
 

Anonymous Referee #1 Received and published: 04 July 2022 

 

We thank the Reviewer for the careful and constructive comments. The suggestions and corrections 

have greatly improved the quality of this manuscript.  

 

 
Monitoring Arctic thin ice: A comparison between Cryosat-2 SAR altimetry data and 
MODIS thermal-infrared imagery  

Felix L. Müller, Stephan Paul, Stefan Hendricks, and Denise Dettmering  

4 July 2022  

General comments  

The authors have conducted a study which is related to on-going development of sea ice thickness 
(SIT) retrieval algorithms for CryoSat-2 (CS2) radar altimeter. They modified an existing  
unsupervised CS2 waveform classification (UWC) method by Müller et al. (2017) to include thin ice 
class as an additional output (previous sea ice class in now divided into sea ice and thin ice classes). 
The new UWC was applied to the CS2 data over the Laptev Sea region (as shown in Figure 1) for the 
winter months Jan-Mar in 2011-2020. The C2 classification results were compared to MODIS thin ice 
thickness (TIT; max 25 cm) swath charts (in total 161), few Sentinel-1 (S-1) SAR images. SMOS SIT 
charts, and to ESA CCI CS2 surface classification product which does not have thin ice class. The 
comparisons are conducted by visual and quantitative analyses. The results  suggest (as summarized 
in Abstract) that there is possibility to either develop simple correction  terms for CS2 ranges over 
thin ice or to directly adjust current retracker algorithms specifically to  very thin sea ice. Further, the 
new UWC can rather reliably discriminate between sea ice, open water leads, and thin ice within 
recently refrozen leads or mere areas of thin sea ice. The new UWC surface type classification should 
be better for freeboard and SIT retrieval than the current ESA CCI CS2 product, e.g. the new UWC 
gives much less unknown surface type classifications. It may be possible, after further developments, 
to estimate SIT of thin ice based on the CS2 waveform data (freeboard methods lacks sensitivity to 
very small freeeboards of thin ice).  

I think the study set up with data acquisitions and data processing is sound, as are methods for the data 
analyses. However, I think there are some room for improvements, and in the following I have some 
general questions and comments, followed by miscellaneous specific ones.  

First, the you should clearly define in the Abstract and Introduction what you mean by ‘thin ice’, 
what is the maximum assumed thickness for it? I think it is not good to use term ‘young ice’ in this 
context, as in the WMO sea ice nomenclature it is a sea ice class with 10-30 cm thickness.  

In accordance with a comment by Reviewer 2 we changed the abstract (L6) to read: 

“Here, strong linear dependencies are found between binned thin-ice thicknesses up to 25cm 

thickness  from MODIS and the CryoSat-2 waveform shape parameters that show the possibility to 

either develop simple correction terms for altimeter ranges over thin ice or to directly adjust current 

retracker algorithms specifically to very thin sea ice.” 

Furthermore, we added also in accordance with a reply to Reviewer 2 L38 to read: 

“For correct sea-ice classifications, the small freeboard values of thin ice (here defined as sea ice 

with a thickness up to 25 cm) are often lower than the precision of even the later synthetic aperture 

radar (SAR) altimeter sensors.” 



 

We agree with the misleading use of ‘young ice’ and changed all occurrences to ‘thin ice’ used with 

the provided range description above. 

All the used datasets should be presented under Dataset Section, this is not the case now for SMOS  

SIT data and the ESA CCI product, e.g. the ESA CCI product is now described in Section 4.3.  

It is true that the SMOS dataset is not mentioned in the datasets. We would like to focus intentionally 
on Cryosat-2, MODIS and Sentinel-1, since these data were mainly used. In the case of SMOS, a 
ready-made data product was used. The dataset was taken unchanged as a basis for comparison and is 
therefore well documented and referenced, whereas in the case of Cryosat-2, MODIS and Sentinel-1 
observations had to go through various pre-processing steps. 

The sources of all datasets (including SMOS) are listed in “data availability” at the end of the paper. 

The discussion on thin ice remote sensing methods in Introduction is quite brief and should be 
expanded. This can focus on altimeter data based studies and methods, but it is good to discuss also  
other ones, e.g. discussion on high frequency radiometer data based thin ice detection is very brief,  
there have be many studies on recent years, see e.g.:  

K. I. Ohshima, S. Nihashi, and K. Iwamoto, “Global view of sea-ice production in polynyas and its linkage to dense/bottom water 
formation,” Geosci. Lett., vol. 3, no. 1, p. 13, 2016.  

K. Nakata, K. I. Ohshima, and S. Nihashi, “Estimation of thin-ice thickness and discrimination of ice type from AMSR-E passive 
microwave data,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 1, pp. 263–276, Aug. 2019.  

K. Nakata, K. I. Ohshima, and S. Nihashi, “Mapping of active frazil for Antarctic coastal polynyas, with an estimation of sea-ice 
production,” Geophys. Res. Lett., vol. 48, no. 6, Mar. 2021, Art. no. e2020GL091353.  

First study about frazil ice monitoring.  

We thank the reviewer for her/his suggestions. Our clear intention is to focus on the altimetry part as 
was also pointed out by the reviewer and, therefore, limit our discussion of other approaches. 
Nevertheless, we already included a wide variety of other studies using several different sensor types 
in L19/20. Moreover, since we focus primarily on the Arctic Ocean, we decided against including 
Antarctic example studies. 

