::::
averages

:
of adjusted firn thickness

variations, which we may compare to the basin-averages of the altimetric variations through the coefficients of determination

:::::
values

::
of

:::::::::
R-squared

:
given in Table 3, last column. Indeed, fvA1a could capture 51% (basin 4) to 97%

:::::::
captures

::
up

:::
to

:::::
96%580

(basins 9 and 10
:
;
:::::
West

:::
AIS) of the variance of basin average altimetry variations. (Basin-mean time series of all regression

results and versions are presented in Fig. S4–S21. )
::
20

::::
and

::::
S21.
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Table 3. Explained variance or coefficients of determination, R2 , for each basin and each version of regression (Table 1) over the period

after 2003. Apart from the last column A1a, R2 is first calculated for each grid cell according to Eq. 3 and then averaged over each basin.

Values of A1a are calculated by first averaging the regression results over each basin and then applying Eq. 3.
::::
Basin

:::::::
averages

::
of

::
R2

:::
for

:::
the

:::::
period

:::::
before

::::
2003

::
are

:::::
listed

::
by

::::
Table

:::
S1.

Basin A1a A2a A1b A2b A1a

01 0.46
:::
0.42 0.43

:::
0.40 0.41

:::
0.29 0.36

:::
0.32 0.79

02 0.53
:::
0.50 0.48

:::
0.45 0.49

:::
0.39 0.42

:::
0.40 0.94

:::
0.92

03 0.48
:::
0.45 0.48

:::
0.46 0.48

:::
0.43 0.46

:::
0.44 0.94

:::
0.93

04
:::
0.26

:
0.36 0.41

:::
0.13 0.27

:::
0.26 0.33 0.51

::::
0.11

05 0.40
:::
0.27 0.39

:::
0.33 0.36

:::
0.24 0.39

:::
0.35 0.79

:::
0.54

06 0.42
:::
0.32 0.29

:::
0.27 0.36

:::
0.21 0.30

:::
0.25 0.82

:::
0.74

07 0.57
:::
0.52 0.47

:::
0.43 0.51

:::
0.40 0.41

:::
0.34 0.94

:::
0.92

08 0.30
:::
0.26 0.37 0.30

:::
0.11 0.37

:::
0.31 0.66

:::
0.58

09 0.57
:::
0.54 0.50

:::
0.46 0.53

:::
0.45 0.47

:::
0.44 0.97

:::
0.96

10 0.62
:::
0.58 0.56

:::
0.53 0.56

:::
0.44 0.48

:::
0.44 0.97

:::
0.96

01–10* 0.46
:::
0.40 0.43

:::
0.40 0.42

:::
0.29 0.39

:::
0.34 0.83

:::
0.79

* refers to the entire area (considered as a single basin)

However, on the level of individual grid cells the altimetric residuals, rA, still contain a large proportion of the variance of

altimetric variations. For example, for A1a and the period after 2003, an average ratio of 54%
:::::
60% of the altimetric variations

are unexplained. Therefore, the residuals rA are further investigated in the following Sections
::::
Sect. 4.3 and 4.4.585

4.3 Spectral analysis of regression results

Fig. 10a shows the power spectral density (psd) of the altimetric residuals, rA1a, and the adjusted firn thickness variations,

:::
We

:::
find

::
a
:::::::
stronger

:::::::::::::
autocorrelation

:::
for

:::
the

::::
time

:::::
series

::
of

:
fvA1a , for the selected grid point P1. The underlying time series are

displayed by Fig. 5. (For the larger subset of selected grid points, Fig. S22 and S23 display the psd of the regression results

from A1a and A2a, respectively.) The psd of both fvA1a and rA1 generally decreases from low to high frequencies. The slope590

of the psd is steeper for fvA1a than for rA1. This means that the underlying time series of fvA1a have stronger autocorrelation

than that of
:::
than

:::
for

:::
that

::
of

:
rA1a, or in other words, the underlying time series of

:::
i.e. rA1a are

:
is
:
closer to white noise behaviour

than fvA1a.
:
,
::::
since

:::
the

::::::
power

::::::
spectral

:::::::
density

::::
(psd)

:::
for

:::::
fvA1a

:::::
shows

::
a
::::::
steeper

:::::::
decrease

:::::
with

::::::::
frequency

::::
than

:::
for

::::
rA1a

::::
(Fig.

:::::
10a).

At low frequencies the psd of fvA1a generally exceeds the psd of rA1a, while above a certain frequency (∼ 0.5 yr−1 for P1) the

psd of rA1 exceeds that of fvA1a
::::
(Fig.

::::
10a). For P1 that means on time scales shorter than ∼ 2 yr rA1a includes more power595

then fvA1a. At P1, the
:::
The

:
spectral indices κ adjusted to

:::::::::
determined

:::
for

:
rA1a and fvA1a (Section 3.5.3) are −1.75 and ≤−3,

respectively. For each grid cell,
:::
−3,

::::::::::
respectively,

::
at
::::

P1.
::::
Over

:::
the

:::::
entire

:::::
area,

:::
the

:::::
mean

:::::
value

::
of κ of fvA1a is calculated to be
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Figure 10. (a) Lomb-Scargle power spectral density (psd) of altimetric residuals,
:
rA1a,

:
(blue) and adjusted firn thickness variations,

:
fvA1a

:
,

(green) for grid point P1.
:::
See

:::
Fig.

:::
S22

:::
and

::::
S23

::
for

:::
the

::::
larger

:::::
subset

::
of

::::::
selected

::::
grid

:::::
points. (b) Spectral index κ for power-law noise adjusted

to the residuals rA1a of every grid cell.
:::::
Colour

:::
bar

:::::
arrows

::::::
indicate

:::
that

:::
the

::::
value

:::::
range

::::::
exceeds

::
the

:::::
limits

::
of

:::
the

:::::
colour

::::
scale.

−3 or more negative. (HECTOR only yields numerical stable results for κ≥−3.) For each grid cell, κ of
::
for

:
rA1a are shown in

:
is
::::::
−1.72

:
(Fig. 10b. The mean value over the entire area amounts to−1.72. It

::
),

:::::
which indicates temporally correlated residuals

with characteristics close to random-walk noise.
::
For

::::::
fvA1a,

::
in

:::::::
contrast,

:::
the

:::::
value

:::
of

:
κ
::
is
:::
−3

::
at
:::::

each
::::
grid

::::
cell.

:::
The

:::::::::
employed600

:::::::
software

::
to

:::::::
estimate

:
κ
:::::::::::::::
(Bos et al., 2012)

:::
has

:::
−3

::
as

::
its

::::::::
minimum

::::::
output

:::::
value.

::::::
Hence,

:::::
fvA1a

:::
has

::::::
κ≤−3

::::
and

:::::::
therefore

::
a
:::::::
stronger

::::::::::::
autocorrelation

::::
than

::::
rA1a.

:

4.4 Dominant patterns in altimetric residuals

Fig. 11 and 12 show results of the PCA performed on the altimetric residuals and residual differences, respectively (Section 3.5.4).

The first three modes explain together 22% of the residual variance and 20%
:::::::
dominant

::::::
modes

:::::::
explain

:::::
23%

:
of

:::
the

::::::::
variance605

::
of

::::::::
altimetric

::::::::
residuals

::::
(Fig.

::::
11e)

::::
and

:::::
19% of the variance of residual differences .

::::
(Fig.

:::::
12e).

:
The first mode of the residual

differences captures 10% and its temporal pattern reveals a prominent drop between July 2010 and January 2011. Due to
::::
2011

::::
(Fig.

:::::
12d).

