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Abstract. A thorough understanding of ice thermodynamics is essential for an accurate description of glaciers, ice sheets and

ice shelves. Yet there exists a significant gap in our theoretical knowledge of the time-dependent behaviour of ice temperatures

due to the inevitable compromise between mathematical tractability and the accurate description of physical phenomena. In

order to bridge this shortfall, we have analytically solved the 1D time-dependent advective-diffusive heat problem including

additional terms due to strain heating and depth-integrated horizontal advection. A Robin-type top boundary condition con-5

siders potential non-equilibrium temperature states across the ice-air interface. The solution is expressed in terms of confluent

hypergeometric functions following a separation of variables approach. Non-dimensionalisation reduces the parameter space

to four numbers that fully determine the shape of the solution at equilibrium: surface insulation, effective geothermal heat

flow, the Peclét number and the Brinkman number. The initial temperature distribution exponentially converges to the station-

ary solution. Transient decay timescales are only dependent on the Peclét number and the surface insulation, so that higher10

advection rates and lower insulating values imply shorter equilibration timescales, respectively. On the contrary, equilibrium

temperature profiles are mostly independent of the surface insulation parameter. We have extended our study to a broader range

of vertical velocities by using a general power-law dependency on depth, unlike prior studies limited to linear and quadratic

velocity profiles. Lastly, we present a suite of benchmark experiments to test numerical solvers. Four experiments of gradually

increasing complexity capture the main physical processes for heat propagation. Analytical solutions are then compared to their15

numerical counterparts, upon discretisation over unevenly-spaced coordinate systems. We find that a symmetric scheme for the

advective term and a three-point asymmetric scheme for the basal boundary condition best match our analytical solutions. A

further convergence study shows that n≥ 15 vertical points are sufficient to accurately reproduce the temperature profile. The

solutions presented herein are general and fully applicable to any problem with an equivalent set of boundary conditions and

any given initial temperature distribution.20
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1 Introduction

The study of ice thermodynamics is of crucial importance for understanding the behaviour of glaciers, ice sheets and ice

shelves. Ice thermodynamics is the result of a complex interplay between advection, diffusion and various heat sources. Only

an accurate representation of these processes will allow for a robust description of ice flow, mass balance and overall stability.25

In this context, the development of analytical solutions for ice thermodynamics can provide deeper comprehension of the

fundamental physics of ice, as they are intuitively interpretable, reveal hidden symmetries and further serve as a verification

tool or benchmark for numerical models.

Robin (1955) and Lliboutry (1963) first laid the groundwork for understanding ice-column thermodynamics in the presence

of vertical advection and diffusion by providing analytical solutions for stationary scenarios. These seminal works offered30

valuable insights into the steady-state behaviour of ice columns subject to advective-diffusive processes. Nevertheless, they did

not consider the time-dependent evolution of ice temperatures. Hence, their applicability was limited to situations involving

steady-state ice flow and fixed environmental conditions.

In a broader context, the 1D advective-diffusive equation has been thoroughly studied in a wide range of fields, particularly

in dispersion problems. In early studies, the basic approach was to reduce the advection-diffusion equation to a purely diffusive35

problem by eliminating the advective terms. This was achieved via a moving coordinate system (e.g., Ogata and Banks, 1961;

Harleman and Rumer, 1963; Bear, 1975; Guvanasen and Volker, 1983; Aral and Liao, 1996; Marshall et al., 1996) or through

the introduction of another dependent variable (e.g., Banks and Ali, 1964; Ogata, 1970; Lai and Jurinak, 1971; Marino, 1974;

Al-Niami and Rushton, 1977). To solve the equations, quite diverse mathematical methods are employed, such as the Laplace

transformation (McLachlan, 2014), the Hankel transform (Debnath and Bhatta, 2014), the Aris moment method (Merks et al.,40

2002), Green’s function (Evans, 2010) or superposition approaches (Lie and Scheffers, 1893) among others. More recent

studies (e.g., Selvadurai, 2004) provide time-dependent analytical solutions for which Darcy flow is applicable, yet they lack

an appropriate set of boundary conditions given the infinite length of the domain.

Steady-state ice temperature distribution studies also provide analytical solutions in bounded spatial domains, but fall short

if the transient nature of the solution is to be captured. This is the case of the studies on the shear heating margins of West45

Antarctic ice streams (e.g., Perol and Rice, 2011, 2015) for which a steady but more refined one-dimensional thermal model was

produced, first introduced by Zotikov (1986). Meyer and Minchew (2018) later solved a similar advective-diffusive problem

under stationary conditions accounting for a constant strain-heating rate and further neglecting lateral (horizontal) advection af-

ter a scaling analysis. These one-dimensional studies imposed a stationary nature of the temperature distribution, thus assuming

an idealised equilibrated energy state.50

Despite these simplifications, heat transfer is well-known to be a three-dimensional process with a higher level of complexity

that encompasses several mechanisms such as horizontal and vertical advection, the potential presence of liquid water within

the ice, a varying ice thickness, internal heat deformation and frictional heat production among others (e.g., Greve and Blatter,

2009; Cuffey and Paterson, 2010). Full numerical models are therefore also essential if a simultaneous consideration of such

mechanisms needs to be achieved (Winkelmann et al., 2011; Pattyn, 2017).55
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However, numerical models require caution as their accuracy and consistency must be previously assessed. Intercomparison

projects are thus fundamental since they can provide consensus in a series of benchmark experiments that further serve as a

reference solution for validation. In this context, analytical descriptions are extremely useful as they provide a control irrespec-

tive of the resolution or discretisation schemes. For instance, Huybrechts and Payne (1996) already noted the lack of analytical

temperature solutions for such cases. Previously obtained solutions relied on strong assumptions regarding the particular verti-60

cal velocity profile (linear profile, Robin 1955; quadratic, Raymond 1983) and therefore an independent analytical description

of the temperatures was not available.

More recently, Rezvanbehbahani et al. (2019) proposed an improved temperature solution that considers a power-law vertical

velocity profile derived from the Shallow Ice Approximation. The authors showed the importance of the strain heating term

and demonstrated that including it as an additional basal heat source yields good results for the interior regions of an ice sheet.65

Nevertheless, horizontal advection is absent in their analytical solutions and a further comparison with numerical solutions

reveals that their analytical results are only applicable to slowly moving regions (mostly below 20 m/yr). As with prior studies,

steady-state conditions are also assumed and thus no information about the time evolution of ice temperatures can be obtained.

Traditional approaches both from numerical and analytical perspectives assume the simplest heat-flux boundary condition at

the ice surface: the imposition of the air temperature at the uppermost ice layer. Knowing that glacial ice forms through snow70

densification, this imposition appears to be an oversimplification, given that thermal conductivity increases with density (e.g.,

Sturm et al., 2002; Calonne et al., 2011, 2019). Therefore, in view of the surface fraction of the Greenland and Antarctic Ice

Sheets covered by a firn layer (90% and ∼100%, respectively, Medley et al., 2022; Noël et al., 2022), a more sophisticated

description of the energy balance between the ice and the atmosphere may be beneficial. Already noted by Carslaw and Jaeger

(1988), prescribing a fixed temperature is in fact a limit case of a broader set of boundary conditions known as ’linear heat75

transfer’ or ’Newton’s law of cooling’ that accounts for a more realistic heat flux across the interface given by the temperature

difference between the two media.