It is nice that the authors are also using S-1 SAR imagery as reference data, but only with visual 
analysis. Currently, there are many automatic S-1 SAR sea ice classification algorithms available, e.g. 
this one especially for lead detection: 

1  
Murashkin et al., Method for detection of leads from Sentinel-1 SAR images, Annals of Glaciology (2018),  doi: 10.1017/aog.2018.6  

This algorithm was developed at UB and AWI, so maybe the authors have access to it? At least lead 
detection by SAR should be briefly discussed. See also S-1 SAR sea ice classification studies, e.g.:  

Park, J.-W., Korosov, A. A., Babiker, M., Won, J.-S., Hansen, M. W., and Kim, H.-C.: Classification of sea  ice types in Sentinel-1 
synthetic aperture radar images, The Cryosphere, 14, 2629–2645,  https://doi.org/10.5194/tc-14-2629-2020, 2020.  

Boulze, H.; Korosov, A.; Brajard, J. Classification of Sea Ice Types in Sentinel-1 SAR Data Using Convolutional Neural Networks. 
Remote Sens. 2020, 12, 2165. https://doi.org/10.3390/rs12132165  

Previous altimeter lead/thin ice detection studies should also be discussed in more detail, their methods 
and results summarized, and later to compare the methods/results of this study to the previous ones, 
maybe it would be good to add Discussion Section. Some previous related studies:  

Lee et al., Arctic lead detection using a waveform mixture algorithm from CryoSat-2 data, The Cryosphere, 12, 1665–1679, 2018, 
https://doi.org/10.5194/tc-12-1665-2018  

N. Longépé et al., "Comparative Evaluation of Sea Ice Lead Detection Based on SAR Imagery and Altimeter  Data," in IEEE 
Transactions on Geoscience and Remote Sensing, vol. 57, no. 6, pp. 4050-4061, June 2019,  doi: 10.1109/TGRS.2018.2889519.  

Wernecke, A. and Kaleschke, L.: Lead detection in Arctic sea ice from CryoSat-2: quality assessment, lead area fraction and width 
distribution, The Cryosphere, 9, 1955–1968, https://doi.org/10.5194/tc-9-1955-2015, 2015  

In response to this comment, we have included some of the studies mentioned in the introduction. The 



 

manuscript has been supplemented accordingly: 

 

Numerous studies exist on the automatic detection of leads. These use altimeter data (Lee et al, 

Wernecke et al, Dettmering et al) or SAR images (Park). [...] However, none of the existing studies 

has yet attempted to detect thin-ice using satellite altimetry data. 

I guess their relevance to the study depends how ‘leads’ are defined in them, are they only open  water 
covered or also may have thin ice cover? In your CS2 UWC classification how you do define 
differences between classes ‘lead’ and ‘thin ice’? Your ‘lead’ has only open water surface, or could it 
also have few cm of thin ice coverage?  

In our case, leads are open water areas without a thin ice cover. We note that some definitions of leads 
may also include the presence of thin ice but for the purpose of satellite altimetry, a lead is a surface 
that allows us to observe sea surface height directly.  

You could shortly summarize in Introduction the comparison results from:  

Dettmering, D., Wynne, A., Müller, F. L., Passaro, M., and Seitz, F.: Lead Detection in Polar Oceans—A Comparison of Different 
Classification Methods for Cryosat-2 SAR Data, Remote Sensing, 10, https://doi.org/10.3390/rs10081190, 2018.  

 

We added this paper in the introduction (see above). However, we decided against giving a more 
detailed summary since this is outside the scope of this paper. 

 

It is understandable to you have a limited study region, and the Laptev Sea with recurring polynyas  
is good for it, but it would have been nice to see how your new UWC performs over some MIZ, like  
Barents Sea where large areas of thin ice may occur at the ice edge.  

We thank the reviewer for this suggestion. Indeed, it’s interesting to extend the thin ice investigations 
to MIZ. We take this as a suggestion for further analyses and add a sentence to the outlook section.  

Moreover, to enable further Arctic climate-relevant investigations using altimetry data the presented 
classification of thin-ice can be extended to the entire Arctic Ocean including its peripheral seas and 
marginal ice zone to produce maps of altimetry-derived thin-ice coverage.    

AWI conducts HEM flights over the western Arctic, would it be possible to include also HEM data to 
your study? It would give accurate data on the leads and thin ice, although temporal and spatial 
matching with CS2 tracks is likely a problem. You could discuss about this in Introduction, even in 
case the HEM data are not added.  

Airborne EM data sets do not have the extent, coverage or precision to be useful for our study. This 
comes on top of the reviewers correct assessment that colocation alone will be difficult. Our focus 
therefore remains on the MODIS data as reference for thin ice thicknesses.  

Did you investigate also using Sentinel-2 imagery as lead/thin ice reference data? It has been used in 
some sea ice studies, e.g. 

No, currently we’re not working with Sentinel-2 scenes due to the limited availability during the 
winter months and the fact that we are focusing on MODIS-derived thin-ice thickness. Moreover, 
the swath width of Sentinel-2 is very limited compared to Sentinel-1, which makes it quite difficult 
to find overlaps close in time. But of course, Sentinel-2 and the Landsat family provide highly 
resolved images of the current sea ice condition, which can be used in future investigations as a data 
source for visual comparisons. 

Muchow, M., Schmitt, A. U., and Kaleschke, L.: A lead-width distribution for Antarctic sea ice: a case study  for the Weddell Sea with 
high-resolution Sentinel-2 images, The Cryosphere, 15, 4527–4537,  https://doi.org/10.5194/tc-15-4527-2021, 2021.  

