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Abstract. A detailed understanding of snow cover and its possible feedback on climate change on the Tibetan Plateau (TP) is 15 

of great importance. However, spatiotemporal variability in snow phenology (SP) and its influencing factors on the TP remain 

unclear. Based on the daily gap-free snow cover product (HMRFS-TP) with 500 m resolution, this study investigated the 

spatiotemporal variability in snow cover days (SCD), snow onset date (SOD), and snow end date (SED) on the TP from 2002 

to 2022. A Structural Equation Model was used to quantify the direct and indirect effects of meteorological factors, 

geographical location, topography, and vegetation greenness on SP. The results indicate that the spatial distribution of SP on 20 

the TP was extremely uneven and exhibited temporal heterogeneity. SP showed vertical zonality influenced by elevation 

(longer SCD, earlier SOD, and later SED at higher elevations). 4.62% of the TP area had a significant decrease in SCD, at a 

rate of −1.74 days/year. The SOD of 2.34% of the TP area showed a significant delayed trend, at a rate of 2.90 days/year; 

while the SED of 1.52% of the TP area had a significant advanced trend, at a rate of at −2.49 days/year. We also found a strong 

elevation dependence for the trend in SCD (R = −0.73). Air temperature, precipitation, wind speed, and shortwave radiation 25 

can directly affect SP as well as indirectly affect it by influencing the growth of vegetation, whereas the direct effect was much 

greater than the indirect effect. Geographical location (latitude and longitude) and topographic conditions (elevation and slope) 

indirectly affected SP by modulating meteorological conditions and the growth of vegetation. Vegetation primarily influences 

SP by intercepting the snow and regulating the balance of the solar radiation budget. Regarding the total effect, air temperature 

was found to be the dominant factor. This study contributes to the understanding of snow variation in response to global 30 

warming over the past two decades by providing a basis for predicting future environmental and climate changes and their 

impacts on the TP. 
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1 Introduction 

Rapid accumulation and melting of snow make it one of the most active natural materials on the Earth's surface (Gutzler and 

Rosen, 1992; Ma et al., 2023). The Tibetan Plateau (TP) is one of the most sensitive regions to climate change because of its 35 

unstable alpine ecosystems and fragile natural environment (Huang et al., 2017). In the past 50 years, temperature has risen at 

a rate of about 0.37 °C per decade on the TP (You et al., 2021). Rising temperatures inevitably affect snow accumulation and 

melting processes, exemplified by variations in snow phenology (SP), including snow cover days (SCD), snow onset date 

(SOD), and snow end date (SED) (Chen et al., 2015; Ma et al., 2020). Variations in SP can in turn affect terrestrial ecosystems 

and feedback on regional climate (Cherkauer and Sinha, 2008). Early snowmelt also causes substantial variability in the onset 40 

date and amount of snowmelt runoff, increasing the incidence of disasters (e.g., floods) (Fyfe et al., 2017). A detailed 

understanding of the variability in SP and its possible feedback on climate change is of great significance to the hydrological 

cycle (Kraaijenbrink et al., 2021), ecological balance (Keyser et al., 2022), and societal security (Wang et al., 2017) on the TP. 

There are typical interannual variations in the SP on the TP. Ground-measured measurements and remote sensing data 

have been extensively used in recent decades to better understand these changes (Ma et al., 2022; Notarnicola, 2020). Remote 45 

sensing is beneficial in high-elevation area where few ground-measured measurements are obtainable (Huang et al., 2022a). 

Passive microwave satellite (e.g., SMMR, SSM/I, and AMSE-R) and multispectral satellite (e.g., Landsat, Sentinel-2, and 

MODIS) data are widely used to retrieve snow information and reveal its variability (Chen et al., 2018). Although passive 

microwave data is available over an extended period, the spatial resolution (~10−25 km) is relatively coarse (Huang et al., 

2017). Landsat and Sentinel-2 have a high spatial resolution (~10−30 m) but a relatively coarse temporal resolution (10 or 16 50 

days), inadequate for monitoring temporal variability in SP (Huang et al., 2022a). Currently, the most widely available snow 

data used for the TP is the daily MODIS snow product (Hall et al., 1995), which has revealed that the SP on the TP has 

undergone changes in the last two decades (Ma et al., 2023; Tang et al., 2022; Wang et al., 2017). In addition, owing to the 

complex topography of the TP, elevation may have a particular impact on SP. However, it is still unclear whether trends in SP 

are elevation-dependent (Ma et al., 2023; Wang et al., 2021). Moreover, since the original daily MODIS images exist data 55 

gaps due to cloud cover and relatively low estimation accuracy due to complex topography of the TP (Huang et al., 2022b), 

most previous studies used relatively simple methods to fill data gaps and did not consider topographic effects. Using snow 

products without topographic corrections may result in inaccurate extraction of SP, further affecting the analysis result of 

interannual variations. Huang et al. (2022b) generated a daily gap-free snow product on the TP by employing a Hidden Markov 

Random Field (HMRF) framework to MODIS product (HMRFS-TP). The data gaps were filled by optimally integrating 60 

spatiotemporal, spectral, and environmental information. Accuracy of HMRFS-TP was significantly improved over the 

complex topography, providing spatiotemporally continuous information on snow distribution over an extended period with 

high accuracy. 

