Supplement for "Characterization of *in situ* cosmogenic ¹⁴CO production, retention and loss in firn and shallow ice at Summit, Greenland" by Hmiel et al. ## 5 Table S1: Measurements and associated corrections for Summit 2013 firn air samples. 10 All uncertainties represent \pm 1 σ . Measured pMC values shown are after the empirical correction for ANSTO processing. The procedural blanks were not measured for δ^{13} CO and a value of -32.5 \pm 7.5 % is assumed instead; this large uncertainty does not make a significant impact on the uncertainty of the final [14 CO] values since the CO carbon from air in the blanks contributed only \sim 1-2% of total C in the diluted samples that were measured for 14 C. No corrections for firn gravitational or diffusive isotopic fractionation were applied, as these are also negligible compared to other sources of [14 CO] uncertainty. | Sample
depth, m | Measured
xco prior to
dilution,
nmol / mol | Measured
δ ¹³ CO prior to
dilution, ‰
relative to
VPDB | Fraction of CO
carbon from
sample after
dilution with
¹⁴ C-depleted
high-CO gas | Measured 14C of CO in diluted samples, pMC | [14CO]
corrected for
dilution,
molecules /
cm3 STP air | [¹⁴ CO] further
corrected for
procedural
blank,
molecules / cm ³
STP air | |-----------------------|---|---|---|---|--|--| | 0 | 151.7 ± 3.0 | -24.85 ± 0.17 | 0.0909 ± 0.0035 | 47.99 ± 0.70 | 23.70 ± 0.88 | 20.55 ± 0.94 | | 11.32 | 187.4 ± 3.0 | $\text{-}26.89 \pm 0.19$ | 0.0913 ± 0.0030 | 42.29 ± 0.54 | 25.50 ± 0.82 | 22.57 ± 0.86 | | 20.99 | 153.7 ± 3.0 | -26.88 ± 0.17 | 0.0906 ± 0.0034 | 48.49 ± 0.67 | 24.35 ± 0.89 | 21.52 ± 0.92 | | 31.83 | 152.0 ± 3.0 | -26.54 ± 0.20 | 0.0907 ± 0.0035 | 48.66 ± 0.89 | 24.13 ± 0.94 | 21.42 ± 0.96 | | 44.69 | 149.5 ± 3.0 | -25.89 ± 0.17 | 0.0915 ± 0.0036 | 52.42 ± 0.78 | 25.38 ± 0.96 | 22.77 ± 0.98 | | 60.25 | 142.8 ± 3.0 | -25.11 ± 0.19 | 0.0909 ± 0.0037 | 56.79 ± 1.03 | 26.50 ± 1.06 | 24.01 ± 1.08 | | 68.02 | 145.3 ± 3.0 | -24.87 ± 0.17 | 0.0911 ± 0.0045 | 56.48 ± 0.67 | 26.75 ± 1.29 | 24.37 ± 1.30 | | 69.98 | 160.0 ± 3.0 | -26.42 ± 0.25 | 0.0917 ± 0.0034 | 53.29 ± 0.87 | 27.59 ± 1.02 | 25.20 ± 1.03 | | 72.21 | 156.6 ± 3.0 | -24.81 ± 0.20 | 0.0912 ± 0.0034 | 56.83 ± 0.95 | 29.00 ± 1.08 | 26.72 ± 1.09 | | 74.05 | 181.5 ± 3.0 | -24.71 ± 0.17 | 0.0909 ± 0.0030 | 57.03 ± 0.63 | 33.81 ± 1.07 | 31.53 ± 1.08 | | 76.04 | 173.0 ± 3.0 | -25.02 ± 0.17 | 0.0911 ± 0.0031 | 61.90 ± 0.75 | 34.97 ± 1.16 | 32.80 ± 1.17 | | 78.03 | 181.8 ± 3.0 | -24.97 ± 0.17 | 0.0907 ± 0.0030 | 65.41 ± 0.73 | 39.05 ± 1.23 | 36.88 ± 1.24 | | 80.06 | 175.0 ± 3.0 | -26.08 ± 0.37 | 0.0912 ± 0.0031 | 74.14 ± 1.15 | 42.47 ± 1.45 | 40.41 ± 1.46 | | procedural