Petty, et al. (2021). Assessment of ICESat-2 sea ice surface classification with Sentinel-2 imagery:  Implications for freeboard and new 
estimates of lead and floe geometry. Earth and Space Science, 8,  e2020EA001491. https://doi. org/10.1029/2020EA001491  



 

Why did you not use the latest CS2 L1B baseline-E data? https://earth.esa.int/eogateway/news/new 
ice-baseline-e-and-near-real-time-processors 

We used the CS2 L1B D baseline because it is fully available for the entire mission duration of 
Cryosat-2 since 2010. Baseline E is the latest reprocessing, but only available for a few months and 
years and not complete. 
 
I have following questions on the MODIS data in Section 2.2 and MODIS TIT calculation in 
Section 3.2:  

How cloud masking is conducted? 

Only manual visual screening was conducted as the MODIS cloud mask tends to eliminate 

especially very thin ice areas (see. Paul and Huntemann, 2021; The Cryosphere). However, a similar 

product as detailed in the article is not yet available for the Arctic. 

Are both daytime and nighttime MODIS images used?  

Only night-time data is used. We clarified that in the text. 

Why did you not use the MOD29 product which has cloud masked IST?  

Following our reasoning above, this would potentially lead to thin-ice exclusions from our analysis 

due to the false-positive classifications of thin ice as cloud in the MODIS cloud mask product. 

Therefore, we calculated our own IST following the algorithm/user documents of the MOD29 

product. 

What ERA5 fields were used, hourly? If so then reference for this is:  

We thank the reviewer for pointing this out to us. Also with respect to a comment by Reviewer 2 we 

changed this line to clarify our use of hourly data and exchanged the provided reference. 

“These fields comprise the 2 m air temperature, the 10 m wind-speed components, the mean sea-

level pressure, and the 2 m dew-point temperature in hourly resolution.” 

H. Hersbach et al. (2018). ERA5 Hourly Data on Single Levels From 1979 to Present.  Copernicus Climate Change Service (C3S) 
Climate Data Store (CDS). Accessed: X. [Online].  Available: https://doi.org/10.24381/cds.adbb2d47  

Why did you not use ERA5 mean surface downward long-wave radiation flux? How it was now 
obtained?  

As outlined in the text, details to the retrieval algorithm are provided in Paul et al. (2015) to reduce 
redundancies. The retrieval of the surface downward long-wave radiation flux follows our 
established approach using an improved parametrization by Jin et al. (2006). Switching this up 
would the material for a dedicated future study and likely rise additional questions for this study. 

Jin, X., Barber, D., and Papakyriakou, T.: A new clear-sky downward longwave radiative flux 
parameterization for Arctic areas based on rawinsonde data, J. Geophys. Res., 111, D24104, 
doi:10.1029/2005JD007039, 2006. 

Is snow on thin ice neglected in the TIT calculation?  

Yes. This is one assumption in general for the retrieval of thin-ice thickness from MODIS in our and 

also other approaches and also outlined in, e.g., Paul et al (2015). 

MODIS TIT accuracy is given according to Adams et al. (2012), but is your TIT calculated exactly 
as in this paper? If not then their accuracy figure may not be valid for your TIT.  

We thank the reviewer for pointing this out to us. The reviewer is correct in his/her implied 
assumption that there were changes made between the study by Adams et al. (2012) and ours. 
Primarily the used atmospheric reanalysis changed from NCEP2 (Adams et al.) to ERA5 (this 
study). The provided uncertainty shall remain as an indicator for an uncertainty estimate, however, 
due to the improvements with reanalysis data, we would assume an overall better accuracy for the 



 

MODIS thin-ice retrieval compared to Adams et al.. Nonetheless, this would also be subject to a 
dedicated study and can not be provided within the scope of this study. 

We adjusted the text in the manuscript to read: 

“While no state-of-the-art uncertainty analysis is available for our combination of MODIS thin-ice 
retrieval with ERA5 atmospheric reanalysis, Adams et al. (2012) state an average uncertainty of 
±4.7 cm for ice thicknesses between 0.0 and 0.2 m using NCEP2 reanalysis (Kalnay et al., 1996), 
substantially increasing for larger thickness ranges” 

Your description of new UWC in Section 3.1 does not include any information on the weather 
conditions. Your study was conducted in winter conditions, but still is there any dependence on 
resulting clusters on the air temperature? Thin ice surface condition: slushy, dry, frost flowers etc., 
depend on the weather conditions. What was the air temp range in your study? Any above zero cases?  

From ERA5 2m air temperature data, the average temperatures for the study period and region is 
always well below freezing point as one would expect in winter (about 253K depending on the exact 
location; a). However, there are rare occasions of above freezing-point temperatures (about 1.6%; b) 
especially over land, but also near the coast over sea-ice/fast-ice areas. While certainly the surface 
conditions change under these conditions and impact the received returns for CryoSat-2, we consider 
the overall impact on the UWC negligible. 

 

You should summarize in Section 3.1 rules how the 25 clusters are classified to different surface 
classes, e.g. with table or flowchart. You could also show statistics and pdf’s of some features for 
different classes. In general, your description how clusters are classified is now very rough. 

