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Abstract 

The surface melting of the Greenland ice sheet has been increasing in intensity and extent over the last decades 

due to Arctic atmospheric warming. Surface melt depends on the energy balance which includes the atmospheric 

forcing but also the thermal budget of the snow, firn and ice near the ice sheet surface. The temperature of the ice 

sheet subsurface has been used as an indicator of the thermal state of the ice sheet’s surface. We here present a 25 

compilation of more than 4612 measurements of ice, snow and firn temperature at 10 m below the surface (T10m) 

across Greenland spanning from 1912 to 2022. The measurements are either instantaneous or monthly averages. 

We train an Artificial Neural Network model (ANN) on 4597 of these point observations, weighted by their 

relative representativity, and use it to reconstruct T10m over the entire Greenland ice sheet for the period 1950-

2022. We use 10-year averages and mean annual values of air temperature and snowfall from the ERA5 30 

reanalysis dataset as model input. The ANN indicates a Greenland-wide positive trend of T10m at 0.2 °C decade-1 

during the 1950-2022 period, with a cooling during 1950-1985 (-0.3 °C decade-1) followed by a warming during 

1985-2022 (+0.7 °C decade-1). Regional climate models HIRHAM5, RACMO2.3p2 and MARv3.12 show mixed 

results compared to the observational T10m dataset with mean differences ranging from -0.4 °C (HIRHAM) to 1.3 
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°C (MAR) and root mean squared differences ranging from 2.8 °C (HIRHAM) to 4.7 °C (MAR). The 35 

corresponding values for the ANN are -0.2 °C and 1.7 °C. The observation-based ANN also reveals an 

underestimation of the subsurface warming trends in climate models for the bare ice and dry snow areas. The 

subsurface warming brings the Greenland ice sheet surface closer to the melting point, reducing the amount of 

summer energy input required for melting. Our compilation documents the response of the ice sheet subsurface to 

atmospheric warming and will enable further improvements of models used for ice sheet mass loss assessment 40 

and reduce the uncertainty in projections. 

1. Introduction 

The Arctic is warming more than four times as fast as the global average (Chylek et al., 2022, Rantanen et al., 

2022). Consequently, the Greenland ice sheet is exposed to an increase in air temperature (e.g. Hanna et al., 2021, 

Zhang et al., 2022) and increased anticyclonic, cloud free conditions in summer (Hofer et al., 2017; Ryan et al., 45 

2022). In the low elevation bare ice area of the ice sheet, the warming atmosphere increases the heat transfer to 

the surface through turbulent heat fluxes (e.g., Wang et al. 2021), while a reduction in cloud cover increases the 

downward shortwave radiation, both resulting in melt increases since the late 1980s (Hofer et al., 2017, Trusel et 

al., 2018, Ryan et al., 2022). Enhanced melt in the bare ice area initiates multiple feedback processes, such as 

snowline retreat (Noël et al., 2019; Ryan et al., 2019) and algal growth (e.g. Stibal et al., 2017; Cook et al., 2020), 50 

which lead to further expansion and darkening of the bare ice area and enhanced shortwave radiation absorption. 

At higher elevations, increased surface melt also triggers a melt-albedo feedback through which liquid water 

within snow and grain coarsening decreases the snow albedo and increases the absorption of solar radiation (e.g. 

Nolin and Stroeve, 1997, Box et al., 2012). The increase in ice sheet surface energy influx leads to an increase in 

surface melt but also to an increase of subsurface temperatures through heat conduction and refreezing of 55 

meltwater (Humphrey et al., 2012, Polashenski et al., 2014, McGrath et al., 2013). The subsurface temperature is 

therefore a key indicator of how the Greenland ice sheet has been affected by recent climatic changes. 

Furthermore, ice sheet subsurface warming brings the near-surface snow and firn (multi-year, compressed snow) 

closer to the melting point and makes them less efficient at refreezing and retaining meltwater (Pfeffer et al., 

1991; Vandecrux et al., 2020a). Subsurface warming could also trigger thermal regime shifts across the ice sheet 60 

(Marshall, 2021) and increase the ice viscosity (Phillips et al., 2010, 2013, Colgan et al., 2015) although with 

limited impact on dynamic mass loss (Poinar et al., 2017). 

  



 

3 
 

Over the last century, research teams have reported snow, ice and firn subsurface temperatures of the Greenland 

ice sheet. Of all depths measured, we here focus on measurements at, or close to, the 10 m depth. The 65 

temperature at this depth has been shown to be less affected by seasonal temperature variation and more 

representative of the long-term temperature and snowfall history at the surface (McGrath et al., 2013, Kjær et al., 

2021). This makes it a convenient standard depth to compare temperatures from different periods and different 

sites. Here, we compile a dataset of 4612 observations of ice, snow and firn temperature at 10 m below the 

surface (T10m) spanning from 1912 to 2022 from published and unpublished sources. We then use 4597 70 

observations of T10m within the current ice sheet extent and the period 1950-2022 to train an Artificial Neural 

Network (ANN) model that can predict T10m over the entire ice sheet. For a given month and location, the ANN 

estimates T10m based on 14 parameters derived from the ERA5 reanalysis (Hersbach et al., 2020) that represent 

the long term and recent history of air temperature and snowfall. Using our observational dataset of subsurface 

temperature as well as our ANN, we evaluate three regional climate models (RCMs) widely used to estimate the 75 

surface mass balance of the Greenland ice sheet: RACMO2.3p2 coupled to an offline firn model IMAU-FDM 

v1.2G (hereafter RACMO, Noël et al., 2019, Brils et al., 2022), MARv3.12 (hereafter MAR, Fettweis et al., 

2017, 2020) and HIRHAM5 (hereafter HIRHAM, Langen et al., 2017).  We then evaluate the ANN and RCMs’ 

T10m magnitudes and trends in the bare ice, percolation, and dry snow areas of the ice sheet. Lastly, we discuss 

the impact of this subsurface warming on the ice sheet mass balance processes. 80 

2. Methods 

2.1. Observed ice sheet subsurface temperature compilation and interpolation 

A total of 4612 T10m observations were compiled from 48 sources (Figure 1, Table 1). Each dataset is described in 

the related reference in Table 1, except two yet undescribed datasets. The first unpublished dataset was collected 

by the late K. Steffen and his team and consists of two thermistor strings: one at Swiss Camp, central western 85 

Greenland, and another at Summit station, central Greenland, to complement the Greenland Climate Network 

(GC-Net) automated weather stations (AWS) at those sites (Steffen et al., 1996, 2001). The 11 m long string at 

Swiss Camp operated between 1992 and 2009 and was equipped with UUB thermistors at 0.5, 0.75 m depth and 

1-11 m depth with 1 m spacing. The 10 to 15 m long string at Summit was equipped with Campbell Scientific 

T107 thermistors and was active during the periods 2000-2002 and 2007-2009. New sensors were added to the 90 

Summit string over the years. The sensors’ depth and surface height evolution could be recovered from field 

notes and this data is now presented for the first time. The second unpublished dataset comes from 14 new AWS 
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installed in 2021 and 2022 by the Geological Survey of Denmark and Greenland (GEUS) as a continuation of the 

GC-Net sites (Steffen et al., 1996, 2001, Vandecrux et al., 2023a). They are equipped with a GeoPrecision TNode 

thermistor string  with sensors installed at 0.5, 1, 1.5, 2, 2.5, 3, 4, 6, 8, 10 m depth. These data are hosted on the 95 

same dataset as the PROMICE AWS data (How et al., 2022).  

