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Abstract. Areas of thin sea ice in the polar regions are not only experiencing the highest rate of sea-ice production but are,

therefore, also important hot spots for ocean ventilation as well as heat and moisture exchange between the ocean and the

atmosphere. Through co-location of (1) an unsupervised waveform classification (UWC) approach applied to CryoSat-2 radar

waveforms with (2) Moderate Resolution Imaging Spectroradiometer (MODIS) derived thin-ice thickness estimates and (3)

Sentinel-1A/B SAR reference data, thin-ice based waveform shapes are identified, referenced, and discussed with regard to5

a manifold of waveform shape parameters. Here, strong linear dependencies are found between binned thin-ice thickness

up to 25 cm from MODIS and the CryoSat-2 waveform shape parameters that show the possibility to either develop simple

correction terms for altimeter ranges over thin ice or to direct adjustments to current retracker algorithms specifically for

very thin sea ice. This highlights the potential of CryoSat-2-based SAR altimetry to reliably discriminate between thick sea

ice, open-water leads, as well as thin-ice occurrences within recently refrozen leads or areas of thin sea ice. Furthermore, a10

comparison to the ESA Climate Change Initiative’s (CCI) CryoSat-2 surface-type classification with classes sea ice, lead, and

unknown reveals that the newly found thin-ice related waveforms are divided up almost equally between unknown (46.3 %)

and lead-type (53.4 %) classifications. Overall, the UWC results in far fewer unknown classifications (1.4 % to 38.7 %). Thus,

UWC provides more usable information for sea-ice freeboard and thickness retrieval and at the same time reduces range biases

from thin-ice waveforms processed as regular sea ice in the CCI classification.15

1 Introduction

Areas of thin sea-ice cover in the polar regions play an important role for sea-ice production and heat exchange of the ocean

with the atmosphere – especially during polar night (e.g., Meier et al., 2014; Morales Maqueda et al., 2004; Maykut, 1978;

Thorndike et al., 1975). Several studies investigated the presence of thin sea ice in leads and polynyas within the Arctic (e.g.,

Rothrock et al., 1999; Preußer et al., 2016; Preußer et al., 2019; Tian-Kunze et al., 2014; Huntemann et al., 2014; Willmes20

et al., 2010; Willmes and Heinemann, 2015, 2016; Reiser et al., 2020). Leads and polynyas are openings of varying size and

shape within the sea-ice scape and per definition of the World Meteorological Organisation (WMO) may consist of open water

areas but also thin ice with a thickness of up to 30 cm (WMO, 2014). The studies investigating thin ice use different sensors

and retrieval methodologies that are generally bound to an upper sea-ice thickness limit and methodological limitations (e.g.
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snow cover and/or cloud-cover presence when using thermal-infrared data (e.g., Yu and Rothrock, 1996; Frey et al., 2008) or25

spatial resolution using passive-microwave data (e.g., Tamura et al., 2008)).

In contrast, satellite altimetry is capable of retrieving sea-ice freeboard and sea-ice thickness for the Arctic on a basin-scale

using CryoSat-2 and its predecessor sensors, with several data products already available (e.g., Landy et al., 2019; Paul et al.,

2018; Guerreiro et al., 2017; Kurtz et al., 2014). However, studies suggest a higher uncertainty towards thinner sea-ice (Ricker

et al., 2017). This is the result of several factors. The radar backscatter characteristics between young and thin sea ice is30

ambiguous with open-water area, since both surfaces have specular reflection properties that lead to off-nadir reflection biasing

the radar range (e.g., Aldenhoff et al., 2019; Passaro et al., 2018; Rinne and Similä, 2016). However, classifying radar waveform

echoes by their respective backscattering surface type (i.e., sea ice, open ocean, or leads) is essential for the upstream process of

retrieving sea-ice freeboard and sea-ice thickness using satellite radar altimetry (e.g., Laxon, 1994; Laxon et al., 2003; Peacock

and Laxon, 2004). Numerous studies exist on the automatic detection of leads. These use altimeter data (e.g., Lee et al., 2018;35

Dettmering et al., 2018; Wernecke and Kaleschke, 2015) or SAR images (e.g., Park et al., 2020; Murashkin et al., 2018). A lead

in the context of radar altimetry is an ice-free opening surrounded by sea ice that enables direct measurements of sea surface

height within the ice cover. However, none of the existing studies has yet attempted to detect thin-ice using satellite altimetry

data. Continuous sea surface height observations over open ocean and at discrete lead locations are then interpolated along the

track and one can subsequently calculate the sea-ice freeboard (i.e., the instantenous height differences between the sea-ice40

surface and the ocean surface). Assuming hydro-static equilibrium and utilizing additional auxiliary information on sea-ice

type and respective sea-ice density, as well as information on the sea-ice snow cover, one can calculate the sea-ice thickness

(e.g., Paul et al., 2018; Alexandrov et al., 2010).

For correct sea-ice classifications, the small freeboard values of thin ice (here defined as sea ice with a thickness up to

25 cm) are often lower than the precision of even the recent synthetic aperture radar (SAR) altimeter sensors. In addition,45

freeboard estimates of sea ice from Ku-Band radar altimeters must be adjusted for a lower wave propagation speed in the snow

layer (Mallett et al., 2020). In the absence of a direct observation for each radar altimeter waveform, snow depth and density

information may originate from a climatology, modelled snow depth with re-analysis as input or data fusion of different satellite

sensors. However, all approaches provide an average snow depth for a certain period and region, which will overestimate the

snow layer on young sea ice in most cases and create a freeboard bias. Hence, there is currently a need for additional satellite50

products or physical waveform models to better understand retrievals based on radar altimeter waveforms over thin-ice areas

to complement improvements for thicker and rougher sea ice surfaces (e.g., Landy et al., 2019).