Regarding the influencing factors on SP of the TP, previous studies have highlighted a complex and heterogeneous 

situation in which SP is driven by meteorological factors, topographic conditions, geographical location, and vegetation 65 
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greenness (Pulliainen et al., 2020; Qi et al., 2021; You et al., 2020). The impact of air temperature and precipitation on snow 

cover has been extensively studied (Li et al., 2022; Tarca et al., 2022). However, SP is also closely associated with other 

meteorological factors, such as wind and humidity. But their quantitative influence on SP on the TP has not been discussed 

further (Ma et al., 2022; Xie et al., 2017). Topographic characteristics (Guo et al., 2022) and vegetation greenness (Qi et al., 

2021) are also considered responsible for SP. Elevation is an essential factor that influences SP because snow accumulates 70 

more at higher elevations. Steeper slopes may receive less snow than flatter ones due to gravitational pull (Li et al., 2011). 

Vegetation greenness changes the snow redistribution process by intercepting snow, and affects spatial pattern and melt rate 

of surface snow by regulating the solar radiation budget balance (Barrere et al., 2018). 

Although much research has examined the variability in the SP and its influencing factors on the TP, uncertainties and 

limitations remain. Previous studies have mainly focused on the response of SP to temperature and precipitation, but few 75 

studies have quantitatively explored other associated factors influencing SP. Additionally, many analyses have primarily 

focused on examining the relationship between SP and individual influencing factors, without taking into account the 

interrelationships among these factors. Associated factors may have both direct and indirect impacts on SP. For example, 

temperature can affect SP directly, as well as indirectly by influencing the growth of vegetation (Qi et al., 2021). The specific 

process by which each factor influences SP (i.e., directly, or indirectly) has not been elucidated. The Structural Equation Model 80 

(SEM) is a suitable method for studying such coupling relationship, which can quantitatively explain the direct and indirect 

relationships between factors (Grace et al., 2010; Shen et al., 2022; Zhang et al., 2022). Here we adopt this approach to explore 

the mediating effects between SP and associated factors. 

In this study, we conducted a comprehensive investigation on the spatiotemporal variability in SP on the TP over the 

past two decades (2002–2022), based on the daily gap-free HMRFS-TP dataset, and further quantified the influence of 85 

associated factors on SP. The main goals are to (1) calculate SP parameters (SCD, SOD, and SED), and analyze their 

spatiotemporal variability; (2) examine whether the trends in SP are elevation-dependent; and (3) quantify the direct and 

indirect effects of associated factors on SP. 

2 Study area and data 

2.1 Study area 90 

The TP (26°00′12″N-39°46′50″N, 73°18′52″E-104°46′59″E, Figure 1) is the largest snow cover area in the middle latitudes of 

the Northern Hemisphere, with 105 km2 of glaciers and an annual snowfall of 41.9 × 109 m3 (Yao et al., 2012). The southeastern 

TP is warm and moist while the northwestern TP is cold and dry. The average annual temperature ranges from −6 to 20 ℃ and 

the average annual precipitation ranges from 150 to 800 mm (Wang et al., 2023). Temperature in its permafrost region is rising 

at about three times the speed of global warming (Wang et al., 2022). As a topographic barrier, the TP forces air mass up and 95 

produces cooling effects (Wu et al., 2015), further influences the thermodynamic properties of atmospheric circulation, 

strength and duration of Asian monsoon systems, global climate, and energy budge (Fan et al., 2019). It is the source of several 
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prominent Asian rivers (e.g., the Yellow River, Yangtze, Indus, and Mekong), which are primarily fed and regulated by 

meltwater from glaciers and snow (Chen et al., 2022). 

2.2 Datasets 100 

2.2.1 Snow cover product 

The daily gap-free HMRFS-TP at 500 m resolution from 2002 to 2022 was used to extract SP (Huang et al., 2022b). The 

HMRF technique produces a dataset (Huang et al., 2018) that optimally couples spatiotemporal, spectral, and environmental 

information to fill data gaps in original MODIS images. Accuracy of the HMRFS-TP is 91.36% and 98.29% based on snow 

maps derived from Landsat images and in situ observations, respectively. The estimation accuracy is notably improved in 105 

snow transitional periods and complex topography with higher elevations and sunny conditions. To determine the SP 

(including SCD, SOD, and SED), we specify the snow season from 1 September of the previous year to 31 August of the 

current year (Tang et al., 2022). The snow accumulation season is defined as from 1 September of the previous year to February 

28 (or 29) of the current year, and the snowmelt season is from 1 March to 31 August of the current year (Ma et al., 2023). 

The SP for 20 snow seasons from 1 September 2002 to 31 August 2022 was extracted based on the long-term HMRFS-TP 110 

dataset. 