:::
Due

::
to
:::
the

:
data standardisation prior to PCAthe spatial patterns

:
,
:::
the

:::::
EOFs cannot be directly interpreted as ampli-

tudes in elevation changeof the respective temporal patterns. For this reason, we rescale the spatial patterns by multiplying them

with
:
.
:::
For

::::
their

::::::::::
presentation

::::
(Fig.

::::::
11a–c

:::
and

:::::::
12a–c),

::
we

:::::::
restored

:::
the

:::::
signal

::::::::::
amplitudes

::
for

:::::
each

:::
grid

::::
cell

::
by

::::::::::
multiplying the std610

of each time series(
::
the

::::
time

::::::
series, which was used beforehand to normalise the time series). Thereby, we regain interpretable

magnitudes of the spatial patterns. Fig. 11a–f and 12a–f illustrate the version-dependent original and rescaled spatial patterns

for rA1a and rA1a− rA2a, respectively. (For all versions and both PCA, the original and rescaled patterns are illustrated in

Fig. S24–S26). .
:

5 Discussion615

5.1 Interannual firn thickness variations
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Figure 11. PCA results of standardised altimetric residuals for the period after 2003. (a–c) First three spatial patterns (EOFs) – version-

dependent, shown here for rA1a
::
and

::::
with

::::::
restored

:::::
signal

:::::::::
amplitudes

:::
for

:::
each

::::
grid

:::
cell. (d–f) Rescaled first three

:::
The EOFs for rA1a

:
of
:::

all

::::::
versions

:::
are

:::::::
illustrated

::
in
:::
Fig.

:::
S24

:::
and

::::
S25. (g

:
d) First three temporal patterns (PCs) determined from the aggregated data sets of rA1a, rA1b,

rA2a and rA2b. (h
:
e) Associated percentages of the total residual variance considering the respective PC–EOF pairs.We define the PCs as

standardised time series (mean of zero, std of 1) and without a unit while the EOFs have the unit of metre.

Adjusted
:
In

:::::::
general,

:::::::
adjusted

:
firn thickness variations fvA (e.g. Fig. 7a for version A1a) and modelled firn thickness variations

fvM (e.g. Fig. 7b for Ma) share the same general spatial patterns. The largest magnitudes are found at lower elevations near the

ice sheet margins with median rms values in the range of decimetres. The smallest magnitudes are found over the plateau of the

EAIS with median rms values in the range of centimetres (Section
::::
Sect. 4.2.3). This general spatial pattern was to be expected,620

as it is related to the spatial variability of SMB. Snowfall, the main driver of Antarctic SMB variability, increases from the

dry, relatively flat and homogeneous interior to the steep and complex topography of the wetter coast
::::::
coastal

:::::::::
conditions. High

snowfall at the ice sheet margins occurs due to orographic precipitation, influenced by the winds and topography of the AIS

(Lenaerts et al., 2019)
::::::::::::::::::::::::::::::::::::::
(van Wessem et al., 2014; Lenaerts et al., 2019).

The power spectral density (psd) of
::::::
adjusted

:::
firn

::::::::
thickness

:::::::::
variations fvA decreases from low to high frequencies with

:::::
reveal625

:
a
:::::
strong

::::::::
temporal

:::::::::::::
autocorrelation

:::::::
through

:::
the

:::::
strong

::::::::
decrease

::
of

::::
their

:::
psd

:::::
with

::::::::
frequency,

:::::
with spectral indices κ≤−3 for

:
a

power-law noise (Section 4.3, Fig. 10a). The strong temporal autocorrelation observed in the interannual firn signals go
:::::
model

:::::
(Sect.

::::
4.3).

::::
This

::
is

::
in

:::
line

:
with the findings of King and Watson (2020). They estimated the power-law noise parameter κ in the

range of −2.3 to −2.2 and −3.0 to −2.6 based on SMB estimates from RACMO2.3p2 and ice core composites, respectively.

(Unlike our analysis, they did not co-estimate a quadratic or seasonal term. )
:::
only

:::::::::::
co-estimated

:
a
:::::
linear

:::::
trend.

:
630
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Figure 12. PCA results of standardised altimetric residual differences for the period after 2003. (a–c) First three spatial patterns (EOFs) –

version-dependent, shown here for rA1a − rA2a
:::
and

::::
with

::::::
restored

:::::
signal

::::::::
amplitudes

:::
for

::::
each

:::
grid

::::
cell. (d–f) Rescaled first three

:::
The

:
EOFs

for rA1a − rA2a
:
of

::
all

:::::::
versions

::
are

::::::::
illustrated

::
in

:::
Fig.

::::
S26

:::
and

:::
S27.

:
(g
:
d) First three temporal patterns (PCs) – the joint basis of rA1a − rA2a and

rA1b − rA2b. (he) Associated percentages of the total variance of residual differences considering the respective PC–EOF pairs.

In the following, we compare how much variance of altimetric variations (for the period after 2003) can be explained accord-

ing to the applied approach and the two different spatial considerations used previously: First,
:
,
:::::::
namely,

::::
first, the percentages

assessed from grid cell time series and then averaged over the entire area. Second,
:
,
:::
and

:::::::
second, the percentages from time se-

ries averaged over the entire area (‘mean Antarctic’ time series, Fig. 13). The modelled firn thickness variations, fvMa, explain

11% and 63%
:::::
64% for the two spatial considerations, respectively (Table A1, columns E1 and E1). The scaled firn thickness635

variations, fvE2, explain 35% and 73%
:::::
31%

:::
and

:::::
71% (Table A1, columns E2 and E2), respectively. The modified adjusted

firn thickness variations, fvE3, explain 42% and 82%
::::
37%

:::
and

:::::
79% (Table A1, columns E3 and E3). Finally, the adjusted firn

thickness variations, fvA1a, explain 46% and 83%
:::::
40%

:::
and

:::::
79% for the two spatial considerations (Table 3, columns A1a and

A1a). Our regression approach (Eq. 1), which generates fvA1a, explains the greatest
:
a
:::::
larger

:
part of the variance of altimetric

variations compared with
:::
than

:
the other approaches. This applies not only for the estimates considering each grid cell equally,640

but also for the estimates based on time series averaged over basins or the entire area. Furthermore, the
:::
The

:
spatial scale in-

vestigated is crucial for the results, as the estimates from the basin-mean time series explain more of the altimetry variance

than the estimates considering each grid cell equally. However, the latter are needed to enable the investigation and further

interpretation of regression results based on their spatial patterns
:::::::::
understand

:::
the

::::::
spatial

::::::
patterns

:::
of

:::
firn

::::::::
variations.
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Figure 13. Mean Antarctic interannual elevation changes depending on the applied approach. Altimetric
:::::::
Modelled

::::
firn

:::::::
thickness

:
varia-

tions (hvA1a
:::
fvMa), modelled firn thickness

:::::::
altimetric

:
variations (fvMa

::::
hvA1), adjusted firn thickness variations (fvA1a), scaled firn thickness

variations (fvE2) and modified adjusted firn thickness variations (fvE3).

(a)

1/4 

1/2 

1   

2   

4   
(b)

1/4 

1/2 

1   

2   

4   
(c)

1/4 

1/2 

1   

2   

4   

(d)

1/4 

1/2 

1   

2   

4   

(d)

1/4 1/2  1   2   4  

Figure 14. (a) Rms of (the time series of) the differences fvA1a − fvA1b. (b) Rms of the differences fvA1a − fvA2a. (c) Uncertainty estimate

of fvA: Maximum
:::::::
maximum rms of any combination of differences within versions of fvA. (d) Rms of the residual differences rA1a − rA2a

considering only the period after 2003. All rms maps (a–d) are normalised by the rms of fvMa.