While information on the presence of thin-ice areas is important for our understanding of sea-ice mass balance changes,

there are currently only two operational Arctic-wide thin-ice data products available due to the above-mentioned limitations.

These products are both produced from the ESA’s Soil Moisture and Ocean Salinity (SMOS) mission (Huntemann et al., 2014;55

Tian-Kunze et al., 2014) based on the ice-thickness dependency of surface emissivity at L-Band. However, at a lower spatial

resolution of 12.5 km × 12.5 km at best (Tian-Kunze et al., 2014). Both methods are limited for thicker sea ice above 0.5 m

(Huntemann et al., 2014) or 1 m (Tian-Kunze et al., 2014), respectively. Thus, the latter product, as official ESA product, is

routinely used to improve sea-ice thickness retrieval over the full range of the sea-ice thickness distribution utilizing a data
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Figure 1. Overview of the study area within the Arctic Laptev-Sea region (a; orange outline). Small rectangles within the map inlet (b) mark

the locations of case studies used in this study (see Figures 4 to 6).

fusion approach between SMOS and CryoSat-2 using Optimal Interpolation (Ricker et al., 2017). Data products utilizing60

thermal-infrared data to estimate thin-ice thickness and corresponding areas are also available, but not in a similar operational

fashion (e.g. Preußer et al., 2016; Preußer et al., 2019).

In this study, the authors utilize Delay-Doppler radar altimeter echoes from ESA’s Earth Explorer mission CryoSat-2 in

combination with the capabilities of NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) to allow for a better

understanding of the received CryoSat-2 waveform returns over thin sea-ice areas and, subsequently, an improved surface-65

type classification. For this task, the authors inter-compare CryoSat-2 waveforms labelled as thin ice through an unsupervised

classification approach (extended from Müller et al. (2017)) with thin-ice thickness estimates from MODIS (Paul et al., 2015)

within a maximum of 30 minutes between both acquisitions. Additionally, in a subsection, the authors show a statistical analysis

of the results obtained by the unsupervised classification approach (Müller et al., 2017) and the classification used in the ESA

Climate Change Initiative (CCI) described in Paul et al. (2018).70

All investigations are performed for the Arctic Laptev-Sea region featuring frequent occurrences of flaw and coastal polynyas,

i.e., polynyas bound to fast ice or the coast, respectively (Figure 1; e.g. Preußer et al., 2019; Willmes et al., 2010) and cover

the winter months January through March between 2011 and 2020.

This study is structured into the following sections: Section 2 describes the data sets; Section 3 provides details on the

unsupervised clustering for CryoSat-2 and the MODIS thin-ice thickness retrieval. Section 4 summarizes and discusses the75

results and implications on CryoSat-2 surface-type classification, and Section 5 concludes with an outlook.
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2 Data sets and pre-processing

The following sub-section highlights the main data sets used for this study. All analyses are carried out for the Arctic Laptev

Sea region between 92 ◦E to 142 ◦E and 70 ◦N to 85 ◦N (Figure 1) for the winter months January through March between 2011

and 2020.80

2.1 CryoSat-2 Level-1B Baseline-D data

CryoSat-2 was launched in April 2010 aiming to monitor the Earth’s cryosphere and, in particular, to measure the decline

of land and sea ice in the polar regions in order to understand the role of climate in the retreat of polar ice. CryoSat-2 was

placed on a non-Sun-synchronous orbit with a long repeat orbit of about 369 days. CryoSat-2 is carrying a Ku-Band radar

altimeter and is observing in three different acquisition modes up to a latitude of 88 ◦ (Scagliola, 2013). The acquisition85

modes vary with application area and surface type with respect to a geographical mode mask (more information see: https:

//earth.esa.int/eogateway/instruments/siral/description).

The polar seas are predominantly sampled by the Synthetic Aperture Radar (SAR) mode with an along-track footprint size

of about 300 meters (Wingham et al., 2006). Briefly summarized, the SAR mode combines frequency-shifted radar returns (i.e.

Doppler effect) in the direction of flight from different look angles with respect to a predefined position on the surface. The90

result of combining different view angles is called multi-look waveform and samples the surface with 20Hz resolution.

The present investigation is based solely on SAR-mode acquired multi-looked waveforms, covering major parts of the Arctic

Ocean. In particular, CryoSat-2 L1B Ice Baseline D data are introduced to the processing chain. This data set comprises in

addition to the waveform data, information on waveform scaling as well as orbit positions. More information regarding Baseline

D can be found in the ESA CryoSat-2 Product Handbook (Bouzinac, 2019) and Meloni et al. (2020).95

2.2 MODIS data

For the comparison of thin-ice thickness to CryoSat2 waveforms, MODIS Level 1B calibrated radiances are obtained from

both NASA satellites, Terra and Aqua (MOD/MYD02; MODIS Characterization Support Team (MCST), 2017a, b; retrieved

from the Level-1 and Atmosphere Archive and Distribution System (LAADS) Distributed Active Archive Center (DAAC) with

a spatial resolution of 1 km × 1 km at nadir and swath dimensions of 1354 km (across track) × 2030 km (along track).100

Brightness temperatures were calculated from the calibrated radiances comprising MODIS channels 31 and 32 at 10.78 to

11.28 µm and 11.77 to 12.27 µm, respectively, following Toller et al. (2009). Subsequently, the sea-ice-surface temperatures

(IST) was computed following Riggs and Hall (2015). All MODIS processing is based on MODIS Collection 6.1 data for

nighttime only.