2.2.2 Meteorological data 

We used daily meteorological dataset at 1/30° resolution from 2002 to 2022 to investigate the impact of meteorological factors 

on SP, including air temperature, precipitation, specific humidity, wind speed, and downward shortwave radiation. This dataset 

was generated by integrating in situ observations, remote sensing, and reanalysis dataset (He et al., 2020; Yang et al., 2023). 115 

All daily meteorological data were resampled to 500 m to maintain consistency with the MODIS snow product. We calculated 

average air temperature, average humidity, average wind speed, total precipitation, and total shortwave radiation for each snow 

season, snow accumulation season, and snowmelt season to examine their relationship with SCD, SOD, and SED, respectively 

(Chen et al., 2018; Ma et al., 2023). 

2.2.3 Digital Elevation Model (DEM) 120 

The 30 m DEM data, available from the USGS Earth Explorer (https://earthexplorer.usgs.gov), was resampled to 500 m 

resolution. Topographical parameters including elevation, slope, and aspect were calculated from it. 

2.2.4 Land surface reflectance product 

Compared with other vegetation indexes, the Normalized Difference Greenness Index (NDGI) (Yang et al., 2019) has been 

proven to more accurately represent the vegetation greenness growth status in snow-covered areas such as the TP (Xu et al., 125 

2022a; Xu et al., 2022b). Here, we calculated the NDGI based on MODIS Terra surface reflectance MOD09A1 with 500 m 
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resolution and an 8-day repeat cycle from 2002 to 2022 (Vermote, 2021). The bands 4, 1, 2 of MOD09A1 were used to 

calculate the NDGI. The maximum complex method was implemented to filter noise and fill data gaps owing to cloud and 

atmosphere in NDGI series (Xu et al., 2022b). The average NDGI was calculated for each snow season, snow accumulation 

season, and snowmelt season. 130 

2.2.5 Auxiliary data 

Snow depth recorded from meteorological stations was used as the reference value (ground-observed SP) to validate the 

accuracy of the satellite-derived SP parameters. Due to instrument machine failure or man-made errors, not all meteorological 

stations (approximately 137) on the TP recorded snow depth values every day. This resulted in many data gaps during the 

snow season, which were not sufficiently continuous to extract ground-observed SP. Therefore, 24 meteorological stations 135 

with daily records were selected for validation (Figure 1). 

3 Methods 

Figure 2 illustrates the workflow of this study. The SP parameters (SCD, SOD, and SED) were first extracted from the daily 

HMRFS-TP dataset, and their spatiotemporal variability were analyzed. We then adopted SEM to quantify the direct and 

indirect effects of associated factors on SP. The impact of relatively important factors on SP was discussed in further depth. 140 

3.1 Snow phenology extraction and accuracy assessment 

Three parameters, SCD, SOD, and SED, were derived to describe SP in each snow season and were calculated from the daily 

HMRFS-TP dataset at the pixel level. SCD is the sum of days when a pixel is covered by snow across the snow season. SOD 

is the first date when a pixel is covered with snow stay at least 5 days in a snow season. SED is the last date on which a pixel 

was identified as snow for 5 consecutive days (Tang et al., 2022). Using a threshold value of 5 days can reduce the influence 145 

of frequent short-term variability (e.g., snowmelt and accumulation in early spring and late autumn), which has been a widely 

used threshold on the extraction of SOD and SED (Guo et al., 2022; Wang et al., 2017; Xu et al., 2022b). Calculations of SP 

were excluded from regions containing lakes. 

The accuracy of the extracted SP was validated using ground-observed SP from snow depth measured by meteorological 

stations. The ground-observed SP was calculated as follows. First, all recorded snow depth values were reclassified as snow 150 

or no snow based on a 3 cm threshold (Huang et al., 2022a; Huang et al., 2022b). For each snow season, meteorological stations 

that recorded more than 200 days of snow depth were selected (Hao et al., 2022; Zhao et al., 2022). Days without snow depth 

records at the selected stations were supplemented with remote sensing images (Landsat series, Sentinel-2, etc.) of these days. 

Stations with fewer than 20 snow-covered days and fewer than 5 consecutive snow-covered days during the snow season were 

excluded. After applying these criteria, a total of 56 ground-observed SP from 24 stations were used for accuracy validation. 155 
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3.2 Trend analysis 

To explore the interannual variation trend and trend significance in SP from 2002 to 2022, the Theil-Sen non-parametric 

regression (Sen, 1968) and Mann-Kendall (M-K) tests (Hirsch et al., 1982) were applied to each pixel. The Theil-Sen method 

has the advantage of dealing with non-normally distributed data, and is robust against outliers compared with traditional linear 

regression (Theil, 1992). 160 

𝛽 = 𝑀𝑒𝑑𝑖𝑎𝑛 (
𝑥𝑗−𝑥𝑖

𝑗−𝑖
) , 1 < 𝑖 < 𝑗 < 𝑛,         (1) 

where 𝛽 is the trend slope; a positive value denotes the trend of SP as a delay/extension, and a negative value assumes SP is 

advanced/delayed. 𝑛 =19, 𝑥𝑖 is the ith value in 19 years. Same as 𝑥𝑗 and jth. 