We understand the reviewer's suggestion, however, all processing and assignment steps are included 
and described in detail in various publications and reports (see Müller et al., 2017, Dettmering et. al, 
2018, Passaro et al. 2020). This study is more about the application and extension of the already 
developed unsupervised classification approach than about the development of the classification itself, 
which has already been described with validation procedures in publications listed above. 

On backscattering mechanism discussion in lines 230-231 and 281-283: you should include discussion 
on the coherent vs. non-coherent scattering for radar altimeter. The coherent scattering is very high, 
increasing roughness decreases it quickly and non-coherent scattering due to roughness increases.  

We have added a description of the backscatter mechanisms for thin ice that in our view cause the 
increase in waveform width and decrease in peak power. We also added a reference (Landy et al., 
2020) where the reader can find more information on coherent and incoherent backscatter mechanism 
for sea ice radar altimetry. 

 
[...] We note here, that this change in waveform properties can be caused by a change 
roughness at radar wavelength scale or large scales, e.g. by ice deformation. It is unlikely 
that larger areas covered solely by thin sheet ice have significant surface height variability 
nor a considerable snow layer. But is has been shown by Landy et al., 2020 that the increase 
of radar scale roughness can significantly affect CryoSat-2 waveform shape even for 



 

comparably flat surfaces when  incoherent backscatter from radar scale roughness is taken 
into account. This effect may be so pronounced that several waveforms are assigned to the 
sea ice category in an area where the SAR image indicates the presence of thin ice only. 

 

In Section 4.2 Quantitative analysis the CS2 vs. MODIS comparison results should be presented also 
in a table/matrix format. Give also the accuracies for CS2 thin ice and thick ice classes against the 
MODIS TIT charts, and e.g. commission error or False Alarm Rate: percentage of MODIS thin ice 
pixels falsely classified as thick ice out of all MODIS thin ice pixels.  

The matrix is shown below with a categorization of MODIS thin ice thickness below or above 20 cm. 
There are indeed a considerable amount of sea ice classifications in areas indicated as thin ice by 
MODIS. But we need to consider that with CryoSat-2 and MODIS we are comparing two sensors with 
different resolution. An waveform classified as sea ice in a thin ice MODIS pixel is potentially a 
correct classification if there has been small sea ice parts present, or the situation changed between 
the MODIS and CryoSat-2 acquisitions. Specifying a commission error of False Alarm rate would 
neglect this uncertainty.   

We however decided to not add the matrix to the manuscript.  

 

Classes MODIS TIT MODIS TIT <=0.2 m 0.2 m < MODIS TIT 
<0.25 m 

∑ 

Ocean 0 0 0 

Lead/polynya 0.18 0.02 0.20 

Thin ice 0.20 0.10 0.30 

Sea ice 0.31 0.14 0.45 

undefined 0.04 0 0.04 

∑ 0.73 0.26 ~1 

Total sum observations: 213540 (only MODIS overlaps). 

It would be interesting to also see how CS2 thin ice classification works as a function of MODIS 
TIT, a similar investigation is now conducted for CS2 waveform features.  

This comment leads in the direction of the table shown in the comment above. In the present 
investigation we’re focusing on recently refrozen leads, with only a limited spatial extent compared 
to the spatial resolution of one MODIS pixel. Due to this resolution difference, there cannot be a 
direct pointwise and fair comparison between TIT and the UWC results. 
Moreover, the assignment process of the classes to surface types follows the principle of being able 
to recognize thin ice as reliably as possible. This leads to the fact that the percentage in the range 
<=20 cm between "Sea ice" and "Thin ice" is very similar or the sea ice detections predominate. 

In Summary and outlook Section: “This fact brings the future task to check further waveform 
clusters regarding possible thin-ice detections.”  

What this exactly means, that you are not sure yet what surface classes all your 25 clusters really 
represent? If not then you should conduct further studies already in this paper.  

This sentence is meant that we can detect the prominent waveforms representing thin ice as such. 
The aim is to safely classify thin ice. However, we do not know to what extent influences of wind 
and waves during thin ice conditions can possibly extend to other waveform clusters.  

This is a suggestion for a possible future investigation, but goes beyond the scope of the current 
investigation. It is likely that the current investigation would have to be extended to the entire Arctic 
to be able to use or observe sufficient thin-ice conditions in this way. The sentence stands for the 



 

still open questions and possibilities which the classification might offers.  

 

Spesific comments  

Abstract  

“The ESA Climate Change Initiative’s (CCI) surface-type classification”  

You should mention that this is also based on the CS2 data, and that it does not have thin ice 
class. 

Agreed and changed. 

“[...] the basic ESA Climate Change Initiative’s (CCI) CryoSat-2 surface-type classification with 

classes ‘sea ice’, ‘lead’, and ‘unknown’ [...]” 

 

1. Introduction  

Page 1, line 21: “However, the resulting data sets are generally bound to an upper sea-ice thickness 
limit in their retrieval capabilities as well as methodological limitations (e.g. cloud cover presence 
when using thermal-infrared data”  

It would be good to mention here also the effect of snow cover.  

We added “snow cover” as an example. 

l. 27: “However, studies suggest a higher uncertainty towards thinner sea-ice (Ricker et al., 

2017).” Please give the current ‘accurate’ SIT retrieval range of CS2.  