In order to compute corresponding thin-ice thickness data from the IST data, additional data on the prevailing atmospheric105

conditions are necessary. Here, all necessary atmospheric fields are provided from the European Centre for Medium-Range

Weather Forecast (ECMWF) ReAnalysis V5 (ERA5) data acquired from the Copernicus Climate Data Store (CDS; Hersbach
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et al., 2020). These fields comprise the 2 m air temperature, the 10 m wind-speed components, the mean sea-level pressure,

and the 2 m dew-point temperature in hourly resolution.

2.3 Sentinel-1A/B SAR images110

The ESA Copernicus C-band SAR missions Sentinel-1A and Sentinel-1B (S1-A/B) were launched in 2014 and 2016, respec-

tively. At the time of full functionality, both satellites orbited the Earth 180 ◦ apart to provide SAR imagery, unaffected by cloud

cover, on a six-day repeating cycle. SAR images from both missions are used for visual comparisons. An automatic thin-ice

detection from SAR images is not applied in this study because this falls outside the main focus of the work. S1-A/B features

a higher spatial resolution with regard to MODIS and, therefore, provides further information about different sea-ice-surface115

types by making use of the backscattering properties of different surfaces. For instance, leads and polynyas appear very dark

due to a very flat and less rough surface. In this case the incoming radar signal is scattered away from the receiver. However,

caution must be taken by the interpretation of the backscattering pixel values in the presence of small scale features like frost

flowers (i.e small ice crystals with a size of few centimeters in diameter) that develop under cold and calm conditions, e.g. on

nilas ice as they can significantly increase the scattering resulting in brighter pixel values (Hollands and Dierking, 2016). Fur-120

thermore, brighter pixel values can also result from a roughened water surface due to strong wind influence in polynyas. More

information regarding sea-ice-surface-type interpretation can be found in Dierking W. (2013) and Murashkin et al. (2018).

In the present study, the Sentinel-1 comparison data set consists of Level-1 dual-polarized SAR extra-wide-swath mode data

at medium resolution. The images are ground-range detected and show a pixel resolution of 40 m × 40 m and a swath width

of 400 km. The spatial resolution is close to 100 m. The images are processed using the SNAP - ESA Sentinel Application125

Platform v8.0, (http://step.esa.int) following the processing steps described in Müller et al. (2017) and Passaro et al. (2018), but

with an additional speckle filtering. Briefly summarized, the main processing steps follow standard routines (e.g. radiometric

calibration, speckle filtering, map projection etc.). The Level-1 data is gathered from the Alaska Satellite Facility Data Active

Archive Center (ASF DAAC). In terms of study area and period, the S-1A/B image pool represents a potentially usable size of

approximately 500 scenes. Unfortunately, Sentinel-1B was decommissioned after an instrument failure in December 2021.130

3 Methods

The following section focuses on the key steps of data processing that enable a comparison of thin-ice observations from SAR

altimetry and MODIS thermal-infrared imagery. In order to reduce the influence of rapid changing environmental conditions

such as sea ice drift, rapid melt as well as freezing periods, the maximum time gap between altimetry, thermal-infrared imagery

and SAR imaging is set to ±30 minutes around the overflight times of CryoSat-2. This is a compromise to minimize observation135

situation changes, while at the same time enabling a sufficiently large MODIS as well as SAR image database. This is necessary

due to the frequent presence of cloud cover in the MODIS data. After setting a maximum permissible acquisition time difference

between CryoSat-2 and Sentinel-1A/B, the number of possible SAR images is reduced to 52. Other limiting factors concern
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the actual number of overlap points in the image area. The images shown in Section 4.1 correspond to examples with a very

good overlap and different surface conditions.140

From ERA5 2 m air temperature data, the average temperatures for the study period and region is always well below freezing

point (about 253 K on average; Figure 1). However, there are rare occasions of above freezing-point temperatures (about 1.6 %

of all days within the study period) especially over land, but also near the coast over sea-ice/fast-ice areas. While certainly the

surface conditions change under these conditions and potentially impact the received returns for CryoSat-2, the overall impact

on the UWC is considered negligible.145

The MODIS comparison database includes 161 scenes, which corresponds to an altimetry data set of about 21300 CryoSat-2

altimeter waveforms (MODIS scene numbers and their time difference from the CryoSat-2 tracks are available upon request).

3.1 CryoSat-2 thin-ice classification

Müller et al. (2017) developed an unsupervised classification of altimeter waveforms that was primarily focused on the detec-

tion of open water targets, such as leads and polynyas, without the use of training data or pre-known information about the150

surface conditions. The classification can be applied to any kind of altimeter waveforms and missions. Müller et al. (2017)

applied it to the non-SAR, conventional altimeter missions Envisat and SARAL. Later, the classification approach was adopted

to SAR altimeter waveforms (Dettmering et al., 2018) and applied to CryoSat-2 and Sentinel-3A/B in the framework of the

European Space Agency’s Baltic+ Sea Level (ESA Baltic SEAL) project (Passaro et al., 2021). However, none of these studies

classified thin-ice, since altimeter waveforms generated by this surface type are quite similar to open water returns.155

Briefly summarized, the unsupervised waveform classification (UWC) is based on an automatic clustering of a broad spectra

of different waveforms by K-medoids (e.g. Celebi (2014)) defining a reference model with a certain number of clusters. After

clustering, an assignment of the clustered waveforms as well as remaining waveforms to certain surface types (e.g. ocean,

lead/polynya or sea-ice conditions) is performed. The assignment of the waveform clusters to the different surface types is

mainly based on the use of background knowledge about the physical backscattering properties of the individual surface types160

and statistical relationships (Figure 2). More detailed explanations of the cluster assignment can be found in Müller et al.