 

We also post-processed two previously published datasets. The data from Humphrey et al. (2012) were corrected 

for the changing depth of the sensor below the surface as snow accumulates or melts at the surface 

(Supplementary Text 1) - similar to the processing of the other time series. The FirnCover dataset (MacFerrin et 100 

al., 2022) appeared to have a warm bias due to the use of uncalibrated resistance temperature detectors instead of 

the conventional thermistor or thermocouple instruments. Using firn temperature observations reported by 

Samimi et al. (2021) and Heilig et al. (2018) at DYE-2 as a reference, we built an ad-hoc correction function that 

was then applied at all sites within the FirnCover dataset. The correction procedure is described in Supplementary 

Text 2 and reduces the FirnCover temperatures by 1.1 °C on average. 105 

 

For the temperatures continuously recorded by thermistor or thermocouple strings, the depth of each temperature 

sensor below the surface were calculated using installation depths and recorded surface height. Wherever 

necessary, we interpolated the available temperature profiles linearly to 10 m depth and allowed linear 

extrapolation if at least two measurements were available within 2 m of the 10 m depth. The resulting T10m values 110 

were then aggregated as monthly means if they originated from continuous measurements or left as instantaneous 

values otherwise.  

 

The measurements conducted by different scientific teams at the same location allow for an assessment of 

uncertainty and reproducibility of “local” vertically interpolated T10m observations. From 10 sites where 115 

simultaneous measurements are available, the median root mean square difference (RMSD) is 0.5 °C 

(Supplementary Table 1). Among these 4612 T10m observations, 15 measurements are either outside of the current 

ice sheet extent as defined by the GIMP ice sheet delineation (Howat et al., 2014) or outside of the 1950-2022 

period we consider for our T10m reconstruction. There are therefore 4597 T10m observations in our compilation 

that can be used for the reconstruction of T10m on the ice sheet between 1950 and 2022. 120 
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Figure 1. Spatial (a) and temporal (b) distribution of the T10m observations in Greenland. Greenland surface classification 
according to Vandecrux et al. (2019) based on firn density profiles and remote sensing observations. 125 

 
Table 1. Overview of T10m datasets used in this study.  

Reference Start year End year Number of 
measurements 

Koch (1913) 1912 1913 5 
Wegener (1930); Abermann et al. (2023) 1930 1930 8 
Heuberger (1954) 1950 1950 2 
Benson (1962) 1954 1955 59 
Schytt (1955) 1954 1954 31 
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Nobles (1960) 1954 1954 7 
Heuberger (1954) 1954 1954 1 
Meier et al. (1957) 1955 1955 4 
Griffiths (1960) 1955 1956 38 
de Quervain (1969) 1957 1964 8 
Ambach (1979) 1959 1959 2 
Langway (1961) 1959 1959 14 
U.S. Army Transportation Board (1960) 1960 1960 4 
Davis (1954) 1960 1960 7 
Davis (1967) 1962 1962 1 
Mock (1965) 1964 1964 12 
Mock and Ragle (1963) 1964 1964 31 
Weertman et al. (1968) 1966 1966 1 
Colbeck and Gow (1979) 1973 1973 3 
Clausen et al. (1988) 1974 1985 11 
Clausen and Hammer (1988) 1977 1977 1 
Stauffer and Oeschger (1979) 1978 1978 3 
Clement (1984) 1983 1983 4 
Thomsen et al. (1991) 1990 1991 8 
Ohmura et al. (1992) 1990 1990 3 
GC-Net unpublished 1991 2010 170* 
Braithwaite (1993) 1991 1992 12 
Laternser (1994) 1992 1992 16 
Schwager (2000) 1994 1994 1 
Historical GC-Net: 
Steffen et al. (1996, 2001, 2023); 
Vandecrux et al. (2023a) 

1995 2022 1662* 

Giese and Hawley (2015) 2004 2008 47* 
Humphrey et al. (2012) 2007 2009 57* 
PROMICE: 
Fausto et al. (2021); How et al. (2022) 2008 2022 1315* 

Smeets et al. (2018) 2009 2016 160* 
Harrington et al. (2015) 2010 2012 5 
Hills et al. (2018) 2011 2017 109* 
Charalampidis et al. (2016) ; 
Charalampidis et al. (2022) 2012 2013 29* 

Yamaguchi et al. (2014) 2012 2012 1 
Miller et al. (2020) 2013 2017 68* 
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Polashenski et al. (2014) 2013 2013 2 
Matoba et al. (2015) 2014 2014 1 
MacFerrin et al. (2021, 2022) 2015 2019 311* 
Kjær et al. (202121) 2015 2015 2 
Heilig et al. (2018) 2016 2021 58* 
Vandecrux et al. (2021); Colgan and 
Vandecrux (2021) 2017 2022 119* 

Covi et al. (2022, 2023) 2017 2019 77 
Law et al. (2021) 2019 2019 1 
GC-Net continuation: 
Fausto et al. (2021); How et al. (2022) 2021 2022 121* 

  Total: 4612 
* monthly mean values derived from the original measurements 

 

2.2. The artificial neural network 

Point observations of T10m only give a partial description of the subsurface temperature: they are discontinuous in 130 

space and time. To describe the evolution of T10m over the entire ice sheet and over the last decades, one can train 

a machine learning model that links T10m to an input dataset which is itself continuous in space and time and 

assumed to drive changes in T10m. Once the relationship between input and T10m is learned by the algorithm, the 

algorithm can be driven by  the entire input dataset to reconstruct the T10m even at places where no observations 

are available. 135 

Among machine learning algorithms, ANNs have proven their ability to learn non-linear relationships between a 

target variable and a set of input variables in numerous glaciological and meteorological applications (e.g. Steiner 

et al., 2005, Braakmann-Folgmann and Donlon, 2019, Xu et al., 2021). Given that our T10m compilation, which 

will be used to train the algorithm, does not encompass all possible ice sheet conditions, we favor ANNs over 

tree-based algorithms that can be limited when used beyond their training dataset (e.g., Xiong et al., 2020, Liu et 140 

al., 2022). Finally, during our search for the most straightforward ANN structure capable of modeling our dataset, 

we ultimately chose a multi-layer perceptron (Rumelhart et al. 1986). We want to highlight that the choice of 

model structure, input parameters and training strategy does not have a single optimal configuration. Some of our 

choices are even decreasing the apparent performance of the model in order to avoid overfitting and to increase 

the model’s capacity to extrapolate outside of its training set. The following sections describe selection of inputs, 145 

our enhancement of the dataset’s representativity and eventually the ANN structure, training and uncertainty 

assessment. 
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2.2.1. The input parameters 

Our target variable, T10m, is predominantly controlled by 1) the surface temperature through molecular heat 

conduction, 2) the subsurface refreezing of meltwater through latent heat release, and 3) snowfall rates which 150 

determine the vertical advection velocity in the firn column. The near-surface air temperature can act as a proxy 

for both surface temperature and surface melt in the absence of reliable estimates, because they all interact within 

the surface energy budget. The surface temperature itself depends on the near-surface air temperature through 

turbulent heat fluxes and the surface energy budget. This relationship between air temperature, snowfall and T10m 

is notably non-linear. In regions where surface melt is common, meltwater refreezing at depth will lead to T10m 155 

several degrees higher than the average air temperature (e.g. Humphrey et al, 2012). On the other hand, during 

periods of minimal or no melting (wintertime or nighttime in the summer), the radiative imbalance at the surface 

and the presence of a near-surface atmospheric temperature inversion can cause the surface temperatures, and 

through conduction the T10m, to be several degrees lower than the near-surface air temperature (e.g. Miller et al., 

2017, Steffen and Box, 2001). Additionally, snowfall affects the subsurface temperature in several ways. In the 160 

ablation area, the seasonal snowpack insulates the underlying ice. In the accumulation area, snow accumulated at 

the surface is, after some time, advected to greater depth, where it can act as either a heat source or sink 

depending on its temperature at time of deposition. 