Ice temperatures are not only critical to understand the dynamics and an ice body’s evolution in time, but also in ice-sheet

initialisation of numerical models. Poorly known parameter fields such as the ice temperature are estimated minimising the

mismatch between observations and model output variables. Traditional approaches compute a steady-state temperature field,80

incorrectly assuming that the ice is at thermal equilibrium (e.g., Morlighem et al., 2010, 2011; Pralong and Gudmundsson,

2011; Perego et al., 2014). This issue can be mitigated via transient optimisation approaches that incorporate available data

that accounts for the transient nature of observations and the model dynamics (e.g., Goldberg et al., 2015), though this method

is significantly more expensive. Nonetheless, time integration with transient optimisation that includes all relevant model

processes is not feasible for high-resolution, large-scale ice sheet models. As a result, a time-dependent description of ice85

temperatures would strongly reduce the computational demands in modelling exercises.

A literature review thus exhibits the need for a time-dependent analytical description, in spite of the inevitable compromise

of designing a model that is both mathematically solvable and accurate. It is thus of utmost importance to carefully navigate

this trade-off, deciding the appropriate level of analytical tractability and physical realism based on the specific goals of
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the study. Attaining the right balance allows for meaningful insights, while avoiding excessive computational demands or90

oversimplification that may hinder accurate representation and understanding of the real-world system.

Despite all the effort in previous works, there is still a gap in the understanding of the analytical nature time-dependent

ice temperatures. As a result, there are no available benchmark experiments to test numerical solvers extensively employed in

ice-sheet models. The current study presents an analytical formulation of the transient ice temperature equation and provides

useful insight in two ways. First, allowing for a simplified way of deriving physical insight into the physics of heat transfer95

in ice (as demonstrated by an equilibrium timescales analysis) and secondly, by providing a way of benchmarking numerical

solvers for heat transfer. Our approach accounts for the temporal evolution of the temperature profile rather than assuming

an equilibrated state, thus taking a step towards a more accurate representation of the ice thermal behaviour. The formulation

of the problem is given in Section 2; the approach followed in this work is presented in Section 3; analytical solutions are

shown in Section 4; results are presented in Section 5, benchmark experiments are detailed in Section 6, results are discussed100

in Section 7 and concluding remarks are given in Section 8.

2 Advective-diffusive ice column

We consider a one-dimensional ice column with diffusive heat transport, vertical advection, strain heat and depth-integrated

horizontal advection. Our domain is defined as the interval z ∈ [0,L]≡ L and we further impose a Robin-type boundary

condition at the top of the column, z = L (Fig. 1). The aim of this section is to provide a rigorous mathematical formulation of105

the physical mechanisms involved in the heat problem necessary to obtain an exact solution of the ice temperature θ(z, t).

In the simplest physical scenario, the ice surface temperature is set to the air temperature value θ(L,t) = Tair. However,

surface temperatures are in fact the result of the energy balance between the ice and the atmosphere. To address this limitation,

we refine the surface boundary condition by allowing for a potential deviation from the air temperature, accounting for the

thermal insulating effect in the uppermost region of the ice column. This insulation effect is a direct consequence of the110

reduction in ice density towards the surface (e.g., Stevens et al., 2020) and, as a result, the reduced ice thermal conductivity

(Sturm et al., 2002; Calonne et al., 2011, 2019). This surface energy balance falls within the so-called linear heat-transfer

boundary conditions or ‘Newton’s law of Cooling’ (Carslaw and Jaeger, 1988, Chapter § 1.9). Briefly, Newton’s law of cooling

states that the heat flux across the interface is proportional to the temperature difference between the surface and the surrounding

medium. It is applicable to a large variety of conditions such as a body cooling by forced convection (i.e., a fluid forced rapidly115

past the surface of a solid) or a a thin surface layer of a poor conductor (such as a low density firn or snow layer above the

glacial ice). Moreover, Newton’s law of cooling captures the two simpler boundary conditions as limit cases: (1) prescribed

surface temperature and (2) no heat flux across an interface.

This refinement enables a more accurate representation of the surface heat transfer dynamics and contributes to a compre-

hensive understanding of the energy balance within the ice column. In this description, both the surface ice temperature θ(L,t)120

and its vertical gradient θz(L,t) can vary in time:

βθz + θ = Tair, z = L, t > 0, (1)
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Figure 1. Schematic view of the one-dimensional ice column with vertical advection w(z) and inhomogeneous term Ω (here, we indepen-

dently consider both strain heating and depth-integrated horizontal advection). Temperature evolution is dictated by the heat equation and an

appropriate set of initial and boundary conditions. Subscripts denote partial differentiation. At the top, both the ice temperature and the ver-

tical gradient can vary in time, thus allowing for non-equilibrium thermal states across the ice-air interface. At the base, the vertical gradient

is fixed to the value given by the combined contribution of geothermal heat flow and potential basal frictional heat θz =−Υ/k. Note that

our formulation is one-dimensional so that the x-axis is solely introduced for visualization.

where italic subscripts denote partial differentiation and β is a parameter with length dimensions that modulates the permissible

deviation between ice and air temperatures, often referred to as the surface thermal resistance (per unit area). We physically

interpret β as the thermal insulation of the ice-air interface. In other words, β is a length-scale over which the ice column feels125

the air temperature. A zero value corresponds to an ideal conductor θ(L,t) = Tair, whereas β →∞ represents a perfect thermal

insulator characterized by a null heat exchange across the interface. In the limit case β = 0, the interface ice-air is always at

thermal equilibrium (i.e., θ = Tair). For β ̸= 0, we allow for a heat exchange across the ice surface driven by the temperature

difference between the two media. The thermal equilibrium is only reached if the ice surface and the atmosphere temperatures

are identical. In such conditions, the heat flux across the interface is null and the vertical gradient at the top the ice column130

vanishes regardless of the value of β.
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Considering diffusive heat transport, vertical advection, and a potential heat source, the ice temperature θ(z, t) satisfies an

initial value problem given by the heat equation:



θt = κθzz −wθz +Ω, z ∈ L, t > 0,

θ = θ0(z), z ∈ L, t= 0,

θz =−Υ/k, z = 0, t > 0,

βθz + θ = Tair, z = L, t > 0,

(2)

where the heat source Ω is an inhomogeneous term that captures strain heat and horizontal advection, Υ=G+Q is the135

combined contribution of geothermal heat flow G and potential basal frictional heat Q, k is the ice conductivity and κ is the

ice diffusivity, both assumed to be constant. We further consider a z-dependent vertical velocity component given by w(z).

In order to solve this problem, we must first provide the particular form of the vertical velocity term. As in Clarke et al.

(1977) and Zotikov (1986), we first assume a linear variation of w(z) with depth:

w(z) = w0
z

L
, (3)140

where w0 is the vertical velocity at the ice surface z = L.