blank 1 | 19.0 ± 3.0 | -32.50 ± 7.50 | 0.0132 ± 0.0021 | 8.24 ± 0.41 | 3.04 ± 0.23 | | | procedural
blank 2 | 30.2 ± 3.0 | -32.50 ± 7.50 | 0.0211 ± 0.0023 | 5.49 ± 0.19 | 1.83 ± 0.13 | | | dilution
gas | 10290 ± 130 | -40.07 ± 0.18 | | 1.26 ± 0.06 | | | Table S2: Sampling details and some parameters relevant for ¹⁴C calculations and corrections for 2014 and 2015 firn matrix (FM), LIZ and bubbly ice (BI) samples and accompanying procedural blanks. Note that to apply the solubility correction, the [¹⁴CO] values are divided by the factor shown in the table. | Sample or Blank name | Depth
range of
sampled firn
or ice, m | Number of
melt or
simulated
extractions
performed | Total mass of
firn or ice
melted (kg) | Effective
total air
content (cm ³
STP / g ice) | Fraction of air
in sample from
closed porosity
(for LIZ and ice)
or microbubbles
(for firn matrix) | Solubility
correction
factor for x _{CO}
and [¹⁴ CO] | |--------------------------|--|---|---|--|---|---| | Surface Sample (2014 FM) | 0.24 - 1.0 | 7 | 1287.74 ± 25.77 | 0.106 ± 0.002 | 0.0062 ± 0.0003 | 0.9977 ± 0.0001 | | ~4.5m sample (2014 FM) | 3.63 - 5.39 | 8 | 1501.41 ± 29.96 | 0.090 ± 0.002 | 0.0095 ± 0.0005 | 0.9973 ± 0.0001 | | ~10m sample (2014 FM) | 9.02 - 10.9 | 6 | 1430.27 ± 28.68 | 0.086 ± 0.002 | 0.0089 ± 0.0002 | 0.9962 ± 0.0002 | | ~20m sample (2014 FM) | 19.12 - 20.92 | 6 | 1618.64 ± 32.26 | 0.080 ± 0.002 | 0.0103 ± 0.0002 | 0.9957 ± 0.0002 | | ~36m sample (2015 FM) | 31.2 - 42 | 5 | 1528.34 ± 5.04 | 0.082 ± 0.001 | 0.0082 ± 0.0004 | 0.9945 ± 0.0002 | | ~53m sample (2015 FM) | 47.9 - 58.9 | 5 | 1766.77 ± 5.04 | 0.073 ± 0.002 | 0.0146 ± 0.0003 | 0.9933 ± 0.0002 | | ~70m sample (2015 LIZ) | 63.5 - 74.7 | 2 | 718.88 ± 3.19 | 0.078 ± 0.001 | 0.251 ± 0.002 | 0.9928 ± 0.0007 | | ~80m sample (2015 LIZ) | 74.9 - 85.5 | 2 | 771.98 ± 3.19 | 0.087 ± 0.001 | 0.861 ± 0.008 | 0.9914 ± 0.0009 | | ~90m sample (2015 BI) | 85.5 - 96.7 | 2 | 771.98 ± 3.19 | 0.090 ± 0.002 | 1 | 0.9913 ± 0.0009 | | ~100m sample (2015 BI) | 96.7 – 107.5 | 2 | 789.69 ± 3.19 | 0.090 ± 0.002 | 1 | 0.9906 ± 0.0009 | | ~130m sample (2015 BI) | 124.7 - 135.9 | 3 | 1190.06 ± 3.91 | 0.090 ± 0.002 | 1 | 0.9906 ± 0.0009 | | 2014 Water Blank #1 | | 7 | | | | 0.9974 ± 0.0001 | | 2014 Water Blank #2 | | 7 | | | | 0.9958 ± 0.0001 | | 2015 Water Blank #1 | | 5 | | | | 0.9940 ± 0.0002 | | 2015 Water