(2017). In the present investigation, the cluster number is set to 25. This number was found to produce optimal results in

Dettmering et al. (2018) and let there to an overall agreement of about 97 %. Moreover, an internal miss-classification rate of

1.13 % can be expected after performing a 10-fold cross validation (Passaro et al., 2020).

Main input to the classification approach are parameters derived from the waveform shapes and information on the backscat-165

ter power. Altogether, they span the feature space, which is defined as followed (see Dettmering et al. (2018)):

– Maximum power (MP) - physical backscatter coefficient σ0 at the waveform maximum

– Waveform width (Wwidth) - number of waveform range bins with a power greater than 1% of the waveform maximum

– Leading edge slope (LES) - number of waveform range bins between the position of the waveform maximum and the

bin of the leading edge, which is the first exceeding 12.5% of the maximum power170
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– Trailing edge slope (TES) - similar to LES, but for the trailing edge of the waveform

– Waveform decay (Wdecay) - estimation of the decay by fitting an exponential function to the trailing edge

– Waveform fit Median-Absolute Deviation (WfitMAD) - derived MAD value of the residuals from the fit of the expo-

nential function

Moreover, in the quantitative comparison (Sec. 4.2) two additional features are included. The additional features are part of175

the CryoSat-2 waveform classification approach (Paul et al., 2018) applied in the framework of ESA CCI:

– Leading edge width (LEW) - width in range bins between 95% and the first bin at the leading edge exceeding 5% of

the waveform maximum power using a ten-time over-sampled and smoothed waveform (Hendricks et al., 2021)

– Leading edge peakiness (LEP) - computation of the pulse-peakiness (Peacock and Laxon, 2004), but three range bins

left from the bin position of the waveform maximum (Ricker et al., 2014)180

Figure 2 shows the assignment of 25 clusters to 5 different surface types (compared to 4 in the original UWC approach):

undefined, sea ice, thin-ice, lead, and ocean. Clusters characterized by a very strong MP, a small Wwidth and strong decay

obtained by the fitting of an exponential function to the trailing edge of the waveform are labeled as lead clusters (i.e. 5,

10, 14). Clusters that were formerly assigned to sea ice are now divided into two groups (sea ice and thin ice) based on their

different reflective properties. Following Ulander et al. (1995) and Onstott and Shuchman (2004) thin ice covers nilas and young185

ice ranging from 0 m to 0.30 m and is often covered by a flat layer of slush, which are ice crystals saturated with salt brine.

Members of thin-ice clusters show characteristics in between lead clusters and clear sea-ice groups. They are characterized

by a wider waveform shape, a weaker waveform decay and flatter trailing edge slope than lead clusters. Moreover, they also

have a slightly weaker MP than radar returns reflected from open, calm water (Zygmuntowska et al., 2013). These properties

correspond to clusters 4 and 19.190

Undefined waveform clusters represent waveforms which cannot assigned unambiguously to certain surface conditions, for

example if they are acquired in the direct vicinity of the coast or islands. They also show a bigger standard deviation compared

to other clusters.

3.2 MODIS thin-ice thickness retrieval

In order to compute the thin-ice thickness (TIT) from MODIS IST a simple surface-energy-balance model is employed, which195

utilizes the inversely proportional relation between IST and the thickness of thin sea ice (Yu and Rothrock, 1996; Drucker et al.,

2003). In the model, the net positive flux towards the atmosphere (i.e., positive corresponding to the direction from the warm

ocean to the cold atmosphere) is equalized from the conductive heat flux through the ice. From this conductive heat flux, TIT is

derived following Equation 1, where TIT is the thin-ice thickness, κi is the thermal conductivity of sea ice (2.03 W(m K)−1),
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Figure 2. Averages and standard error of 6 waveform features used per cluster: Maximum Power (MP); Waveform Width (Wwidth); Leading-

Edge Slope (LES); Trailing-Edge Slope (TES); Waveform decay (Wdecay) and median absolute deviation of fitted waveform (WfitMAD).

Colors indicate 5 different surface types: undefined (brown), sea ice (yellow), thin ice (orange), lead (cyan) and ocean (blue).

IST and Tfp are the IST and the ice/ocean-interface temperature (assumed to be at the freezing point temperature of the200

ocean), respectively, and Qatm is the total heat flux to the atmosphere.

TIT = κi ×
IST −Tfp
Qatm

(1)

A detailed description of the TIT retrieval procedure as well as all necessary equations and related assumptions are thor-

oughly described in Paul et al. (2015). These assumptions comprise that the sea ice is free of a snow cover, a linear temperature

gradient within the sea ice, a negligible ocean-heat flux as well as cloud-free conditions assured by manual screening of all205
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used MODIS swaths (Paul et al., 2015). While no state-of-the-art uncertainty analysis is available for our combination of

MODIS thin-ice retrieval with ERA5 atmospheric reanalysis, Adams et al. (2012) state an average uncertainty of ±4.7 cm for

ice thicknesses between 0.0 and 0.2 m using NCEP2 reanalysis (Kalnay et al., 1996), substantially increasing for larger thick-

ness ranges. Figure 3 exemplifies the underlying IST with its corresponding TIT. With regard to these uncertainty limitations

in combination with the desire to maximize CryoSat-2/MODIS overlaps, all TIT analyses are limited to a maximum sea-ice210

thickness of 25 cm.