Standard values for w0 usually read from −0.1 to −0.3 m/yr (Glovinetto and Zwally, 2000; Spikes et al., 2004). Positive

values of w0 imply an upward movement of ice and are physically plausible, though quite rare. Dahl-Jensen (1989) calculated

steady temperature distributions (Fig. 5 therein) and found that profiles near the terminus position resemble those predicted for

an ablation zone (w0 > 0). Solutions herein presented are applicable to both positive and negative values of w0, though we will145

focus on the downward movement of ice (i.e., w0 < 0). The linear dependency is widely used in the literature (e.g., Joughin

et al., 2002, 2004; Suckale et al., 2014). Nonetheless, we will also explore a more general power-law relationship that better

describes vertical velocities modeled by Glen’s flow law (see Appendix C).

The inhomogeneous term Ω can encompass a number of heat sources and sinks. Here we focus on strain heating S and

horizontal advection H, so that Ω= S+H. In general, the strain heating term can be expressed as S = σij ϵ̇ij , where σij is the150

Cauchy stress tensor and ϵ̇ij is the strain rate tensor (expressed in index notation). Upon application of Glen’s law, the rate of

strain heating is solely a function of the second invariant of the strain rate tensor:

S = σij ϵ̇ij = 2A−1/n ϵ̇e
(n+1)/n, (4)

where ϵ̇e = (ϵ̇ij ϵ̇ij/2)
1/2 is the second invariant of the strain rate tensor and summation is implied over repeated indexes

(Einstein notation). This formulation does not impose any conditions on the strain rate regime (i.e., the dominant components)155

and only assumes ϵ̇ to be constant in depth. This requirement ensures the analytical tractability of the solution while including

a potential strain contribution throughout the ice column.

The horizontal advection term H can imply a heat source or a sink, depending on the sign of the horizontal temperature

gradient along a particular direction. We herein consider such a contribution by defining a depth-averaged lateral advection
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term (Meyer and Minchew, 2018):160

H=
1

L

L∫
0

(u · n̂)θn̂dz, (5)

where u is the horizontal velocity vector, n̂ is the normal vector along an arbitrary direction contained in the horizontal plane

and θn̂ = ∂θ/∂n̂ denotes the directional derivative along n̂.

This assumptions allow us to include a potential strain heat source S and a horizontal advection of heat term H while keeping

the analytical tractability of Eq. 2. The limitations of these simplifications are discussed in Section 7.165

3 Analytical solution

We next outline our analytical approach. We first non-dimensionalise our problem and exploit the linearity of the differential

operator by further decomposing the solution as a sum of stationary and transient components to deal with the inhomogeneity.

Lastly, we apply separation of variables to obtain a solution of the time-dependent problem and impose the corresponding

initial and boundary conditions. Derivation details are elaborated in Appendix A.170

It is natural to non-dimensionalise our problem by defining the following variables:

ξ =
z

L
, τ =

κ

L2
t, θ =

T

Tair
, w̃ =

L

κ
w, β̃ =

β

L
, Ω̃ =

L2

κTair
Ω (6)

over the domain L̃= [0,1]. Tildes are hereinafter dropped to lighten the notation.

Table 1. Non-dimensional definitions and characteristic ranges. Summation is implied over repeated indices. Pe and Br are the Peclét and

Brinkman numbers, respectively. Λ is the normalised horizontal advection, β is the surface insulation parameter and γ is the dimensionless

combined contribution of geothermal heat flow and basal frictional heat. Physical magnitudes employed to obtain these ranges are give in

Table 2.

Symbol Definition Characteristic range

Pe
L

κ
w0 0.0− 30.0

Br
L2

κTair
σij ϵ̇ij 0.0− 5.0

Λ
L2

κTair

∫ 1

0
(u · n̂)θn̂ dξ 0.0− 10.0

γ −Tair

kL
Υ 0.1− 5.0

β
β

L
0.0− 1.0
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Hence, we can express our Problem 2 as:

θτ = θξξ −Pe ξθξ +Ω, ξ ∈ L, τ > 0,

θ = θ0(ξ), ξ ∈ L, τ = 0,

θξ = γ, ξ = 0, τ > 0,

βθξ + θ = 1, ξ = 1, τ > 0,

(7)175

where γ =−TairΥ/(kL), w = Pe ξ and θ0(ξ) are the non-dimensional geothermal heat flow, vertical velocity and initial profile

respectively. The vertical velocity is thereby conveniently expressed in terms of the Peclét number Pe = w0L/κ (i.e., the ratio

of advective to diffusive heat transport). The non-dimensional strain heat source term S can be identified with the Brinkman

number Br, which represents the ratio of deformation heating to thermal conduction (see Table 1). The non-dimensional

number γ is the combined contribution of geothermal heat flow and potential basal frictional heat, normalised by the vertical180

temperature gradient that would exists for a column thickness L and temperature Tair. It provides the relative strength of the

basal inflow of heat compared to the ice-column extent and the air temperature.

The dimensionless problem clearly shows that five numbers completely determine the shape of the stationary solution: γ, β,

Pe, Λ and Br. Their particular impact on the temperature distributions is discussed below.

Table 2. Physical parameters values employed to determine the non-dimensional range shown in Table 1.

Parameter Definition Explored range Units

L Ice thickness 1 - 3 km

Tair Air temperature 223.15 - 263.15 K

κ Thermal diffusivity 1.4 · 10−6 m2 s−1

k Thermal conductivity 2.0 W m−1 K−1

β Surface insulation 0 - 1 km

G Geothermal heat flow 0.01 - 0.05 W m−2

Q Frictional heat 0 - 0.5 W m−2

u Horizontal velocity 0 - 300 m yr−1

θn̂ Horizontal temperature gradient 0 - 1 K km−1

ϵ̇e Effective strain rate 10−4 - 10−2 yr−1

A Ice rate factor 10−25 - 10−24 Pa−3s−1

Given that Eq. 7 is inhomogeneous, we will decompose the solution as a sum of a transient µ(ξ,τ) and a stationary ϑ(ξ)185

components, so that θ(ξ,τ) = µ(ξ,τ)+ϑ(ξ). As a result, the transient and stationary problems are subject to homogeneous
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and inhomogeneous boundary conditions, respectively:

µτ = µξξ −wµξ, ξ ∈ L, τ > 0,

µ= µ0, ξ ∈ L, τ = 0,

µξ = 0, ξ = 0, τ > 0,

βµξ +µ= 0, ξ = 1, τ > 0,

(8)

and
Ω= ϑξξ −wϑξ, ξ ∈ L,

ϑξ = γ, ξ = 0,

βϑξ +ϑ= 1, ξ = 1,

(9)190

where µ0 = θ0(ξ)−ϑ(ξ) is the initial profile of the transitory solution.