The M-K test is a non-parametric approach for monotonic trend that has been used for trend detection of hydrological 

and meteorological time series (Qi et al., 2021). The Z value assumes the temporal trend is statistically significant: 165 

𝑍 =

{
 
 

 
 

𝑆−1

√𝑉𝑎𝑟(𝑆)
, 𝑖𝑓 𝑆 > 0

0, 𝑖𝑓 𝑆 = 0
𝑆+1

√𝑉𝑎𝑟(𝑆)
, 𝑖𝑓 𝑆 < 0

, 𝑉𝑎𝑟(𝑆) =
𝑛(𝑛−1)(2𝑛+5)

18
,        (2) 

𝑆 = ∑ ∑ {

1, 𝑖𝑓𝑥𝑗 > 𝑥𝑖  

0, 𝑖𝑓 𝑥𝑗 = 𝑥𝑖 , 1 < 𝑖 < 𝑗 < 𝑛

−1, 𝑖𝑓 𝑥𝑗 < 𝑥𝑖  

𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1 ,        (3) 

when |𝑍|＞1.28, 1.64, and 2.32, the tests were significant at levels of 0.1, 0.05, and 0.01, respectively. 

Since snow cover may not be present each year, to evade unnatural results caused by a small amount of data, only the 

pixels with at least recorded 6 years for the SP were used for the interannual trend evaluation (Xu et al., 2022b). 170 

3.3 Structural equation model 

We used SEM to quantify the direct and indirect effects of various factors on SP. It is a multivariate collection of methods that 

can simulate the interaction between various factors at the same time, supplying a framework for extrapolating cause-effect 

relationship and revealing direct and indirect relations between independent and dependent variables (Grace et al., 2010). SEM 

includes Covariance Based-Structural Equation Model (CB-SEM) and the Partial Least Square Structural Equation Model 175 

(PLS-SEM) (Venturini and Mehmetoglu, 2019). Contrasted with CB-SEM, PLS-SEM focuses on mining sample information 

and can reflect the nature and structural characteristics of objects as much as possible, making it more suitable for exploring 

newly constructed structural models (Hair et al., 2011; Ringle et al., 2012). More importantly, PLS-SEM is a nonparametric 

model that does not require a normal distribution of samples and has considerable potential for remote sensing applications 

(Lopatin et al., 2019; Zhang et al., 2022). Therefore, we adopted PLS-SEM for further exploration. 180 
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When using PLS-SEM with normalized factors, multicollinearity diagnosis, and model fit evaluation are essential for 

model quality evaluation. Multicollinearity diagnosis (Cenfetelli and Bassellier, 2009), which relies mainly on VIF, is an 

important issue in model quality evaluation. High multicollinearity between factors may cause inaccurate path coefficient, 

leading to these factors being misinterpreted as unimportant or invalid (Hair et al., 2010). The model fit evaluation uses 

approximate fit indices like SRMR (Standardized Root Mean Square Residual) and NFI (Normed Fit Index). A desirable PLS-185 

SEM is characterized by SRMR less than 0.08 and NFI greater than 0.90. To interpret the SEM results, a standardized path 

coefficient implies the direct effect of one factor on another, and its significance (p < 0.05) can be evaluated by resampling 

procedures (Hair et al., 2011). The path coefficient was solved iteratively using ordinary least squares, and the significance (p 

< 0.05) of each path coefficient was obtained by bootstrapping (5000 iterations). The indirect effect of one factor on another 

can be calculated through multiplying all indirect path coefficients, and the total effect is the sum of the indirect and direct 190 

effects. 

4 Results 

4.1 Accuracy assessment of the extracted snow phenology 

Figure 3 shows the accuracy of the satellite-derived SP parameters compared with the ground-observed SP. The satellite-

derived SCD, SOD, and SED values were in line with ground-observed ones, with R of 0.77, 0.95, and 0.97 (p < 0.01), 195 

respectively. The bias of ground-observed and satellite-derived SCD, SOD, and SED were −1.75, −2.39, and 3.43 days, 

indicating that the satellite-derived SCD was less than the actual SCD, and the satellite-derived SOD was earlier than the actual 

SOD. In contrast, satellite-derived SED occurred later than the actual SED. Relevant studies have shown the bias of satellite-

derived SP parameters ranges from 0 to 10 days (Chen et al., 2018; Hao et al., 2022; Wang et al., 2021). The biases (−2.39, 

3.43, and −1.75 days) in our study were within this range. 200 

4.2 Spatial patterns and temporal trends of snow phenology 

The spatial patterns and temporal trends of SP at the pixel level are shown in Figures 4 and 5, respectively. Figure 4a indicates 

the spatial distribution of the multiyear averaged SCD from 2002 to 2022, showing a highly uneven snow cover distribution 

across the plateau. Areas with an SCD of more than 60 days are considered as stable snow cover areas and sources of water 

