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Abstract. The temperature distribution in ice sheets is worthy of attention given the strong relation with ice dynamics and

the intrinsic information about past surface temperature variations. Here we refine the classical analysis of free oscillations

in an ice sheet by analytically solving the thermal evolution of an ice column. In so doing, we provide analytical solutions

to the one-dimensional Fourier heat equation over a finite motionless ice column for a general boundary condition problem.

The time evolution of the temperature profiles appears to be strongly dependent on the column thickness L and largely differs5

from previous studies that assumed an infinite column thickness. Consequently, the time required for the column base to

thaw depends on several factors: the ice column thickness L, the initial temperature profile and the boundary conditions. This

timescale is classically considered to be the period of a binge-purge oscillator, a potential mechanism behind the Heinrich

Events. Our analytical solutions show a broad range of periods for medium-size column thicknesses. In the limit of L→∞,

the particular values of the prescribed temperature at the top of the column become irrelevant and the reference value of10

∼ 7000 years, previously estimated for an idealised infinite domain, is retrieved. More generally, we prove that solutions with

different upper boundary conditions, yet covered by our formulation, converge to the same result in such a limit. These results

ultimately manifest a subtle connection between internal free and externally-driven (in the sense of a time-dependent boundary

condition at the top) mechanisms caused by the finitude of the domain. Thermomechanical instabilities, inherent to internal free

oscillations, are in fact sensitive to the particular climatic forcing imposed as a boundary condition at the top of the ice column.15

Lastly, analytical solutions herein presented are applicable in any context where our general boundary problem is satisfied.

1 Introduction

Periodic episodes of extreme iceberg discharge have captivated the glaciological and paleoclimatological community for the

last three decades. Yet the ultimate cause of these so-called Heinrich Events (HE) remains elusive. Several mechanisms have20

been proposed in the literature that can be broadly classified into two branches: internal free and externally-driven oscillations.
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Free oscillations were first proposed in MacAyeal (1993a) as manifestations of the Laurentide Ice Sheet (LIS) purging

excess ice volume. This interpretation rests on the assumption that a transitions exists between two potential states of basal

lubrication (Alley and Whillans, 1991; Hughes, 1992) and it is known as the binge-purge hypothesis. Namely, when the basal

ice temperature is below the pressure melting point, the ice sheet is assumed to be stagnant and it simply thickens due to25

snow accumulation. As a result of the geothermal heat flow, the ice column is expected to warm and the base eventually yields

melting. At this point, the ice sheet is no longer at rest and begins to slide over a lubricated sediment bed. MacAyeal (1993a)

thus investigated what causes the bed of the LIS in Hudson Bay and Hudson Strait to shift from a frozen to a thawed state

as well as the time length involved in this process. To this end, he developed a conceptual model that shows how amplitude

and periodicity depend on two environmental factors: the annual average sea-level temperature and the atmospheric lapse rate.30

Furthermore, a periodicity of T ≈ 7000 years was estimated from these two factors for a simplified geometry. This value was

determined as the time required for the base of a semi-infinite one-dimensional motionless ice column to reach the melting

point due to a constant geothermal heat flow (Carslaw and Jaeger, 1988). It is noteworthy the absence of time dependent

boundary conditions throughout the study.

Even though both the period and amplitude of the free oscillations appear to be dependent on environmental factors, the35

same study dismissed the possibility of an oscillation period imposed by an external atmospheric forcing since it would be

prohibited by the ice-sheet heat transfer physics. In other words, if such an external climate forcing did exist, its imprint would

be strongly attenuated at the base of the ice sheet. In fact, MacAyeal (1993a) showed that the corresponding e-folding decay

length of a T ≈ 7000 years periodicity reads
√

2k/ω = 314 m for a motionless ice column. Moreover, a constant vertical

velocity was also considered, thus increasing the e-folding decay length to 970 m. In view of these results, it is evident that a40

harmonic surface temperature fluctuation would become negligible at the base of a thick ice sheet.