The solution to the stationary component (Eq. 9) already differs from previous analytical works as Robin (1955) and Lli-

boutry (1963). First, they considered a homogeneous version of the problem (i.e., Ω= 0) so that potential strain heating or

horizontal advective contributions are neglected. Moreover, they simplified the top boundary condition since they imposed a

prescribed constant temperature value at ξ = 1 (see also Clarke et al., 1977). However, our refinements still allow for analyti-195

cally tractability and thus the stationary solution is (see Appendix B for derivation details):

ϑ(ξ) = Ω
ξ2

2
2F2

(
1,1;

3

2
,2;−ζ

)
+A erf [aξ] +B (10)

where 2F2(a1,a2;b1, b2,x) is the generalised hypergeometric function, ζ = (aξ)
2, a= (w0/2)

1/2, A=−γ (π/(4a))
1/2 and

B = 1−A
(
2aπ−1βe−a2

+erf [a]
)

. Note that if the inhomogeneous term is zero (i.e., Ω= 0), the stationary temperature profile

reduces to the well-known error function previously obtained by Robin (1955) and Lliboutry (1963). Even so, the temperature200

distribution would still differ as the boundary condition considered herein reflects a potential surface thermal insulation unlike

prior studies.

We now take a step further and allow for time evolution by solving Eq. 8 and building our solution as the sum of both

contributions. Namely, the general solution of the transient problem µ(ξ,τ) is (see Appendix A for derivation details):

µ(ξ,τ) =

∞∑
n=0

[AnΦ(αn;δ;ζ)+BnΨ(αn;δ;ζ)]e
−λnτ (11)205

where Φ(α;δ;ζ) and Ψ(α;δ;ζ) are the Kummer (Kummer, 1836) and Tricomi confluent hypergeometric functions respectively

(also known as confluent hypergeometric functions of the first and second kind). αn =−λn/(2w0) and δ = 1/2. As the

solution must be bounded at the origin, we set Bn = 0.

The full solution θ(ξ,τ) = ϑ(ξ)+µ(ξ,τ) thus reads:

θ(ξ,τ) = Ω
ξ2

2
2F2

(
1,1;

3

2
,2;−ζ

)
+A erf [aξ] +B+

∞∑
n=0

AnΦ(αn;δ;ζ)e
−λnτ (12)210

where the coefficients An are obtained from the initial temperature profile (Eq. A.13 in Appendix A).
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4 Stationary solutions

Before displaying the results of the full time-dependent problem, it is worth describing the temperature solutions at equilibrium.

Figure 2 shows our steady-state solutions as vertical profiles for a subset of the permutations of the non-dimensional numbers

Pe, Br, γ, Λ and β. It is illustrative to compare the shape of our temperature solutions with Clarke et al. (1977) (Fig. 1 therein).215

We must stress that a one-to-one comparison is not readily possible since they imposed a simpler top boundary condition in

which the ice surface temperature is fixed to a given value, though the exact same solutions can be simply obtained by setting

β = 0 in our case (see Eq. 1).

The non-dimensionalization of our analytical model provides simplicity and further reduces the parameter dimensionality

of the solutions to solely five numbers, each corresponding to one column in Fig. 2. The Peclét number produces significant220

changes in the equilibrium solutions, as colder ice is advected from the uppermost part of the column, consequently cooling

down the profile with increasing Pe values (Fig. 2a), in contrast to the well-known linear profile resulting for the purely

diffusive case (i.e., Pe→ 0). The combined contribution of geothermal heat flow and friction heat dissipation γ also yields

large temperature amplitudes within the explored range. Nevertheless, the impact is clearly limited to the lower half of the

column, thus leaving the upper regions nearly unperturbed as shown in Fig. 2c. Likewise, for the surface insulation parameter225

β in the presence of downwards advection (Pe = 7), the entire temperature profile is left unchanged despite varying values of

β (Fig. 2b). This can be understood as the heat exchange at the ice-air interface is not relevant for strong downward transport

of colder ice, which is a far more effective heat transport compared to dissipation. Unlike γ, the strain heat dissipation Br

influences the upper region of the ice temperature as its contribution is distributed throughout the column (Fig. 2d), rather than

being a basal heat source. Even so, the impact is most notable near the base given that the temperature therein can freely evolve230

so long as the geothermal heat flow condition is met (Eq. 2). Similarly, the vertically-averaged lateral heat advection Λ also

affects upper regions of the column (Fig. 2e). Here we have chosen positive Λ values, implying advection of colder ice. As a

result, for sufficiently large values of Λ, the temperature within the column can be lower than at the surface, reaching a local

minimum therein and gradually increasing as the base is approached. For negative values of Λ, we would find temperature

profiles as those obtained in Fig. 2d.235

5 Full solutions

We now present the results of the full problem presented in Eq. 2 by including the time-dependent solution. This transient nature

depends on the initial state of the system, although it exponentially converges to the steady state as the transient component

vanishes under the assumption of constant boundary conditions. We further overcome the arbitrariness on the initial temperature

profile by directly calculating the eigenvalues of the problem and their corresponding decay times as an estimation of the time240

scale of our system in different physical scenarios.

To illustrate the full solutions, we show the explicit time evolution from an initial profile as it approaches the corresponding

stationary solution (Fig 3). In this instance, we employ constant initial temperature profiles for simplicity, θ0(ξ) = 0.5 and

θ0(ξ) = 2.5 in panels Fig 3a and b, respectively. With these particular choices, we ensure that the initial temperature profile is
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Figure 2. Stationary temperature profiles ϑ(ξ). Solutions are fully determined by five non-dimensional numbers: Pe, β, γ, Br and Λ,

corresponding to each panel respectively. Default values are: Pe = 5, β = 0, γ =−0.2, Br = 0 and Λ = 0, except for panel (e), where

γ =−0.4.

below and above the stationary solution for two strong advective scenarios: vertical and lateral. Fig. 3a shows how temperature245

both at the ice surface and most notably at the base start to increase for τ > 0, while at the central region of the column

remains constant until heat propagates along the column. It is worth noting how the surface temperature gradually relaxes to

the equilibrium profile since instead of imposing the air temperature, a more realistic heat exchange at the ice-air interface is

considered via β = 0.5. On the contrary, Fig. 3b shows an instantaneous change at the surface by an oversimplified top boundary

condition if β = 0 (i.e., a perfectly conductive ice-air interface). As a result, the cold air temperature rapidly propagates into the250

uppermost region of the ice column rapidly, whereas the geothermal heat flow contribution requires a longer time to propagate

from the base. On the contrary, the lower part of the domain increases its temperature notwithstanding the sudden decrease of

the upper region. As the column evolves in time, the rate of change gradually diminishes and it approaches zero as the transient

solution asymptotically reaches the temperature profile given by the stationary temperature profile ϑ(ξ) = limτ→∞ θ(ξ,τ).

To examine closely the transient nature of the solutions, we present the temperature evolution of a given initial profile for a255

certain range of the non-dimensional parameters (Fig. 4). This gives us information about the time-dependent effects of each

parameter, unlike Fig. 2 that was restricted to equilibrium states. Addtionally, the continuous representation (i.e., colourbar

in Fig. 4), as opposed to the discrete number of vertical profiles in Fig. 3 facilitates comparison among particular parameter

choices.
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Figure 3. Time-dependent solution θ(ξ, t) given an initial temperature profile θ0(ξ) (vertical dotted line). Dimensionless values: (a) β = 0.5,

Λ = 0 and (b) β = 0.0, Λ = 1.0. Default values: Pe = 5.0, γ =−0.35, Br = 0. Black dashed lines represent the stationary solution ϑ(ξ).

To ease visualization, the time variable is quadratically spaced as indicated in the colourbar.

