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Abstract. Surface melt on ice shelves has been linked to hydrofracture and subsequent ice shelf breakup. Since the 1990s, 

scientists have been using microwave radiometers to detect melt on ice shelves and ice sheets by applying various statistically 

based thresholds to identify significant increases in brightness temperature that are associated with melt. We combine a 10 

statistical thresholding technique with Community Firn Model outputs, the Snow Microwave Radiative Transfer model, and 

AMSR-2 to create a hybrid method that accounts for the influence of variations in snow temperature and density on microwave 

brightness temperature. In the process, we also produce snow correlation lengths, and we run this algorithm on 13 sites over 

the Antarctic Ice Sheet and ice shelves. Compared to melt values from surface energy balance observations from automatic 

weather stations, this method is as accurate as previous statistically based thresholding techniques and is slightly more sensitive 15 

to melt events. Our correlation lengths from early 2014 correlate with surface grain size from the 2013-2014 Mosaic of 

Antarctica. We also find a significant relationship between correlation length and frequency of melt. In the future, this hybrid 

method can be further developed to quantify melt volume rather than to simply detect melt occurrence. 

 

1 Introduction  20 

Studying Antarctic surface melt is critical for evaluating the relationship between the AIS and the climate system. Climate 

change has been associated with increased surface melt and pond formation in Antarctica, particularly in the Antarctic 

Peninsula (Scambos et al., 2000). While only a small percentage of surface meltwater runs off into the ocean, recent studies 

have shown that meltwater on the surface of ice shelves can lead to hydrofracture and ice shelf collapse (Scambos et al., 2000; 

Banwell et al., 2013; Kingslake et al., 2017; Bell et al., 2018). Since ice shelves provide a buttressing effect to ice upstream, 25 

their collapse can indirectly contribute to mass loss of the Antarctic Ice Sheet (AIS) through increased ice discharge into the 

ocean contributing to sea level change (Rignot, 2004; Berthier et al., 2012).  

 

To identify surface melt on the AIS from passive microwave radiometry, previous studies have used a variety of statistical 

techniques that detect spikes in brightness temperature above a predetermined threshold, which are interpreted as melt events 30 

(Zwally and Fiegles, 1994; Torinesi et al., 2003; Picard et al., 2007). Typically, the threshold remains temporally constant over 
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a year or longer and is based on mean brightness temperature for the 18 to 19 GHz frequency in the horizontal polarization. If 

the brightness temperature exceeds this threshold on a given day, then that day is assigned to be a melt day. However, variations 

in brightness temperature can also occur due to changes in snow density, physical temperature, and microstructure. These 

thresholding techniques that have been developed to detect surface melt on the AIS have not generally considered these 35 

physical properties of the snow. In part, this omission is because the properties of snow over the AIS are not well known. 

However, recent improvements in atmospheric reanalysis, firn modelling, and snow radiative transfer modelling allow us to 

create a hybridized physics-based technique for detecting melt.   

 

In this study, we address the need for a microwave melt-detection technique that has a physical basis in the complex dynamics 40 

of snow microwave radiation. To achieve this, we create a dynamic threshold that captures the microwave effects of snow-

property variability from day to day, instead of a statistically based threshold that only varies year to year. Our new, dynamic 

thresholding technique identifies melt days while quantifying the effects of snow temperature and density on brightness 

temperature. First, we use inverse radiative transfer modelling to determine snow microstructure (correlation length) using the 

Community Firn Model and the Snow Microwave Radiative Transfer model. Then, we use the outputs of these models to 45 

compute daily-varying thresholds. When a daily threshold is exceeded by AMSR-2, we mark it as a melt day. We analyze our 

melt detection results from our hybrid, physics-based technique by comparing our results to Antarctic Weather Station (AWS) 

data as well as results from statistically based techniques. We analyze the frequency at which we detect melt days, as well as 

our intermediary calculations of snow microstructure, at thirteen sites in Antarctica.  

2 Data & Models 50 

2.1 AIS point weather observations 

We analyze near-surface observations from ten AWS; we selected these sites due to their hourly melt rates from surface energy 

balance (SEB) analysis based on observed conditions (Jakobs et al., 2020). These hourly melt rates are converted to daily melt 

rates for comparison to microwave data. We use three additional dry sites that were added for comparison; these sites are 

Dome C (DC; 75.10ºS, 123.35ºE), Point Barnola (PB; 75.70ºS, 123.25ºE), and Kohnen (75.00ºS, 0.07ºE). The locations of all 55 

sites are shown in the map in Figure 1. These AWS are found on grounded ice sheet, ice shelves, or ice rises as shown in Figure 

1 (Jakobs et al., 2020). Our time series spans at least from the beginning of 2014 to the end of 2018 for all sites. We use longer 

records from AWS 17 (2012-07-02 to 2019-05-31) and AWS 18 (2014-01-01 to 2019-05-31) for a longer comparison with 

SEB-derived melt data for these two sites. Our analysis of AWS 17 starts in 2012-07-02 and ends 2019-05-31, and AWS 18 

starts on 2014-01-01 and ends 2019-05-31.  60 
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2.2 Advanced Microwave Scanning Radiometer 2 (AMSR-2) 

AMSR-2 is a microwave radiometer onboard Japanese satellite Global Change Observation Mission – Water Satellite 1 

(GCOM-W1).  This instrument provides 16 channels between 6.9 and 89 GHz. We use the 18.7 GHz channel, as this frequency 

is most sensitive to the presence of liquid water on the surface of the Antarctic Ice Sheet. Tikhonov et al. (2019) showed that 

the penetration depth of 19 GHz was a few tens of centimeters using the Special Sensor Microwave/Imager (SSM/I) passive 65 

microwave radiometer. We use the 12.5 km x 12.5 km daily gridded product of AMSR-2.  