5.2 Uncertainty and robustness of adjusted firn thickness variations645

The adjusted firn thickness variations, fvA, include the effects of firn model errors and altimetry errors. The differences fvA1a−
fvA1b (Fig. 14a) and fvA2a− fvA2b, evaluated at every grid cell, are used to assess the influence of different firn model setups on

fvA. The median values (over all grid cells) of absolute and relative differences (A1a–A1b) are ∼2.6 cm and ∼51%
:::
are

::
in

:::
the

::::
range

:::
of

:::::::::::
2.3 to 2.7 cm

:::
and

:::::::::
47 to 52%, respectively (Table 2, Fig. 8). The differences fvA1a−fvA2a (Fig. 14b) and fvA1b−fvA2b,

evaluated at every grid cell, are used to assess the influence of different altimetry analysis on fvA. The median values (over all650

grid cells) of absolute and relative differences (A1a–A2a) are ∼2.9 cm and ∼58%
::
are

::
in

:::
the

:::::
range

::
of

::::::::::::
2.7 to 2.8 cm

:::
and

::::::
∼54%

, respectively (Table 2, Fig. 8). Both the firn model and altimetry errors are discussed in Sections
::::
Sect. 5.3 and 5.4 separately.

To assess the combined influence of firn model and altimetry errors on fvA, the maximum deviation within the different

versions of fvA is used (Section
::::
Sect. 3.5.1). Fig. 14c shows the map of the maximum rms values. The median values (over
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Figure 15. Histograms of the temporal rms of differences between various versions of firn thickness variations assessed at each grid cell of

basin 3.(a) Histograms. (b) Cumulative histograms.

all grid cells) of absolute and relative (maximum) differences are ∼4.3 cm and ∼82%
:::::::
∼4.2 cm

:::
and

::::::
∼80%, respectively. In655

addition, median values are calculated for every basin , i. e. over all grid cells within the respective basins.
:::::::::
separately.

:
The

absolute and relative uncertainties range from 2.3 cm
::::::
2.2 cm (basin 8) to 10.9 cm

::::::
10.6 cm (basin 10) and from 59%

:::::
54%

(basin 5) to 189%
::::::
186% (basin 8), respectively. We consider these estimates to be rough, but rather conservative uncertainty

assessments for the adjusted firn thickness variations. In addition to the evaluation at grid cell level, the uncertainty of fvA

is assessed by time series differences of the basin means. (See Fig. S20 for the basin-mean time series of the four versions660

of fvA). The associated uncertainties per basin range from 1.0 cm
::::::
0.9 cm (basin 4) to 6.7 cm

::::::
6.4 cm (basin 10). The relative

uncertainties are in the range of 21%
::::
20% (basin 2) to 111%

::::::
108% (basin 8). For mean Antarctic fvA an absolute and relative

uncertainty of ∼1.4 cm and ∼71%
::::::::
∼1.3 cm

::
and

:::::::
∼66%, respectively, are estimated.

To
::
We

:
assess the robustness of fvA , statistical tests were carried out (Section 3.5.2). In particular

::::::
through

:::::::::
statistical

::::
tests

::::::::
according

::
to

::::
Sect.

::::::
3.5.2.

:::
For

::::
each

:::::
basin, four tests per basin

:::
are

::::::::
conducted, each comparing the temporal rms of the following665

pair of differences in firn thickness variationsare conducted: Test (1) compares A1a−A2a to A1a−Ma, test (2) compares

A1a−A2a to A2a−Ma, test (3) compares A1b−A2b to A1b−Mb and test (4) compares A1b−A2b to A2b−Mb. For all 40

tests, H0 is rejected (at the 5% significance level) and thus, H1 is accepted. This means that the differences within fvA are

significantly smaller than the
::::::::::
adjustments,

:::
i.e.

:::
the

:
differences between fvA and fvM

:
,
::::
and

:::
that

::::
fvA

::::
can

::
be

:::::::::
described

::
as

:::
an

:::::::::::
improvement

::::
over

:::
fvM. Fig. 15 a exemplifies the distributions of the differences for basin 3. (The histograms and cumulative670

histograms for all basins are shown in Fig. S28 and S29, respectively. ) The results of the statistical tests demonstrate that fvA

is relatively robust to the choice of data sets, firn models and altimetry products. The choice of data sets does not significantly

influence fvA. Consequently, the assumption that fvA represents a significant improvement over the modelled variations is

reasonable. Limitations are discussed below.
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5.3 Firn model errors675

Firn model errors arise due to firn signals not (correctly ) represented by either
::::
from

:::
firn

::::::
signals

::::
that

:::
are

:::
not

::::::::
simulated

:::
or

:::
not

:::::::
correctly

::::::::::
represented

:::
by the firn model or its input from RCMs or even

:::
and

:
reanalysis data. Differences between fvMa and

fvMb
:::::
They

:::
are

:::::
partly

:::::::
reflected

:::
in

:::
the

:::::::::
differences

:::::::::::
fvMa− fvMb (Fig. S16) as well as differences between

::
and

::::
the

::::::::::
adjustments

:::
over

::::
the

:::
firn

:::::::
models,

:::
i.e.

:
any version of fvA and fvM

::::::::
fvA− fvM (Fig. S17)reflect firn model uncertainties and errors. Partly,

fvA− fvM
::
the

::::::::::
adjustments

:
also include errors related to the altimetry measurements and analysis

::
of

:::
the

::::::::
altimetry

:::::::
products, as680

discussed in Section
::::
Sect. 5.4. (See also Table 2 for an overview of the various differences in firn thickness variations fv and

their description.) Firn models generally show a smoother
:
,
::::
more

:::::::
blurred spatial pattern than altimetry . This can be seen in the

different fv (Fig. 7b versus 7a) and also in the different scaling factors e (
::
cf.

:
Fig. 6d–f versus 6a–b). One reason for this may be

the lack of
:::
a–b

:::
and

::::
also

::::
Fig.

::
7b

::::::
versus

:::
7a).

::::::::
Reasons

::::
may

::
be small-scale, mainly wind-driven processes

:::
that

:::
are

:::::::
missing

::
in

:::
the

:::::
model

::::::
physics

::
or

:
not resolved in the firn modelling outputs (Lenaerts et al., 2012, 2019), leading to a blurred spatial distribution685

of modelled firn thickness variations
::::
same

:::::
detail

:::
due

::
to

:::
the

::::::
coarser

::::::
spatial

::::::::
resolution

:::
of

::
the

:::::::
models

:::::::::::::::::::::::
(Lenaerts et al., 2012, 2019)

.

The spatial patterns of absolute differences within fvM and between any version of fvA and fvM
::
of

:::
the

::::::::::
adjustments

:
(the

adjustments , e.g. Fig. 7c), follow the spatial pattern of the signal itself. The greatest differences occur at the margins, where

the climate is wetter and temperatures and accumulation are higher than inland. Especially in these coastal regions of high-690

relief topography, the horizontal resolution of the models, probably together with its physics, play an important role (Mottram

et al., 2021). There, the differences between altimetry and firn models may be influenced by an incorrect or inaccurate spatial

distribution of the modelled firn thickness variations (Fig. 6).