To provide quantitative support to the conceptual model, a low-order model of the HE cycle was additionally developed

MacAyeal (1993b) to confirm that the theoretical estimation of HE periodicity T is in fact determined by the aforementioned

environmental factors. Remarkably, the numerical periodicity showed a discrepancy from the theoretical estimation of solely

4%. However, this relaxation oscillator model assumes a characteristic ice stream purge timescale of 250 years, given the45

absence of explicit simulations of a Hudson Strait ice stream. Notably, this choice is relevant for the long timescale of the HE

since it determines the switch from purge to growth behaviour, found to be 450 years in the numerical results.

Since then, dynamic 3D ice-sheet models have been used to investigate the mechanisms underlying HEs. For instance,

Marshall and Clarke (1997) used a 3D model to simulate the LIS, though no discharges were reproduced within the wide

range of model parameters. Calov et al. (2002) first modeled oscillatory behaviour in three-dimensional SIA models with ad50

hoc basal sliding. Along with other studies, the authors noted the necessary evolving drainage and till mechanics providing

potential insight into our understanding of the physical processes that causes Hudson Strait oscillations (Calov et al., 2002;

2010). Thus, from highly reduced models (e.g., Tulaczyk et al., 2000b) to a complex Herterich-Blatter-Pattyn ice model (e.g.,

Bougamont et al., 2011), multiple approaches have been found for a wide degree of comprehensiveness in ice stream dynamics

in which the basal hydrology has become essential for an appropriate representation of the ice streams.55
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More recently, Robel et al. (2013) focused on the temporal variability of an ice stream accounting for basal hydrology,

modeled as a unique spatial element assuming a single velocity to represent ice discharge. The surface temperature and the

geothermal heat flux were found to determine the character of the ice flow. In particular, an oscillatory binge-purge mode

was also present and appeared to be primarily caused by re-freezing of meltwater due to ice thinning during stagnation. The

remarkable dependence of both the periodicity and the amplitude of these events on the boundary conditions of the system60

(surface temperature and geothermal heat flux) suggests that even a zero-dimensional spatial model is highly sensitive to

time-independent forcing.

Nevertheless, none of these studies discussed the theoretical implications of a HE periodicity estimated under the assumption

of a (oversimplified) semi-inifinite domain. In addition, these assumptions lack a more general treatment of the plausible

boundary conditions at the top of the ice column. Despite the fact that the characteristic binge timescale determined the HE65

periodicity solely from environmental factors (lapse rate and sea level temperature), it does not necessarily imply that such

periodicity is independent of the boundary conditions. Strictly speaking, one can only conclude that the periodicity T cannot

be imposed by harmonic forcing.

Even so, the T ≈ 7000 year periodicity appears widely used in the literature as a reference value for ice-sheet models. Yet

the theoretical implications of a more realistic finite medium remain unexplored. We herein investigate the consequences of70

considering a one-dimensional motionless ice column with a thickness L and quantify the impact of explicit boundary and

initial conditions. A formulation of the problem is given in Section 2; the approach followed in this work is presented in

Section 3; analytical solutions are shown in Section 4; results are discussed in Section 5 and our concluding remarks are given

in Section 6.

2 Finite thickness75

Let us now elaborate on the description of a more realistic one-dimensional ice column with a finite thickness L. Our domain is

then defined as the interval y ∈ [0,L]≡ L. First, we must reformulate the problem imposing the necessary additional boundary

condition at the top of the motionless column y = L (Fig. 1).

In the simplest physical scenario, the ice surface temperature is set to the air temperature value θ(L,t) = Tair. However, the

particular surface temperature is in fact the result of the energy balance between the ice and the atmosphere. The most general80

approach considers that the ice and the air may not be always at thermal equilibrium, thus yielding a heat flux due to a vertical

temperature gradient. The thermal equilibrium is only reached if the ice surface and the atmosphere temperatures are identical.