We here use the air temperature and snowfall monthly grids from the ERA5 reanalysis (Hersbach et al., 2020) to 

derive our 14 input parameters. We use ERA5 Land at spatial resolution 0.1x0.1 ° for 1950-2022 (Muñoz 165 

Sabater, 2019) and  the original ERA5 (Hersbach et al., 2023) at 0.25x0.25 ° resolution resampled linearly to 

0.1x0.1 ° for 1940-1950. Delhasse et al. (2020) showed that daily ERA5 near-surface air temperatures compare 

well with measurements from ice-sheet weather stations (mean bias  of 0.01 °C, root mean square error of 3.05 

°C). Loeb et al. (2022) found that ERA5’s precipitation had the best performance out of three evaluated 

reanalysis datasets against weather station observations in the Canadian Arctic and in Greenland. Using airborne 170 

radar measurements of snow accumulation, Ryan et al. (2020) found that ERA5’s annual snowfall in Greenland 

was comparable to estimates from state-of-the-art RCMs and outperformed satellite estimations. 

The 10 year average temperature (𝑇𝑇2𝑚𝑚,10 𝑦𝑦���������� ) and snowfall (𝑆𝑆𝑆𝑆10 𝑦𝑦�������� ) were calculated for each cell and each month 

to represent the long term conditions at a given time and place. Additionally, for each grid cell and monthly time 

step we calculate the amplitude of the 2 m air temperature in the previous year (T2m, amp) as well as the average air 175 

temperature and snowfall of the five previous years. This reflects the capacity of the subsurface to respond, not 

only to long term changes, but also to recent changes in air temperatures and snowfall (e.g. Polashenski et al., 
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2014). Lastly, to assist the ANN in capturing the annual periodicity, we give as input the cosine of the month 

(assigning 1 in January and -1 in July). For a given time and location, the ANN therefore takes 14 inputs: 

𝑇𝑇2𝑚𝑚,10 𝑦𝑦,�����������  𝑆𝑆𝑆𝑆10 𝑦𝑦�������� and T2m, amp, the five previous years of annual snowfall, the five previous years of air temperature 180 

and the month’s cosine. 

2.2.2. Weighting of the observations prior to ANN training 

Many machine learning algorithms, including ANNs, assume that the training data are representative of the target 

area (where the model is applied for predictions), i.e., that the data are drawn from the same distribution. This 

assumption is violated in practice when applying the model to new spatial domains that may contain local 185 

conditions not present in the training data. Thus, the representativity of the training dataset compared to the target 

area is critical for the robustness of any machine learning model, i.e. how well the model generalizes to new and 

unseen data (Meyer and Pebesma, 2021; Bjerre et al., 2022). The representativity of the 4597 observation sites 

(training data) compared to the entire Greenland ice sheet where the ANN is applied (target area) was quantified 

using histogram analysis (Figure 2). For the three input parameters that define the climate at a given location 190 

(𝑇𝑇2𝑚𝑚,10 𝑦𝑦����������, 𝑆𝑆𝑆𝑆10 𝑦𝑦�������� and T2m, amp), here referred to as pi = 1, 2, 3 , we plot the probability histogram of the parameter pi 

as it appears in ERA5 at our observation locations: this is the ‘observation’ histogram Ho(pi). We then plot, for 

that input parameter pi, the probability histogram of all the ice sheet pixels, and all time steps within the ERA5 

dataset: this is the ‘target’ histogram Ht(pi). The ‘observation’ histograms Ho(pi) represent the distribution the 

ANN will learn from while the ‘target’ histograms Ht(pi) represent the values over which the ANN will 195 

eventually be applied (Figure 2). In an ideal scenario where the observational dataset is representative of the 

parameter space where the ANN will be applied, Ho(pi) and Ht(pi) should show similar distributions.  

 

In practice, the available observations are not representative for the entire ice sheet steming from, e.g., 

monitoring sites producing data continuously or western Greenland being more accessible than eastern 200 

Greenland. To make the training dataset more representative of the parameter space in which the ANN will be 

used, we define for each observation a weight wobs as follows. For each observation and for a given input 

parameter pi,  wobs(pi) is equal to the ratio of Ht(pi) and Ho(pi) for the bin where the observation is located. 

Consequently, if in a given bin, the observation histogram is lower than the target histogram, meaning that this 

bin is underrepresented in the observational dataset compared to the target space, then the weight wobs(pi) will be 205 

greater than one. InverselyI, the weight wobs(pi) will be less than one if the observation histogram is greater than 

target histogram. Eventually, for each observation, we calculate the overall weight wobs as the mean of wobs(p1), 
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wobs(p2) and wobs(p3). This overall weight wobs for each observation is used to calculate the loss function (in our 

case the mean squared error) minimized during the training of the ANN. As a consequence, observations that are 

located in underrepresented regions of the parameter space will have overall weights wobs >1 and will be given 210 

more importance in the training of the ANN. Inversely, observations located in underrepresented parts of the 

parameter space will have overall weights wobs<1 and will count less in the training of the ANN.  

 

As an illustration, let us consider a T10m observation from a site and time that has 𝑇𝑇2𝑚𝑚,10 𝑦𝑦���������� = -28°C. Figure 2a 

indicates that only ~10% of our observation sites have such an average temperature, compared to ~23% of the ice 215 

sheet pixels in ERA5, i.e., this sample comes from an under-represented temperature range. Following our 

procedure, we allocate to this observation wobs(p1) = 0.23/0.1 = 2.3 to increase its final weight wobs, which also 

considers the observation’s representativity with regard to 𝑆𝑆𝑆𝑆10 𝑦𝑦�������� and T2m, amp. Inversely, 25 % of our observation 

have  𝑇𝑇2𝑚𝑚,10 𝑦𝑦���������� = -18°C while only 10% of the ice sheet (according to ERA5) has such average temperature 

(Figure 2a). Consequently, an observation having such 𝑇𝑇2𝑚𝑚,10 𝑦𝑦���������� will receive a wobs(p1) = 0.1/0.25 = 0.4 and will 220 

weigh less in the training of our ANN. 