(Tang et al., 2022), accounting for approximately 17.07% of the total TP and primarily distributed in high-elevation mountain 205 

ranges. Some high-elevation areas had an SCD exceeding 180 days, accounting for approximately 7.40% of the entire TP, 

distributed primarily in the western Kunlun, Himalaya, and Nyainqentanglha mountains. Areas of low SCD (< 20 days) 

accounted for 55.95% of the total TP, mainly concentrated in low-elevation areas and the hinterland of the plateau. Overall, 

the pattern of SCD was in line with topography in visual sense, displaying the regularity of a high SCD in high-elevation 

mountains and low SCD in the low-elevation plains. We also examined the temporal trend in SCD and its significance. As 210 

Figure 5a shows, the SCD decreased in 50.59% of the TP during the 20-year period, and significantly decreased by 4.62% of 
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the total TP at a mean rate of −1.74 days/year (p < 0.1), primarily in the west Kunlun, east-central Himalaya, and south 

Nyainqentanglha mountains. In contrast, areas with significantly increased SCD accounted for 2.45% of the total TP at a mean 

rate of 1.12 days/year (p < 0.1), and was mainly scattered in the east-central part of the TP.  

Distribution of SOD and SED over the TP also presented extreme spatial heterogeneity, which was visually consistent 215 

with elevation (Figures 4b and 4c). DOS (day of the snow season) 1 is equivalent to September 1 of the previous year. SOD 

was mainly concentrated in DOS 90–180 (December–February), whereas SED was concentrated primarily in DOS 150–240 

(February–April). In high-elevation mountain ranges, SOD appears earlier in general, whereas SED shows later. But in low-

elevation areas such as the hinterland of the TP, SOD starts later and SED appears earlier. Not only are the variations in SOD 

and SED spatially complicated, but they also exhibited significant temporal heterogeneity (Figures 5b and 5c). 58.56% of the 220 

total TP had delayed SOD, and 2.34% of the TP had a statistically significant (p < 0.1) delayed SOD at a mean rate of 2.90 

days/year (Figure 5b). In contrast, areas with significantly advanced SOD only accounted for 0.46% of the total area at a mean 

rate of −3.69 days/year (p < 0.1), and was sparsely distributed in the north western and eastern TP. For SED, 98.41% of the 

TP showed no significant trend, 1.52% showed a significant advanced trend at a rate of −2.49 days/year (p < 0.1), and 0.07% 

showed a significant delayed trend (p < 0.1) (Figure 5c). 225 

4.3 Direct and indirect effects of important factors on snow phenology 

Based on the related literature (Guo et al., 2022; Huang et al., 2020; Qi et al., 2021), 11 initial associated factors in four 

categories were selected: meteorological factors (air temperature, precipitation, wind speed, humidity, and shortwave 

radiation), geographical location (latitude and longitude), topography (elevation, slope, and aspect), and vegetation greenness 

(NDGI). First, multicollinearity diagnosis was performed on all initial factors, among which humidity did not pass the 230 

multicollinearity diagnosis (VIF=10.8) and was excluded. Then, we constructed a SEM using the remaining factors and 

established multiple paths in the model. Non-significant and low coefficient paths were removed, and the total effect (TE) of 

each factor was calculated based on the final paths (Figure 6). Factors with a small absolute TE should be removed because of 

their low contribution and limited explanations. An appropriate threshold was selected as the basis for factor elimination. Hair 

et al. (2011) indicated that there is no uniform standard for selecting thresholds in different research fields. Considering the 235 

rationality of factor selection and referring to relevant literature (Shen et al., 2022; Zhang et al., 2022), we used 0.01 as the 

threshold for factor elimination. Aspect was eliminated for all SP (Figure 6), and the final SEMs were constructed to discuss 

the direct and indirect effects of the remaining 9 factors. 

Figure 7 presents the results of the final SEM and its standardized regression path coefficient (PC) (p < 0.05). It indicates 

that there are complex interactions between SP and associated factors on the TP. Temperature, wind speed, NDGI, and 240 

shortwave radiation had negative effects on SCD and positive effects on SOD, while the other factors had positive effects on 

SCD and negative effects on SOD. Furthermore, temperature, wind speed, and shortwave radiation had negative effects on 

SED, while the remaining factors had positive effects on SED. Meteorological factors (air temperature, precipitation, wind 

speed, and shortwave radiation) exerted both direct and indirect effects on SP, whereas vegetation greenness (NDGI) mainly 
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had a direct impact, and geographical location (latitude and longitude) and topography (elevation and slope) had an indirect 245 

effect on SP (Figure 7). Meteorological factors were the dominant factors affecting SP, especially the temperature, which had 

the strongest effect on SCD, SOD, and SED, with the TE value of −0.447, 0.272, and −0.379, respectively. The influences of 

precipitation on SCD and SOD were also relatively significant (absolute value of TE > 0.19). However, its impact on SED 

was limited (TE=0.049). Wind speed exhibited a strong effect on SCD and SED (absolute value of TE > 0.15), while its effect 

on SOD was relatively limited (TE=0.062). The effect of NDGI on SCD and SOD was strongest (absolute value of TE > 0.17). 250 

Geographical location and topographic conditions affected SP by determining meteorological conditions and the growth of 

vegetation. For example, elevation indirectly affected SCD by assessing the distribution of temperature (PC = −0.805), 

precipitation (PC = −0.261), shortwave radiation (PC = 0.330), wind speed (PC = 0.418), and NDGI (PC = −0.649); hence, 

the TE of elevation on the SCD was 0.290 (Figure 7a). The influence of latitude on all SP parameters was greater than that of 

longitude. 255 

5 Discussion 

Compared to traditional statistical methods, the SEM adopted in this study can accurately quantify the direct and indirect 

relationships between SP and associated factors. This makes it particularly well-suited for understanding the mediating effects 

of these factors. Based on the results of this model, the influences of relatively important factors are discussed below. 