4 Results and discussion

In this study, a combination of 161 MODIS swaths covering the Laptev-Sea area showing TIT up to 25 cm and about 21300

classified CryoSat-2 observations are used for a quantitative analysis. The very high spatio-temporal resolution altimetry obser-

vations are related to the respective MODIS pixels using a nearest-neighbor approach. Moreover, Sentinel-1A/B SAR images215

serve as an additional source for visual comparisons. The first part of this section shows visual comparisons between CryoSat-2

and MODIS as well as Sentinel-1. The second part (Section 4.2) will then focus on a quantitative analysis of the results. In the

last part, Section 4.3 briefly evaluates the representation of thin-ice-class waveforms in other CryoSat-2 based products (Paul

et al., 2018) compared to the unsupervised classification approach.

A direct comparison to SMOS-derived sea-ice thicknesses (Tian-Kunze et al., 2014) is of limited use due to it being i) an220

average daily ice thickness product on a spatial resolution of 12.5 km×12.5 km, and ii) the product’s setup with its use of a

statistical log-normal ice-thickness distribution (Tian-Kunze et al., 2014). The latter results in the real level-ice thickness being

more likely about half of the shown numbers. However, this renders this data set unusable for the purpose of this study as the

actual ice thickness of thin sheet ice is needed for the comparison to the high resolution CryoSat-2 data (Figure A1).

Figure 3. Example of MODIS ice-surface temperature (IST in K; a) and its associated thin-ice thickness (TIT; b) between 0m and 0.25m;

acquired on 05-03-2011 at 18:10 UTC.
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4.1 Visual comparison225

This section provides an initial visual inter-comparison between CryoSat-2 classified open-water/leads, thin-ice, and sea-ice

observations on the one hand and either MODIS (Table A1) or Sentinel-1A/B SAR imagery (Table A2) on the other hand.

Figure 4 shows four subsets of two HH-polarized SAR images from February 2018 with their respective classification

results from CryoSat-2 superimposed on them. Both SAR images feature at least one lead, which are recognized by the

classification algorithm and highlighted by the cyan dots. Orange labels indicate thin-ice observations in the vicinity of leads230

and correspond to higher SAR backscatter values. Within the image, the areas appearing in light gray to almost white with

their lead-like pattern represent former open water areas that have recently frozen over. These areas of new ice can range in

thickness from 10 cm to 30 cm (Onstott and Shuchman, 2004) and are often covered by a layer of slush (Ulander et al., 1995).

The CryoSat-2 classification results agree reasonably well with the SAR images, however, not all thin ice surfaces and leads are

always correctly detected (e.g. Figure 4 c,d). Potential reasons for this are two-fold: From the SAR point of view, a complete235

interpretation of the SAR pixel values is not possible. From the altimetry point of view, off-nadir effects, such as when a

dominant and specular lead is not in the nadir direction, may overlay clear leads or thin-ice radar echoes, which hence prevents

a clear identification, in particular if the lead or thin-ice surface is very small, i.e. less then 1% of the illuminated surface

(Drinkwater, 1991). These off-nadir effects can become noticeable in the waveform by the appearance of further dominant

peaks in the backscatter signal, which later can lead to deviations in the height determination if a retracking algorithm specially240

modified for this problem is not used (see e.g. Quartly et al. (2019)). Since the observations are very close together in time,

differences due to ice movement or over-freezing can be excluded.

A visual comparison between MODIS TIT estimates and thin-ice assigned CryoSat-2 radar echoes are provided by Figure 5.

Both sets of images are recorded in January 2014 and 2017, respectively. White areas in the North indicate either a lack of

data due to present cloud cover or an ice-thickness estimate above 25 cm. Towards the South, thin-ice areas are bounded by245

either the coast line and/or the extensive presence of landfast sea ice (Preußer et al., 2019; Selyuzhenok et al., 2015; Dmitrenko

et al., 2005). Northwards, leaving the respective coast-line or fast-ice edges, MODIS TIT features a rather steady increase.

The respective CryoSat-2 classification generally agrees with respect to the MODIS TIT, showing primarily lead and thin-ice

classifications. Qualitatively, the respective classifications appear within expectations, in particular with lead classifications

close to the coast-line or fast-ice associated ice edge in the South where the sea ice is thinnest and thin-ice classifications250

further North, where MODIS features thicker thin-ice estimates (see Figure 5, c,d). However, in most cases a direct distinction

between thicker sea-ice and thin-ice areas is not possible due to the coarse pixel resolution of MODIS and the variability of ice

thickness within a MODIS pixel in comparison to CryoSat-2 which leads to the fact that one MODIS TIT pixel can contain up

to 3 CryoSat-2 observations. Nevertheless, a general connection between thin-ice-labeled radar returns in the direct vicinity of

thin sea-ice can be recognized. This relationship is investigated more deeply using the full MODIS database.255

Figure 6 displays a CryoSat-2, MODIS, and Sentinel-1A comparison from 01 March 2018 featuring acquisition time gaps

less than 17 minutes (more details can be found in the Appendix). This gives the very rare opportunity to analyse observations

of all three sensors within a 30 minutes time frame. It shows the different behaviour and dependencies of optical and microwave
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Figure 4. Examples of classified CryoSat-2 observations versus HH-polarized Sentinel-1B (a,b) and Sentinel-1A (c,d) snapshots from Febru-

ary 2018 with acquisition time gaps of about 2 minutes and 1 minute, respectively. Orange markers show thin-ice classifications. Leads are

labeled in cyan, sea ice in yellow. Figures are north-oriented.

sensors with respect to different sea-ice surfaces and their physical properties (e.g. surface roughness). The scene shows very

thin-ice close to the landfast-ice edge near Taimyr in the Northeastern part of the Laptev-Sea region (Dmitrenko et al., 2005;260