In such conditions, the heat flux across the interface is null and the vertical gradient at the top the ice column vanishes. As a

result, both the surface ice temperature and the vertical gradient can consequently vary in time:

βθy + θ = Tair, y = L, t > 0, (1)85

where β is a parameter with length dimensions and italic subscripts denote partial differentiation.
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Figure 1. Schematic view of the motionless ice column with a finite thickness L. Subscripts denote partial differentiation. At the top, both the

ice temperature and the vertical gradient can vary in time, thus allowing for non-equilibrium thermal states. At the base, the vertical gradient

is fixed to the value given by the geothermal heat flux θy =−G/k.

The β factor modulates the permissible deviation between ice and air temperatures. In the limit case β = 0, the interface

ice-air is always at thermal equilibrium (i.e., θ = Tair). For β ̸= 0, we allow for a heat exchange across the ice surface driven

by the temperature difference between the two media. The ice surface will consequently evolve in time towards Tair.

Thus, the ice temperature θ(y,t) satisfies the following initial value problem:90





θt = κθyy, y ∈ L, t > 0,

θ = θ0(y), y ∈ L, t = 0,

θy =−G/k, y = 0, t > 0,

βθy + θ = Tair, y = L, t > 0,

(2)

where the ice diffusivity is denoted by κ, G is the geothermal heat flux and k is the ice conductivity. The initial temperature

profile reads θ0(y) = θb + (θL− θb)y/L, where θL and θb are the initial temperature at the top and the base of the column

respectively.
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3 Fourier method95

Our aim is to solve the initial value problem by using the Fourier method, also known as separation of variables (an overview of

the method is given in Appendix A). Consequently, we first need to find a change of variable that leaves us with homogeneous

boundary conditions (e.g., ’shifting the data’ technique) in order to determine the corresponding eigenvalues.

Let us then define the new variable ξ(y,t) for the problem determined by the equation Set 2:

ξ = θ−Tair + (y−β−L)
G

k
(3)100

Therefore, in terms of the new variable the problem under consideration reads:





ξt = κξyy, y ∈ L, t > 0,

ξ = f(y), y ∈ L, t = 0,

ξy = 0, y = 0, t > 0,

βξy + ξ = 0, y = L, t > 0,

(4)

where f(y) = θ0(y)−Tair + (y−β−L) G
k .

As a result, we now have a homogeneous problem that can be solved by separation of variables (Appendix A). If a solution

exists, it determines the vertical temperature profile at any given time for the initial and boundary conditions provided by the105

Set 2.

4 Analytical solution

The solution ξ(y,t) to the boundary problem determined by the Set 2 (derivation details in Appendix B) reads:

ξ(y,t) =
∞∑

n=0

Ancos
(√

λny
)

e−κλnt, (5)

where the eigenvalues
√

λn are given by the transcendental equation:110

tan
(
L

√
λn

)
=

1
β
√

λn

. (6)

Equation 6 does not admit an algebraic representation, hence requiring a numerical method to compute λn. Here we imple-

mented the Brent-Dekker algorithm (Dekker, 1969; Brent, 1971) with a tolerance of 10−8. This root-finding algorithm choice

combines the bisection method, the secant method and the inverse quadratic interpolation.

The coefficients An can be readily obtained applying orthogonality among eigenfunctions:115
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(a) (b)

Figure 2. Vertical profiles from analytical solutions θ(y,t) for three different ice-column thicknesses L = 1.0, 1.5, and 2.5 km. Top panel

(a), t = 0 yr; bottom (b), t = 4960 yr. Solid line represents solutions for β = 50 m whereas the case β = 0 is denoted by a dotted line.

An =
2
L

L∫

0

ξ(y,0) cos
(√

λny
)

dy. (7)

It is noteworthy that if β is strictly zero, the solution is still given by Eq. 5 but Eq. 6 no longer holds (see Appendix C).

Rather, the eigenvalues satisfy the equation cos
(
L
√

λn

)
= 0 and can be obtained analytically as:

√
λn =

(
n +

1
2

)
π

L
, (8)

where n = 0,1,2, ....120

In this particular case, the corresponding coefficients An also allow for analytical expression:

An = 4(θb− θL)
[

cos(nπ)
2nπ + π

]
− 8L

G̃

k

[
1

2nπ + π

]2

. (9)

5 Vertical temperature profile

We now present the vertical profiles θ(y,t) from analytical solutions given by Eq. 5 for three different thicknesses, L = 1.0, 1.5

and 2.5 km, at t = 0 and t = 4960 years (Fig. 2). The second time frame value is chosen so that the fastest warming scenario125

precisely reaches melting.