5.1 Response of snow phenology to meteorological factors 260 

Meteorological factors (air temperature, precipitation, wind speed, and shortwave radiation) can directly affect SP as well as 

indirectly affect it by influencing the growth of vegetation, whereas the direct effect was much greater than the indirect effect. 

Among these factors, air temperature was the dominant meteorological factor. A temperature below 0 ℃ is conducive to the 

increase and maintenance of snow cover, resulting in longer SCD, earlier SOD, and later SED (Moran-Tejeda et al., 2013; 

Scalzitti et al., 2016). As another important factor, precipitation has been indicated by prior research to have a comparatively 265 

lower contribution to SP (Guo et al., 2022; Huang et al., 2020; Wang et al., 2021), which is inconsistent with the results of our 

research (Figure 7). This discrepancy may be caused by the different resolutions of precipitation data. The spatial resolution 

of the precipitation data we used was approximately 3 km, while the resolution in previous studies was relatively rough (25 

km or data from meteorological stations). The 3 km resolution precipitation data we used reveals greater details of precipitation 

distribution and provides more accurate precipitation information, thus obtaining a more reliable correlation between 270 

precipitation and SP. 

To further explore the response mechanisms of SP to temperature and precipitation, their relationship was analyzed at 

the pixel level using Pearson’s correlation coefficients (Figures 8). SCD and SED exhibited a negative correlation with 

temperature across the majority of regions, accounting for 88.09% and 73.81% of the TP, respectively (Figures 8a and 8e). 

Conversely, they demonstrated a positive correlation with precipitation in 59.67% and 61.02% areas of the TP (Figures 8b and 275 
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8f). SOD was positively correlated with temperature in 78.02% of the TP (Figure 8c), and displayed a negative correlation 

with precipitation in 70.90% of the TP (Figure 8d). We also calculated the correlation coefficients of SP with temperature and 

precipitation for each elevation ranges (Figures 8g, 8h, and 8i). The role of temperature and precipitation in SP varies with 

elevation. In areas with low elevation (< 1500 m) and high elevation (> 6700 m), the relationships between SP and temperature 

and precipitation were complex, with neither factor dominating significantly. For SCD, the influence of precipitation exceeded 280 

that of temperature and became more important in 1500–5400 m (Figure 8g). However, temperature played a more crucial role 

in 5400–6700 m. Similarly, the effect of precipitation on SED was more significant in 1800–5400 m, after which the effect of 

temperature was more important in 5400–6700 m. The correlation between SOD and precipitation was stronger than its 

correlation with temperature across 4700–5500 m. Overall, we identified that relative importance of temperature and 

precipitation shifts with elevation. Our findings differ from previous studies, where researchers generally found an elevation 285 

threshold where the importance of each changed. For instance, Moran-Tejeda et al. (2013) discovered a threshold elevation of 

approximately 1400 m, below which temperature was the primary explanatory variable of snow cover in Switzerland, and 

above which precipitation was a better predictor. Scalzitti et al. (2016) found a range of threshold elevations (1580 m–2181 

m) that separated the importance of temperature from that of precipitation in the western United States. The reasons for such 

difference with our research could be as follows: (1) the complex terrain and different climate conditions of the TP, and (2) 290 

the unique changes in temperature and precipitation at different elevations on the TP. The confounding influence of warming 

temperatures and varying precipitation remains a challenge in explaining the observed variations in the SP. 

This study still has some limitations in exploring the effect of meteorological factors on SP. We calculated the average 

(or total) metrics of each meteorological factor during the snow accumulation season to explore their relationship with SOD 

using SEM. Similarly, we calculated the average (or total) metrics of each meteorological factor during the snowmelt season 295 

to investigate their relationship with SED (Chen et al., 2018; Ma et al., 2023). The purpose of this is to address the time 

dependence of meteorological factors. In the future, we intend to explore more methods for effectively separating the time 

dependence of meteorological factors when studying their effects on snow phenology. Additionally, previous studies suggested 

potential lagging effects of meteorological factors on the SP of TP. For instance, Li et al. (2019) found that anomalous 

precipitation could lead to subsequent snow cover variations on the TP with a delay of approximately 5 days. Ren et al. (2018) 300 

observed a strong negative correlation between snow cover and the average temperature of 1 to 4 months prior to snow 

accumulation. Despite the potential importance of lagging effects on the snow cover of TP, our SEM model requires concurrent 

observations of dependent and independence variables for accurate quantification of the causal relationships between them. 

Therefore, the lagging effects were neglected in this study. 