 

To verify that our weighting procedure increases the similarity between Ho(pi) and Ht(pi), we evaluate the 

distance between two histograms 𝐻𝐻1 and 𝐻𝐻2 calculated on the same n bins with the Canberra distance (Lance and 

Williams, 1966, Emran and Ye, 2001): 225 

𝑑𝑑𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐻𝐻1,𝐻𝐻2)  =  � (
|𝐻𝐻1(𝑘𝑘)  −  𝐻𝐻2(𝑘𝑘)| 

𝐻𝐻2(𝑘𝑘)
)

𝐶𝐶

𝑘𝑘 = 1

 

where 𝐻𝐻𝑖𝑖=1,2(𝑘𝑘) is the value of histogram 𝐻𝐻𝑖𝑖=1,2 at bin k. The smaller the Canberra distance 

𝑑𝑑𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐻𝐻𝑜𝑜(𝑝𝑝𝑖𝑖),𝐻𝐻𝑡𝑡(𝑝𝑝𝑖𝑖)), the more Ho(pi) and Ht(pi) are similar. The Canberra distance between observational 

and target histogram for 𝑇𝑇2𝑚𝑚,10 𝑦𝑦����������, 𝑆𝑆𝑆𝑆10 𝑦𝑦�������� and T2m, amp decreased from 22.6, 12.2 and 14.3 to 11.1, 7.5 and 5.3 

when weighing the observations based on their representativity (Figure 2). Another confirmation that the weights 230 

increase the similarity between the observation and target histograms is the smaller difference between the 

observation and target distributions’ median values once the weights are applied: from 4.9 °C, 6.0 mm w.e., 2.4 

°C with equal weights (Figure 2a-c) to 2.1 °C, 1.4 mm w.e. and 0.4 °C with weights (Figure 2d-f), for 𝑇𝑇2𝑚𝑚,10 𝑦𝑦����������, 

𝑆𝑆𝑆𝑆10 𝑦𝑦�������� and T2m, amp respectively. 
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 235 
Figure 2: Histograms of the input parameters: 10 year average 2 m air temperature, 10 year average snowfall, annual amplitude 
of monthly 2 m air temperature. The blue histograms are parameter values as they appear at the observation sites, meaning the 
training data for the ANN, either with all observations weighing the same (a,b,c) or with weights assigned to each observation 
based on its representativity (d, e, f). The orange histograms are parameter values as they appear in the ice sheet pixels of ERA5, 
meaning the target data for the ANN. For each pair of target and observation histograms, we calculate the Canberra distance 240 
(dCanberra) as a measure of similarity. 

2.2.3. ANN structure and training 

Multilayer perceptron ANNs are typically composed of an input layer, with as many nodes as input variables, 

multiple hidden layers containing several nodes, and an output layer. Each node in the hidden layers: i) makes the 

weighted sum of the outputs of all nodes from the preceding layer and adds a node-specific bias, ii) applies a 245 

simple, layer-specific activation function to the result, and iii) passes the output of the activation function to all 

the nodes of the next layer, and so forth. During the training of the model, all the weights and biases from all the 

nodes are being optimized to minimize a loss function. This is done iteratively by: i) passing part of the training 
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set through the ANN, ii) evaluating the difference between the ANN output and the expected result using the loss 

function, and iii) updating the weights and biases to reduce the error in the next iteration (a.k.a. backpropagation). 250 

This general ANN structure can be adapted in many ways to the dataset and problem it is applied to. Here, we 

adjust four of the most important hyperparameters of the ANN: the batch size, i.e. which fraction of the sample is 

given to the ANN for every training cycle; the number of epochs (or training cycles); the number of layers and 

the numbers of nodes within those layers. We use the Adam optimizer (Kingma and Ba, 2014), rectified linear 

unit activation function (0 if the input is below 0, f(x)=x if the input x is above 0) and mean squared error as loss 255 

function. Those three settings have been used widely in regression problems (Braakmann-Folgmann and Donlon, 

2019; Liu et al., 2022, Lorentzen et al., 2022). 

 

We set the hyperparameters of our ANN in three steps. First, we define a validation set made of 633 observations 

(14% of the training dataset) from four sites representing different areas of the ice sheet: NASA-E for the dry 260 

snow area, NASA-SE for the percolation area and Swiss Camp and KAN_M for the bare ice area, and use these 

data as a validation set. Secondly, we train an ensemble of ANNs with two layers of 32 nodes each with batch 

sizes varying from 100 to 5000 (18 irregular steps) and between 10 and 1000 epochs (8 irregular steps). Each of 

the 144 settings are being run 10 times to account for the stochastic processes within model training, resulting in 

a total of 1440 ANNs. We assess the average learning curve for each setting: the mean difference (MD) and root 265 

mean squared difference (RMSD) of the trained ANN on the training and validation data as a function of epoch 

numbers (Supplementary Figure 1). We conclude that: i) small batch sizes (<1000) lead to unstable learning 

curves (Supplementary Figure 1a-d) and ii) large batch sizes (e.g. 5000) cause slightly slower convergence and 

similar results as batch sizes of 3000 and 4000 (Supplementary Figure 1i-n). From our analysis and as a 

compromise between stability, rapidity of convergence and potential overfitting, we use a batch size of 4000 over 270 

150 epochs for all ANN trained henceforth. In the third and last step of our hyperparameter tuning, we use the 

optimal batch size and number of epochs to train 180 ANNs with either 1, 2 and 3 layers of 8, 16, 32, 64, 128 and 

256 nodes each (all layers with same number of nodes, each setting repeated 10 times). We see clear 

improvements (lower RMSD) when moving from a single layer to two layers, and from 8 nodes to 64 nodes 

(Supplementary Figure 2). The improvement moving from 2 to 3 layers and from 64 to 128 or 256 nodes are 275 

marginal and within the stochastic uncertainty (overlapping standard deviations in Supplementary Figure 2c-f). 

To keep the model design as simple as possible, we henceforth use two layers of 64 nodes each. 
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Additionally, a Gaussian noise layer that adds random noise to the observations is added after the input layer to 

further prevent overfitting (e.g. An, 1996). Note that both the addition of Gaussian noise and the assignment of 280 

weights to the observations will tend to decrease the apparent performance of the ANN (e.g. MD or RMSD from 

the non-weighted observational dataset) but will produce a more robust output and prevent overfitting. 

Considering the limited number of observations relative to the target area, the entire Greenland ice sheet, we train 

our “best model” using all the available observations weighted according to their representativity. Consequently, 

there is no  hold out, or unseen data for model validation. Alternatively, we use a spatial cross-validation 285 

approach to measure the performance and uncertainty of the ANN. 

2.2.4. Uncertainty estimation of the ANN with spatial cross-validation 

Spatial cross-validation is considered the best-practice approach for evaluating the uncertainty of ANN when 

dealing with spatial data (e.g. Brenning et al., 2012). For this purpose, we separated the Greenland ice sheet into 

10 regions (Figure 3c) after Zwally et al. (2012). Each of the 10 regions contain between 95 and 1298 290 

observations, corresponding to 2% and 28% of all observations. For 10 iterations, we hold out the observations 

located in a different region and train an ANN on the remaining observations. We save these 10 models and for 

any new set of input parameters, we use the standard deviation of the 10 models’ predictions as a measure of the 

uncertainty. This uncertainty is never allowed to be below 0.5 °C, which is the measurement uncertainty derived 

in Section 2.1. The monthly grids of ANN uncertainty are provided along with our best estimation of T10m, which 295 

is produced by an ANN trained on all available observations. 