The particular parameter values were selected so that we obtain four physically distinct scenarios: (a) high geothermal heat260

flow under a large advection regime, (b) high strain heat dissipation in a low vertical advection regime, (c) strong lateral

advection of colder ice under surface insulating conditions and (d) weak geothermal heat flow under a low vertical advection

regime. This setup allows us to separately determine the role played by each mechanism during the transient regime of the

solution.

Figure 4a shows that the thermal equilibration begins by an increase of the basal temperature that gradually propagates265

upwards until the it is balanced by the downward advection ice from the colder surface. A similar transient behaviour is found

if strain heat dissipation is additionally considered (Fig. 4b). Even though the geothermal heat flow is significantly smaller in

this scenario, the heat travels further upwards as a result of a low vertical advection regime (Pe = 2) combined with a source

of strain heat throughout the column (Br = 6). If we instead consider a scenario where heat is removed by lateral advection of

colder ice Λ = 6 (Fig. 4c), we note two different timescales: the geothermal heat flow first warms the ice base, then the lateral270
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Figure 4. Time-dependent solution θ(ξ,τ) given an initial temperature profile. For simplicity, here the initial temperature profile is θ0(ξ) =

−40ºC at all depths and in all cases.

removal of heat takes over with a consequent reduction of temperature in the entire column. Lastly, a low basal inflow of heat

combined with a weak vertical advective regime (Fig. 4d) yields the smallest temperature gradients within the column.
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Figure 5. Decay time and corresponding eigenvalues. (a) First four eigenvalues for the set of β values shown in Fig. 2b. (b) Decay time (kyr)

of the first eigenvalue as a function of Pe and β.

We can also predict the behaviour of the transitory component directly from the eigenvalues of the problem. By calculating

the inverse of the eigenvalues λ−1
n , we obtain a magnitude that can be expressed with time dimensions and represents the

decay time of each Fourier mode (Fig. 5a). Physically, this is the time required for the transient component to be reduced a275

factor e−1 at any point and it further allows us to estimate the equilibration time from an arbitrary initial state. As we would

expect, higher order modes have a shorter life time. Notably, the eigenvalue equation solely depends on Pe and the surface

insulation parameter β (Eq. A.8, Appendix A). This implies that the time to reach equilibrium exclusively depends on these

two numbers. The remaining dimensionless parameter values yield the exact same equilibration time, despite playing a role

in the particular form of the solution. In other words, the five dimensionless numbers shape the temperature profile, but only280

the vertical advection and the surface insulation parameter influence the exponential decay of the transitory component and

therefore, the timescale to reach equilibrium from an arbitrary initial state (Fig. 5b). Particularly, scenarios with a high advective

regime yield shorter equilibration times (Fig. 5b) ∼ 2-10 kyr, unlike highly insulating scenarios at the surface, characterized

by long decay times (∼ 25-40 kyr).

6 Benchmarks for numerical solvers285

The analytical solutions obtained herein are valuable tools for testing numerical solvers. We thus propose a suite of benchmark

experiments with gradually increasing complexity to test the representation of each physical process involved in ice temperature

evolution (see Table 3).
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Table 3. Benchmark experiments for numerical solvers and main physical processes considered for heat propagation. The experiments are

named in increasing complexity order.

Experiment name
Physical processes

Diffusion Vertical adv. Strain heating Horizontal adv.

Exp-1 Yes No No No

Exp-2 Yes Yes No No

Exp-3 Yes Yes Yes No

Exp-4 Yes Yes Yes Yes

First, we simply consider the well-known purely diffusive case (Exp-1). Then, vertical advection is additionally included

(Exp-2). Lastly, strain heating (Exp-3) and the vertically-averaged horizontal advection (Exp-4) are considered. Given the290

analytical nature of our solutions, spatial and temporal resolutions can be set arbitrarily high as there are neither convergence

nor stability constraints. This allows for a comparison against spatial and temporal resolutions found in numerical solvers. We

must stress that the initial temperature profile and all other parameters can be set by the user to test the solution at any desired

scenario. We also note that these are simply proposed benchmarks, but the solutions developed here can be used for any type

of benchmark test that is desired and fits the limitations of the equations.295

We develop a numerical model for testing by performing a finite differences discretisation of Eq. 7 and the basal boundary

condition over a sigma coordinate system, where grid points are unevenly-spaced. This uniform grid can follow either a

quadratic or an exponential relation, set by the user. This yields higher resolutions near the base for a fixed number of points,

thus minimising the computational costs. Several discretisation schemes are employed with varying orders of convergence,

summarised in Table 4. Numerical solutions are then compared at equilibrium with their analytical counterpart (Fig. 6).300

As could be expected, Figure 6 illustrates that spatial discretisation becomes a fundamental piece to obtain an accurate

temperature solution, particularly at the base of the ice. The purely diffusive scenario (Exp-1, Fig. 6a) shows the smallest (neg-

ligible) errors for all discretisation schemes given its mathematical simplicity. If vertical advection is further introduced (Exp-2,

Fig. 6), the particular choice by which the temperature first derivative θξ is discretised becomes important, as temperature gra-

dients can be transported via non-zero vertical velocities. Forward stencils slightly overestimates (F-2p) and underestimates305

(F-3p) the solution as shown in Fig. 6b. On the contrary, symmetric stencils S-2p provides a numerical solution significantly

closer to the analytical profile, particularly near the base. The next benchmark experiment (Exp-3, Fig. 6c), where the in-

homogenous term captures a source of heat throughout the column due to strain deformation, presents a similar behaviour,

where the F-3p stencil undersetimates the solution. Again, the symmetric scheme outperforms the asymmetric ones. Lastly, the

inhomogeneous term is introduced, physically capturing a vertically-averaged source or sink of heat as a consequence of the310

advected ice in the horizontal dimension. We thus considered a negative contribution that physically describes a downstream

advection of colder ice (Exp-4, Fig. 6d). Numerical solutions overestimate the analytical solution for the assymetric discreti-

sation schemes (i.e., F-2p and F-3p), unlike the two-point symmetric scheme (S-2p). It is worth noting that the closest result
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Table 4. Finite-difference approximations employed in the numerical study (Fig. 6) for unevenly-spaced grids ζi, as detailed in Appendix D.

Distance between two adjacent points is defined as hi = ζi+1 − ζi. Note that vertical velocities are negative (downwards movement of ice)

and the advection stencils are consequently adjusted. Discretization coefficients for the S-5p scheme are given in Appendix D.