The modelled SMB components and their uncertainties have a direct impact on the modelled firn thickness. By assessing the

spread of an ensemble of modelled firn thickness changes, Verjans et al. (2021) identified the RCMs as the largest contributor695

to the ensemble uncertainty. A precise parameterisation of firn compaction and surface snow density gains in importance in

regions with high snowfall and large spatial variability of climatic conditions, such as Dronning Maud Land and Enderby Land

(Verjans et al., 2021). However, the firn compaction rate in the IMAU and GSFC firn model
:::
both

::::
firn

::::::
models

:::::
used

::::
here is

determined by constant mean annual accumulation and not by instantaneous overburden pressure. This lessens the actual firn

compaction variability potentially across all the areas of large accumulation variability (Kuipers Munneke et al., 2015).700

In a relative sense, the adjustments over the firn models (that is, any version of fvA− fvM,
:
(e.g. Fig. 7d) generally increase

from the coast to the EAIS interior as the magnitude of the signal, the firn thickness variation, is very small in the interior due

to the cold and dry climate. In these areas of low snowfall, the relative uncertainties in the firn models are virtually unaffected

by the formulation of firn densification and surface snow density, but the input of RCM components is essential (Verjans

et al., 2021). Scambos et al. (2012) argue that RCMs might overestimate SMB in wind-glazed areas. These areas feature wind-705

polished glazed surfaces at the top of a coarsely recrystallised firn layer and are formed by constant katabatic winds. They have

near-zero SMB and occur on leeward faces of ice-sheet undulations and megadunes (Scambos et al., 2012). Large wind glazed

areas are located across basin 4 and 8, where all four versions of adjustments reveal highest relative values (Fig. S17e–h).
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In basin 4, towards the border to
::::::::
boundary

::::
with

:
basins 1 and 3, the large relative adjustments (Fig. S17e–h) indicate dis-

agreement between the models and altimetry. Neither the uncertainties due to different altimetry analysis nor the influence710

of the different firn model setups have a strong impact on fvA in this region
:
,
:::::::
whereas

:::
the

::::
four

:::::::
versions

:::
of

::::::::
altimetry

:::::
agree

(Fig. S15i–l) . Furthermore, within fvM there are no large differences in this region of basin 4
:::
and

:::
the

::::
two

:::::::
models

:::::
agree

(Fig. S16d). The two models agree and the four versions of altimetry agree, but the models and altimetry do not agree. The

reasons why discrepancies occur particularly in this region
::::::
reasons

:::
for

:::
this

:
are not yet clear. Basin 8 is characterised by large

megadune fields (Fahnestock et al., 2000; Dadic et al., 2013). Megadune fields cover more than 500,000 km2 of the East AIS715

plateau. The megadunes
:::::::::
Megadunes

:
typically have an amplitude of 2 to 4m and wavelengths of 2 to 5 km and are formed by

a complex interaction of surface topography, snow accumulation and redistribution due to highly persistent katabatic winds.

While leeward slopes are wind glazed, windward slopes accumulate and are characterised by streamlined bumps or grooves

(sastrugi )
::::::
sastrugi

:
up to 1.5m in height (Fahnestock et al., 2000; Frezzotti et al., 2002). The discrepancy between altimetry

and the firn models across basin 8 can partly be explained by the lacking modelling of the formation of the complex spatial720

pattern of megadunes and their migration over time in the firn models. For
::
In

::::
case

::
of

:
basin 8, not only do the models and

altimetry not match, but the relative differences between fvMa and fvMb
::::::
disagree

:::::
(Fig.

:::::::
S17e–h),

::
as
::::
well

::
as
:::
the

::::::::
different

:::::::
versions

::
of

:::
fvM

:
(Fig. S16d) and between the different versions of fvA (discussed in Section 5.4) are also high

:::
Fig.

:::::::
S15i–l).

:::
The

:::::
latter

::
is

::::::::
discussed

::
in

::::
Sect.

:::
5.4.

Discrepancies within the four versions of adjustments
::::::::::
adjustments

::::
(i.e.

:::::
within

::::::::
versions

::
of

:::::::::
fvA− fvM)

:
can further indicate725

which firn model(
:
, or which dominant patterns of one firn model)

:
, fits the altimetry better. Overall, the adjustments are smaller

when involving Ma , the IMAU firn model (Fig. 8, Table 2). Amongst the different basins , this applies in particular for basins

4–6 (
::::
(see Fig. S28 d-f and 29Sd-f)

:::
and

::::
S29

::::
solid

:::::::::::
green/brown

::::::
versus

::::::::::
dash-dotted

::::::::::::
green/brown),

:::
this

::::::
applies

::
in
:::::::::

particular
:::
for

:::::
basins

::::
4–6. Across basin 1

:
2 the adjustments tend to be slightly smaller when involving Mb, the GSFC firn model (Fig. S28a

and S29a).730

:
. Altimetric residuals, rA, still include a non-negligible part (53%

::::
60% for A1a) of the variance of altimetric variations

(Fig. 9c, Table 3). It
:::::
Since

:::
the

::::::::
dominant

:::::::
patterns

:::::
were

::::::
chosen

::::
such

::::
that

::::
they

:::::
cover

::
at

::::
least

:::::
90%

::
of

:::
the

:::::::
variance

:::
of

::::
fvM,

:::
rA

::::
could

::::::::
partially

::::::
contain

::::
real

:::
firn

:::::::
signals

:::::::
captured

:::
by

:::
firn

::::::
models

:::
in

:::
the

::::::::
remaining

:::::::
∼10%

::
of

:::
the

::::
data

::::::::
variance.

::::::::
However,

::
it is

likely that
:
a
:::::
larger

::::
part

::
of

:
rA still include

:::::::
includes

:
real firn signals not captured by the dominant temporal patterns of the

firn models. The psd of the underlying time series of rA1a yield a spectral index of −1.7 (Section
::::
Sect. 4.3, Fig. 10b). The735

remaining autocorrelation in the residuals suggests that temporally correlated signals such as real firn signals are still present.

Also, the spatial patterns of the most dominant modes of rA reveal topography-dependent magnitudes and patterns, as one

would expect from SMB and its variations (Section
::::
Sect. 4.4, Fig. 11d–f

:::
a–c). Besides other firn signals, the altimetric residuals

additionally include altimetry errors (discussed in Section
::::
Sect. 5.4) and probably also further signals related to variations in

ice flow dynamics or subglacial hydrology (not further discussed
::::::::
discussed

::::::
further).740
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5.4 Altimetry errors

The differences between any version of fvA and fvM (the adjustments
::
the

::::::::::
adjustments, e.g. Fig. 7c) may include effects of

altimetry errors, in addition to firn model errors. Measurement noise in altimetry
::::
Noise

:::
in

:::
the

:::::::
altimetry

::::::::::::
measurements

:
might

explain another part of the fact that firn models show a smoother spatial pattern of variations than altimetry. Noise in altimetry

can be a problem, especially in the interior of the EAIS where the signal-to-noise ratio is low(Section 5.5). Over megadune745

areas (widely located in the interior across basin 8), conventional radar altimetry with pulse-limited footprints of 1.5 to 2.5 km

in diameter may not be capable of adequately observing the time-varying spatial patterns of megadunes.

A further limitation in radar altimetry is that measurements refer to the local topographic maxima within their footprints.

Especially at the margins over complex topography, this can lead to sampling issues, as the elevation changes acquired there

cannot capture the larger changes often found in the valleys. Laser altimeters are not affected by this since their footprints are750

much smaller (in the range of decimetres)
:::::::
sampling

:::::
issue. However, ICESat had to be

::::
since

::::::
ICESat

:
operated in campaign mode

(Abshire et al., 2005) . Thus, the sampling in areas with steep slopes can vary strongly during the period 2003–2009as some

of the months rely only on radar altimetry measurements while other months include measurements from radar and laser
:
,

::::
with

::::
some

:::::::
months

::::::::
including

::::
laser

::::::::
altimetry

:::
and

:::::
some

::::::
months

::::::
relying

::::::::::
exclusively

::
on

:::::
radar altimetry. Moreover, radar altimetry

results are affected by the time-varying radar waveform shape due to time-varying signal penetration (Davis and Ferguson,755

2004; Rémy et al., 2012). Even though errors related to these effects are accounted for in the altimetry processing, they are not

fully eliminated and
:::::
related

:::::::
residual

:::::
errors

:
may have an impact on the adjustments. In addition, these time-variable errorsare

also likely to be
:::::
These

:::::
errors,

::::::
which

::::
tend

::
to

::
be

::::::::
correlated

::
in

:::::
time,

:::
are

:::::
likely included in the altimetric residuals , rA, because rA

are temporally correlated just as the errors (Section
:::::
which

::::
may

:::::::
explain,

::
to

::::
some

:::::
part,

:::
the

:::::::
temporal

:::::::::
correlation

:::
of

::
rA

:::::
(Sect. 4.3,

Fig. 10b).760

Discrepancies within the adjustments (any version
:::
i.e.