 

For a fair evaluation of our ANN against our observational dataset, we first compare our best ANN model, 

trained on all T10m observations to these same T10m observations. This evaluation does not show how the model 

would perform on new, unseen data or regions, and consequently leads to an overestimation of the ANN 300 

performance. We then compare each T10m observation to the corresponding T10m predicted by the one cross-

validation model that did not use this observation for training. This second evaluation illustrates how the cross-

validation ANNs perform on data that was not included in the training set. It contrasts with the first assessment, 

because it evaluates models that were trained only on part of the observation dataset, and it is therefore a 

conservative estimate of the performance of the best model trained on all T10m observations. 305 
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2.3. Regional climate models 

We evaluate 10 m subsurface temperatures from three regional climate models: MARv3.12 (Fettweis et al., 2017, 

2020), RACMO2.3p2 (Noël et al., 2019) with the updated IMAU-FDMv1.2G (Brils et al., 2022) and HIRHAM5 

(Langen et al., 2017). We calculate the MD and RMSD between the observed and simulated 10 m subsurface 

temperatures. For this study, the output from MAR, RACMO and HIRHAM are available over the periods 1950-310 

2020, 1958-2020 and 1980-2016, respectively. We compare each model to the measurements within the common 

1980-2016 period for which all three model outputs are available, as well as against all observations. 

All three models use a multilayer snow, firn and ice model to calculate subsurface temperature. In addition to 

differences in surface forcing in the three models (e.g. in snowfall, rainfall, melt and energy fluxes), the models 

also differ in the way they calculate the subsurface characteristics that impact the subsurface temperature. Both 315 

MAR and HIRHAM estimate firn densification using the overburden pressure: respectively from Brun et al. 

(1989) and Vionnet et al. (2012); while RACMO uses a compaction law that was derived for steady-state firn 

(Arthern et al., 2010) and empirically fitted to observations (Ligtenberg et al., 2011; Brils et al., 2022). 

RACMO’s offline run with IMAU-FDMv1.2G uses the thermal conductivity parameterization from Calonne et 

al. (2019) while HIRHAM and MAR use the parameterization by Yen (1981). The three models treat the release 320 

of latent heat during the refreezing of meltwater in a similar manner, but the meltwater infiltration is calculated 

differently. Both MAR and RACMO use a bucket scheme: meltwater infiltrates downward unless the water is 

refrozen or retained through capillary forces and ice layers are considered permeable at the model scale 

(Ligtenberg et al., 2018). In HIRHAM, the use of a parameterization of Darcy flow (Hirashima et al., 2010) and 

accounting for the decrease of the layer permeability due to ice content (Colbeck, 1975) lead to shallower 325 

infiltration than in RACMO (Vandecrux et al., 2020b). Another model detail that impacts the calculated 

subsurface temperature is the boundary condition at the bottom of the model domain. HIRHAM uses a 

temperature scheme that requires a fixed temperature at the lowermost firn layer which is set, for each pixel, to 

the long term air temperature average (Langen et al., 2017). Both MAR and RACMO use the Neumann boundary 

condition at the bottom layer of the firn model, which implies no heat flux through the lower boundary of the 330 

model. However, in the ablation area, new material needs to be provided to the bottom layer of the model as 

surface ablation melts ice away. In MAR, as soon as the model column height is lower than 29 m, a 1 m thick 

layer composed of ice is added at the bottom of the model column. MAR then uses a simple assumption that the 

underlying ice would always be cooler than the ablating, near-surface ice. Consequently, the temperature of the 1 

m layer added at the bottom of the model was fixed to be 1% lower (when calculated in Kelvin) than the 335 
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temperature of the lowermost layer left in the model. The differences between RCM-simulated subsurface 

temperatures are partly due to these different modeling approaches for the subsurface processes. This can be 

illustrated when different subsurface models are forced with similar surface data (Lundin et al., 2017; Vandecrux 

et al., 2020b). Another source of discrepancy is the difference in surface climate that is simulated in each of these 

three models. More information about the accuracy of the simulated surface climate within each RCM can be 340 

found in Fettweis et al. (2020), Langen et al. (2017) and Noël et al. (2019). 

3. Results 

3.1. Performance of the ANN  

When comparing the best ANN model to the T10m observations it was trained on, we find a MD of 0.0°C and a 

RMSD of 1.6 °C (Figure 3a). However, when evaluating the cross-validation models against their respective 345 

unseen data, we find a similar MD (0.1oC) and a RMSD of 2.5 °C (Figure 3b). While the first evaluation is 

overoptimistic, the second does not directly evaluate our best ANN model, which is trained on all available data. 

These estimates nevertheless provide bounds to the true performance of our ANN.  

Averaging over the entire period 1950-2022, the ANN uncertainty is lowest across the dry snow area (Figure 3c), 

illustrated by the NASA-E site (Figure 3d). The uncertainty increases towards the ice sheet margin in west, north 350 

and northeast Greenland (Figure 3c) as exemplified by the sites DYE-2 in the percolation area in western 

Greenland (Figure 3e), KAN_L and KPC_U (Figure 3f-g), two ablation area sites in western and northeastern 

Greenland, respectively. The ANN uncertainty peaks in southeast Greenland (Figure 3c) where relatively high air 

temperatures and snow accumulation produce temperate firn conditions and firn aquifers (Forster et al., 2013; 

Kuipers Munneke et al., 2014). When the measurements in this region are removed for cross-validation, there are 355 

no firn aquifer observations left in the training set for the ANN to learn what the T10m structure in this ice sheet 

region is. This is illustrated in Figure 3h by a cross-validation model predicting lower T10m than observed at the 

site FA_13 resulting  in a larger standard deviation between the cross-validation models for FA_13. Our 

uncertainty estimation is conservative because the final ANN model is eventually trained on all observations. The 

regions of high uncertainty highlight where observations are the most needed to map the ice sheet subsurface 360 

temperature. 
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Figure 3. (a) Evaluation of theT10m simulated by the best ANN model against the observations used for training. (b) Evaluation of 365 
the T10m simulated by the 10 cross-validation (CV) ANN models against their unseen data (i.e. not used for training). The statistics 
presented are mean difference (MD), root mean square difference (RMSD) and number of samples for which the comparison was 
possible (N). (c) 1950-2022 average of the ANN uncertainty as calculated from the standard deviation of 10 cross-validation ANN 
models trained on different spatial subsets of the observation dataset. (d-h) Examples of ANN T10m prediction, its uncertainty and 
the prediction of the 10 cross-validation models at a dry snow site (NASA-E), one percolation site (DYE-2), two ablation sites 370 
(KAN_L, KPC_U), and a firn aquifer site (FA_13). 
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To evaluate the capacity of the ANN to capture the recent evolution of T10m, we select 10 sites where more than 

60 monthly values are available between 1998 and 2022 and compare the trends calculated from the ANN and the 

observations over the periods 1998-2010 and 1998-2022 (Table 2). These periods were chosen because of a 

general lack of measurements between 2011 and 2020. Trends calculated from the ANN only consider the 375 

months where observations are available. We note that due to the missing months, these trends are not reliable for 

general inference on the true T10m evolution: depending on which months are missing it might overestimate or 

underestimate the true T10m trend for these periods. The median T10m trends for 1998-2010 are 0.9 and 0.8 °C 

decade-1 for the ANN and for the observations respectively (Table 2). For the period 1998-2022, the median T10m 

trends for 1998-2010 are 0.4 and 0.6 °C decade-1 for the ANN and for the observations respectively (Table 2). 380 

The ANN therefore slightly overestimates the T10m trend during 1998-2010 and underestimates it during 1998-

2022. We conclude that the ANN reproduces the magnitude of the T10m increase seen in observations although 

this aptitude varies with the location and the time period considered. From this assessment and because the ANN 

does not suffer temporal nor spatial gaps, the ANN appears as a suitable tool to study the trends in T10m over the 

entire Greenland ice sheet. 385 

Table 2: Trends in 10 m subsurface temperature (T10m) calculated from the ANN and observations (obs.) at 10 sites for the periods 
1998-2010 and 1998-2022. ANN trends are calculated only from the months where observations are also available. The difference 
between the two calculated trends as well as the number of monthly values used for the calculation (N) are also given for each site. 