The implications of a finite domain are clear. The lower half of the column warms due to the geothermal heat flux and this

rate is in fact proportional to ∼ κλne−κλnt. Then if we let L1 > L2, it consequently yields |∂θ1/∂t|> |∂θ2/∂t| at y = 0. That

is, a thicker ice column implies a faster change of its basal temperature.
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Figure 3. Time evolution of the basal temperature for three different thicknesses. Solid line represents solutions for β = 50 m whereas the

limit case β = 0 (i.e., fixed surface temperature) is denoted by a dotted line. The boundary condition at the base is identical for all cases and

given by the geothermal heat flux G.

The impact of β is particularly clear at the top (Fig. 2b), where the temperature slightly increases due to an upward heat flux130

originating at the base (unlike the β = 0 case where the temperature is prescribed). The specific non-zero β value does not alter

this behaviour, though larger values yield a greater temperature difference between the ice and the atmosphere. We have chosen

β = 50 m to display such mechanism, whilst keeping a reasonable temperature difference (Cuffey and Paterson, 2010). We can

then physically interpret this parameter as the thermal insulation of the ice-air interface. Thus, a zero value corresponds to an

ideal conductor (θ(L,t) = Tair), whereas β →∞ represents a perfect thermal insulator characterized by a null heat exchange135

across the interface.

6 A new period for the binge/purge oscillator

First, we present the temporal dependency of the basal temperature (Fig. 3) from our analytical solution (Eq. 5). We further

calculate the time required for the column base to reach the melting point analogously to the growth phase of a Heinrich event

oscillation (MacAyeal, 1993a), hereinafter referred as potential periodicity (Fig. 4).140

Figure 3 shows the sensitivity of the thermal state of the base to the thickness of the column L and to the mathematical

treatment of the surface boundary condition. It is clear that the column thickness is the primary factor that allows the surface
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temperature to influence the evolution of the base. Strictly speaking, the external forcing perturbs the temperature vertical

profile of the ice column, thus determining the basal temperature. When we allow for non-equilibrium thermal states in the top

boundary condition (i.e., β ̸= 0), the base warms faster since the column surface can evolve in time towards higher tempera-145

tures, thus inducing a lower temperature difference between the base and the top. The relevance of such effect is quantified by

the column thickness, becoming negligible for large L values.

For a fixed β and a particular initial state, the rate of change of the basal temperature solely depends on the column thickness

L, the choice of G and Tair. Nevertheless, when computing the time required for the base to thaw, the initial temperature profile

plays an essential role.150

Figure 4 shows the dependency of the potential periodicity on both the initial and boundary conditions in our general

formulation (Eq. 1). The impact of the external forcing is evident from Fig. 4b. As we would expect, lower Tair values yield

longer potential periods, though solely for ice thicknesses below ∼ 2 km. Otherwise, the periodicity appears to be independent

of the surface ice temperature. We therefore find that L = 2 km is a threshold value, above which the periodicity is decoupled

of the top boundary condition.155

The potential periodicity decreases as the geothermal heat flux increases. A similar behaviour is found with increasing L

due to the thermal insulating effect of the ice column, particularly for low geothermal heat flux values.

The initial conditions are also essential to quantify the time required for the ice base to thaw. We have considered a linear

initial vertical profile θ0(y) = θb+(θL− θb)y/L, so as to understand the explicit dependency of the initial surface temperature

θL and the initial basal temperature θb independently (Figs. 4c and 4d). Namely, the impact of θL is determined by the column160

thickness, with a more acute dependence for low L values. Lastly, the potential periodicity appears to be rather sensitive to the

initial basal temperature, rapidly saturating to values above 25 kyr for θb <−11ºC.