2.3 Community Firn Model 

The Community Firn Model (CFM) is an open-source model framework that simulates firn property evolution, including 

densification, temperature, melt, and grain growth (Stevens et al., 2020). Because surface grain size over the Antarctic Ice 

Sheet is not well constrained, the grain growth model for dry snow within CFM assumes a fresh snow grain radius of 0.1 mm 70 

across the Antarctic Ice Sheet (Stevens et al., 2020). When compared to surface grain sizes derived from the Mosaic of 

Antarctica, this is an underestimate for many areas of the AIS associated with frequent melt events, especially ice shelves 

(Scambos et al., 2007). We force the CFM with daily Modern-Era Retrospective analysis for Research and Applications, 

Version 2 (MERRA-2) precipitation and skin temperature (Gelaro et al., 2017). The CFM output is on the same spatial 

resolution as MERRA-2: 0.5º latitude by 0.625º longitude (Gelaro et al., 2017). The vertical resolution of the daily output 75 

profiles from the CFM varies spatiotemporally, and, generally, is too fine for input into the radiative transfer model. To a 

significant degree, the more layers that are input into the radiative transfer model, the more computationally expensive it is to 

model snow brightness temperature. Therefore, we merge thin layers from the CFM output to create thicker layers that are 

appropriate for the sensitivity of AMSR-2 at the 18.7 GHz frequency. From the surface down to 1 m, each layer is 

approximately 1 cm in thickness. From 1 m to 5 m, each layer is approximately 10 cm. A single, semi-infinite bottom layer 80 

spans 5 m to 50 m. The exact size of each layer varies slightly from day to day and location to location due to layer formation 

and merging within the CFM. The CFM output we use has daily temporal resolution. 

2.3 Snow Microwave Radiative Transfer model framework  

The Snow Microwave Radiative Transfer (SMRT) framework simulates thermal emission and backscattering while allowing 

for the use of several previously developed microstructure and scattering models, including the Dense Media Radiative 85 

Transfer model (DMRT) and the Improved Born Approximation (IBA; Picard et al., 2018). These two models are shown to 

produce nearly equivalent results (Löwe and Picard, 2015). We choose to implement the IBA within SMRT because it 

considers snow microstructure as a single parameter (Picard et al., 2018)  

 

 90 
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3 Methodology  

We use the radiative transfer model SMRT to predict brightness temperatures based on each day’s modeled snow conditions. 

Snow temperature, density, correlation length, and liquid water volume all affect snow brightness temperature and are inputs 

into SMRT. We always set the snow’s liquid water volume to zero regardless of how much liquid water is truly present that 

day. In doing so, we compute dry-snow brightness temperatures, which are lower than the brightness temperatures that occur 95 

when snow is wet. In theory, our modeled dry snow brightness temperatures should equal observed brightness temperatures 

on days with no liquid water present. We consider melt to have occurred on a given day when the observed brightness 

temperature from AMSR-2 exceeds the modeled dry-snow brightness temperature by at least a fixed amount. 

 

We input snow density and temperature from the CFM into SMRT. Snow microstructural parameters are also required for 100 

snow radiative transfer modeling, specifically correlation length for SMRT-IBA. However, accurate, daily-varying correlation 

lengths are not currently available across the AIS either from modeling or remote sensing. The CFM produces vertical grain 

size profiles, which can be converted to correlation length with some uncertainty; however, these profiles from CFM are highly 

dependent on fresh snow grain size, which is not currently well enough known across the AIS for use in microwave studies.  

Instead, we first use snow brightness temperature to determine snow microstructure, specifically correlation length, on days 105 

that we are confident that the snow is dry.   

 

We can make this determination because brightness temperature for 18.7 GHz in both the horizontal and vertical polarizations 

(18H and 18V, respectively) decreases considerably as a function of correlation length (Figure 2a). Overall, the brightness 

temperature is more sensitive to correlation length than to temperature or density (Figures 2b and 2c). Thus, using accurate 110 

correlation length values to determine brightness temperature is important. Instead of inputting correlation length from an 

outside source, we first solve for correlation length on dry days when correlation length is the only SMRT input variable that 

is unknown.  

 

In this study, we focus our melt detection analysis on the horizontal polarization as it has been shown to be sensitive to the 115 

presence of liquid water on the surface of the AIS, making it useful for melt detection (Zwally and Fiegles, 1994 and Torinesi 

et al., 2003). However, the vertical polarization can also be useful specifically in microwave radiative transfer modelling as it 

is generally easier to model the vertical component of emissivity than the horizontal component. This is because the vertical 

component of emissivity is not as sensitive to the detailed density structure of icy layers (Comiso et al., 1997; Durand et al., 

2008). Therefore, we run the following steps for both the 18H and 18V channels for each of the sites.  120 

 

3.1 Calculating correlation length (pexp) for potential dry days 

Our goal is to calculate correlation length based on brightness temperature observed by AMSR-2 on dry days. Note that we 

have not assigned melt days at this point in the process because we have not yet created our dynamic threshold. Instead, we 
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identify “potential melt days” as any day within +/- 7 days of a melt day detected by the thresholding technique described in 125 

Picard et al. (2022a). “Potential dry days” are outside this +/- 7-day window. We chose the threshold from Picard et al. (2022a) 

over other statistical techniques because it uses a threshold of only 20 K above the mean, horizontally polarized brightness 

temperature of its assigned dry season (June to September), typically making it most sensitive to melt resulting in more 

“potential melt days” than other statistically based thresholding techniques.  