Selyuzhenok et al., 2015). The polynya observed by MODIS appears very bright in the SAR image and is likely caused

by a high sea-ice surface roughness, potentially due to, e.g., the presence of frost flowers (Hollands and Dierking, 2016;

Dierking W., 2013) or surface waves. In contrast to the impact this has on the side-looking SAR, the increase in diffuse

surface scattering results in a wider waveform with smaller peak power for the nadir-looking CryoSat-2. We note here, that

this change in waveform properties can be caused by a change in roughness at radar wavelength scale or large scales, e.g. by265
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Figure 5. Examples of classified CryoSat-2 observations versus MODIS TIT acquired in January, 2014 (a,b) and January, 2017 (c,d), respec-

tively. The left side shows an overview, whereas a detailed view, indicated by the purple rectangle, is given on the right side. Orange markers

show thin-ice classifications. Leads are labeled in cyan, sea ice in yellow. Figures are north-oriented.

ice deformation. It is unlikely that larger areas covered solely by thin sheet ice have significant surface height variability nor a

considerable snow layer. It has been shown by Landy et al. (2020) that the increase of radar scale roughness can significantly

affect CryoSat-2 waveform shape even for comparably flat surfaces when incoherent backscatter from radar scale roughness

is taken into account. This effect may be so pronounced that several waveforms are assigned to the sea ice category in an area

where the SAR image indicates the presence of thin ice only. However, the low backscatter region to the Southeast (dark in270
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Figure 6. Examples of classified CryoSat-2 observations versus MODIS TIT (a) and Sentinel-1A SAR (b) for the same location within a

time gap of 7 minutes (MODIS) and 24 minutes (Sentinel-1A) w.r.t CryoSat-2, respectively. Orange markers show thin-ice classifications.

Leads are labeled in cyan, sea ice in yellow. Red dots indicate undefined classification. Figures are north-oriented.

the SAR image) featuring very thin ice are labeled correctly again as lead. While the CryoSat-2 unsupervised classification

performs in general well, it was primarily developed to identify open water within sea-ice conditions. Hence, a clear distinction

between thin and thick sea ice is not always possible due to a high variability of surface roughness of thin-ice. This comparison

showcases how substantially the sea-ice surface can vary within small spatial scales but at the same time the potential and

synergies for sea-ice investigations that lies within these multi-sensor collocations.275

4.2 Quantitative analysis

For the quantitative analysis, a total of about 21300 CryoSat-2 observations are compared with MODIS TIT observations in

the Laptev Sea for the winter months January through March between 2011 and 2020. This corresponds to about 4 % of the

theoretically available matched MODIS vs. CryoSat-2 along-track observations (total circa: 540,000). The small percentage of

matches used is explained by 1) the frequent presence of cloud cover in the Arctic, as well as 2) the availability of large flaw280

polynya openings with corresponding thin-ice surfaces, which occur near the landfast sea-ice edge.

In total, 14 % of all 21300 classifications were assigned to thin-ice surfaces and 1 % to leads. The largest proportion is

attributed to thicker sea-ice (85 %). With respect to valid overlaps (i.e. MODIS pixels with TIT information), about 51 % of

CryoSat-2 classifications are assigned to open water and thin-ice, while 45 % are assigned to other sea-ice types. Remaining

waveforms are marked as "undefined", e.g., due to the influence of land or instrument errors.285
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Besides a comparison of the CryoSat-2 classification results and the TIT from MODIS, the relationship between waveform-

derived backscatter power as well as other waveform-shape properties and different TIT categories is of peculiar interest.

Therefore, the TIT data from MODIS is grouped into intervals of ±2 cm from 4 cm to 25 cm. These groups are then compared

to corresponding CryoSat-2 radar waveforms, in particular, with the six waveform-derived features used in the classification

and two additional waveform parameters (i.e. LEW and LEP) listed in Section 3.1.290

Figure 7 shows the per-bin averages of the 8 waveform features with their respective standard deviations indicated as gray

bars in the background. The Pearson linear correlation coefficients with respect to the ice thickness are listed in the Appendix

(Table A3). With the exception of LES, there is a linear (or close to linear) dependency present w.r.t. an increasing TIT. This is

especially evident in waveform features MP, Wwidth, and TES that are intended to characterize single-peak waveforms (e.g.

radar reflections by a lead). Despite a very large standard deviation in the thinner ice-class bins, an increase with rising ice295

thickness is a physically explainable behaviour. In general, a rougher surface corresponds to an increase of surface scattering

resulting in a diminishing return back to the sensor and at the same time an increase of received off-nadir scattering by the

sensor. This leads to a broadening of the received waveform as well as a drop in maximum waveform power (e.g. Drinkwater,

1991; Laxon, 1994) and, therefore, to the observed negative correlation with MP (-0.97) and the positive correlations with TES

(0.94) and Wwidth (0.99). In the case of LES, which is the number of bins between the first waveform bin reaching 12.5 % and300

the bin of the waveform’s MP (Dettmering et al., 2018), a linear relationship cannot be spotted. This might be due to a larger

uncertainty associated with the first two TIT bins and their in general lower occurrence rates compared the thicker thin-ice

bins or higher uncertainties in the LES processing related to very steep leading edges. Only the latter part, starting with the

±12 cm bin features the expected behaviour. The remaining four waveform features, i.e., Wdecay, WfitMAD, LEW, and LWP,

feature an apparent correlation, however, it is less clear than the ones we observed with MP, Wwidth, and TES. Similar to TES,305

physically one would expect a slower/smaller decay with an increase in surface roughness and therefore sea-ice thickness as

well as an increase in the width of the leading edge (LEW, Landy et al., 2019) from thinner to thicker ice classes. In contrast,

the LEP is expected to decrease with an increasing LEW going along with an increase surface roughness. The mean-absolute

deviation from the exponential fit to the waveforms is also decreasing for broader waveforms that result from addition received

backscatter from off-nadir areas due to an increased surface roughness leading to a strong negative correlation of -0.97.310

Nevertheless, this comparison provides information on how different thin-ice scenarios affect the altimeter waveform. The

shown dependencies between TIT and derived waveform parameters can be used, e.g., to adapt and optimize altimeter wave-

form classifiers to thin-ice conditions and subsequently improve the sea-ice freeboard estimation in areas of frequently present

thin ice.