5.2 Topography control on snow phenology 305 

Previous studies have demonstrated the effect of complex topography on SP (Guo et al., 2022; Jain et al., 2008; Ma et al., 

2020). Still, they did not reveal the specific action processes (direct or indirect) of various topographic factors affecting SP. 

This study indicated that topographic conditions indirectly affected SP by modulating meteorological conditions and the 
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growth of vegetation using SEM. Elevation is the primary factor, due to its vital effect on local microclimates, particularly in 

mountainous regions. In high-elevation mountains, the temperature and specific humidity are lower and snowfall is higher, 310 

creating favourable conditions for snowfall and maintenance. Owing to strong blocking effect from large mountains, most 

areas of the hinterland of the TP has relatively scarce snow (Wang et al., 2017). Snow is more likely to slide on a steeper slope, 

which prevents snow accumulation, whereas a flatter slope is conducive to snow deposition. As shown in Figure 7, slope had 

little effect on SOD (compared with SCD and SED), indicating that the snow accumulation was mainly influenced by climate 

and less by slope. 315 

Elevation had a significant effect on SP, but whether the trends in SP from 2002 to 2022 on the TP was elevation-

dependent was unknown. To investigate the elevation effect, we divided elevation into 50 m intervals, and the average trend 

values of statistically significant pixels (p < 0.1) were calculated for each elevation category. Then, we selected elevation 

categories with more than 50 samples to analyze the correlation between trends in SP and elevation. Our finding reveals a 

strong negative correlation between trend in SCD and elevation, with a correlation coefficient of −0.73 (Figure 9a). This 320 

negative correlation was strongest in 0−4000 m and 4900−5900 m. A moderate positive correlation exists between the trend 

in SOD and elevation (R = 0.59), and this positive correlation was most significant in 4100−5800 m (Figure 9b). The correlation 

between SED and elevation was 0.33, which was not significant (Figure 9c). Therefore, there exists a strong elevation 

dependence for the trend in SCD (R = −0.73), a moderate elevation dependence for the trend in SOD (R = 0.59), and no 

significant elevation dependence for the trend in SED (R = 0.33) from 2002 to 2022. The elevation dependence of the SCD 325 

trend is consistent with the previous study of Ma et al. (2023). However, Ma et al. (2020) found no elevation dependence for 

both SOD and SED trends. This discrepancy is very likely because the meteorological data used in their study were mainly 

distributed in the eastern TP while the western TP was much less considered. This further highlights the high spatial 

heterogeneity of SP in TP. 

The non-significant elevation dependence of SED is due to the competing effects of the delayed trend within 3800−4900 330 

m elevation and the advanced trend of other elevation ranges (Figure 9c). To explain the counterintuitive delayed trend in the 

context of regional warming, we further applied a structural equation model to explore the causal relationships. The results 

indicate that wind speed significantly influences the delayed trend in SED, exhibiting a strong positive correlation with a total 

effect of 0.497 (Figure 9d). The delayed trend in SED becomes more pronounced as wind speed increases. This effect of wind 

speed on snow cover is mainly through blowing snow process, which lead to increased snow accumulation through snow 335 

redistribution and thus a delayed trend in SED regionally. Li et al. (2012) also found a distinct occurrence of blowing snow at 

an elevation of 4146 m, where pronounced redistribution of snow cover occurred. 

5.3 Other factors affecting snow phenology 

The TP has a vast territory spanning multiple longitude and latitude zones, and longitude and latitude cannot be ignored in 

snow cover research. A greater longitude (i.e., further east) caused a shorter SCD, later SOD, and earlier SED (Figure 4). From 340 

east to west, SCD decreased by 123 days, SOD was delayed by 77 days, and SED advanced by 48 days. The elevation of the 
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TP decreases from west to east, resulting in a correlation between elevation and longitude (R = 0.532, Figure 10a). This 

correlation can cause the effect of longitude on SP folded under the effect of elevation on SP. However, controlling the 

influence of elevation, we still find the longitudinal dependency of snow cover. Taking the SCD as an example, at a fixed 

elevation (e.g., 5000 m), a correlation still exists between longitude and SCD (R = 0.356, Figure 10b). This implies that 345 

longitude could be interacting with additional factors to shape the spatial and temporal distribution of snow cover on the plateau. 

Vegetation greenness can change snow redistribution by intercepting the snow and regulating the balance of the solar radiation 

budget (Domine et al. 2016), vice versa, the processes and patterns of snow accumulation and melting affect vegetation 

greenness, species distribution, and community structure (Barrere et al., 2018). Most previous studies explored the response 

of vegetation greenness to snow cover, and the role of vegetation greenness on snow cover has rarely been investigated (Qi et 350 

al., 2021; Xu et al., 2022b). Our study showed that vegetation had mainly direct effects on snow cover, with particularly 

pronounced effects on SCD and SOD. 