 130 

SMRT predicts brightness temperature based on input snow conditions. We employ what is termed “inverse radiative transfer 

modeling”. This technique was used in Picard et al. (2012) to calculate grain size for Dome C. Unlike Picard et al. (2012), we 

use a shorter, single frequency (18.7 GHz) and assume vertically homogenous snow microstructure. One way to employ inverse 

radiative transfer modeling for these two polarizations is to run the radiative transfer model for a range of monotonically 

increasing input correlation lengths and then select the correlation length that produces a modeled brightness temperature 135 

closest to the observed brightness temperature. In our methodology, we apply a slightly different process that yields equivalent 

results but is optimized for computational efficiency.    

 

In our process, for a potential dry day, we run SMRT once with an overestimate or a “high” value for correlation length and a 

second time with an underestimate or a “low” value for correlation length. We assume temperature and density profiles based 140 

on CFM outputs. This results in both an overestimate and an underestimate for brightness temperature, as brightness 

temperature decreases as a function of correlation length at this frequency. Using these two endmembers as bounds, we linearly 

interpolate to the observed brightness temperature to find a correlation length associated with this value.  We repeat this process 

many times over with more accurate correlation lengths with narrower bounds. Eventually, we converge on a correlation length 

for that day that, when input into SMRT, produces a modeled brightness temperature that is approximately equal to the 145 

observed brightness temperature.  

 

To invert this radiative transfer model, we run an algorithm with three separate processes: Process 1, Process 2, and Process 

3, which are illustrated in Figure 3. The goal of Process 1 is to make a general initial estimate for correlation length for that 

location. The goal of Process 2 is to use that estimate to determine how correlation length varies approximately month to 150 

month. Since Processes 1 and 2 are only in place for optimizing computational efficiency, we only consider the steps in Figure 

3a to 3d one time through for each of these two processes. Finally, in Process 3, we converge on a correlation length that, when 

input into SMRT with CFM input temperature and density, best matches the local observed brightness temperature.   

 

For Process 1, we establish two correlation length scenarios in Figure 3b for one, single potential dry day. For the two different 155 

scenarios, we assume a higher bound (phigh) and lower bound (plow) for correlation length while assuming the same CFM 

temperature and density profiles for both scenarios. We determine these two values by consulting the table in Figure 3b*. For 

this single day, pinitial is set to 0.3 mm with a +/- 0.2 mm bound. Thus, in Figure 3c, we run two instances of SMRT with 
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correlation length values of 0.1 mm and 0.5 mm. This produces two brightness temperatures, TB1 and TB2. We linearly 

interpolate between the points (plow, TB1) and (phigh, TB2) to the AMSR-2 brightness temperature observed that day. This results 160 

in an approximated correlation length, p, for this location. This marks the completion of Process 1.  

 

Next, we perform Process 2, which consists of running every twentieth potential dry day. For each of these days, instead of 

setting pinitial to 0.3 mm, we set pinitial to the single p from Process 1. We also use a slightly smaller bound of +/- 0.05 mm, in 

accordance with the table in Figure 3b*. We complete the steps outlined in Figure 3a through 3d, running SMRT twice and 165 

linearly interpolating to the observed brightness temperature from AMSR-2. This results in a new approximation, p, for every 

twenty days of the time series. We linearly interpolate across the time series to find an approximate correlation length, p, for 

every day in the time series. This marks the completion of Process 2.  

 

For Process 3, for every day in the time series, we now consider the full loop of the algorithm outlined in the flow chart. For 170 

potential dry days, we start with a pinitial based on our results for p from the corresponding day in Process 2. We start with 

bounds from the table in Figure 3b*; our first bounds are thus pinitial +/- 0.01 mm. Again, running SMRT twice with these two 

correlation length bounds, we find two brightness temperatures associated with these bounds. Interpolating between those 

brightness temperatures to the observed brightness temperature, we find a correlation length, p. Then, we input p in SMRT, 

along with CFM temperature and density profiles for that day, to find a modeled brightness temperature associated with that 175 

correlation length. In Figure 3e, we compare this value to the AMSR-2 brightness temperature; if the two values are not within 

0.01 K, then pinitial is set to p and we proceed to Figure 3b. We repeat this process, with smaller and smaller bounds according 

to the table in Figure 3b*.  

 

This minimization results in modelled correlation lengths during potential dry days that, when input into SMRT along with 180 

temperature and density from CFM, each produce a brightness temperature that is within 0.01 K of its respective AMSR-2 

observation. Note that we would have found equivalent results by simply following the full algorithm depicted in the flow 

chart without breaking steps into Processes 1 through 3. We only separated out the processes so that we could initially find 

general estimates of correlation length on fewer days instead of running it on every single potential dry day, thus decreasing 

the code’s runtime.   185 

 

3.2 Assigning melt days and dry days 

After we have established correlation lengths for each of the potential dry days, we consider correlation length on potential 

melt days. Since melt dramatically increases brightness temperature, we cannot compute correlation length during potential 

melt days using the method described in Section 3.1. In the absence of other information, we determine the correlation length 190 

on potential melt days by linearly interpolating between the non-melt days (Figure 3f).  This results in our final correlation 

lengths, pexp, every day across the time series.  
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Now that we have a correlation length product, we can calculate brightness temperatures under the assumption that every day 

is dry. To do this, we use the temperature and density profiles from CFM for each day as inputs for SMRT. This generates dry 195 

snow brightness temperatures, TB,dry snow, as seen in Figure 3g. To calculate our threshold brightness temperature, we subtract 

a fixed value from correlation length. For this, we use the four-fold mean of a 31-day windowed running standard deviation of 

correlation length along our time series for potential dry days (hereafter referred to as 4𝜎!!"#"""""""). We chose 4𝜎!!"#"""""""	because our 

temporal linear interpolation across the potential melt days would yield a poorer estimation of correlation length for locations 

where correlation length is varying significantly from day to day. As shown in Figure 3g, we input this lower bound on 200 

correlation length into SMRT along with the CFM temperature and density information to generate a dynamic threshold, 

TB,threshold, that varies from day to day. The presence of liquid water causes an increase in brightness temperature; we interpret 

any day where the AMSR-2 brightness temperature exceeds this dynamic threshold as a melt day and any day that falls below 

as a non-melt day, or a dry day. This is shown in Figure 3h. We call this the hybrid method. 