4.3 Classification Comparison315

We compare the surface type classification with the CryoSat-2 surface classification described in Paul et al. (2018) to assess

how thin-ice-class waveforms are represented in other CryoSat-2 based products. The classification by Paul et al. (2018) was

developed for the CryoSat-2 contribution to the sea-ice-thickness data record of the ESA Climate Change Initative (Hendricks

et al., 2018), hereafter named CCI classification. The algorithm is also used in the AWI CryoSat-2 sea-ice product v2.4 (Hen-
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Figure 7. Waveform-derived shape and power features from unsupervised classification plus two external features Leading-Edge-Width

(LEW; Hendricks et al. (2021)), Leading-Edge-Peakiness (LEP; Ricker et al. (2014)) with respect to different TIT categories. Shown are the

averaged feature values (blue dotted circles) and the corresponding standard derivation (gray bar) per TIT groups of ±2 cm from 2 to 25cm.

Abbreviations of waveform features used in classification are explained in Figure 2

.

dricks et al., 2021) which provides the necessary temporal coverage for this study. We use Level-2 intermediate (l2i) data,320

which provides the surface-type flag for full resolution orbit data for the months of October through April from November

2010 to April 2021 for the Arctic Laptev sea regions (Figure 1). The flags in the l2i files are based on monthly thresholds for

the backscatter coefficient sigma0, the LEW, and pulse peakiness as well as supported by sea-ice-concentration data (OSI-450

and OSI-430-b of the Ocean and Sea Ice Satellite Application Facility; OSI SAF (2020)) as sea-ice mask. The surface types

used in Paul et al. (2018) are comparable to this study except for the missing thin-ice class and the fact that the ocean-waveform325

classification solely depends on the sea-ice mask and existing land/ocean flags.

The surface-type classification is based on approximately 26.5 million waveforms. The CCI classification lists 50.2 % of

these in the sea ice category, 10.9 % in the lead category, 38.7 % in the unknown, and less then 0.1 % in the ocean category

(Figure 8a). Compared to the CCI classification, the unsupervised waveform classification algorithm (UWC) of this study has

more sea ice (79.7 %, +29.2 %) and ocean (3.9 %, +3.89 %) waveform, as well as less lead-type (1.9 %, -9 %) and unknown330

waveforms (1.4 %, -37.3 %) in addition to the 13.0 % thin-ice waveforms (Figure 8b). The classification matrix (Figure 8c)

shows that the UWC thin-ice waveforms are mostly distributed in CCI unknown (46.3 %) and CCI lead (53.4 %) surface types
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Figure 8. Surface-type-classification statistics of CryoSat-2 data for the Arctic Laptev Sea region (Figure 1) for a) the ESA Climate Change

Initiative (CCI) algorithm described in Paul et al. (2018), b) the unsupervised waveform classification (UWC) of this study and c) the

classification matrix. The color coding of the classification matrix and upper percent values describes the distribution of UWC classes within

CCI classes for each class combination. The lower percent values describes the fraction of the total number of waveforms in the comparison

(> 26 million) in class combinations. The CCI surface type classification does not contain a thin ice class.

with a negligible contribution of CCI sea-ice waveforms (0.3 %). UWC lead classifications are almost exclusively (96.8 %) in

the CCI lead class, showing a good agreement in the identification of open-water leads. UWC sea-ice classification also has

a good agreement with CCI sea-ice classifications (61.9 %) but also include waveforms the CCI algorithm labels as unknown335

(35.6 %).
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Between the two surface type classifications algorithms, the UWC results in far fewer unknown waveforms than the CCI

algorithm and, thus, provides more usable information for sea-ice freeboard and thickness retrieval. The distinction of leads

and thin ice by the UWC algorithm, which are partly seen as leads in the CCI algorithm, reduces the number of sea-surface

height observations, but increases their reliability. It should be noted that we define a lead here in the sense of satellite altimetry340

as an open-water lead, which provides a true sea-surface-height observation without any bias introduced by thin-ice freeboard.

The sea-ice thickness bias introduced by using thin-ice freeboard as sea-surface height on the surrounding sea ice is in the

order of the TIT itself and with a maximum of 25 cm a significant fraction of typical first-year ice thickness. The fact that the

CCI algorithm labels a significant portion of the UWC thin-ice waveforms as unknown, demonstrates that these were rightfully

exluded from either lead or sea-ice class. The latter sea-ice class is treated as an ice surface, for which range corrections for the345

full climatological snow cover are applied, which would also result in range biases. The distinction between open-water lead

and thin-ice classes, therefore, introduces the possibility to improve both the sea-surface height and radar freeboard retrieval.