Sea ice thickness uncertainty in absolute terms is lower for thin ice than for thicker sea ice, since 

the considerable impact of sea ice density uncertainty is almost linear related to freeboard. For thin 

ice, the uncertainty component of the snow mass is more important. This leads to a significant 

increase in relative uncertainty though, as described in Ricker et al., (2017). The exact limit of 

'accurate SIT retrieval range' does depend on the specific definition of accuracy and the exact 

choice of radar altimeter processing and auxiliary data sets. No universal number can or should be 

given. This study also has a focus on surface-type classification and not freeboard retrieval or 

freeboard to thickness conversion. Interested readers are directed to the respective Ricker et al. 

(2017) paper. 

 

In the CS2 SIT retrieval discussion you could also mention the effect of snow salinity, decreases 
penetration depth:  

 

Nandan, V., et al. (2017). Effect of snow salinity on CryoSat-2 Arctic first-year sea ice freeboard measurements. Geophysical 
Research Letters, 44. https://doi.org/10.1002/2017GL074506  

We thank the reviewer for pointing this out to us. This is a general issue on the altimetry retrieval but 
not necessarily limited to thin ice which we would like to focus on in this section of the manuscript. 

 

l. 48: “While information on the presence of thin-ice areas is important for our understanding on sea-
ice mass balance changes, there is currently only a single operational thin-ice data product available 
due to the above-mentioned short-comings and limitations.”  

JAXA has AMSR2 based operational research product “Detection of thin sea ice”, see  
https://suzaku.eorc.jaxa.jp/GCOM_W/data/data_w_product-3.html  



 

We thank the reviewer for pointing this out to us. We were not aware of this product. However, 
from what information is provided by the given link, this product covers only 3 marginal Arctic seas 
and not the Arctic basin what we would aim for in the future using a thin-ice aware CryoSat-2 data 
product. 

To highlight this, we changed the above line to read: 

“[...] there is currently only a single operational Arctic-wide thin-ice data product available [...]” 

l. 52: “This method is limited for thicker sea ice and thus data fusion of SMOS and CryoSat-2 using 
Optimal Interpolation”  

Give the maximum SIT for an ‘accurate’ SMOS SIT estimation, in papers by Kaleschke and  
Tian-Kunze et al.  

In Ricker et al. (2017), the authors draw the line at 1m of ice thickness as there the SMOS retrieval 
loses its sensitivity while the opposite is true for CryoSat-2. 

We added this information to the mentioned line. 

Ricker, R., Hendricks, S., Kaleschke, L., Tian-Kunze, X., King, J., and Haas, C.: A weekly Arctic 
sea-ice thickness data record from merged CryoSat-2 and SMOS satellite data, The Cryosphere, 11, 
1607–1623, https://doi.org/10.5194/tc-11-1607-2017, 2017. 

l. 56: “In this study, the authors utilize Delay-Doppler radar altimeter echoes from ESA’s Earth  
Explorer mission CryoSat-2 in combination with the capabilities of NASA’s Moderate Resolution  
Imaging Spectroradiometer (MODIS) to monitor thin ice with a high spatial-temporal resolution.”  

To my understanding MODIS TIT data is used for comparison, and not in combination with CS2 
for thin ice monitoring.  

We thank the reviewer again for pointing this out to us as it was phrased indeed misleadingly. 
We changed it to read: 

“[...]  Moderate Resolution Imaging Spectroradiometer (MODIS) to enable future monitoring of 
thin ice with a high spatial-temporal resolution.” 

l. 62: “flaw and coastal polynyas”  

Describe shortly what these are; good general info for readers.  

We changed the line to read: 

“[...] Arctic Laptev-Sea region featuring frequent occurrences of flaw and coastal polynyas, i.e., 

polynyas bound to fast ice or the coast, respectively.” 

 

2. Dataset  

Or Datasets and their processing?  

We thank the reviewer for this suggestion and change “Dataset” to “Data sets and pre-processing”. 

l. 87: “ESA Cryosat-2 Product Handbook (https://earth.esa.int/eogateway/documents/20142/37627/ 
CryoSat-Baseline-D-Product-Handbook.pdf/c76df710-2a5c-c8b8-00c1-13c8db0e9f51,”  

Make this as reference.  

We treated the link of the handbook like it was treated in Meloni et. al, 2020, 

https://tc.copernicus.org/articles/14/1889/2020/. However, we also think it’s better to have it in the 

bibliography. We changed that. 

l. 97: “2009). Subsequently, the sea-ice-surface temperature (IST) was computed following Riggs 
and Hall (2015).”  



 

Original reference for MODIS IST is:  

Hall, D.; Key, J.; Casey, K.; Riggs, G.; Cavalieri, D. Sea ice surface temperature product from MODIS. 
IEEE Trans. Geosci. Remote Sens. 2004, 42, 1076–1087.  

We appreciate the hint but we would stick with the given reference to the MODIS Sea Ice Products 
User Guide to Collection 6 which is what we actually used to calculate the IST with the state-of-
the-art parameters used by the NSIDC. 

In your discussion of S-1 SAR backscatter signatures for leads a good reference is:  

Murashkin et al., Method for detection of leads from Sentinel-1 SAR images, Annals of Glaciology (2018),  

doi: 10.1017/aog.2018.6 which discusses about dark and bright leads. This paper could also be as your 
basis for visual lead identification in the SAR imagery (if you keep doing so, and not applying some 
automatic method).  
 
We thank the reviewer for this interesting study. We added the reference to chapter 2.3. 

Give the total number of S-1 SAR images used in your study.  

We are not quite sure what the deeper meaning of this comment is. The S-1 SAR images are used 
for visual comparisons only; no systematic studies were performed as we focus on analyses using 
MODIS-derived thin-ice thickness. 