 205 

4 Results 

4.1 Dry-snow zone: Validation 

The purpose of this study is to detect the presence of liquid water in a more physically based way and assess the technique’s 

usefulness in detecting melt. Before applying our dynamic thresholding method to determine melt days, we test how AMSR-

2, SMRT, and CFM can be used together to estimate brightness temperature at a dry site. We use Dome C, a cold site on the 210 

Antarctic Plateau, as our test site. Figure 4a shows that the brightness temperature in 18H never exceeds the Picard et al. 

(2022a) threshold, so, by default, 0% of the time series would be considered to have melt according to the hybrid method as 

we detect no potential melt days.  

 

As seen in Figure 4b, the correlation length has a mean of 0.20 mm for 18V and appears to have a seasonal signal; higher 215 

correlation lengths occur during the austral winter, and lower correlation lengths occur during the austral summer. The 

amplitude of this oscillation is about 0.015 mm, or 7.5% of the mean correlation length for this site. Since the CFM-modeled 

snow and firn temperature is influenced by MERRA-2 skin-temperature forcing, we compare the MERRA-2 skin temperature 

to in situ temperature data from Dome C to check for a seasonal bias. Indeed, there is a seasonal bias in the MERRA-2 skin 

temperature for this site, and we remove it using a linear regression. We re-run the CFM with the bias-corrected (BC) 220 

temperature input and we recalculate correlation length using SMRT. Figure 4b shows that the correlation length no longer 

varies seasonally after our bias correction. The correlation length also increased in the BC run by a mean of about 10%. 

 

We compare our correlation lengths to a snow profile with Specific Surface Area (SSA) measurements at Dome C (Picard et 

al., 2022b). We convert SSA to an exponential correlation length profile following the relationship described in Mätzler (2002). 225 

We compare our SMRT-derived correlation lengths to two profiles located at Dome C that are approximately 7 m in depth. 
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We would not expect an exact match for this comparison because (a) correlation length varies within the 12.5 km AMSR-2 

grid cell and (b) the penetration depth of AMSR-2 is approximately 4 to 10 m, meaning its brightness temperature is likely 

sensitive to snow deeper than the 7 m profile. Despite these factors, all of the in situ- and SMRT-derived correlation lengths 

fall in the 0.185 mm and 0.225 mm range (Figure 4b).  230 

 

Our results show that neither the dry-snow brightness temperatures nor our dynamic threshold are significantly affected by the 

bias correction. Though the bias correction does result in about a 10% change in correlation length for Dome C, this correction 

does not significantly impact the dry snow brightness temperature nor our dynamic threshold. In fact, if we displayed them in 

the same panel for comparison they would almost completely overlap; therefore, we show them separately in Figure 4c and 235 

4d. The difference between the two is shown in Figure 3e with the maximum absolute difference of less than 0.02 K. This 

value is less than the radiometric resolution of the instrument (Maeda et al., 2015), showing the robustness of these methods 

despite errors in MERRA-2. We also compare the BC and non-BC dynamic thresholds, shown in Figure 4c and 4d. Seen in 

Figure 4f, the maximum absolute difference is 0.35 K, less than 1% of a realistic brightness temperature for an ice sheet or ice 

shelf at this channel. Since the errors propagated into our dynamic threshold are low, we are satisfied with using the non-BC 240 

temperature forcing. However, we acknowledge that there may be biases in correlation length as all errors in temperature and 

density are propagated there. The corresponding results for 18H instead of 18V are similar and can be found in the 

Supplemental Materials.  

 

4.2 Melt-zone test sites: Comparison to SEB-derived melt data 245 

Now that we have established the feasibility of using SMRT and CFM to model Antarctic brightness temperatures, we branch 

out to sites that experience seasonal melt. We focus on two sites: AWS 18 on the Larsen C ice shelf and AWS 17 on a remnant 

of the Larsen B Ice Shelf (Figure 1). We chose these two sites as the SEB observations overlap with AMSR-2 observations 

over several years. Unless otherwise stated, the results we present use the 18H AMSR-2 channel due to its sensitivity to melt. 

For both AWS 17 and AWS 18, there are days where AMSR-2 brightness temperature exceeds the thresholds from Zwally 250 

and Fiegles (1994), Torinesi et al. (2003), and Picard et al. (2022a) each year, seen in Figures 5a and 6a. The hybrid method 

can detect extra days of melting occurring within a 15-day window of a particular melt day identified by Picard et al. (2022a). 