 Trends in T10m (°C decade-1) 

 1998-2010 1998-2022 

Site ANN obs. ANN - obs. N ANN obs. ANN - obs. N 

NASA-SE 1.0 0.7 0.3 115 0.4 0.5 -0.1 171 

NASA-E 0.5 0.5 0.1 140 0.6 0.5 0.0 270 

Summit 0.4 1.0 -0.6 133 0.3 0.6 -0.3 172 

Tunu-N 0.7 0.3 0.4 140 0.6 0.5 0.0 150 

South Dome 1.4 0.8 0.5 97 0.2 0.5 -0.2 116 

Saddle 1.4 0.7 0.7 125 0.2 0.6 -0.4 156 

Humboldt 0.5 1.0 -0.4 66 0.4 0.3 0.1 71 

Crawford Point 1 1.3 3.0 -1.7 63 0.4 0.7 -0.3 120 

DYE-2 1.2 0.8 0.4 139 0.3 1.1 -0.7 220 

Swiss Camp 0.7 0.8 0.0 83 0.3 1.8 -1.5 172 
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3.2. RCM evaluation and comparison with the ANN 390 

We evaluate the RCMs against the observed T10m in the period 1980-2016 for which all three RCM’s outputs are 

available (Figure 4). HIRHAM shows the best performance (MD = -0.4 °C, RMSD = 2.8 °C), followed by 

RACMO (MD = -1.3 °C, RMSD = 3.1 °C) and MAR (MD = +1.2 °C, RMSD = 4.7 °C). For the observation sites 

located in the ablation area, RACMO, HIRHAM and MAR have a cold bias with MD of -3.6, -0.9 and -3.4 °C 

respectively (Figure 4). MAR captures neither the geographical nor the seasonal variability of T10m in the ablation 395 

area (RMSD = 5.4 °C). The ANN, although of a different nature, gives better statistics at these ablation sites with 

a MD of 0.2 °C and a RMSD of 2.9 °C, even when calculated from our cross validation models’ unseen data 

(Figure 3b). 

 
Figure 4. Evaluation of the monthly 10 m subsurface temperatures simulated by RACMO (a), HIRHAM (b) and MAR (c) against 400 
observations. The statistics presented are mean deviation (MD), root mean square difference (RMSD) and number of samples for 
which the comparison was possible (N) for the period when all three models are available (1980-2016). For RACMO and MAR, the 
statistics for all available measurements are given in the parenthesis. For sites where annual surface ablation is larger than snow 
accumulation, i.e., net ablation sites with a bare ice cover in summer, symbols and statistics are shown in red. 

 405 

We further evaluate the ANN and RCMs at eight sites (Figure 5) that are representative of the dry snow (Summit, 

NASA-E), percolation (DYE-2, KAN_U), bare ice (Swiss Camp, KPC_U, SCO_U) and firn aquifer regions 

(FA_13). The ANN performs well at most of these sites: the average MD for these eight sites is less than 0.2 °C 

and the average RMSD is 1.2 °C. RACMO overestimates T10m at lower temperature sites in the dry snow area 

(Figure 5a-b) and underestimate T10m at the accumulation sites with relatively high melt (Figure 5c-d) and at 410 

ablation sites (Figure 5e-g). HIRHAM compares better than RACMO to the measurements at accumulation sites 

(Figure 5a-b) and can either over- or underestimate T10m at percolation sites (Figure 5c-d) and at ablation sites 
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(Figure 5e-g). MAR simulates T10m that are unrealistic both in magnitude and in variations (Figure 5). The causes 

of this low performance will be discussed in Section 4. At a firn aquifer site (Figure 5h) the ANN and the three 

RCMs successfully estimate relatively high T10m during the period 2013-2015 for which observations are 415 

available. Yet, the models diverge significantly when estimating the past history of the site: HIRHAM and MAR 

indicate T10m close to 0 °C from the models’ respective initiations in 1980 and 1950, while RACMO and the 

ANN indicate that T10m below -2 °C may have been common at FA_13 before 2000 (Figure 5h). 
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 420 
Figure 5. Observed and simulated 10 m subsurface temperatures at selected sites. Note the different y-axese. 

3.3. T10m trends in the ANN and RCMs 

According to the ANN, the Greenland ice sheet average T10m has been increasing significantly at a rate of +0.2 °C 

decade-1 (P<0.01) over the 1950-2022 period (Table 3, Figure 6a), from an ice sheet-wide average value of -21.1 

°C in 1950 to -19.2 °C in 2022. This increase was not constant over the 1950-2022 period. When fitting multiple 425 

piecewise linear functions to the Greenland ice sheet average T10m, with breakpoint between 1951 and 2021, we 

identify 1985 as the breakpoint year that explains most of the variance in the ice-sheet-wide average T10m time 

series. This piecewise linear function consists of a period of significant cooling between 1950 and 1985 (-0.4 °C 

decade-1, P<0.01) followed by a strong warming from 1985 to 2022 (+0.7 °C decade-1, P<0.01). Both the cooling 

that occurred until 1985 and the subsequent warming were most pronounced in central and southern Greenland 430 

(Figure 7a-b). In contrast, the low elevations of the northwest Greenland ice sheet underwent warming during the 

entire period (Figure 7a–c).  

 

For the time period for which ANN, RACMO, HIRHAM and MAR are available (1980-2016), the ANN gives an 

ice-sheet-wide average T10m trend of +0.6 °C decade-1 (P<0.01) , while the equivalent trends are estimated at 435 

+0.3, +0.4, and -0.1 °C decade-1 by RACMO, HIRHAM and MAR (P≤0.01), respectively (Table 3, Figure 6a). 

The spatial patterns of T10m trends in the three RCMs (Figure 7e-g) are consistent with the ANN (Figure 7d): a 

more pronounced warming at a mid-elevation band around the ice sheet and a milder warming (or cooling for 

MAR) in the rest of the ice sheet. 

 440 

Since the processes controlling T10m depend on the local climatic, snow and ice conditions, we also compare the 

evolution of T10m in different ice sheet regions (Figure 1): i) the bare ice area where seasonal snow melts 

completely and exposes underlying glacial ice at the end of summer, ii) the dry snow area where little or no melt 

occurs, and iii) the intermediate percolation area where a significant portion of the annual snow accumulation 

melts in spring and summer and percolates into the underlying firn (Figure 1a). In the bare ice area (Figure 6b), 445 

the observation-based ANN predicts stable T10m until the 1980s and increasing T10m thereafter (+0.6 °C decade-1 

over 1985-2022, P<0.01). In contrast, MAR estimates a negative trend in T10m temperatures over the 1950-2022 

period and overestimates the T10m during the 1950-2000 period compared to the ANN (Figure 6b). In the bare ice 

area, RACMO and HIRHAM both present a T10m trend of +0.2 °C decade-1 (P<0.01) over 1980-2016 period, 
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which is 66% smaller than the ANN trend in the ablation area for the same period. In the dry snow area (Figure 450 

6c), there is a better agreement between the models but lower T10m in the 1990s in the ANN leads to a more 

pronounced warming trend in that area (+0.5 °C decade-1 over 1980-2016, P<0.01) which is 40-60 % larger than 

warming trends predicted by RACMO and HIRHAM. MAR describes an overall cooling in the dry snow area 

(Figure 6c, 7g, Table 3). In the percolation area (Figure 6d), MAR has a warm bias compared to the other models 

(~+4 °C on 1980-2016), but all models agree on the strong warming that occurred here since the 1980s: between 455 

+0.5 and +0.9 °C decade-1 (all P<0.01) over 1980-2016 (Figure 6d, 7d-g, Table 3). Overall, these spatial 

differences average into a warm bias of MAR for the entire ice sheet and more pronounced trends for the ANN 

than for the RCMs (Figure 6a). 