7 The limit L → ∞

Compared to previous work, the analytical solutions presented herein account for an additional degree of freedom in terms of

the domain definition: the ice column thickness L. Nonetheless, this solutions should converge under certain conditions to the165

L-independent solution of Carslaw and Jaeger (1988) if we let L→∞. For completeness, we shall show that the theoretical

periodicity of MacAyeal (1993a) is in fact retrieved in such limit irrespective of the specific boundary condition at the top.

The particular conditions under which our solution converge must imply an equivalent physical scenario to the one estab-

lished by MacAyeal (1993a). Specifically, he considered an initial temperature profile that follows an atmospheric lapse rate Γ

since the ice column is assumed to be assembled by snow precipitation. Hence the temperature solution is decomposed into a170

steady and a transient component, corresponding to Γ and the ’excess’ of geothermal heat flux G̃ = G−kΓ respectively. If we

account for this particular formulation in our more general approach, the estimated 6944-year-period is retrieved in the limit

L→∞ (Fig. 5).

Even though the eigenvalues of our problem satisfy a different relation in the limit β = 0, we shall prove that convergence

to the 6944-year-period is independent of β and therefore consistent with previous results. Let φ and ϕ be two solutions of175
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(a) (b)

(c) (d)

Figure 4. Potential periodicity T as a function of the ice thickness L, initial and boundary conditions in our general formulation. β = 50

m for all solutions. (Eq. 1). Boundary conditions: (a) Geothermal heat flux G and (b) Air temperature Tair. Initial conditions: (c) Initial ice

surface temperature θL and (d) Initial basal temperature θb.
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our general boundary problem (Set 2) with a zero and a non-zero β value respectively and arbitrary initial conditions. The

difference between solutions is then:

∆ .= ϕ−φ =
∞∑

n=0

[
Ancos

(√
λny

)
e−κλnt− Ãncos

(√
λ̃ny

)
e−κλ̃nt

]
. (10)

We must recall that the eigenvalues for a non-zero β case (i.e., ϕ) must satisfy Eq. 6. With an appropriate change of variable

xn = L
√

λn, it is clear that:180

lim
L→∞

[
tan(xn) =

L

βxn

]
→ xn =

(
n +

1
2

)
π, (11)

where n = 0,1,2..., which precisely correspond to the eigenvalues of the β = 0 case.

Hence, it is straightforward that the spatial and temporal dependency in ∆ vanish in the limit L→∞. Additionally, given

that the only L-order term is not proportional to β in the initial conditions, the coefficients An and Ãn become identical in such

a limit. We then conclude that ∆ = 0 if β is finite as L→∞. In other words, we have proven that both solutions are identical185

irrespective of β as the ice thickness approaches infinity.

MacAyeal (1993a) seemingly showed that the boundary conditions and the ice base temperature are decoupled by estimating

that the e-fold decay of a periodic forcing with ω = 2.84× 10−11 s−1 in a motionless column reads
√

2k/ω = 314 m. This

estimation solely considers periodic signals, whilst leaving unexplored the implication of a non-periodic forcing. Our results

affirm otherwise: though an oscillatory forcing rapidly attenuates with depth, Fig. 4 and 5 show that the base is in fact strongly190

coupled with both the external conditions and the initial thermal state of the ice. The strength of this coupling is determined by

the column thickness L.

8 Conclusions

We have considered the implications of a finite one-dimensional ice column domain with a given thickness L on the solutions

of Fourier heat equation. Unlike previous work, we provide analytical solutions that are explicitly dependent on this new degree195

of freedom, thus quantifying its relevance without further approximations.

As a result of our new domain extension, we have studied physically-plausible scenarios imposed by a general boundary

condition at the top of the motionless ice column. This approach considers that the ice and the air may not be always at

thermal equilibrium, thus yielding a heat flux across the interface due to a vertical temperature gradient. As a result, both

the ice temperature at the top and its vertical gradient are allowed to vary in time. If the ice surface happens to reach the air200

temperature, the vertical gradient vanishes leading to a thermal equilibrium state.