Given the numerous occasions where AMSR-2 brightness temperatures surpass the Picard et al. (2022a) threshold each year, 

there are a substantial number of days that the hybrid method could classify as melt. To quantify this number of days, we first 

consider the correlation length at each site.  255 

 

For AWS 17, the mean correlation length is 0.47 mm, shown in Figure 5b. The linearly interpolated correlation length increases 

across each of the four austral summers shown, suggesting grain growth due to wet snow metamorphosis (Brun, 1989). In 

Figure 5c, the dry snow brightness temperature lines up exactly with the AMSR-2 brightness temperature because of how we 

calculated the correlation length during all potential dry days. The propagated 4𝜎!!"#""""""" thresholding bound we use to determine 260 
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melt days varies from about 155 K to 185 K across this time series. Melt days make up 24% of the time series using the hybrid 

method and 21% of the time series according to SEB-derived melt data. In Figure 5d, melt days and dry days that are assigned 

by the hybrid technique match with SEB-derived melt rates for 90.9% of the time series, which is second best of the techniques 

we studied. The Picard et al. (2022a) thresholding technique matches SEB-derived melt rates best for this location at 91.7% 

(Table 1).  265 

 

The results for AWS 18 are similar to AWS 17; AMSR-2 brightness temperature gain exceeds all three statistical thresholds 

annually, shown in Figure 6a. The mean correlation length is 0.38 mm. As in AWS 17, the interpolated correlation lengths for 

AWS 18 increase over each of the four austral summers shown in Figure 6b, again indicating increased grain growth due to 

wet snow metamorphosis. The dry snow brightness temperature matches the AMSR-2 brightness temperature during all 270 

potential dry days, shown in Figure 6c. The propagated 4𝜎!!"#""""""" thresholding bound we use to determine melt days is higher 

than that of AWS 17, and it varies from about 170 K to 210 K across this time series. In Figure 6d, melt days from our hybrid 

technique match SEB-derived melt data between melt days and dry days for 90.9% of the time series.  

 

For AWS 17 and 18, in Figures 7a and 7c, respectively, we can see that our dynamic threshold is generally at equal or lower 275 

values than the Picard et al. (2022a) threshold. The SEB-derived melt data indicate occasional melt events during the austral 

winter that are not picked up by the hybrid method or any of the three statistical thresholding methods. Generally, for both 

sites, the hybrid method marks melt more frequently than the three statistical measures. Among the four techniques, the hybrid 

method selects melt the largest percentage of the time, at 28% of the days of the over 5-year time series for AWS 18, as 

compared to the SEB-derived melt data which indicate melt 27% of the time, both shown in Table 1.  280 

 

Comparing the three statistical methods to our hybrid method in Table 1, we can see the hybrid method is most likely to assign 

melt days compared to Picard et al. (2022a), Torinesi et al. (2003), and Zwally and Fiegles (1994), in decreasing order. At 

AWS 18, the melt season is generally longer than AWS 17. The percentage of melt days in AWS 17 and 18 was higher than 

that of the SEB-derived melt data by 3.5% and 0.6%, respectively, as seen in Table 1. However, the Picard et al. (2022a) melt 285 

days matched with the SEB-derived melt data for the greatest percentage of the time series for both sites, with the hybrid 

technique following at the next highest rate.  

 

4.3 All sites: Frequency of melt and correlation length  

Aside from AWS 17 and 18, none of the other sites have both (a) significant amount of crossover in time with AMSR-2 and 290 

SEB observations and (b) frequent melt. Therefore, we cannot compare their results to SEB-derived melt data. Instead, we 

compare the melt-detection data derived from the hybrid method to other statistically based techniques. In Figure 8a, we can 

see that no melt days were detected in the dry snow zone of Wilkes Land. Likewise, no melt was detected over AWS16 in 

Dronning Maud Land. Kohnen, AWS 5, and 6 were the only sites located on grounded ice sheet that were found to have any 
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melt days by any of the four detection methods. For AWS 5, the hybrid method in the horizontal polarization detected almost 295 

double the number of melt days that were detected by Picard et al. (2022a). Ice shelves in the Dronning Maud Land region had 

significantly more melt than over the grounded ice sheet, as detected by the hybrid method and all four statistically based 

thresholding techniques. The sites found on the Antarctic Peninsula ice shelves had about double the number of melt days as 

those on Dronning Maud Land ice shelves, irrespective of the chosen thresholding technique. For most of the sites, the hybrid 

method in both horizontal and vertical polarizations detected more melt days than the other three techniques. The closest 300 

behind is the Picard et al. (2022a) method.   

 

In addition to melt frequency, correlation length varies from location to location, as we can see in Figure 8b. Among these 

thirteen sites, lower correlation lengths are found on grounded ice sheet. Slightly higher correlation lengths are found on the 

ice shelves of Dronning Maud Land. Correlation lengths are highest at the Antarctic Peninsula, for the Larsen B ice shelf 305 

remnant site, and the three Larsen C sites. This is a similar pattern to frequency of melt days. The correlation length using the 

horizontal polarization is consistently slightly higher than that of the vertical polarization. In Figures 8c and 8d, we compare 

our correlation lengths to grain size from the 2014 NASA Making Earth System Data Records for Use in Research 

Environments (MEaSUREs) MODIS Mosaic of Antarctica (MOA) (Scambos et al., 2007; Haran et al., 2018). Our 

corresponding correlation lengths using the vertical polarization are correlated with MOA optical grain radius at a r2 of 0.75 310 

(p < 0.01) in Figure 8c. In Figure 8d, using 18H, MOA optical grain radius is correlated to correlation length at a slightly lower 

r2 of 0.64 (p < 0.01).  

 

We can see strong seasonal variations in correlation length for all sites that experience melt using both horizontal (Figure 9a) 

and vertical polarizations (Figure 9b). The sites appear to divide into two groups: sites with greater or less than 5% melt days 315 

(or about 18 melt days per year). Sites with greater than 5% melt day frequency tend to have, on average, about 0.2 mm higher 

correlation length than sites with less than 5% melt day frequency.  Comparing Figure 9a to 9b, the horizontal polarization 

shows higher variability in correlation length for each site as well as a larger range in correlation lengths from site to site. For 

sites with nonzero melt (according to the hybrid method), mean correlation length correlates with the percentage of melt days 

at an r2 of 0.75 (p < 0.01) and 0.81 (p < 0.01) for 18H and 18V, respectively; there appears to be a strong relationship between 320 

correlation length and the frequency of melt days. For further information, melt detection figures for all thirteen sites for both 

18H and 18V are provided in the Supplemental Materials.  