Quantity Continous Discrete approx. Stencil name Order

Diffusion θξξ

2[hi−1θi+1−(hi+hi−1)θi+hiθi−1]
hihi−1(hi+hi−1)

Three-point symmetric (S-3p) O(ε2)

ci+2θi+2 + ci+1θi+1 + ciθi + ci−1θi−1 + ci−2θi−2 Five-point symmetric (S-5p) O(ε4)

Vert. advection wθξ

−wi
θi+1−θi

hi
Two-point forward (F-2p) O(ε1)

−wi
θi+1−θi−1

hi+hi−1
Two-point symmetric (S-2p) O(ε2)

−wi

[
2hi−1+hi

hi−1(hi−1+hi)
θi − hi−1+hi

hi−1hi
θi+1 +

hi−1

hi(hi−1+hi)
θi+2

]
Three-point forward (F-3p) O(ε2)

Basal BC θξ = γ

θ1−θ0
h0

Two-point forward (F-2p) O(ε1)

2h0+h1
h0(h0+h1)

θ0 − h0+h1
h0h1

θ1 +
h0

h1(h0+h1)
θ2 Three-point forward (F-3p) O(ε2)

to the analytical solution is obtained using S-2p for the advective term and F-3p for boundary condition discretisation. In the

remaining experiments, the particular scheme employed in the basal boundary condition does not modify the solution.315

For all experiments tested, results are identical irrespective of the particular discretisation of the diffusion term (Table 4),

so that both a three-point and a five-point symmetric stencils yield the same stationary temperature profiles. Overall, all finite

differences stencils herein presented successfully converge (Fig. 6e) for all benchmark experiments, yielding the smallest

residual error for the purely diffusive scenario (Exp-1).

Additionally, we perform a resolution convergence test for the best discretisation choice (Table 4): a F-3p for the diffusive320

term, a S-2p for vertical advection and a F-3p basal boundary condition. In order to quantify the residual error as a function

of the spatial resolution for each benchmark experiment (Fig. 7), we compute the ℓ2-norm of the difference between the

numerical and the analytical solutions ε= ||ϑnum −ϑ||ℓ2 , defined as ||x||ℓ2 =
(∑

ix
2
i

)1/2
. The larger deviations from the

analytical solutions are found for the lower half of the ice column and are strongly dependent on the vertical resolution. Results

show that a coarse resolution tends to overestimate the equilibrium temperature for all benchmark experiments. The residual325

error between the analytical and numerical solution exponentially decays, reaching values of ε < 10−2 for n > 15.
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Figure 6. Numerical steady-state solutions (red, blue) for all discretisations shown in Table 4 compared with the analytical solution (solid

black). Colour code represents the two asymmetric discretisation schemes for the basal boundary condition: F-2p (blue) and F-3p (red).

Marker and line styles denote the discretisation stencil of the vertical advective term. The number of vertical points n= 10 is fixed for all

cases. Numerical solutions are identical upon spatial discretisation of the difussive term at orders O(ε2) and O(ε4) (see Table 4). The purely

diffusive case (Exp. 1) yields negligible errors ε < 10−5.
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Figure 7. Convergence study of benchmark experiments. Steady-state analytical solutions shown in black solid line. (a) Exp-1, (b) Exp-2,

(c) Exp-3 and (d) Exp-4, (e) Residual error defined as ε= ||ϑnum −ϑ||ℓ2 . For all experiments, γ = 2 and β = 0.
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7 Discussion

The adoption of dimensionless variables results in enhanced generality and mathematical convenience, albeit at the expense of

veiling the practical significance to real glaciers and ice sheets. We have consequently tabulated data for characteristic values

to ease interpretation (Table 1), thus showing that the explored range encompasses realistic values found in ice caps (Table 2).330

We first start by comparing our results with a previously obtained solution for a simpler case (e.g., Clarke et al., 1977). We

obtain identical results by setting the ice surface temperature to a fixed value given by the air temperature, i.e., imposing β = 0

in Eq. 2 (Figs. 2c and 2f). Prominently, note that a non-zero β value is fundamental in the transitory regime (Fig. 11), though

it leads to negligible changes at equilibrium (Fig. 2).

The transient behaviour of the solution is intricate given the freedom to choose an arbritary initial state. This issue can be335

overcome by direct inspection of the eigenvalues of the problem. An estimation of the decay time of the analytical solution

shows that the advection and the surface insulation are the only parameters that determine the timescale to reach thermal

equilibrium. This approach has some limitations, some of which we now discuss. The decay time dependency is subjected to

the mathematical form of our problem (Eq. 2). If an analytical solution could be obtained with an additional explicit horizontal

advection term (rather than a vertically-averaged contribution), then the eigenvalues, and consequently the decay times, would340

also depend on Λ. A second limitation concerns the boundary conditions. This solution required time-independent conditions

and therefore the decay time estimations do not hold if, for instance, the surface temperature changes over time. Even so,

the approach developed here provides estimates of relaxation times under different physical conditions and gives an explicit

expression for the time-dependent temperature profile from any arbitrary initial state.

The tractability of the analytical solution does not allow for further complexity and hence additional numerical methods345

would be necessary if such a physical description is desired. Nonetheless, a constant horizontal advection term Λ was also

introduced as part of the inhomogeneous term Ω, for which the sign of the horizontal temperature gradients must be chosen a

priori. Even though horizontal variability of temperature distributions can vary greatly, we account for this effect assuming a

constant term (throughout the ice column) entering the heat equation, thus not reflecting much of the non-local features of the

thermal structure of the ice sheets.350

We must stress that our analytical solutions are not limited to regions with negligible horizontal velocities, since the true

constraining quantity is the vertical gradient of the horizontal velocity uz . Hence, rapidly sliding regions with a small vertical

gradient of the horizontal velocity are also suitably described by our solutions, for that uz ≃ 0 implies that the temperature

profile is merely transported along the flow direction, while compressing the temperature gradient as the ice stream thins (Robel

et al., 2013). One can argue that the additional source of heat due to frictional dissipation should be now also considered.355

Nonetheless, in terms of the temperature distribution, this effect is equivalent to an increased geothermal heat flow, as it is

purely restricted to the column base and therefore already encompassed in Eq. 7.

The strain rate regime pose further limitations on the applicability of the solution. Particularly, regions where vertical shear

dominates and the strain heat dissipation is concentrated near the base, a vertically-averaged contribution appears to be inac-

curate. Nevertheless, as already noted by Rezvanbehbahani et al. (2019), this effect is instead well captured by an increase in360
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the inflow of heat from the base (i.e., equivalent to a larger geothermal or frictional heat term) under conditions where most of

the vertical shear is concentrated in the basal layers (Fowler, 1992).

It is worth noting that phase changes are not herein considered, so that temperature evolution is strictly confined to values

below the pressure-melting point. Unlike a numerical solver, where temperature is manually limited, these solutions must be

taken with caution as we are describing a frozen ice column. Results are still compatible with a potential heat contribution due365

to basal frictional heat Eq. 2, even though fast sliding regions are often related with temperate basal conditions. Nevertheless,

an additional heat contribution would imply an increased vertical temperature gradient even if the column base eventually

reached the pressure-melting point.

Knowing that ice forms by snow densification through time (Stevens et al., 2020), we find layers of progressively increas-

ing ice density descending from the surface. Likewise, snow thermal conductivity increases with density (e.g., Sturm et al.,370

1997, 2002; Calonne et al., 2011, 2019), resulting in a poorer heat conductor as the snow-air interface is approached. As al-

ready noted by Carslaw and Jaeger (1988), if the flux across a surface is proportional to the temperature difference between the

surface and the surrounding medium, the appropriate boundary condition takes the form of Eq. 1, rather than the oversimpli-

fied version θ(L,t) = Tair. Here we explicitly describe the ice column with a constant thermal conductivity to keep analytical

tractability, but we aim at describing the fact that the thermal conducivity of glacial ice k(ρ) is reduced towards the surface.375

Following Carslaw and Jaeger (1988), we apply a general "Newton’s Law" that also captures the traditional approach (i.e.,

imposing a particular ice surface temperature given by the air temperature) as a limit case if β → 0.