 
Figure 6. Evolution of the 10 m subsurface temperature (T10m) for all of the Greenland ice sheet (a) and in three ice sheet regions 460 
(b-d). Although all panels have the same vertical axis scaling, note the different vertical axis bounds. 
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Figure 7. Trends in 10 m subsurface temperature as determined by the ANN over the periods 1950-1984 (a), 1985-2022 (b), 1950-
2022 (c) and 1980-2016 (d), and calculated by RACMO (e), HIRHAM (f) and MAR (g) over the period 1980-2016, when data from 465 
all models are available. Dotted areas indicate trends below significance level (P > 0.1). In panel b, the lower limit of the dry snow 
area (DSA) and of the percolation area (PA) are shown in dark green and black, respectively. 
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Table 3. Trends in 10 m subsurface temperature for different ice sheet regions and different periods. All trends are significant at a 
0.1 level. 470 

Model Period Mean T10m Trend in T10m 
(°C decade-1) 

All Greenland ice sheet 
ANN 1950-1985 -21.5 -0.4 
ANN 1985-2022 -20.7 0.7 
ANN 1950-2022 -21.1 0.2 
ANN 1980-2016 -21.0 0.6 
RACMO 1980-2016 -21.0 0.3 
HIRHAM 1980-2016 -21.4 0.4 
MAR 1980-2016 -18.6 -0.1 
Bare ice area 
ANN 1950-1985 -10.8 0.1 
ANN 1985-2022 -9.5 0.6 
ANN 1950-2022 -10.1 0.4 
ANN 1980-2016 -9.7 0.6 
RACMO 1980-2016 -14.0 0.2 
HIRHAM 1980-2016 -13.0 0.2 
MAR 1980-2016 -11.3 -0.0 
Dry snow area    
ANN 1950-1985 -27.1 -0.4 
ANN 1985-2022 -26.5 0.6 
ANN 1950-2022 -26.8 0.2 
ANN 1980-2016 -26.8 0.5 
RACMO 1980-2016 -25.6 0.2 
HIRHAM 1980-2016 -26.1 0.3 
MAR 1980-2016 -24.2 -0.3 
Percolation area 
ANN 1950-1985 -13.5 -0.5 
ANN 1985-2022 -12.8 0.9 
ANN 1950-2022 -13.1 0.2 
ANN 1980-2016 -13.1 0.8 
RACMO 1980-2016 -14.0 0.6 
HIRHAM 1980-2016 -13.5 0.6 
MAR 1980-2016 -10.1 0.4 
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4. Discussion 

We compiled the largest dataset of observed subsurface temperature on the Greenland ice sheet to date and used 

it to train an ANN which, with snowfall and temperature from ERA5 reanalysis as input, estimates monthly grids 

of 10 m subsurface temperature over the entire ice sheet for the 1950-2022 period. The ANN describes a -0.4 °C 475 

decade-1 T10mtrend during 1950-1985 (Figure 6a, Table 3) which is consistent with the negative trends in air 

temperatures found by Zhang et al. (2022) in the ERA5 reanalysis and RACMO RCM from the late 1950s to 

early 1990s. The following increase in T10m (+0.7 °C decade-1) calculated by the ANN from the 1990s to 2022 is 

consistent with all-year and summer air temperature increases found in weather station observations, reanalysis 

datasets and regional climate models (Hanna et al., 2021, Zhang et al., 2022). The ice sheet wide average T10m 480 

trend, +0.2 °C decade-1 over 1950-2022, agrees with the trend in annual air temperature in ERA5 (+0.2 °C 

decade-1 over 1950-2022). Additionally, the ANN estimates a strong warming of +0.9 °C decade-1 on average, up 

to +1.4 ° C decade-1 locally, in the percolation area (bounded by the dark green and black lines in Figure 7b) 

during the 1985-2022 period.. This localized warming of the percolation area is also calculated by the three 

RCMs (Figure 6d, Figure 7e-g). However, this hotspot of T10m increase is not found in air temperature trends 485 

(Zhang et al., 2022 Fig. 5-7). The warming of the subsurface in the percolation area stems from the increased 

meltwater infiltration and from the latent heat released by refreezing (e.g. Humphrey et al., 2012; Vandecrux et 

al., 2020a). This successful identification of areas subject to firn warming by the ANN is remarkable considering 

that the ANN only learns from the T10m observations, and the local air temperature and snowfall history, and is 

not fed information on meltwater infiltration and refreezing. This indicates that the ANN successfully learns 490 

which areas are susceptible to undergo meltwater infiltration and refreezing from its training data. 

 

The ANN model has the strength of statistical models: it fits the training data and thereby performs better than 

RCMs when evaluated against observations used for training (Figure 3a, 4). Yet, ANNs and statistical models 

have several limitations. Firstly, the ANN is greatly dependent on the distribution of the training data, and how 495 

representative that data is of the parameter space where the ANN is applied. Our methods give more weight to 

observations that are from underrepresented areas of the parameter space. Yet, there are still regions with 

particular combinations of air temperature and snowfall where no observations are available and where the ANN 

extrapolates. More observations are needed from these less-visited parts of the ice sheet to further train the ANN. 



 

25 
 

These new measurements could either focus on the coldest parts of the ice sheet, where our compilation currently 500 

lacks measurements (Figure 2a) or on the areas where our uncertainty is the highest, in the Southeast (Figure 3c). 

Secondly, the ANN is limited by the input parameters it draws on. For instance, inaccuracies in ERA5 data (as 

discussed in Delhasse et al., 2020; Zhang et al., 2022) for certain periods or locations will affect the performance 

of the ANN, as will T10m measurement uncertainties. Besides, only using two input parameters (air temperature 

and snowfall) must introduce inaccuracy through oversimplification of complex physical processes. Additionally, 505 

the relatively coarse resolution of the input grid (0.1x0.1o) prevents the ANN from identifying local phenomena 

such as localized meltwater refreezing in surface deepenings and crevasses (Hills et al., 2018, Chudley et al., 

2021) or in ephemeral perched aquifers (Humphrey et al., 2021, Culberg et al., 2022). Nor can our ANN model 

account for the exposure of ice affected by past temperature anomalies, i.e. the advection of deep ice in the 

ablation zone that may drive T10m more than surface conditions (Lüthi et al., 2015). Other widespread processes 510 

such as the penetration of short-wave radiation into the subsurface (Van den Broeke et al., 2008; Kuipers 

Munneke et al., 2009; Van Dalum et al., 2021), firn ventilation (Albert and Shultz, 2002) or potentially ‘wind 

pumping’ (Clarke et al., 1987) are more likely to be accounted for by the ANN because observations subject to 

these processes are included in the dataset. Ultimately, the ANN cannot identify the processes that are responsible 

for a given subsurface temperature, but it can learn which T10m are usually seen at various temperature and 515 

snowfall combinations. 