:::::
within

::::::::
versions of fvA− fvM) can indicate which altimetry solution

is closer to the firn models. Overall, the adjustments are smaller when involving A1, TUD altimetry
::::::::
However,

::::::
results

:::
are

::::::::
equivocal (Fig. 8, Table 2). Amongst the different basins this applies in particular for basins 1, 5 and 6 (

:::::
When

::::::::
involving

:::
the

:::
Ma

:::
firn

::::::
model,

:::
the

::::::::::
adjustments

::::::
through

:::
A1

:::
are

:::::::
smaller

::::
than

::::
those

:::::::
through

:::
A2

:::
for

::::
most

::::::
basins

:::
(see

:
Fig. S28 b, e, f and S29 b, e, f).

Across basin 8 the adjustments tend to be smaller when involving
::::
green

::::
solid

::::::
versus

::::::
brown

:::::
solid).

:::::
When

::::::::
involving

:::
the

:::
Mb

::::
firn765

:::::
model

:::::::
instead,

:::
the

::::::::::
adjustments

:::
are

::
in

:::
the

:::::
same

::::
order

:::
of

::::::::
magnitude

:::
for

:::
A1

::::
and A2 , JPL altimetry

:::
and

:
it
:::::::
depends

:::
on

:::
the

:::::
basin

::::::
whether

:::
the

::::::::::
adjustments

:::
are

:::::::
smaller

::::
with

:::
A1

::
or

:::
A2.

:

:::::::::::
Uncertainties

:::
due

::
to

:
a
::::::::
different

:::::::
analysis

::
of

:::
the

:::::::
altimetry

::::::::::::
measurements

:::
are

:::::::
reflected

:::
by

:::
the

:::::::::
differences

::
in

:::
fvA

:
(Fig. S28h and

S29h) .

The differences in fvA and the altimetric residuals,
::::
14b)

:::
and rA ,

::::
(Fig.

::::
14d) between solutions based on the same firn model770

(A1a−A2a or A1b−A2b)are displayed in Fig. 14b and d, respectively. They mirror the altimetry uncertainties due to a different

analysis of the altimetry measurements. .
:
The median values (over all grid cells) of the absolute and relative residual differences

rA1− rA2 are ∼4.7 cm
:::
rms

::::::::::
differences

:::::::::
rA1a− rA2a

::
in
::::

the
::::
time

:::::
period

:::::
after

::::
2003

::::
are

::::::::
∼4.9 cm and ∼96%, respectively. The

residual differences are evaluated for every grid cell and only the time period after 2003 is considered.
:
in

:::
an

:::::::
absolute

::::
and
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::::::
relative

:::::
sense,

:::::::::::
respectively.

:
If the entire period was considered, the median values would increase considerably (∼7.2 cm775

and ∼162%
::::::::
∼7.3 cm

:::
and

:::::::
∼163%). For both periods, the residual differences are greater than the differences fvA1− fvA2

:::::::::::
fvA1a− fvA2a (Table 2, Fig. 14b) and also greater than the uncertainty estimate of fvA (Section

::::
Sect. 5.2, Fig. 14c). Thus, the

altimetry uncertainties in the residuals are greater than the combined uncertainties of firn modelling and altimetry affecting the

adjusted firn thickness variations.

The differences between fvA1 and fvA2 as well as between rA1 and rA2 mostly result from the combined effect of the780

various differences between the altimetry analysis of TUD and JPL (Section
::::::::::::::::::
Schröder et al. (2019a)

:::
and

::::::::::::::::::
Nilsson et al. (2022)

:::::
(Sect. 2.1). The rms of fvA1a− fvA2a is shown in Fig. 14b in a relative sense. The largest relative differences occur in regions of

complex topography, such as in Victoria Land (at the margin of basin 7) and next to the Amery Ice Shelf (at the margin of basin

4) and over almost the entire basin 8, for which we already discussed the
::::::
possible

:
influence of megadunes. In addition, stripes

related to the satellite ground tracks are visible in the region of basins 1 to 2 (Fig. 14b). They seem to appear predominantly in785

fvA2 (Fig. S15b and d).

The following features may likely be quite clearly attributed to a difference in intermission /
::
and

:
intermode calibration

between TUD and JPL altimetry
::
the

::::
two

::::::::
altimetry

:::::::
products. The mode change of CryoSat-2 (LRM/SARIn mode; see e.g.

Fig. 5 in Slater et al. (2018) for the mode boundaries) is reflected in the difference of the residuals (Fig. 14d). Here, the main

influence seems to come from JPL
:::
A2 altimetry, as the areas at the mode boundary in basins 5–7 and 9–10, characterised by a790

higher rms value, are mainly visible in rA2 (Fig. S18f and h). In addition, the mode transition also appears to be reflected in fvA2

particularly at basins 5 and 6 (Fig. S15b and d). The PCA carried out on rA1a− rA2a and rA1b− rA2b reveal a prominent drop

between July 2010 and January 2011 together with overall linear trends before and after this drop in the first PC (Fig. 12g
:
d).

The corresponding spatial pattern (Fig. 12a
::::
S26a

:::
and

:
b) is most pronounced and coherent over the EAIS. The pattern of the first

mode is an indicator for uncertainties/differences
:::::::::
differences

::::
and

::::::::::
uncertainties

:
in deriving intermission offsets, as CryoSat-2795

measurements begin in July 2010. The errors in the altimetry are not only seen in the first modes of the PCA of the residual

differences. It is likely that the first modes of the PCA of the residuals themselves are also affected by
:::
also

:::::::
contain

:
altimetry

errors. A comparison of the dominant modes of the residuals (Fig. 11) with those of the residual differences (Fig. 12) indicates

partly similar features, which suggests similar causes. For example, there are also remarkably large fluctuations in the first

temporal patterns of the residuals between July 2009 and January 2011 (Fig. 11g
:
d).800

5.5 Limitations of the approach

In regions of low signal-to-noise ratio the regression approach has a limited capability to distinguish between signal and error.

This applies in particular for the interior of the EAIS (basin 8 and parts of basin 1 and 4). In these areas, the regression of

the altimetry data to PCM (the dominant temporal patterns in modelled firn thickness variations) may be dominated by noise

in the altimetry data. In this study, we work with a constant spatial grid resolution of 10km x 10km regardless of the signal805

magnitudein each grid cell. To improve the signal-to-noise ratio, further work may geographically vary and adjust the spatial

resolution
:::::
choose

::
a

::::::::::::
geographically

:::::::
varying

::::::
spatial

::::::::
resolution

:::::::
adapted

:
to the spatial variability of the glaciological processes,

that is in general a higher resolution on the coast and a
:::::
which

:::::
would

::::::::
probably

:::::
imply

::
a coarser resolution in the interior.
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We included altimetry measurements only over the period May 1992 to December 2017 as this represents the common

period of TUD and JPL altimetry (Section
:::
both

::::::::
altimetry

:::::::
products

:::::
(Sect. 2). JPL

::
A2

:
altimetry data, however, are available until810

December 2020. Further investigations may include the JPL data after December 2017.
:::::
hence

::::::
extend

:::
the

::::::
period

::
to

:::
the

:::::
more

:::::
recent

::::
past.

:
These may incorporate accurate laser measurements from ICESat-2 characterised by low noise level and near-zero

signal penetration (Nilsson et al., 2022; Otosaka et al., 2023a).