The SAR images shown in the manuscript are the best way to demonstrate the functionality of 
unsupervised classification and thin ice detection. The number of images generally depends on the 
availability of the two missions and the number of comparison points. Often there is no overlap in 
the image area or only minimal common overlap areas. At the same time, of course, the selected 
study period and area forms a further limitation.  

In terms of temporal and spatial constraints, 508 S-1A/B images are theoretically available. With the 
addition of a maximum observation gap of 30 minutes, 52 scenes remain, which were filtered again 
with respect to vividness and available overlap points. In the end, this results in a number of 8 
examples. 

We added a sentence to manuscript and changed text parts of section 2.3. 

For an improved understanding of the CryoSat-2/MODIS comparison the authors utilize images 
from the side-looking ESA Copernicus C-Band SAR missions Sentinel-1A and B (S1-A/B). For a 
better understanding of the CryoSat-2/MODIS comparison, images from the side-looking ESA 
Copernicus C-Band SAR missions Sentinel-1A and B (S1-A/B) are used for a visual comparison 
since they are unaffected by cloud cover. All acquired S1-A/B scenes were used for additional visual 
comparison as they are unaffected by cloud cover. […] In terms of study area and period, the S-
1A/B image pool represents a theoretical size of approximately 500 scenes. 

Furthermore, we add a sentence to chapter 3 (methods): 

After setting a maximum permissible acquisition time difference between Cryosat-2 and Sentinel-
1A/B, the number of possible SAR images is reduced to 52. Other limiting factors concern the actual 
number of overlap points in the image area. The images shown in Section 4.1 correspond to 
examples with a very good overlap and different surface conditions. 

l. 117: “The images are ground-range detected and show a pixel resolution of 40m and a swath 
width of 400km.”  

The pixel size is 40 by 40 m, and spatial resolution is close 100 m depending on range.  

We added the information.  

l. 118: “The images are processed using the SNAP - ESA Sentinel Application Platform v8.0, 
(http://step.esa.int) following the processing steps described in Müller et al. (2017) and Passaro et  
al. (2018b), but with an additional speckle filtering.”  



 

Please summarize these processing steps. 

The processing steps are very well summarized and described in the provided references (Müller et 

al., 2017 and Passaro et al., 2018b). We want to keep the manuscript short with focus on the shown 

applications and investigations. Nevertheless, we add a sentence to chapter 2.3. 

[…] Briefly summarized, the main processing steps follow standard routines (e.g. radiometric 

calibration, speckle filtering, map projections etc.). 

3. Methods  

l. 129: “The MODIS comparison database used includes 161 scenes, which corresponds to an altimetry 
dataset of about 21300 Cryosat-2 observations (MODIS scenes and their time difference from the 
Cryosat-2 observations are given out in a list upon request).”  

What is the spatial resolution of these CS-2 observations? Just the area for one CS2 waveform? 
And there can be several waveforms within one 1 km MODIS IST pixel?  

Since satellite altimetry is a height point measurement method, there is no direct area resolution 
as for example with side-looking SAR sensors. We used the 20Hz CS2 SAR dataset, which 
corresponds to an observation interval of about 300 meters, depending on latitude and surface 
conditions. The across-track footprint size is given by 1.65km. This means there might be up to 3 
CS2 observations in one MODIS TIT pixel.  

We add a sentence in chapter 4.1 (visual comparison): 

[…] Which leads to the fact that on one MODIS TIT pixel can fall up to 3 Cryosat-2 
observations […] 

l. 137: spell out LRM acronym.  

We deleted the acronym “LRM” since it is more confusing in this context and changed the text to:  

Müller et al. 2017 applied it to the non-SAR, conventional altimeter missions Envisat and SARAL 

l. 139: “However, none of these studies has classified thin-ice, since altimeter waveforms generated 
by this surface type are quite similar to open water returns.”  

Can you at this point summarize the difference between the open water and thin ice 
backscatter/waveforms based on earlier studies?  

To our knowledge, there are no previous studies describing the differences between the waveforms of 
open water and thin ice. An explanation by us can be found in L168. 

l. 142: “After clustering next classification steps consist of an assignment of the clustered waveforms 
as well as remaining waveforms to certain surface types (e.g. ocean, lead/polynya or sea-ice 
conditions).”  

How this is conducted? I would assume some automatic method has been developed, please 
describe it.  

This step is a mixture of applying physical knowledge about the waveform scatter characteristics by 
the different surface types and a statistical analysis of the mean feature values (see Figure 2).  

The selection process is well documented in Müller et al. (2017), Passaro et al. (2020), and 
Dettmering et al. (2018), to which we would like to refer. However, we have added a sentence to the 
manuscript, chapter 3.1. 

The assignment of the waveform clusters to the different surface types is mainly based on the use of 
background knowledge about the physical backscattering properties of the individual surface types 
and statistical relationships (see Figure 2). More detailed explanations of the cluster assignment 
can be found in Müller et al., 2017. 



 

l. 144: “In the present investigation, the cluster number is set to 25. Following Dettmering et al.  
(2018), by using this number an overall agreement of about 97% can be achieved.”  

Against what data this overall agreement was determined? Using data in this paper? If so then it 
is not a good way for the paper ‘progress’. It raises a question that have you tested other numbers 
of clusters, conducted accuracy analyses, selected 25, and then present accuracy results for this 
number of clusters.  