 

Although the RCMs calculate subsurface temperatures in similar ways (see Section 2.3), differences arise due to 

their various assumptions. For example, MAR assumes that in the ablation area, the material added at the lower 

bound of the model column is always slightly colder than the lowermost material left in the column. This 520 

explains the decreasing trend in simulated T10m in Figure 6a and the inability of MAR to explain the observed 

T10m variation at the ablation sites (Figure 4c). The noise within the T10m trend map (Figure 7g) is also indicative 

of some numerical instability in this deep temperature prescription. These limitations of the model’s boundary 

conditions have now been identified and efforts are ongoing to remediate them in the next version of MAR. It is, 

however, interesting to note that these biases do not significantly impact the surface mass balance simulated by 525 

MAR; different sensitivity tests were performed with the aim of improving the comparison with T10m and for all 

of them, the MAR results at the surface remained unchanged. Langen et al. (2017) showed that the simulated 

subsurface temperature profile in HIRHAM in the percolation area greatly depends on the formation, in the 

model, of ice layers of density greater than 830 kg m-3 that inhibit water infiltration. The formation of these high 

density layers in the model depends on the surface climate and subsurface model, but also on the discretization of 530 
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the modeled firn column, which is currently fixed in HIRHAM (Vandecrux et al., 2020b). Recent efforts to 

update the HIRHAM subsurface scheme to a more flexible discretization that would preserve high density layers 

was made for Antarctica (Hansen et al. 2021) but has not yet been applied to Greenland. Steger et al. (2017) 

found that the SNOWPACK model forced by RACMO2.3, an older version of RACMO2.3p2 evaluated here, 

overestimated the subsurface temperature in the high elevation areas in northwestern Greenland, while 535 

underestimating the firn temperature at lower elevations due to either insufficient meltwater generation at the 

surface or too shallow simulated meltwater infiltration. In that same study, RACMO2.3 in combination with both 

IMAU-FDMv1.1 and SNOWPACK subsurface schemes could not accurately reproduce subsurface temperatures 

at some low percolation sites because the models represented them as bare ice sites. This mismatch between the 

simulated and actual surface type – bare ice or porous firn – makes sites at the transition between the bare ice and 540 

percolation areas, i.e., the equilibrium line, particularly challenging for all RCMs (e.g., KAN_U, Swiss Camp, 

KPC_U in Figure 5d-f). Switching from version 2.3 to 2.3p2, in combination with an update to IMAU-FDMv1.2 

allowed RACMO to simulate KAN_U as a firn site rather than a bare ice site (Ligtenberg et al., 2018, Brils et al., 

2022). The IMAU-FDM always allows meltwater infiltration, which may lead to an overestimation of T10m at 

sites where thick ice layers in the firn provide a barrier for further percolation. This was highlighted at KAN_U 545 

when driving IMAU-FDMv1.1 with surface temperature and melt rates derived from observations (Vandecrux et 

al., 2020b). However, the updated IMAU-FDMv1.2 forced by RACMO2.3p2 now shows a slight cold bias at 

KAN_U (Figure 5d), indicating that too deep meltwater infiltration is no longer an issue at that site (Brils et al., 

2022). 

 550 

The subsurface temperature impacts the surface energy budget through the conductive heat flux, and thereby 

affects the snow and ice surface melt. Heat from a warm subsurface will be conducted to the surface when 

surface temperatures are lower. And vice-versa, a colder subsurface represents a heat sink (heat will conduct 

down, away from the surface) and will moderate surface melt. Another consequence of the near-surface snow and 

firn warming is that it decreases the cold content and therefore the retention capacity of the snow and firn (Pfeffer 555 

et al., 1991; Vandecrux et al., 2020a). Meltwater retention in firn occurs when i) pore space is available, ii) this 

pore space can be accessed by the meltwater and iii) cold content is available to refreeze the meltwater. 

Vandecrux et al. (2019) documented that the upper 10 m of the firn in the lower accumulation and percolation 

area lost about 20% of its pore space over the last decades, while in the dry snow area pore space remained stable 

since the 1950s. Our work documents the recent subsurface warming of the ice sheet and how the upper 10 m of 560 

snow, ice and firn is brought closer to the melting point, potentially enhancing meltwater runoff in the subsequent 
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summers. Our ANN estimates that the dry snow area average T10m increased from -27.3 °C over 1980-1990 to -

25.8 °C over 2010-2020. Similarly, the percolation area warmed from -13.7 °C over 1980-1990 to -11.8 °C over 

2010-2020; 1.9 °C (14%) closer to the melting point. Our findings complement other work showing the changes 

in the Greenland ice sheet subsurface their impact on the ice sheet mass loss: for example the recent expansion of 565 

the firn aquifer area stemming, among other causes, from the loss of firn cold content (Horlings et al., 2022) or 

the increasing the runoff from the firn area (Tedstone and Machguth, 2022) linked to the formation of ice layers 

reducing meltwater percolation and retention into the underlying firn (Machguth et al., 2016; MacFerrin et al., 

2019) .  

5. Conclusion 570 

Using the most complete compilation of observed T10m on the Greenland ice sheet to date, we trained an Artificial 

Neural Network (ANN) to describe the spatio-temporal evolution of T10m during 1950-2022. We found that, 

following a significant cooling between 1950 and 1985 (-0.4 °C decade-1, P<0.1), ice sheet-wide T10m increased 

by +0.7 °C decade-1 from 1985 to 2022 (P<0.1). Overall, the Greenland ice sheet T10m increased at a rate of +0.2 

°C decade-1 over the 1950-2022 period in response to increasing energy influx at the surface. Our observational 575 

dataset yielded unique and extensive constraints on the subsurface temperature simulated by three conventional 

regional climate models, RACMO, MAR and HIRHAM and demonstrated their mixed performance. Notably, it 

revealed numerical instabilities in MAR prompting improvements in its snow module, although these T10m biases 

apparently have low impact on the SMB simulated by MAR. This work highlights the value of in-situ 

measurements of ice, snow and firn temperatures to better quantify the response of the Greenland ice sheet to 580 

Arctic warming and to reduce uncertainty in projections of mass loss from the Greenland ice sheet. Our 

evaluation shows highest ANN uncertainty in the southeast and in the lower percolation area in northern 

Greenland (Figure 3). Those are regions where few observations are available (Figure 1) and consequently, any 

additional measurements there will help to constrain models and understand the relevant processes. 

6. Data and code availability 585 

The original subsurface temperature datasets are cited in Table 1 and, when available, download links to the 

original datasets can be found in the reference list. Some of the observational data was found in other 

compilations such as Mock and Weeks (1965), McGrath et al. (2013) or Løkkegaard et al. (2023) and Mankoff et 

al. (2022).  
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 590 

The monthly T10m dataset is currently hosted at https://doi.org/10.22008/FK2/TURMGZ (Vandecrux, 2023a) and 

is also added to the 2023 release of the SUMup dataset (Vandecrux et al., 2023b). A compilation of non-

interpolated, instantaneous subsurface temperatures can be requested from the authors. The T10m maps here are 

available at https://doi.org/10.22008/FK2/C24WVN (Vandecrux, 2023b) and the scripts used for the analysis are 

available at https://doi.org/10.5281/zenodo.8027442 (Vandecrux, 2023c). 595 
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