The dynamics of snow accumulation and melting are influenced by various factors. In addition to the factors analyzed in 

this paper, other factors may also play important roles in SP. Ground temperature primarily influences the structure and stability 

of snowpack by regulating energy exchange at the soil-snow interface (Rixin et al., 2022). As the ground temperature increases, 355 

the substrate absorbs additional thermal energy, which is conveyed to the base of the accumulated snow through heat 

conduction, resulting in melting of the lower snow layers. The heat from the warmer soil in the snow-free area can be 

transferred to the colder soil below the snow-covered area. Liquid water can also be transferred from the snow-free soil to the 

snow-covered soil, thus melting snow (Fassnacht et al., 2006). Therefore, soil properties (e.g., soil moisture) can also affect 

snow cover. In addition, atmospheric pollutants, especially those referred to as light-absorbing aerosols, such as black carbon, 360 

brown carbon and dust, can warm the atmosphere (Kang et al., 2019; Ji et al., 2015). After being deposited onto snowpack, 

these light-absorbing particles can reduce the surface albedos of snowpack and promote its melting (Zhang et al., 2018; Lau 

et al., 2018). Despite the potential importance of these factors to the SP of TP, they were not analyzed in this study due to 

limited data availability of these factors over extended spatial and temporal scales. Developing high-resolution, spatiotemporal 

continuous datasets for these factors will be useful in future efforts to comprehensively quantify the response of SP to changing 365 

climate conditions. 

6 Conclusions 

In this study, we investigated the spatiotemporal variability of SP on the TP from 2002 to 2022 based on the daily gap-free 

HMRFS-TP dataset. We also quantified the direct and indirect effects of the associated factors on SP. The spatial patterns of 

SP were vertically zonal, with higher elevations having a longer SCD, earlier SOD, and later SED. SCD had a statistically 370 

significant (p < 0.1) decreased trend in 4.62% of the TP at a mean rate of −1.74 days/year. SOD was significantly delayed in 

2.34% of the TP at a mean rate of 2.90 days/year (p < 0.1), while SED was significantly advanced in 1.52% of the TP at a rate 

of −2.49 days/year (p < 0.1). Additionally, there exists a strong elevation dependence for the trend in SCD (R = −0.73), a 
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moderate elevation dependence for the trend in SOD (R = 0.59), and no significant elevation dependence for the trend in SED 

(R = 0.33). Meteorological factors can directly affect SP as well as indirectly affect it by influencing the growth of vegetation, 375 

whereas the direct effect was much greater than the indirect effect. Geographical location and topographic conditions indirectly 

affected SP by modulating meteorological conditions and the growth of vegetation. Vegetation primarily influences SP by 

intercepting the snow and regulating the balance of the solar radiation budget. As two rather important factors, we identified 

that neither temperature nor precipitation showed consistently high importance as elevation increased. 

This study explored the dynamic variation in snow cover and revealed the mediating effects of multiple factors in its 380 

changing process, which contributed to providing a strategic basis for predicting and solving the problems of climate change, 

hydrological cycle, and ecological balance in the future in the context of global warming on the TP. 
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 580 
Figure 1: Topography, lakes and distribution of selected meteorological stations for validation on the Tibetan Plateau (TP) (base 

map from ESRI). 
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Figure 2: Flowchart to reveal the spatiotemporal variability of snow phenology (SP) and the direct and indirect effects of associated 

factors on the TP from 2002 to 2022. SEM refers to the Structural Equation Model. 585 
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Figure 3: The accuracy of SP parameters of (a) SCD, (b) SOD, and (c) SED evaluated by ground-observed values from 2002 to 2022. 

Note: SCD, SOD, and SED denote snow cover days, snow onset date, and snow end date, respectively. DOS represents the day of the 

snow season. *** indicates significance at the level of 0.01. 590 
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Figure 4: The spatial pattern of the multiyear averaged SP of (a) SCD, (b) SOD, and (c) SED on the TP from 2002 to 2022. Note: 

pixels not detected for 20 years or identified as lake area were considered as snow-free pixels (i.e., the white area in the figure). 
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Figure 5: Trends in SP of (a) SCD, (b) SOD, and (c) SED on the TP from 2002 to 2022. Note: the map at the bottom left of each 595 
subgraph indicates the significant level. The symbol "de" in the legend indicates a significantly decreased trend and "in" indicates 

a significantly increased trend. 
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Figure 6: The absolute total effect of associated factors affecting SP of (a) SCD, (b) SOD, and (c) SED based on SEM. 600 
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Figure 7: The SEM of each SP parameter of (a) SCD, (b) SOD, and (c) SED. Note: the red line implies a positive effect, while the 

blue line denotes a negative effect. All path coefficients are statistically significant (p < 0.05). 
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Figure 8: Correlation between temperature and SP of (a) SCD, (c) SOD, and (e) SED at pixel level; and correlation between 

precipitation and SP of (b) SCD, (d) SOD, and (f) SED; and correlation coefficient between both temperature and precipitation and 

SP of (g) SCD, (h)SOD, and (i) SED under different elevation ranges. 

 

Figure 9: Trends in SP of (a) SCD, (b) SOD, and (c) SED under different elevation ranges on the TP from 2002 to 2022, and the 610 
SEM based on delayed trend in SED and influencing factors (d). 
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Figure 10: Scatter plot of (a) elvation and longitude, (b) longitude and snow cover days (at a fixed elevation of 5000 m). 