The stochastic model in the regression approach does not include co-variances
::::::::
temporal

::::
error

::::::::::
covariances

:
in altimetry

(Section
::::
Sect. 3.3), although errors in the altimetry time series exhibit temporal correlations, as shown by Ferguson et al.815

(2004) and also in this study (Section
::::
Sect. 4.3). The consideration of temporal correlations is essential for a proper, realistic

uncertainty estimation of
:::::::
assessing

:::::
more

:::::::
realistic

:::::::::::
uncertainties.

::
In

:::::::::
particular,

:::
this

::
is

:::
the

::::
case

:::
for long-term trends in particular

(Williams et al., 2014). Thus, for inferring potentially statistically significant long-term signals in satellite altimetry future

work may extend the stochastic model. This requires a comprehensive error characterisation for altimetry products, which

is not given
:::::::
provided

:
up to now. Nevertheless,

::
An

::::::::
empirical

:::::
error

:::::::::::::
characterisation

:::::
could

:::::
apply

:
different noise models (e.g.,820

power-law, Generalized
::::::::::
Generalised Gauss Markov, auto-regressive) could be considered to empirically identify and apply the

best fitting noise model to the
:
to
:::
the

:
regression approach (Bos et al., 2012; King and Watson, 2020). Another possibility for

characterising errors could be the consideration
:::::::::::
Alternatively,

:::
the

::::::
spread of an ensemble of altimetry solutions and their spread

as demonstrated by Willen et al. (2022)
::::
could

::
be

::::::::::
considered

::::::::::::::::
(Willen et al., 2022).

Our study does not include independent observations to validate the benefits of fvA. Most of the825

5.6
:::::::

Outlook

:::
We

::
do

:::
not

::::
aim

::::
here

::
to

::::::::
compare

:::
our

::::::
results

::::
with

::
in

::::
situ

::::
data,

::
as

:::
the

:
ground-based SMB observations are

::::::
mostly single point

measurements and have a very sparse spatial and temporal coverage (Eisen et al., 2008). Thus, a validation
:::::::
However,

::::::
future

:::::::::::
investigations

::::
may

:::::
assess

:::
the

:::::::
benefits

:
of fvA could only be performed for selected, distinctly local regions and/or certain time

intervals.A conceivable comparison could make use of stakes observations , as in the studies of Mottram et al. (2021) across830

Antarctica and Richter et al. (2021) in the Lake Vostok region
:
in
::::::
certain

:::::::
regions

::::
with

::
in

::::
situ

::::
data,

:::
e.g.

:::
by

:::::::
making

:::
use

::
of

:::::
stake

::::::::::
observations

:::::::::::::::::::::::::::::::::::
(Mottram et al., 2021; Richter et al., 2021).

5.6 Outlook

To improve firn model outputs, we underline the importance of refining the
::
it

::
is

::::::::
important

::
to
::::::

refine
:::
the

:
horizontal spatial

resolution of RCMs
:::
and to simulate surface processes at a higher spatial distribution

::::::::
resolution

:
(Lenaerts et al., 2019). For835

Greenland, Noël et al. (2016) statistically downscaled outputs from RACMO2.3 at 5.5 and 11 km to a high-resolution product

::::::::
resolution

:
of 1 km, leading

:::::
which

:::
led

:::
to, e.g.to

:
, increased melt over certain areas. Similar work is in progress for Antarctica,

downscaling RACMO2.3p2 at 27 km to 2 km (Noël et al., 2023). Furthermore, a more detailed physical parameterisation of

the processes already considered and the inclusion of processes not yet simulated can improve the models (Agosta et al., 2019;

Gutiérrez et al., 2021). An update of RACMO2.3p2 to RACMO2.4 with enhanced physics may soon be available. This includes840
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several new and updated parameterisations, such as a cloud, aerosol and radiation scheme or a new spectral albedo and radiative

transfer scheme in
:::
the snow scheme (van Dalum and van de Berg, 2023).

To improve altimetry products, measurement noise
::::
noise

::
in
::::

the
::::::::
altimetry

::::::::::::
measurements

:
and correlated altimetry errors

related in particular to time-variable
::::
radar

:
signal penetration and scattering effects could be reducedby improving the methods

of analysis
::::
need

::
to

::
be

:::::::
reduced. Helm et al. (2023) developed a new retracker

::::::::
processing

:::::::
scheme

:::::::::
(retracker)

:
based on a deep845

convolutional neural network architecture, resulting in
:::::::::
presumably strongly reduced time-variable signal penetration . The new

retracker
:::::
effects,

::::::
which could significantly improve the accuracy of elevation change products from the entire sequence of radar

altimetry missions. Furthermore, improving the methods for intermission calibration would reduce uncertainties in altimetry

estimates at various time scales
::::::::
Moreover,

:::
the

:::::::::::
intermission

:::::::::
calibration

:::::
needs

::::::
further

:::::::::::
investigation. The patterns of estimated

intermission offsets are spatially variant and
:::
are related to the waveform parameters(,

::::::::
possibly

::::::::
associated

:::
to topography and850

surface propertiesplay a role here). However, this relation is not fully understood, so that no functional relationship has yet

been found and intermission offsets are determined empirically (Zwally et al., 2005; Khvorostovsky, 2012; Schröder et al.,

2019a; Nilsson et al., 2022). Therefore, intermission calibration still remains one of the most challenging processing steps for

inferring a long-term, multi-mission satellite altimetry estimate.

Future developments in firn modelling, satellite altimetry analysis and altimetry mission sensors will allow
::
to

:::::::
identify

:
in-855

terannual firn signals to be identified and quantified with higher accuracy
:::
and,

:::::::
thereby,

::
to

:::::
better

::::::
isolate

:::
and

:::::::
quantify

:::::::::
long-term

:::::
trends. This will further impact

:::::::
improve long-term estimates and reduce their uncertainties. The regression approach presented

in this study may set the stage for isolating long-term signals in satellite altimetry from the large interannual variations. For

this reason
::
To

:::
this

:::
end, future studies should extend the approach with an appropriate stochastic model that accounts for covari-

ances in altimetry to derive statistically significant long-term trends over 25 to 30 years. Longer (altimetry) time serieswill then860

further reduce trend uncertainties
::::
With

::::::
longer

::::
time

:::::
series,

:::::
trend

:::::::::::
uncertainties

:::
will

::
be

::::::
further

:::::::
reduced

:
(Wouters et al., 2013). In

this way, large uncertainties in inferring mass balance estimates of the EAIS (Otosaka et al., 2023b) may be reduced and the

question whether the EAIS is currently thickening or thinning (Nilsson et al., 2021) may be answered in the future.

6 Conclusions

We deliberately targeted spatially resolved variations in Antarctic firn thickness. For this purpose, we developed and presented865

:::
We

::::::::
developed

:
a new approach for combining

:::
that

::::::::
combines

:
satellite altimetry and firn modelling estimates

:::::
results

::
to
:::::::
resolve

:::::::
Antarctic

::::
firn

:::::::
thickness

:::::::::
variations at a high temporal (monthly) and spatial (grid scale of 10 km) resolution

::
and

::::::
spatial

:::::::::
resolution,

::::::
namely

::
by

::::::::
monthly

::::::
10 km

::::
grids. On the one hand, our approach incorporates the strengths of the firn model

:::::
models, above all

the capability to capture the timing of firn thickness variations. On the other hand, our approach compensates for shortcom-

ings of the firn model, foremost the accurate
::::::
models,

::::::::
foremost

::
in

:::
the simulation of the location-dependent amplitudes of the870

variations. To do so, we fitted dominant temporal patterns of interannual to decadal variations in Antarctic firn thickness in-

ferred from the firn models IMAU (Veldhuijsen et al., 2023) and GSFC (Medley et al., 2022a)
::::
from

:::::::::::::::::::::
Veldhuijsen et al. (2023)

:::
and

::::::::::::::::::
Medley et al. (2022a) to satellite altimetry observations from TUD (Schröder et al., 2019a) and JPL (Nilsson et al., 2022)
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:::::::::::::::::::
Schröder et al. (2019a)

:::
and

:::::::::::::::::
Nilsson et al. (2022). In this way, we generated a new, combined data set

::::::
product, which we named

the adjusted firn thickness variations, fvA.875

Our guiding question was: How well can satellite altimetry and firn models resolve Antarctic firn thickness variations?
:::::
Well,

:
it
::::::::
depends.