Our suite of benchmark experiments allows us to test numerical solvers and assess reliability for different discretisation

schemes and resolutions. The basal boundary condition is sensitive to the particular discretisation scheme, as the geothermal

flux is the main source of heat in the ice column and is considered via a Neumann boundary condition. The simplest two-380

point stencil does not correctly represent the equilibrium temperatures, yielding larger deviations at the base (Fig. 6). Higher

order discretisations are necessary to obtain a more reliable temperature distribution. In our benchmark experiments, we find

significant improvement between O(ε1) and O(ε2) schemes for the basal boundary condition (Fig. 6), particularly for scenarios

with large strain heating values or strong horizontal heat advection. Results for the different vertical advection schemes show

that forward stencils (both F-2p and F-3p) deviate further from the analytical solution when compared to a symmetric scheme.385

Despite the fact that symmetric advective schemes might show some instabilities, we have not found any numerical issues in the

present study. On the contrary, such schemes appear to outperform the asymmetric counterparts for all benchmark experiments.

Resolution plays a fundamental role to obtain a reliable temperature profile. A sigma coordinate system with quadratic spac-

ing accurately (ε < 10−2) reproduces the analytical solution for n≥ 15 grid points provided our best numerical scheme choice.

Additional calculations performed for an exponential grid spacing (not shown) reveal consistent results with the quadratic de-390

pendency (Figs. 6 and 7). This shows robustness of our numerical schemes, from which the symmetric advective stencil (S-2p)

and the three-point basal boundary conditions (F-3p) again outperform the remaining choices.
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8 Conclusions

We have determined the analytical solution to the 1D time-dependent advective-diffusive heat problem including additional

terms due to strain rate deformation and depth-integrated horizontal advection. A Robin-type top boundary condition further395

considers potential non-equilibrium temperature states across the ice-air interface. The solution was expressed in terms of con-

fluent hypergeometric functions following a separation of variables approach. Non-dimensionalisation reduced the parameter

space to five numbers that fully determine the shape of the solution at equilibrium. We further overcome the arbitrariness on

the initial temperature profile by directly calculating the eigenvalues of the problem and their corresponding decay times as an

estimation of the time scale of our system in different physical scenarios. The transient component exponentially converges to400

the stationary solution with a decay time that solely depends on vertical advection and surface insulation.

The sign of vertical advection is of utmost importance as it determines the direction along which temperature gradients are

transported. We have focused in the present study on the downward advective scenario, given the implausibility of an upward

advection of ice. At equilibrium, basal temperatures are particularly sensitive to four physical quantities: vertical advection,

geothermal heat flow, strain heat and lateral advection. On the contrary, the surface insulation yields negligible changes in the405

stationary solution. This is true even for highly insulating conditions at the ice surface, so long as colder ice is transported more

efficiently than heat travels upwards due to diffusion.

The transient regime shows a strongly distinct behaviour. The arbitrariness of the initial state is overcome by a direct inspec-

tion of the eigenvalues of the problem. We then obtain a magnitude that represents the decay time of each Fourier mode that

provides information about the equilibration time of the system. We find that the decay time of the transient component solely410

depends on two magnitudes: advection (Pe) and surface insulation (β). The remaining dimensionless parameters shape the

temperature solution, though they have no influence in the timescale to reach equilibrium. Strong advective regimes (Pe∼ 5)

yield ∼ 2-10 kyr decay times under null and strong surface insulation conditions, β = 0 and β = 1 respectively. On the con-

trary, weak advective regimes are characterised by longer timescales ∼ 20-40 kyr, also depending on the particular insulating

scenario.415

Our suite of benchmark experiments are convenient for assessing accuracy and reliability of numerical schemes. We have

employed unevenly-spaced grid discretisations to obtain higher resolution near the base whilst minimising the total number

of grid points, thus reducing computational costs. A symmetric discretisation of the advective term combined with a three-

point basal boundary condition yields the best agreement compared to analytical solutions. In terms of convergence and grid

resolution, we find that n≥ 15 is the lower limit to obtain accurate temperature profiles. These results are robust both for a420

quadratic and an exponential grid spacing.

Lastly, we note that our analytical solutions are general and can be applied to any initial boundary value problem that fulfils

the conditions herein described. They can provide temperature distributions for any 1D problem at arbitrarily high spatial and

temporal resolutions, that considers the combined effects of diffusion, advection and strain heating without any additional

numerical implementation. Furthermore, they present a reliable benchmark test for any numerical thermomechanical solver to425

quantify accuracy losses and necessary spatial and temporal resolutions.
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Code availability. TEXT

Data availability. TEXT

Code and data availability. All scripts to obtain the results herein presented and to further plot figures can be found in: https://github.com/

d-morenop/Suplementary_ice-column-thermodynamics430

Sample availability. TEXT

Video supplement. TEXT

Appendix A: Separation of variables and full solution

Let us briefly outline the separation of variables technique before elaborating on the solutions of our general problem. Consider

the following initial/boundary problem on an interval L ⊂ R,435 

µτ = µξξ −wµξ, ξ ∈ L̃, τ > 0,

µ= µ0, ξ ∈ L̃, τ = 0,

µξ = 0, ξ = 0, τ > 0,

βµξ +µ= 0, ξ = 1, τ > 0,

(A.1)

This technique looks for a solution of the form:

µ(ξ,τ) =X(ξ)T (τ), (A.2)

where the functions Y and T are to be determined. Assuming that there exists a solution of A.5 and plugging the function

µ=XT into the heat equation, it follows:440

Tτ

T
=

Xξξ

X
−w

Xξ

X
=−λ, (A.3)

for some constant λ. Thus, the solution µ(ξ,τ) =X(ξ)T (τ) of the heat equation must satisfy these equations. In order for a

function of the form µ(ξ,τ) =X(ξ)T (τ) to be a solution of the heat equation on the interval I ⊂ R, T (τ) must be a solution

of the ODE Tτ =−κλT . Direct integration leads to:

T (τ) =Ae−κλτ , (A.4)445
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for an arbitrary constant A.

Additionally, in order for µ(ξ,τ) to satisfy the boundary conditions, we arrive to a second-order linear ordinary differential

equation:
Xξξ(ξ)−w(ξ)Xξ(ξ)+λX(ξ) = 0, ξ ∈ L̃,

Xξ = 0, ξ = 0,

βXξ +X = 0, ξ = 1,

(A.5)

It is necessary to provide the particular shape of the the function w(ξ). First, we will employ the linear profile w(ξ) = w0ξ450

so that the differential equation now reads Xξξ(ξ)−w0ξXξ(ξ)+λX(ξ) = 0. This equation can be easily identified with the

well-known confluent hypergeometric differential equation (e.g., Abramowitz and Stegun, 1965; Evans, 2010) defined as:

ξXξξ +(δ− ξ)Xξ −αX = 0, (A.6)

Simply by defining α=−λ/(2w0), δ = 1/2 and ζ = w0ξ
2/2, we can write our solution in terms of the two independent

Kummer and Tricomi functions:455

X(ξ) = C1Φ(α,δ,ζ)+C2Ψ(α,δ,ζ) (A.7)

where C1 and C2 are constants to be determined from the boundary conditions. At the base, the solution must be finite, so we

set C2 = 0 given that Tricomi function Ψ(α,δ,ζ) diverges at the origin. The second boundary condition (i.e., at ξ = 1) allows

us to determine the eigenvalues λn of the problem as we look for all values of αn that satisfy:

βΦξ (αn, δ,ζ)+Φ(αn, δ,ζ) = 0, at ξ = 1, (A.8)460

and then we compute the eigenvalues λn =−2w0αn. This is in fact a trascendental equation with no algebraic representation

and therefore, the values of αn are numerically determined.