We find that the ice thickness plays a fundamental role in the Fourier solutions, which implies that a semi-infinite domain is

an oversimplification. The temperature at the base is highly dependent on the particular boundary condition at the top of the

ice column. Particularly, these solutions are significantly distinct from each other for ice thicknesses L < 2 km.
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Figure 5. Time required for the column base to thaw as a function of the ice column thickness L, allowing us to define a potential Heinrich

Event periodicity from analytical solutions. Colour represents the air temperature: Tair,1 =−40ºC, Tair,2 =−30ºC and Tair,3 =−20ºC.

Solid line represents solutions for β = 50 m whereas the case β = 0 (i.e., fixed surface temperature) is denoted by a dotted line. The

boundary condition at the base θy =−G̃/k is identical for all cases.

Our analytical approach allows us to quantify the sensitivity of the solution to the initial and boundary conditions. In partic-205

ular, the thermal state of the base completely decouples from the upper boundary condition (i.e., external forcing) for L values

above 2 km and its thermal evolution becomes solely a function of the lower boundary condition (i.e., the geothermal heat

flux).

Notably, in the limit L→∞, the prior L-independent solution (Carslaw and Jaeger, 1988) is retrieved, consequently yielding

the 6944 years periodicity estimated by MacAyeal (1993a). For completeness, we showed that such periodicity is in fact210

retrieved irrespective of the particular boundary condition at the top. This confirms the robustness of our results.

Regarding a potential estimation of the binge-purge periodicity based on our analytical solutions, the new degree of freedom

L entails strong consequences. First, large temporal variability can be explained solely by considering a change in ice thickness

without any additional factors. In other words, this provides a source of natural internal variability irrespective of the external

forcing. For medium-size ice sheets, this variability spans a 7-12 kyr range. In addition, the explicit consideration of distinct215

initial temperature profiles manifests a high sensitivity of the binge-purge oscillator period to its initial state.

Moreover, a finite thickness also determines the mechanism by which an atmospheric perturbation might potentially influ-

ence the time required to melt the ice base since we have quantified the effect of a prescribed surface temperature and a vertical
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gradient. For a fixed L value, besides the geothermal heat flux, both the vertical gradient and the temperature at the top govern

the temperature time evolution, consequently defining the particular binge-purge periodicity estimation.220

It must be stressed that, even though we have shown that the ice base temperature is in fact coupled with the boundary

conditions, the periodicity of such events cannot be imposed by the frequency of an external forcing. Rather, the potential

period of the oscillator is determined by the ice thickness and the energy condition at the base and the surface.

Lastly, we note that a subtle connection exists between internal free and externally-driven (in the sense of a time-dependent

boundary condition at the top) mechanisms caused by the finitude of the domain. Thermomechanical instabilities, inherent to225

internal free oscillations, are in fact sensitive to the particular climatic forcing imposed as a boundary condition at the top of

the ice column. This double-fold nature of thermomechanical instabilities is only exhibited when a finite domain is considered,

further supporting the use of such analytical solutions in simple low-dimensional ice-sheet models where temperature profiles

are otherwise prescribed.

Appendix A: Separation of variables235

Let us briefly outline the separation of variables technique before elaborating on the solutions of our general problem. Consider

the following initial/boundary problem on an interval I ⊂ R,





ut = κuyy y ∈ I, t > 0

u(y,0) = φ(y) y ∈ I

u satisfies certain BCs.

(A.1)
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This technique looks for a solution of the form:

u(y,t) = Y (y)T (t), (A.2)240

where the functions Y and T are to be determined. Assuming that there exists a solution of A.1 and plugging the function

u = Y T into the heat equation, it follows:

T ′

κT
=

Y ′′

Y
=−λ, (A.3)

for some constant λ. Thus, the solution u(y,t) = Y (y)T (t) of the heat equation must satisfy these equations. Additionally, in

order for u to satisfy the boundary conditions, we arrive to:245





Y ′′(y) =−λY (y) y ∈ I
Y satisfies our BCs.

(A.4)

This is a well-known eigenvalue problem. Namely, a constant λ that satisfies Eq. A.4 for some function X (not identically zero)

is called an eigenvalue of −∂2
y for the given boundary conditions. Hence, the function Y is an eigenfunction with associated

eigenvalue λ.