  

5 Discussion 

The hybrid method has both benefits and drawbacks when we compare it to statistical thresholding techniques. At present, the 325 

hybrid method is tied to a statistical thresholding technique described in Picard et al. (2022a); our method limits the potential 

days that could be assigned melt to a 15-day window around days that are considered melt by Picard et al. (2022a). While this 

allows our method to detect melt days that are clustered close to melt events detected by Picard et al. (2022a), it also prevents 
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our method from detecting any melt events that are isolated in time, such as over the austral winter. However, future work may 

allow for this method to be independent from statistical thresholding. For example, future work could include making the 330 

potential melt days self-consistent with the calculated melt days in an iterative fashion. This method would then be able to 

identify some small or localized melt events that are isolated in time from larger melt events that are detected by statistical 

thresholding. Additionally, we acknowledge that, though our dry snow brightness temperatures are physics-based, our fixed 

bound on correlation length (-4𝜎!!"#""""""") to calculate the dynamic threshold is based in statistics. Improvements in firn modeling, 

especially of snow microstructure, would allow us to more accurately model dry snow brightness temperature and allow us to 335 

reduce this bound on correlation length.   

 

For two sites on the Antarctic Peninsula, we discovered that the hybrid method does not necessarily improve the agreement 

between melt events determined by SEB-derived melt data and melt events predicted by the hybrid method. However, it is 

important to note that this may specifically be because we are comparing our method to the Picard et al. (2022a) technique for 340 

only two locations. In Picard et al. (2022a), they focused on the sensitivity of microwave brightness temperature to total liquid 

water content rather than melt detection. Therefore, their goal in melt detection was “simplicity and reproducibility” for eight 

sites rather than designing the most physical and robust algorithm for meltwater detection across the AIS (Picard et al., 2022a). 

However, the eight sites used in the Picard et al. (2022a) method have crossover with the two sites we evaluated in comparison 

to SEB-observations. Picard et al. (2022a) also used AWS 17 on Larsen B and used AWS 15, which is near to AWS 18. 345 

 

It would have been ideal for us to test our method on fresh sites that have not been used to create melt detection algorithms, 

but we are limited to sites that have significantly long SEB observations so we can validate our melt detection technique. 

However, since our method is adapted to the conditions of the snow and firn, we expect our algorithm to be robust to changes 

in temperature and density variations from time to time and location to location. To note, the reason why we chose the Picard 350 

et al. (2022a) method for hybridization is not because it is always the optimal method for melt detection (by itself) across the 

AIS, but because its relatively small +20 K fixed threshold results in the highest number of potential melt days than the other 

statistically based thresholding techniques. This allows for the most flexibility for the hybrid method, as there are more 

“potential melt days” allowable for the hybrid method to sort into melt and dry days. 

 355 

Another key difference between the hybrid method and statistical thresholding techniques is that the hybrid method provides 

correlation length, an additional piece of information that may be useful in multiple ways. In our comparison of the hybrid 

method’s correlation lengths to optical grain radius from MOA, we see a significant relationship between these two values. 

This relationship is especially strong for the 18V channel. Although the 18H channel is a good choice for melt detection, as it 

is very sensitive to the presence of liquid water, it is generally easier to model snow brightness temperature accurately for the 360 

vertical polarization, as discussed in the methods section. This is because the horizontal component of emissivity can be 

reduced significantly by icy layers, which may not be fully captured in CFM or modeled within SMRT (Comiso et al., 1997; 
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Durand et al., 2008). The resulting overestimate of emissivity may result in an overestimate of correlation length to 

compensate. This is most likely why vertically derived correlation lengths are generally lower than horizontally derived 

correlation lengths, and why vertically derived correlation lengths show a higher correlation with MOA. However, we do not 365 

expect a one-to-one correlation to MOA using either of these polarizations. This is primarily because the 18.7 GHz frequency 

is sensitive to the upper 5 to 10 m of snow, whereas MODIS is predominantly sensitive to the first 1 cm of snow (Lyapustin 

et al., 2009). 

 

Additionally, we do not expect melt from SEB-derived melt data to agree exactly with melt days detected by a spaceborne 370 

microwave radiometer. One reason is that SEB-derived melt data deduce the melt volume produced on a certain day, whereas 

a “melt day” indicates the presence of liquid water on the ice sheet as derived from daily microwave data. While we expect 

these two variables to be very well correlated, we do not expect them to match exactly because liquid water can persist on the 

surface of the ice sheet even though the snow is not actively melting. Furthermore, since melt may not always occur during 

overpasses, AMSR-2 may miss or preferentially detect melt. Differences can also result from the large footprint of the 375 

microwave radiometer. The hybrid method may be more sensitive to smaller jumps in brightness temperature that may be 

associated with localized melt events that are nearly averaged out by the 12.5 x 12.5 km footprint of AMSR-2. 

 

This study also revealed a significant correlation between percentage of melt days and the correlation length of that site. Any 

error in the CFM’s temperature and density information could theoretically propagate into the following four parameters: 380 

correlation length, dry snow brightness temperature, our dynamic threshold, and number of melt days, as illustrated by the 

flow chart in Figure 3. However, that alone would not necessarily lead to a positive correlation between the hybrid method’s 

correlation length and the number of melt days assigned by the hybrid method.  