The number of clusters is taken from the Dettmering et al. study. Also the percentage of overall 
agreement stems from that study and the data used there. We agree that this might be misleading 
and the sentence has been changed to: 

In the present investigation, the cluster number is set to 25. This number was found to produce 
optimal results in Dettmering et al. (2018) and let there to an overall agreement of about 97%. 

l. 156: “Moreover, in the quantitative comparison (Sec. 4.2) two additional features are included, 
which are not used for the UWC:”  

Please explain why they are not used in the UWC.  

The two additional features are part of a classification developed under the ESA CCI (described in 

Paul et al. 2018), which was developed at a different time and with a different approach. However, 

we would like to investigate to what extent these two additional features behave with respect to 

different thin ice thicknesses. Therefore, we decided to include LEW and LEP in the study even 

though there is no direct connection to the UWC. 

Generally speaking, these features can theoretically also be part of the UWC, but that is not the 

focus here. 

We have rephrased the sentence and added a comment in the introduction referring to the ESA CCI 

classification and the UWC statistical analysis in Section 4.3. 

l. 162: “Figure 2 shows the assignment of 25 clusters to 5 different surface types (compared to 4 in 
the original UWC approach): undefined, sea ice, thin-ice, lead, and ocean.”  

Again here you could describe whether lead class has only open water surface, or if it can have 
also very thin ice. What is the maximum width of your leads?  

We are not quite sure if we have understood this comment correctly. Basically, there is no maximum 

width of leads, because we are looking for open water spots in the sea ice with CS2.  Therefore, 

there can be only one lead classification or several depending on the width of the lead. If a very 

narrow lead lies between observation points, it will not be detected. If a lead is very wide, either 

many lead classifications correspond to it or it will be detected as open ocean at some point. When a 

lead surface is classified as thin ice, we do not recognize the lead itself but the thin ice surface even 

if it has formed into a lead. 

Numbers in the color bars in Figure 3 have too small font size. 

We agree to this comment and changed that. 

 

4. Results and discussion  

“The first part of this section shows visual comparisons between CryoSat-2 and MODIS as well as 
Sentinel-1. The second part will then focus on a quantitative analysis of the results.”  

You could mention that quantitative analysis includes Sections 4.2 and 4.3, if I have understood 
correctly.  

We agree to the reviewer and accept the suggestion. We added some text to Section 4. 

In the last part, Section 4.3 briefly evaluates the representation of thin-ice-class waveforms in other 



 

CryoSat-2 based products (Paul et al., 2018) compared to the unsupervised classification approach. 

l. 207: “From the altimetry point of view, off-nadir effects may overlay clear leads or thin-ice radar 
echoes,”  

Explain what these off-nadir effects are and how they change waveform parameters.  

Off-nadir effects are a well-known issue in satellite altimetry. Off-nadir effects can occur in the 

inland area, but also in the sea-ice domain. An off nadir effect occurs when a strong backscatterer 

(e.g. specular lead) that is not in the nadir of an altimeter, but rather off center or at the edge of the 

footprint dominates the reflective signal. These effects can lead to a wrong height determination.  

We added some text. 

From the altimetry point of view, off-nadir effects, such as when a dominant and specular lead is not 

in the nadir direction, may overlay clear leads or thin-ice radar echoes, which hence prevents a 

clear identification, in particular if the lead or thin-ice surface is very small. These off-nadir effects 

can become noticeable in the waveform by the appearance of further dominant peaks in the 

backscatter signal, which later can lead to deviations in the height determination if a retracking 

algorithm specially modified for this problem is not used (see e.g. Quartly et al., 2019). 

l. 217: “Qualitatively, the respective classifications appear within expectations” What 

are these expectations, how are they quantified?  

These expectations are outlined in the next lines (218/219) and are not quantified as 

this is just a qualitative comparison/example to provide an easy entry to both data sets 

for the readers. 

l. 219: “However, a direct distinction between thicker sea-ice and thin-ice areas is not possible due 
to the coarse pixel resolution of MODIS in comparison to CryoSat-2.”  

Is really always the case? A MODIS pixel cannot be covered fully by thin ice or thicker sea ice? 

The reviewer is likely correct in his assumption and we clarified our text to read: 

“However, in most cases a direct distinction between thicker sea-ice and thin-ice areas is not 

possible due to the coarse pixel resolution of MODIS and the variability of ice thickness within a 

MODIS pixel in comparison to CryoSat-2.” 

l. 228: “The polynya observed by MODIS appears very bright in the SAR image and is supposedly 
caused by a rough sea-ice surface due to the presence of frost flowers”  

How about possibility that thin ice has rough surface from finger rafting or it has broken to many 
small floes and frozen again?  

We assume the suggestion by the reviewer could also cause higher backscatter returns. We 

modified our test to state frost flowers as just one example. 

Figure 5: What yellow color shows here?  

We add an explanation to the caption. 

Figure 6: What red color shows here?  

We add an explanation to the caption. 

l. 241: “In order to account for the much coarser spatial resolution of 12.5km×12.5km for SMOS, 
CryoSat-2 classifications are aggregated into bins with a length of 12.5km.”  

How many CS2 surface classification datapoints there are typically in a SMOS SIT pixel?  

This is not a fixed number, but theoretically one SMOS pixel can correspond to up to 50 CS2 



 

observations. In fact, in the examples shown (Figure 7), 41 - 42 CryoSat-2 observations correspond 
to one SMOS pixel. 