:
This study shows that firn models and altimetry products provide complementary information on firn thickness

variations. The combined data set, fvA, characterises spatially resolved variations better than either (1) firn models alone or

(2) altimetry alone. (1) The
:::::::
adjusted

:::
firn

:::::::::
thickness

:::::::::
variations, fvA

:
, outperform the modelled firn thickness variations, fvM,

because .
:::::::::
Compared

::::
with

::::
fvM,

:
fvA improves the amplitudes of the variations compared with fvM. The amplitudes represent an880

improvement because they are observed by the altimeter satellites and their patterns actually indicate more spatial and thereby

meaningful information. However, one caveat should be noted. The
::
the

:
improved observed amplitudes may also include effects

of altimetry errors due to firn penetration. This is because the temporal variations of these errors correlate with the temporal

variations of the signal, as both the time-variable signal and the
::::
these

:
errors are influenced by the SMB and firn processes

:::
and

:::
are

::::
thus

:::::::::
temporally

:::::::::
correlated. (2) The

:::::::
adjusted

::::
firn

::::::::
thickness

:::::::::
variations, fvA,

:
outperform the altimetric variations, hvA,885

because fvA eliminates a large part of the altimetry errors. If one were to take hvA alone, this would also incorporate all the

errors of hvA. Over Antarctica, or rather the entire area studied, this would introduce median absolute and relative uncertainties

of ∼7.2 cm and ∼162%
:::::::
∼7.3 cm

:::
and

:::::::
∼163%, respectively (evaluated on

::
at grid cell level). However, one caveat should be

noted. By
::
by

:
choosing fvA instead of hvA, part of the observed firn signal is ignored.

How well the fvA resolve
::::::
resolves real Antarctic firn thickness variations depends strongly on the region under investigation.890

Over
::
all

::::
grid

::::
cells

::
of Antarctica, median absolute and relative uncertainties of fvA are∼4.3 cm and∼82%, respectively(evaluated

on grid cell level). Over the basin areas
:::::::
∼4.2 cm

:::
and

::::::
∼80%

:
,
:::::::::::
respectively.

::::
Over

:::
all

::::
grid

::::
cells

:::
of

:::::::::
individual

:::::
basins, the me-

dian relative uncertainties range from 59% (
::
are

::::::
lowest

:::
for

:
basin 5 ) to 189% (basin 8). Across basin 8, we also spatially

resolved disagreements between fvA and fvM.
:::
(the

::::::
region

::
of

::::::
Queen

::::
Mary

::::::
Land),

:::
and

:::::::
highest

:::
for

::::
basin

::
8.

:
The large uncertainty

and the disagreement are
::
in

:::::
basin

:
8
::

is
::::::

likely due to the presence of megadune fields. Overall, the differences between
:::
We895

:::
find

:::
the

:::::::
smallest

::::::::::
adjustment

::::
that fvA and

:::::::
requires

::::
over

:
fvM are smallest when using the TUD altimetry and the IMAU firn

model . Amongst the different basins, this is especially true
:::::::
altimetry

::::
data

:::::
from

:::::::::::::::::::
Schröder et al. (2019a)

:::
and

::::
the

:::
firn

::::::
model

::::::::::::::::::::
Veldhuijsen et al. (2023)

:::
and

::::
this

:
is
:::::

most
:::::::::
prominent for basins 5 and 6. From the spectral analysis of the altimetry residuals,

rA, we find still autocorrelated signals that we could not attribute to firn thickness variations using the firn models. We attribute

this to a combination of altimetry errors(,
::
in
:::::::::

particular time-variable signal penetration ,
:::
and

:
errors in intermission offsets)900

and
:
,
:::
and

:::
to firn model errors(incorrectly simulated /missing processesin

:
,
:::
that

:::
is,

:::::::::
incorrectly

::::::::
simulated

:::::::::
processes

::
or

:::::::
missing

::::::::
processes.

:

:::
We

::::::::
identified

::::::
regions

::
of

::::::::::
discrepancy

:::::::
between

:
the firn models )

:::
and

::
the

::::::::
altimetry

:::::::
products

::::
and

:::::
within

:::
the

:::::::
models

::
or

::::::::
altimetry,

:::
and

::::::::
discussed

:::
the

:::::::::
underlying

:::::
errors

::
in
::::
both

:::
the

:::::::
models

:::
and

:::
the

::::::::
altimetry.

:::::
These

::::::
results

::::
shall

::::
help

:::::::::
modellers

:::
and

::::::::
altimetry

::::
data

::::::::
processors

:::
to

:::::::
improve

::::
their

::::::::::
simulations

:::
and

:::::::::
processing

::::::::
methods

:::::
(Sect.

::::
5.6),

::::
and

::::
help

::::
users

::
to
::::::
better

:::::::::
understand

:::
the

:::::
nature

:::
of905

::
the

:::::::::
modelling

:::
and

::::::::
altimetry

::::
data

:::
and

::
to
:::::
apply

::::
and

:::::::
interpret

:::::
them

:::::::
knowing

::::
their

::::::::
strengths

:::
and

:::::::::
limitations.
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Appendix A: Impact of methodological changes

A1 Methods

To investigate the impact of methodological changes on determining adjusted firn thickness variations, fvA, three modifications

of
::
to the original regression approach are tested.910

In the first experiment E1, we simply subtract the altimetric variations, hvE1
::::::::
modelled

:::
firn

::::::::
thickness

:::::::::
variations,

::::
fvM, from

the modelled firn thickness variations, fvM
::::::::
altimetric

:::::::::
variations,

:::
hvA, according to

rE1(t) = hvE1hvA
:::

(t)− fvM(t). (A1)

fvM is derived by least squares fit according to Eq. 4. hvE1 is derived by least squares fit according to

h(t)A = a+ bt+ c(0.5 t2)915

+H1(t) [d1 cos(ωt)+ d2 sin(ωt)+ d3 cos(2ωt)+ d4 sin(2ωt)]

+H2(t) [d5 cos(ωt)+ d6 sin(ωt)+ d7 cos(2ωt)+ d8 sin(2ωt)]

+hvE1(t),

with the parameters a,b,c,d1,...,8 and the masks H1,H2 as in Eq. 1.

In the second experiment E2, fvM at any grid cell is simply scaled to fit the altimetric variations. The regression reads920

hhvA
:::

(t)A = a+ bt+ c(0.5 t2)+H1(t)d1 cos(ωt)+ d2 sin(ωt)+ d3 cos(2ωt)+ d4 sin(2ωt)+H2(t)d5 cos(ωt)+ d6 sin(ωt)+ d7 cos(2ωt)+ d8 sin(2ωt)+e fv
M(t)+ rE2(t),

(A2)

where e is the scaling factor. We refer to e fvM = fvE2 as scaled firn thickness variations.

In the third experiment E3, we do not change the principle of the deterministic model Eq. 1 but we modify the dominant

temporal patterns PCM. Originally, PCM are derived from standardised fvM by PCA. In E3, fvM are not standardised prior to

the PCA. The resulting modified adjusted firn thickness variations are referred to by fvE3. See also Table B1 for an overview925

of the defined symbols and their terminology.