 

To illustrate the propagation of these biases, we describe an example scenario where MERRA-2 has biased-high skin 385 

temperature for a particular site. Then CFM would have a biased-high snow temperature profile. We solve for correlation 

lengths on dry days that, along with CFM density and biased-high temperature profiles, result in modeled dry snow brightness 

temperatures that match AMSR-2. Correlation length will be overestimated, contributing to a reduction in dry snow brightness 

temperature to compensate for the artificial increase caused by the biased-high temperature profile. Dry snow brightness 

temperature on dry days is, by definition, robust to errors in MERRA-2 because it is forced to match AMSR-2. However, 390 

overestimating correlation length which may mean also overestimating the standard deviation in correlation length which will 

result in a biased-high dynamic threshold and fewer detected melt days. The reverse would be true for underestimating 

MERRA-2 skin temperature. SMRT input biases would act to reduce the correlation between correlation length and frequency 

of melt days.  

 395 

https://doi.org/10.5194/tc-2023-136
Preprint. Discussion started: 8 September 2023
c© Author(s) 2023. CC BY 4.0 License.



13 
 

This relationship between correlation length and frequency of melt days is likely to be physical in nature. It suggests that the 

snow microstructure is related to the percentage of the year in which snow undergoes melt. This relationship has a physical 

basis; wet snow metamorphism leads to faster grain growth than dry snow metamorphism (Brun, 1989), which is likely why 

locations that experience significant melt tend to have higher correlation lengths. These variations in correlation length and 

snow texture are important because they affect the thermal conductivity, permeability, dielectric properties, and optical 400 

properties of snow. Therefore, correlation length is highly relevant for ice sheet research, especially satellite altimetry, as snow 

microstructure influences radar penetration depth.  

 

The ultimate reason for this study is to build on melt detection research with the goal of melt quantification across the Antarctic 

Ice Sheet. Currently, observations of melt quantity in Antarctica are limited to a small number of in-situ surface energy balance 405 

sites. In this study, we show the feasibility of using a satellite- and physics- based approach to melt detection.  With additional 

refinement and calibration, this hybrid method has potential to estimate melt volumes instead of simply detecting the presence 

of melt. In a similar way to how we used inverse radiative transfer modeling to calculate correlation length, we could potentially 

use it to solve for melt volume. An algorithm that solves for even a rough estimate of melt volume would constitute a key step 

forward in understanding surface melt across the Antarctic Ice Sheet. This improvement would likely require the use of 410 

multiple frequencies and polarizations. This inverse problem is especially complex because liquid water has varying 

stratification vertically. More testing would need to be done to not only see what volume and vertical distribution of melt 

would saturate the microwave signal at a given frequency, but also understand the effects of localized melt within the 12.5 km 

AMSR-2 footprint. Quantifying surface melt from microwave radiometry is a complex problem; however, addressing it would 

greatly improve our understanding of surface melt on ice sheets and ice shelves.   415 

 

6 Conclusions  

Using the hybrid method, we can estimate the correlation length of snow by combining firn-model outputs and inverse radiative 

transfer modeling forced by AMSR-2 for dry-snow conditions. Next, we show how to interpolate the correlation length across 

the melt season, using it along with information from CFM to forward model brightness temperature assuming dry snow 420 

conditions. This approach allows us to create a dynamic, hybrid threshold to identify melt days in a way that addresses day-

to-day fluctuations in weather and snow conditions. Bias correction of reanalysis forcing can affect modeled correlation length 

but only minorly influences the dry-snow brightness temperature. Examining ice shelf sites on the Antarctic Peninsula and 

comparing to SEB-derived melt data, we find that the hybrid method performs similarly to the thresholding techniques. 

However, it generally flags a greater number of days as melt days. The hybrid technique has the advantage of providing 425 

additional information useful for radar studies, such as correlation length. This work shows that we can combine firn modeling 

with radiative transfer modeling to determine properties of the snow, potentially expanding the use of snow radiative transfer 

modeling beyond point locations with observational data. This methodology can be further developed for use in melt volume 

studies, as opposed to simply melt detection.  
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Figure 1: The thirteen AIS point locations that are used in this study. Sites on grounded ice sheet are red, sites on ice shelves are 530 
blue, and sites on ice rises are cyan. Background image from www.shadedrelief.com. 
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Figure 2: (a) Holding temperature and density constant (at 265 K and 375 kg m-3), the blue and orange lines show how brightness 

temperature varies with respect to correlation length for 18H and 18V, respectively. (b) Holding correlation length and density 

constant (at 0.25 mm and 375 kg m-3), the blue and orange lines show how brightness temperature varies with respect to temperature 535 
for 18H and 18V, respectively. (c) Holding correlation length and temperature constant (at 0.25 mm and 265 K), the blue and orange 

lines show how brightness temperature varies with respect to density for 18H and 18V, respectively. 
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  540 
Figure 3: Flow chart showing the hybrid-method algorithm used to calculate melt days.  Step 1 (top)  illustrates how correlation 

length (pexp) is calculated using CFM and SMRT using repeated linear interpolations. Step 2 (bottom) illustrates how brightness 

temperature (TB, dry snow) and its dynamic threshold (TB,threshold) can then be calculated from pexp, and used to determine melt days 

versus dry days. (a-h) are individual steps described in the main text.  
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Figure 4: Dome C (a) Brightness temperature from AMSR-2 (18H; black line) with thresholding techniques from Zwally and Fiegles 

(1994; cyan line), Torinesi et al. (2003; blue line), and Picard et al. (2022a; red line). (b) Correlation length converted from NIR SSA 

values in Brucker et al. (2011) assuming a 4 m penetration depth (black dotted line) and a 10 m penetration depth (black dashed 

line). Correlation length computed from the hybrid method (18H; green line) and the hybrid method BC version (navy line) along 

with grey bounds that represent 4𝝈𝒑𝒆𝒙𝒑""""""". (c) AMSR-2 brightness temperature (18V; black line). Hybrid method dry snow brightness 550 

temperature, BC version (18V; purple line) along with propagated 4𝝈𝒑𝒆𝒙𝒑""""""". (d) Same as (c) but for non-BC version. (e) The difference 

between the hybrid method’s dry snow brightness temperature BC and non-BC versions (18V; purple line). (f) The difference 

between propagated 4𝝈𝒑𝒆𝒙𝒑"""""""  between the BC and non-BC versions (grey line).  