Blank #2 | | 3 | | | | 0.9901 ± 0.0035 | Table S3: Further measurements and parameters relevant for ¹⁴C calculations and corrections for firn matrix (FM), LIZ and bubbly ice (BI) samples. All uncertainties represent ± 1σ. The relatively large uncertainties for xco contribution from closed porosity and for extraneous xco derive from a combination of 1) uncertainties in trapped air age distributions in the LIZ, 2) uncertain *in situ* xco production in LIZ and ice and associated uncertainty in atmospheric xco history and 3) xco agreement for water blanks from the same season. *The 130 m sample had sufficient air to perform the CO carbon extraction and ¹⁴C measurement in triplicate; the value and uncertainty shown here represent the mean and standard deviation of the 3 measurements. | Sample, blank or
standard gas name | Measured
x _{CO} in
undiluted
samples, nmol
/ mol | Fraction of
CO carbon
from sample
after dilution | Estimated XCO contribution from closed porosity (air bubbles), nmol / mol | Extraneous x _{CO} not accounted for by water blanks or closed porosity x _{CO} , nmol / mol | Measured
δ¹³CO in
undiluted
samples, ‰
relative to
VPDB | ¹⁴ C activity measured
in diluted samples,
after ANSTO
empirical correction,
pMC | |---------------------------------------|---|---|--|--|--|---| | Surface Sample (2014 FM) | 477.0 ± 3.0 | 0.241 ± 0.007 | | 275 ± 8 | -35.74 ± 0.17 | 34.38 ± 0.50 | | ~4.5m sample (2014 FM) | 342.6 ± 3.0 | 0.153 ± 0.004 | | 141 ± 8 | -37.18 ± 0.17 | 52.11 ± 0.61 | | ~10m sample (2014 FM) | 333.4 ± 3.0 | 0.106 ± 0.002 | | 131 ± 8 | -37.20 ± 0.17 | 40.52 ± 0.55 | | ~20m sample (2014 FM) | 333.5 ± 3.0 | 0.140 ± 0.004 | | 132 ± 8 | $\textbf{-37.14} \pm 0.17$ | 64.38 ± 0.65 | | ~36m sample (2015 FM) | 198.5 ± 2.0 | 0.075 ± 0.002 | | 121 ± 30 | $\text{-}32.42 \pm 0.50$ | 49.86 ± 0.57 | | ~53m sample (2015 FM) | 189.0 ± 2.0 | 0.097 ± 0.003 | | 111 ± 30 | $\textbf{-31.56} \pm 0.50$ | 59.68 ± 0.52 | | ~70m sample (2015 LIZ) | 246.1 ± 2.0 | 0.054 ± 0.001 | 36 ± 10 | 133 ± 32 | $\textbf{-30.54} \pm 0.50$ | 26.04 ± 0.32 | | ~80m sample (2015 LIZ) | 290.3 ± 2.0 | 0.118 ± 0.003 | 129 ± 10 | 84 ± 32 | $\textbf{-}27.98 \pm 0.50$ | 77.91 ± 0.68 | | ~90m sample (2015 BI) | 304.2 ± 2.0 | 0.072 ± 0.001 | 120 ± 20 | 106 ± 36 | $\textbf{-}27.16 \pm 0.50$ | 52.87 ± 0.63 | | ~100m sample (2015 BI) | 284.0 ± 2.0 | 0.045 ± 0.001 | 98 ± 20 | 109 ± 36 | $\textbf{-}27.70 \pm 0.50$ | 41.35 ± 0.65 | | ~130m sample (2015 BI) | 279.2 ± 2.0 | 0.066 ± 0.001 | 90 ± 20 | 111 ± 36 | $\textbf{-26.47} \pm 0.50$ | $68.17 \pm 0.54*$ | | 2014 Water Blank #1 | 196.7 ± 3.0 | 0.071 ± 0.002 | | | -38.65 ± 0.16 | 12.39 ± 0.37 | | 2014 Water Blank #2 | 207.3 ± 3.0 | 0.110 ± 0.003 | | | -38.05 ± 0.17 | 17.03 ± 0.29 | | 2015 Water Blank #1 | 56.6 ± 2.0 | 0.023 ± 0.001 | | | -31.94 ± 0.50 | 22.66 ± 0.29 | | 2015 Water Blank #2 | 98.9 ± 2.0 | 0.019 ± 0.001 | | | -34.55 ± 0.50 | 10.61 ± 0.31 | | dilution gas | 10290 ± 130 | | | | -40.07 ± 0.18 | $\begin{array}{c} 1.39 \pm 0.03 \ (2014) \\ 1.66 \pm 0.02 \ (2015) \end{array}$ | | 2014 standard gas | 131.6 ± 2.0 | | | | | | Table S4: Firn matrix, LIZ and bubbly ice sample [14CO] after each correction step | Sample, blank or standard
gas name | [14CO]
corrected for
dilution,
molecules /
cm ³ STP air | [14CO]
further
corrected for
dissolution,
molecules /
cm ³ STP air | [14CO]
further
corrected for
water blanks,
molecules /
cm ³ STP air | [14CO]
further
corrected for
extraneous
XCO,
molecules /
cm³ STP air | [14CO]
further
corrected for
microbubble
air (FM only),
molecules /
cm³ STP air | [14CO] in
sample after
all
corrections,
molecules / g
ice | |---------------------------------------|--|--|---|--|---|--| | Surface Sample (2014 FM) | 20.0 ± 0.6 | 20.0 ± 0.6 | 10.9 ± 0.7 | 6.6 ± 2.3 | 6.4 ± 2.3 | 0.68 ± 0.24 | | ~4.5m sample (2014 FM) | 34.6 ± 1.0 | 34.7 ± 1.0 | 25.5 ± 1.0 | 23.3 ± 1.5 | 23.1 ± 1.5 | 2.07 ± 0.14 | | ~10m sample (2014 FM) | 37.5 ± 1.0 | 37.6 ± 1.0 | 28.4 ± 1.0 | 26.4 ± 1.4 | 26.2 ± 1.4 | 2.25 ± 0.14 | | ~20m sample (2014 FM) | 45.5 ± 1.2 | 45.7 ± 1.2 | 36.5 ± 1.3 | 34.4 ± 1.6 | 34.2 ± 1.6 | 2.74 ± 0.15 | | ~36m sample (2015 FM) | 38.5 ± 1.1 | 38.8 ± 1.1 | 24.1 ± 1.2 | 22.2 ± 1.6 | 22.0 ± 1.6 | 1.80 ± 0.14 | | ~53m sample (2015 FM) | 34.3 ± 1.0 | 34.5 ± 1.1 | 20.0 ± 1.2 | 18.3 ± 1.6 | 18.0 ± 1.6 | 1.31 ± 0.12 | | ~70m sample (2015 LIZ) | 33.5 ± 0.8 | 33.7 ± 0.8 | 19.1 ± 1.0 | 17.1 ± 1.5 | | 1.33 ± 0.12 | | ~80m sample (2015 LIZ) | 57.2 ± 1.5 | 57.7 ± 1.5 | 43.3 ± 1.6 | 42.0 ± 1.8 | | 3.66 ± 0.17 | | ~90m sample (2015 BI) | 65.7 ± 1.5 | 66.3 ± 1.6 | 51.8 ± 1.7 | 50.2 ± 1.9 | | 4.54 ± 0.20 | | ~100m sample (2015 BI) | 75.5 ± 1.8 | 76.2 ± 1.9 | 61.7 ± 2.0 | 60.0 ± 2.2 | | 5.43 ± 0.23 | | ~130m sample (2015 BI) | 85.7 ± 1.7 | 86.5 ± 1.7 | 72.2 ± 1.8 | 70.5 ± 2.1 | | 6.37 ± 0.23 | | 2014 Water Blank #1 | 9.3 ± 0.4 | 9.3 ± 0.4 | | | | | | 2014 Water Blank #2 | 9.0 ± 0.3 | 9.0 ± 0.3 | | | | | | 2015 Water Blank #1 | 15.4 ± 0.5 | 15.5 ± 0.5 | | | | | | 2015 Water Blank #2 | 14.1 ± 0.6 | 14.2 ± 0.6 | | | | |