Thus, for each eigenfunction Xn with corresponding eigenvalue λn, we have a solution Tn such that:

µn(ξ,τ) =Xn(ξ)Tn(τ), (A.9)

is a solution of the heat equation on our interval I which satisfies the BC. Moreover, given that the problem A.5 is linear, any465

finite linear combination of a sequence of solutions {µn} is also a solution. In fact, it can be shown that an infinite series of the

form:

µ(ξ,τ)≡
∞∑

n=0

µn(ξ,τ), (A.10)

will also be a solution of the heat equation on the interval I that satisfies our BC, under proper convergence assumptions of

this series. The discussion of this issue is beyond the scope of this work.470
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We can then express the transitory solution as:

θ(ξ,τ) =

∞∑
n=0

AnΦ(αn;δ;ζ)e
−λnτ (A.11)

where the coefficients An are given by the initial condition.

Since the confluent hypergeometric functions are orthogonal, the normalized eigenfunctions form an orthonormal basis

under the ϱ(ξ)-weighted inner product in the Hilbert space L2, thus allowing to write the coefficients An as:475

An =
1

||Φn||2

1∫
0

(θ(ξ,0)−ϑ(ξ))ϱ(ξ)Φ(αn;δ;ζ)dξ. (A.12)

where θ(ξ,0) is the initial temperature distribution, ϱ(ξ) = e−w0ξ
2/2 and ||Φn||2 is defined by the inner product:

||Φn||2 = ⟨Φn,Φn⟩=
1∫

0

Φ(αn;δ;ζ)ϱ(ξ)Φ(αn;δ;ζ)dξ. (A.13)

Appendix B: Stationary solution

For the stationary regime, we do not need to apply separation of variables for that the problem reduces to a second-order480

ordinary differential equation in only one independent variable ξ:
Ω= ϑξξ −wϑξ, ξ ∈ L,

ϑξ = γ, ξ = 0,

βϑξ +ϑ= 1, ξ = 1,

(B.1)

Even though we have increased the complexity of the problem with a refined top boundary condition and non-homogeneous

term Ω, the solution can still be found analytically:

ϑ(ξ) = Ω
ξ2

2
2F2

(
1,1;

3

2
,2;−ζ

)
+A erf [aξ] +B (B.2)485

where 2F2(a1,a2;b1, b2,x) is the generalised hypergeometric function, ζ = (aξ)
2, a= (w0/2)

1/2, A=−γ (π/(4a))
1/2 and

B = 1−A
(
2aπ−1βe−a2

+erf [a]
)
−Ω

(
(β+1/2) 2F2(1,1;3/2,2,a

2)+βa2 2F2(2,2;5/2,3,a
2)/3

)
is a constant given by

the top boundary condition. Note that hypergeometric function can be easily differentiated following e.g., Eq. 15.2.1 in

Abramowitz and Stegun (1965).
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Appendix C: General power-law velocity profiles490

In this section, we also assume thermal equilibrium, thus reducing again the problem to a second-order ordinary differential

equation in only one independent variable ξ:
0 = ϑξξ −wϑξ, ξ ∈ L,

ϑξ = γ, ξ = 0,

βϑξ +ϑ= 1, ξ = 1,

(C.1)

where we have set Ω= 0 to ensure analytical tractability for a general power-law velocity profiles. This solution is consequently

limited to regions where Pe, γ ≫ Λ, Br.495

Unlike the general stationary solution shown in Eq. B.2, we allow for a general power-law vertical velocity profile of the

form w(ξ) = w0ξ
m. The solution can be then expressed as:

ϑ−(ξ) =
pγ

(pw0)
p Γ

(
p,pw0ξ

m+1
)
+C (C.2)

where p= (m+1)−1, C = 1− [2β (pw0)
p
e−pw0 +Γ(p,w0p)]pγ/(pw0)

p is a constant given by the top boundary condition

and Γ(·, ·) is the upper incomplete gamma function defined as:500

Γ(a,x) =

∞∫
x

e−tta−1dt (C.3)

Additionally, the solution can be also expressed in terms of Kummer confluent hypergeometric function Φ given the relation

(Abramowitz and Stegun, 1965, Eqs. 6.5.3 and 6.5.12):

Γ(a,x) = Γ(a)− a−1xae−xΦ(1,1+ a;x) (C.4)

Hence, the stationary solution is equivalent to ∼ Φ
(
1,p+1;pw0ξ

m+1
)
.505

Appendix D: Discretisation schemes

Our finite differences discretisation considers unevenly-spaced grids, commonly used in the glaciological community where

higher resolutions are desired near the base whilst minimising the required number of points to reduce computational costs. We

thus build a new coordinate system ζ considering two types of nonuniform grid spacing: polynomial and exponential. Given

that our original variable ξ ∈ [0,1], these relations can be expressed as:510

ζ = ξn (D.1)

where n is the spacing order, and:

ζ =
esξ − 1

es − 1
(D.2)
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where s is the spacing factor for the exponential grid. In this study, we have employed n= 2 and s= 2.

We now present the numerical schemes necessary to account for non-homogeneous grids ζ. The distance between two515

adjacent points is defined as hi = ζi+1 − ζi. The five-point symmetric second-order derivative then reads:

θξξ(ξi)≃
−2hi(2hi+1 +hi+2)+ 2hi+1(2hi+1 +hi+2)

hi−1(hi−1 +hi)(hi−1 +hi +hi+1)Hi
θi−2 +

2(2hi−1 +hi)(2hi+1 +hi+2)− 2hi+1(hi+1 +hi+2)

hi−1hi(hi−1 +hi+1)(hi +hi+1 +hi+2)
θi−1

+
2hi(hi−1 +hi)− 2(hi−1 +2hi)(2hi+1 +hi+2)+ 2hi+1(hi+1 +hi+2)

(hi−1 +hi+1)hihi+1(hi+1 +hi+2)
θi

+
2(2hi−1 +2hi)(hi+1 +hi+2)− 2hi(hi−1 +hi)

(hi−1 +hi +hi+1)(hi +hi+1)hi+1hi+2
θi+1 +

2(hi−1 +hi)hi − 2(2hi−1 +hi)hi+1

Hi(hi +hi+1 +hi+2)(hi+1 +hi+2)hi+2
θi+2

(D.3)

where Hi = hi−2 +hi−1 +hi +hi+1 +hi+2. This result is consistent with Singh and Bhadauria (2009).
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