 

 555 
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Figure 5: Data from AWS 17 (a) Brightness temperature from 18H from AMSR-2 (black line) with thresholding techniques from 

Zwally and Fiegles (1994; cyan line), Torinesi et al. (2003; blue line), and Picard et al. (2022a; red line). (b) The exponential 

correlation length computed from the hybrid method (18H; green line) along with +/- 4𝝈𝒑𝒆𝒙𝒑"""""""  bounds, with median filter (black line). 

(c) AMSR-2 brightness temperature (18H; black line). Hybrid method dry snow brightness temperature (18H; purple line) with 

propagated 4𝝈𝒑𝒆𝒙𝒑""""""" (grey bounds). Melt days detected by hybrid method (blue dots). (d) Melt days detected by hybrid method (blue 560 

dots). These represent melt days versus dry days in a binary fashion and do not reflect a specific melt volume. AWS surface energy 

balance melt data (dark blue bars). 

 
Figure 6: Data from AWS 18 (a) Brightness temperature from 18H from AMSR-2 (black line) with thresholding techniques from 

Zwally and Fiegles (1994; cyan line), Torinesi et al. (2003; blue line), and Picard et al. (2022a; red line). (b) The exponential 565 
correlation length computed from the hybrid method (green line) along with +/- 4𝝈𝒑𝒆𝒙𝒑"""""""  bounds, with median filter (black line). (c) 
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AMSR-2 brightness temperature (18H; black line). Hybrid method dry snow brightness temperature (18H; purple line) with 

propagated 4𝝈𝒑𝒆𝒙𝒑""""""" (grey bounds). Melt days detected by hybrid method (blue dots). (d) Melt days detected by hybrid method (blue 

dots). AWS surface energy balance melt data (dark blue bars). 

 570 

 
Figure 7:  Results for AWS 17 (a & b) and AWS 18 (c & d). (a & c) Brightness temperature from 18H with thresholding techniques 

from Zwally and Fiegles (1994; cyan line), Torinesi et al. (2003; blue line), and Picard et al. (2022a; red line). Hybrid method dry 

snow brightness temperature (18H; purple line) with propagated 4𝝈𝒑𝒆𝒙𝒑""""""" (grey bounds). (b & d) Days when AWS surface energy 

balance melt > 0 (black dots). Melt days detected by hybrid method (purple dots). Melt days detected by Picard et al. (2022a; red 575 
dots), Torinesi et al., (2003; blue dots), and Zwally and Fiegles (1994; cyan dots). 
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AWS17 # Days % Melt Days 
Matching days/ 
Total days 

Mismatched dry days/ 
Total days 

Mismatched melt days/ 
Total days 

Observations 2525 20.7% N/A N/A N/A 

Hybrid Method 2525 24.2% 90.9% 3.0% 6.2% 

Picard et al. 2525 22.4% 91.7% 3.3% 5.0% 

Torinesi et al. 2525 20.9% 91.7% 4.0% 4.3% 

Zwally & Fiegles 2525 16.4% 90.9% 6.3% 2.7% 

AWS18 # Days % Melt Days 
Matching days/ 
Total days 

Mismatched dry days/ 
Total days 

Mismatched melt days/ 
Total days 

Observations 1977 27.2% N/A N/A N/A 

Hybrid Method 1977 27.8% 89.2% 4.1% 6.7% 

Picard et al. 1977 26.3% 89.3% 4.7% 6.0% 

Torinesi et al. 1977 23.2% 87.4% 7.6% 4.9% 

Zwally & Fiegles 1977 18.3% 86.4% 10.5% 3.1% 
 

Table 1: A table comparing the hybrid method, Picard et al. (2022a), Torinesi et al. (2003), and Zwally and Fiegles (1994) methods 580 
of melt day detection for AWS 17 and AWS 18 to SEB-derived melt data. “Matching days” refers to the sum of both melt and dry 

days that match with SEB-derived melt data. “Mismatched dry days” refers to days when a technique identifies a dry day when that 

day is considered melt by SEB-derived melt data. “Mismatched melt days” refers to days when a technique identifies a melt day 

when that day is considered dry by SEB-derived melt data. 
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Figure 8:  Sites are divided with vertical black lines by region. (a) Percentage of the days from the beginning of 2014 to the end of 

2018 that are assigned melt using the Hybrid Method (18V; purple line), Hybrid Method (18H; pink line), Picard et al. (2022a; red 

line), Torinesi et al. (2003; blue line), and Zwally and Fiegles (1994; cyan line). (b) Mean correlation length (𝒑𝒆𝒙𝒑"""""") across this time 

series using the Hybrid Method at the 18V channel (purple line) and 18H channel (pink line). (c & d) Hybrid method correlation 

length data from January 1st, 2014 to March 8th 2018 for 18V (c; purple line) and 18H (d; pink line). Compared to optical grain size 600 
from MEaSUREs MODIS Mosiac of Antarctica in 2014 (grey dashed line; Scambos et al., 2007; Haran et al., 2018).  

 
Figure 9: Correlation length for all sites colored by the percentage of the days in the time series that are assigned melt using (a) the 

18H AMSR-2 channel and (b) the 18V AMSR-2 channel.  
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