Finally, it must be noted that the official definition of the World Meteorological Organisation (WMO) for the term lead

includes thin ice with a thickness of up to 30 cm (WMO, 2014). To obtain lead fractions according the WMO definition, or to

compare lead fractions with other remote sensing data, the thin-ice class may be added to the open-water lead class.350

5 Summary and outlook

In the context of an increasing number of open-water areas and sea-ice thinning, which have a major impact on the energy

exchange between the atmosphere, the upper-ocean layer and on sea-ice dynamics in the Arctic Ocean (e.g. Persson and

Vihma (2017)), this study investigated the thin-ice detection capabilities of CryoSat-2 through comparison of altimetry-derived

thin-ice surface detections and TIT information from MODIS thermal-infrared imagery. In addition, the study benefits from355

spatially and temporally consistent comparisons of three different remote-sensing techniques for continuous monitoring of the

Arctic Ocean.

An unsupervised waveform classification approach (Dettmering et al., 2018; Müller et al., 2017), mainly developed to

identify open-water targets such as leads and polynyas within the otherwise ice-covered ocean, is adopted to distinguish thin-

ice from water and thicker ice. Here, waveform clusters have been assigned to be of thin-ice type due to their resemblance to360

lead-type CryoSat-2 waveform echoes, but with less distinctness. These labeled CryoSat-2 observations are compared to thin-

ice estimates up to 25 cm of thickness derived from MODIS thermal-imagery (Paul et al., 2015), to Sentinel-1 SAR images as

well as to an external classification approach (Paul et al., 2018; Hendricks et al., 2021).

A visual comparison shows good agreement between the classified CryoSat-2 altimeter data and both the Sentinel-1A/B

SAR images as well as the MODIS-derived thin-ice areas despite different spatial resolutions as well as the varying delay in365

acquisition times between all sensors. However, especially the interpretation of the SAR images without ground-truth validation

can be challenging in thin-ice areas due to a large variety of present surface conditions ranging from smooth or slushy areas

(with low backscatter returns) to areas covered with frost flowers (with high backscatter returns). The latter also affects the

CryoSat-2 radar reflections, since higher surface roughness conditions result in a more sea-ice-like waveform shape with

17



increased noise, higher variability and weaker peak power as well as less peakiness. This potentially results in a sea-ice group370

assignment. Despite the substantial difference in spatial resolution between CryoSat-2 and MODIS, the majority of lead and

thin-ice assigned CryoSat-2 observations are located in regions with very thin thin-ice. In case of SAR data, CryoSat-2 can

help to bring thin-ice and lead-type information to a larger scale without the need to deal with substantial amounts of data and

complicated processing chains. With regards to MODIS, the CryoSat-2 thin-ice and lead-type can help to identify sub-pixel

scale information from MODIS that results from spectral mixing of different surfaces within a single pixel.375

A quantitative comparison of CryoSat-2 waveform-derived shape and power features and MODIS-derived TIT shows a

strong linear dependency with increasing TIT, a finding that can be exploited for directly estimating sea-ice thickness in a

thickness regime where the freeboard-based approach lacks sensitivity. At a minimum it brings the opportunity to use this in-

formation for adjusting retracker algorithms, such as for example the Threshold First Maximum Retracker Algorithm (TFMRA,

Helm et al. (2014)) to thin-ice conditions and to modify assumptions of snow cover in these cases. It is also feasible that the380

obtained information can help to develop a correction term for altimeter ranges for thin-ice waveforms based on the estimated

thickness and well-known density of young sea ice for precise sea-level estimation in thin-ice leads and open-water leads

alike. Moreover, to enable further Arctic climate-relevant investigations using altimetry data the presented classification of

thin-ice can be extended to the entire Arctic Ocean including its peripheral seas and marginal ice zone to produce maps of

altimetry-derived thin-ice coverage.385
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Appendix A

Figure A1. MODIS ice-surface temperature (IST in K; a) and its associated thin-ice thickness (TIT; b) between 0m and 0.25m, SMOS

sea-ice thickness (Tian-Kunze et al., 2014) between 0m and 1.5m (c) as well as between 0m and 0.25m (d), respectively. A green rectangle

highlights the remaining thin-ice areas in d. Image data acquired on 05-03-2011 as shown in Figure 3 with a different colormap.

Table A1: Shown MODIS scenes in Figure 5 and Figure 6, record date and time difference (∆ t) to CryoSat-2 observations in

minutes (absolute value).

MODIS ID Record date ∆ t [min]
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MOD03.A2014022.1250.061.2017308004553 2014-01-22 8.5

MYD03.A2017031.1730.061.2018029032056 2017-01-31 9.3

MYD03.A2018060.2300.061.2018061160404 2018-03-01 6.9

Table A2: Shown SAR images in Figure 4 and Figure 6, record date and time difference (∆ t) to CryoSat-2 observations in

minutes (absolute value).

SAR image ID Record date ∆ t [min]

S1B_EW_GRDM_1SDH_20180211T231533_20180211T231633_009582_01143A_7062 2018-02-11 1

S1A_EW_GRDM_1SDH_20180218T221829_20180218T221929_020667_02365D_58AE 2018-02-18 2

S1A_EW_GRDM_1SDH_20180301T231607_20180301T231707_020828_023B73_E32D 2018-03-01 24

Table A3. Pearson linear correlation coefficients between features and thin-ice thickness (Figure 7). Features: Maximum Power (MP), Wave-

form Width (Wwidth), LES (Leading-Edge Slope), TES (Trailing-Edge Slope), Wdecay (Waveform decay), WfitMAD (median absolute

deviation of fitted waveform), LEW (Leading-Edge-Width, LEP (Leading-Edge-Peakiness)

Feature MP Wwidth LES TES Wdecay WfitMAD LEW LEP

Correlation -0.96 0.99 0.30 0.94 0.94 -0.97 0.92 -0.94
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