We consider that regression method as best whose coefficient of determination
::::::::
R-squared

:::::
value, R2, is maximum, i.e. which

is able to describe most of the data variance. For the three experiments, the general from of Eq. 5 specifies
:::
Eq.

::
3

:::::::
modifies to

R2
E1 = 1− SS(rE1)

SS(fvMa + rE1)
= 1− SS(rE1)

SS(hvE1)
≈ 1− SS(rE1)

SS(hvA)
, (A3a)

R2
E2 = 1− SS(rE2)

SS(e fvMa + rE2)
= 1− SS(rE2)

SS(fvE2 + rE2)
≈ 1− SS(rE2)

SS(hvE1)
≈ 1− SS(rE2)

SS(hvA)
, (A3b)930

R2
E3 = 1− SS(rE3)

SS(fvE3 + rE3)
≈ 1− SS(rE3)

SS(hvE1)
≈ 1− SS(rE3)

SS(hvA)
. (A3c)
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Figure A1. Differences between the coefficients of determination
:::::::
R-squared

::::::
values from A1a and the experiments E1, E2 and E3.

(a) A1a−E1, (b) A1a−E2 and (c)
:
A1a−E3.

:::::
Colour

:::
bar

:::::
arrows

::::::
indicate

:::
that

:::
the

::::
value

:::::
range

::::::
exceeds

:::
the

::::
limits

::
of

:::
the

:::::
colour

::::
scale.

Assuming that the changes in the adjusted parameters b,c,d1,...,8 due to different versions of regression are negligible, the

following approximations are reasonable: (e fvMa + rE2)≈ (fvE3 + rE3)≈ hvE1 ≈ hvA.

A2 Results

The impact of methodological choices on the goodness of fit is tested based on the three modifications/experiments E1–E3935

(Section
::::
Sect. A1). The results are given for using the IMAU

:::
Ma

:
firn model and TUD

::
A1

:
altimetry and should, therefore, be

compared to the results from the regression approach A1a.

For every grid cell, Fig. A1 compares the coefficients of determination
::::::::
R-squared

::::::
values from the regression approach A1a,

R2
A1a, to the coefficients of determination

::::::::
R-squared

:::::
values

:
R2

E1, R2
E2 and R2

E3. R2
A1a is larger than R2

E1, R2
E2 and R2

E3 over 96,

81 and 69%
:::
88,

::
78

::::
and

:::::
66% of the total area, respectively. After calculating R2

E1, R2
E2 and R2

E3 for each grid cell, (basin) mean940

values are derived and listed by Table A1, columns 2–4. Averaged over the entire area, E1, E2 and E3 have mean R2 values of

0.09, 0.35 and 0.43
::::
0.11,

::::
0.31

:::
and

::::
0.37. For all three modifications, R2 is smaller than R2

A1a (Table 3, column A1a) and thus,

their regression approaches describe less of the data variance than the original regression approach A1a. E2 and E3 describe

:::::::
describes

:
slightly more of the data variance than A1a for one out of 10 basins (E1, basin 5: 44 versus 43%; E2, basin

:::::
basin 3:

49 versus 47%
::
47

::::::
versus

::::
45%). Moreover, Table A1 (columns 6–7) lists values of R2 derived from basin averages time series945

(E1, E2 and E3). Values derived from basin averages time series are larger than values based on the calculations per grid cell,

similar to the regression approach A1a (Table 3, column A1a versus A1a).

The simple scaling factor e adjusted during the regression approach after experiment E2 is displayed in Fig. S30.

Appendix B: List of symbols

List of symbols and their terminology (columns 1–2). Sections and equations where the symbols are explained and defined950

(column 3). Different versions (see Table 1) of the respective symbols (column 4). Symbol Terminology References Versions

hA Altimetric elevation changes* Section 3.1, Eq. 1 A1, A2 hvA Altimetric variations Section 3.1.2, Eq. 2 A1a, A2a, A1b,
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Table A1. Explained variance or coefficients of determination, R2 , for each basin and each experiment E1, E2, E3 of methodological

changes to the regression approach over the period after 2003. R2 is first calculated for each grid cell according to Eq. A3a–A3c and after

averaged over each basin. Values of E1, E2 and E3 are calculated by first averaging the results from the experiments over each basin and then

applying Eq. A3a–A3c.

Basin E1 E2 E3 E1 E2 E3

01 0.20 0.35
:::
0.34 0.43

:::
0.38 0.71 0.75

::::
0.73 0.79

:::
0.78

02 0.21 0.41
:::
0.38 0.48

:::
0.45 0.76

::::
0.77 0.92

::::
0.88 0.91

:::
0.88

03 0.21 0.44
:::
0.42 0.50

:::
0.47 0.88

::::
0.89 0.94 0.95

04 -0.29 0.15
:::
0.12 0.27

:::
0.24 -5.63

::::
-5.52

:
-0.08

::::
-0.22

:
0.10

:::
0.06

05 0.02
:::
0.06 0.42

:::
0.26 0.34

:::
0.26 -0.50

::::
-0.19

:
0.66

::::
0.36 0.47

:::
0.31

06 0.20
:::
0.21 0.38

:::
0.29 0.40

:::
0.32 0.70

::::
0.73 0.86

::::
0.76 0.90

:::
0.80

07 0.22
:::
0.23 0.44

:::
0.40 0.54

:::
0.49 0.68

::::
0.72 0.91

::::
0.87 0.94

:::
0.92

08 -0.08 0.13
:::
0.11

:::
0.17

:
0.23 0.19

::::
0.48 0.54 0.56

::::
0.50

09 0.32 0.42
:::
0.39 0.50

:::
0.47 0.94 0.94

::::
0.93 0.97

:::
0.96

10 0.27 0.49
:::
0.46 0.59

:::
0.56 0.92

::::
0.93 0.98 0.97

:::
0.96

01–10* 0.11 0.35
:::
0.31 0.42

:::
0.37 0.63

::::
0.64 0.73

::::
0.71 0.82

:::
0.79

* refers to the entire area (considered as a single basin)

A2b fM Modelled firn thickness changes* Section 3.1.1, Eq. 4 Ma, Mb fvM Modelled firn thickness variations Section 3.1.1,

Eq. 4 Ma, Mb PCM
1...N N dominant temporal patterns in modelled firn thickness variations Section 3.1.1, Eq. 1, 3 Ma, Mb

eA
1...N N observed scaling factors Section 3.1, Eq. 1, 3 A1a, A2a, A1b, A2b eM

1...N N modelled scaling factors Section 3.2 Ma,955

Mb fvM
90 Truncated modelled firn thickness variations Section 3.2 Ma, Mb fvA Adjusted firn thickness variations Section 3.1.1,

Eq. 3 A1a, A2a, A1b, A2b rA Altimetric residuals Section 3.1, Eq. 1 A1a, A2a, A1b, A2b fvE2 Scaled firn thickness variations

Appendix A1 fvE3 Modified adjusted firn thickness variations Appendix A1

Data availability. The altimetry products from Schröder et al. (2019a) and Nilsson et al. (2022) are available at https://doi.pangaea.de/10.

1594/PANGAEA.897390 (Schröder et al., 2019b) and https://doi.org/10.5067/L3LSVDZS15ZV (Nilsson et al., 2021), respectively. The firn960

model data from Medley et al. (2022a) is available at https://doi.org/10.5281/zenodo.7054574 (Medley et al., 2022b). The code of the firn

model from Veldhuijsen et al. (2023) is available at https://github.com/brils001/IMAU-FDM and https://zenodo.org/records/5172513 (Brils

et al., 2021). The firn model data from Veldhuijsen et al. (2023) and the results of this study can be obtained from the authors without

conditions.
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