We added this information to the text.   

Note that the SMOS daily SIT chart has 12.5 km pixel, but the original SMOS TB swath data has 
35–50 km pixel resolution, and these swath TB’s are aggregated to daily TB 12.5 m grid. In your 
CS2 vs. SMOS comparison you should also take into account the accuracy of the SMOS SIT: 
SMOS SIT underestimates sea ice thickness on average by about 50%–60%, and the root mean 
square difference to validation datasets was 0.31 m:  

L. Kaleschke et al., “SMOS sea ice product: Operational application and validation in the Barents Sea 
marginal ice zone,” Remote Sens. Environ., vol. 180, pp. 264–273, Jan. 2016  

Did you screened SMOS SIT data using uncertainty and saturation ratio given in the SIT data?  
“Data with an uncertainty > 1 m or with a saturation ratio near 100% should not be used.”, from X. 
Tian-Kunze. (Nov. 2018). SMOS Sea Ice Thickness ReadMe-First Technical Note (RM-TN).  

No we used the SMOS SIT data as provided and just screened it for large polynya openings to increase 
the number of comparisons. 

The used SMOS SIT dataset should be described under Dataset Section.  

Please see our answer to this comment above. 

In Figure 7 the numbers in the color scales are too small.  

We updated the plot. 

In Figure 8 the gray bars have poor visibility.   

The gray bars should be in the background. We think it’s important to provide a standard deviation, 

however this standard deviation should not be the focus of that plot. Nevertheless, we updated the 

plot. 

l. 287: “This might be due to an enhanced error budget in the first two thin-ice thickness 

groups” What you mean by this enhanced error budget? Please explain in the paper.  

We rephrased this line to read: 

“This might be due to a larger uncertainty associated with the first two thin-ice thickness bins 

and their in general lower occurrence rates compared the thicker thin-ice bins.” 

l. 290: “The remaining four waveform features, i.e., Wdecay, WfitMAD, LEW, and LWP, feature an 
apparent correlation, however, it is less clear than the ones we observed with MP, Wwidth, and TES” 

 

Please give numerical correlations in the text.  

 

We follow the reviewer’s suggestion and provided numerical (Pearson) correlations. Please find a 

table in the Appendix. 

 

l. 308: “The flags in the l2i files are based on monthly thresholds for the backscatter coefficient 
sigma0, the leading-edge width, and pulse peakiness as well as supported by sea-ice-concentration  
data as sea-ice mask.”  

Give source of SIC data in the paper.  

We have added the sea ice concentration source products to the manuscript.  

l. 324: “It should be noted that we define a lead here in the sense of satellite altimetry as an open 



 

water lead, which provides a true sea-surface-height observation without any bias introduced by 
thin-ice freeboard.”  

This lead class definition should be earlier in Method Section. Does thin ice really give any 
freeboard bias in the CS2 data? Let’s say 20 cm of thin ice, freeboard is ~1 cm, can this be detected 
in one CS2 waveform turned into a freeboard? I would assume it is more possible in large averaging 
of single freeboards, but then you don’t have fixed thin ice target for several weeks or days.  

What we mean here is that thin ice freeboard constitute a systematic bias to sea surface height 
estimates when the respective surface is classified as an open water lead. Sea ice thickness information 
from radar altimetry is mostly aggregated over a large number of orbits before the scientific analysis. 
And in winter time it is highly likely that leads will be covered by some type of thin ice and thus will 
be biased high on average.  

We added and modified the following text in the introduction:  

[...] A lead in the context of radar altimetry is an ice-free opening surrounded by sea ice that 
allows to directly measure sea surface height within the ice cover. Continuous sea surface 
height observations over open ocean and at discrete lead locations are then interpolated along 
the track and one can subsequently calculate the sea-ice freeboard (i.e., the instantenous 
height differences between the sea-ice surface and the ocean surface). 

But the reviewer is correct in the assertation that range accuracy in the order of 1 cm is out of scope 
for individual waveforms.  

 

l. 333: “Finally, it must be noted that the official definition of the World Meteorological Organisation 
(WMO) for the term lead includes thin ice with a thickness of up to 30 cm (wmo,  2014).”  

This kind of ice type definition should in Introduction.  

Definition has been added to introduction 

5. Summary and outlook  

l. 366: “In contrast, sea-ice classifications also show up in SMOS-derived thin-ice regions.” 

Here you should investigate the effect of the SMOS SIT accuracy on your comparison 

results. 

We have amended the following sentence, explaining the reasoning for this behavior. It now reads: 

[...] The reason for this might either be the focus of the unsupervised classification on re-frozen leads 
or the low resolution of SMOS, which does not allow to resolve isolated parts of thicker drift ice. 

We are not using the SMOS sea ice thickness uncertainty information here, because the uncertainty in 
the product files is an estimate of the retrieval uncertainty and almost directly related to sea ice 
thickness [Reference below]. Rather than trying to find a relationship between SMOS uncertainty and 
CryoSat-2 classification error, we will attempt to use the CryoSat-2 classification to inform the SMOS 
retrieval in future work.  

SMOS L3 Sea Ice Thickness ATBD, ESL for Geophysical (L3 & 4) data over land ice and sea ice, 
https://earth.esa.int/eogateway/documents/20142/0/SMOS-L3-Sea-Ice-Thickness-ATBD  

https://earth.esa.int/eogateway/documents/20142/0/SMOS-L3-Sea-Ice-Thickness-ATBD