Therefore, in order for a function of the form u(y,t) = Y (y)T (t) to be a solution of the heat equation on the interval I ⊂ R,250

T must be a solution of the ODE T ′ =−κλT . Direct integration leads to:

T (t) = Ae−κλt, (A.5)

for an arbitrary constant A. Thus, for each eigenfunction Yn with corresponding eigenvalue λn, we have a solution Tn such

that:

un(y,t) = Yn(y)Tn(t), (A.6)255

is a solution of the heat equation on our interval I which satisfies the BC. Moreover, given that the problem A.1 is linear, any

finite linear combination of a sequence of solutions {un} is also a solution. In fact, it can be shown that an infinite series of the

form:

u(y,t)≡
∞∑

n=1

un(y,t), (A.7)

will also be a solution of the heat equation on the interval I that satisfies our BC, under proper convergence assumptions of260

this series. The discussion of this issue is beyond the scope of this work.
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Appendix B: Solution of the problem

Let us elaborate on the solution of our general problem (Section 4) by first solving the associated eigenvalue problem. As we

employ the separation of variables technique, the solution takes the form:

ξ(y,t) =
∞∑

n=0

Yn(y)Tn(t), (B.1)265

where the functions Yn(y) and Tn(t) are to be determined. After the consequent change of variable so that Y (y) satisfies Eq.

A.4, we arrive to:

Yn(y) = Ancos
(√

λny
)

+ Bnsin
(√

λny
)

, (B.2)

where An and Bn are to be determined. Applying the boundary conditions imposed in Set 2, it is clear that all sine coefficients

are identically zero Bn = 0 and the eigenvalues
√

λn are given by the transcendental equation:270

tan
(
L

√
λn

)
=

1
β
√

λn

, (B.3)

that admits no algebraic representation, hence requiring a numerical method to compute λn.

From orthogonality of the eigenfunctions Yn(y), the coefficients An of our solution are calculated following:

An =
2
L

L∫

0

ξ(y,0) cos
(√

λny
)

dy. (B.4)

where ξ(y,0) = G̃
k (y−L)− θL + θb. Even though ξ(y,0) is a function of the form f(y) = ay + b, the integration of the275

coefficients An does not yield analytical representation since the eigenvalue equation is transcendental.

Hence, the solution of our general problem reads:

ξ(y,t) =
∞∑

n=0

Ancos
(√

λny
)

e−κλnt, (B.5)

Appendix C: Limit case β = 0

It is crucial to consider that the eigenvalue equation given by Eq. 6 does not hold for β = 0. In such case, after the consequent280

change of variable so that Y (y) satisfies Eq. A.4, we arrive to:

Yn(y) = Ancos
(√

λny
)

+ Bnsin
(√

λny
)

, (C.1)
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where An and Bn are to be determined. Applying the boundary conditions imposed in Set 2, it is clear that all sine coefficients

are identically zero, Bn = 0, and the eigenvalues read:

√
λn =

(
n +

1
2

)
π

L
, (C.2)285

where n = 0,1,2, ....

From orthogonality of the eigenfunctions Yn(y), the coefficients An of our solution are calculated following:

An =
2
L

L∫

0

ξ(y,0) cos
(√

λny
)

dy. (C.3)

where ξ(y,0) = G̃
k (y−L)− θL + θb. Since ξ(y,0) is a function of the form f(y) = ay + b and the eigenvalues allow for an

analytical expression, the integration of the coefficients An is straightforward:290

An = 4(θb− θL)
[

cos(nπ)
2nπ + π

]
− 8L

G̃

k

[
1

2nπ + π

]2

. (C.4)

It is clear that this series converges and satisfies the initial condition imposed by ξ(y,0) given that:

∞∑

n=0

cos(nπ)
2nπ + π

=
1
4
, (C.5a)

∞∑

n=0

1
(2nπ + π)2

=
1
8
. (C.5b)

Hence, the solution of Problem 1 reads:295

ζ(y,t) =
∞∑

n=0

Ancos
(√

λny
)

e−κλnt, (C.6)
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