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Abstract. The temperature distribution in ice sheets is worthy of attention given the strong relation with ice dynamics and the

intrinsic information about past surface temperature variations. Here we refine the classical analysis of free oscillations in an

ice sheet by analytically solving the thermal evolution of an ice column. In so doing, we provide analytical solutions to the one-

dimensional Fourier heat equation over a finite motionless ice column for a more general (Robin) boundary condition problem.

The time evolution of the temperature profiles appears to be strongly dependent on the column thickness L and largely differs5

from previous studies that assumed an infinite column thickness. Consequently, the time required for the column base to thaw

depends on several factors besides the ice thermal properties: the initial temperature profile, the boundary conditions and the

ice-column thickness L. This timescale is classically considered to be the period of a binge-purge oscillator, a potential mech-

anism behind the Heinrich Events. Our analytical solutions show a broad range of periods for typical-size column thicknesses.

In the limit L→∞, the particular values of the prescribed temperature at the top of the column become irrelevant and the10

reference value of ∼ 7000 years, previously estimated for an idealised infinite domain, is retrieved. More generally, we prove

that solutions with different upper boundary conditions, covered by our formulation, converge to the same result in such a limit.

These results ultimately illustrate a subtle connection between internal free (the binge-purge hypothesis) and externally-driven

(a time-dependent boundary condition at the top) mechanisms caused by the finitude of the domain. Since thermomechanical

instabilities (i.e., the transition between two plausible modes of basal lubrication governed by the thermal state of the ice) are15

the triggering mechanism of a binge-purge oscillator, internal free oscillations are sensitive to the particular climatic forcing

imposed as a boundary condition at the top of the ice column. Lastly, analytical solutions presented herein are applicable in

any context where our Robin boundary problem is satisfied.

Copyright statement. TEXT

1



1 Introduction20

Periodic episodes of extreme iceberg discharge have captivated the glaciological and paleoclimatological community for the

last three decades. Yet the ultimate cause of these so-called Heinrich Events (HE) remains elusive. Several mechanisms have

been proposed in the literature that can be broadly classified into two branches: internal free and externally-driven oscillations.

Free oscillations were first proposed in MacAyeal (1993a) as manifestations of the Laurentide Ice Sheet (LIS) purging

excess ice volume. This interpretation rests on the assumption that a transition exists between two potential states of basal25

lubrication (Alley and Whillans, 1991; Hughes, 1992) and it is known as the binge-purge hypothesis. Namely, when the basal

ice temperature is below the pressure melting point, the ice sheet is assumed to be stagnant and it simply thickens due to

snow accumulation. As a result of the geothermal heat flow, the ice column is expected to warm and the base eventually yields

melting. At this point, the ice sheet is no longer at rest and begins to slide over a lubricated sediment bed. The purge phase

continuous until the basal temperature gradient exceeds the value that can be maintained by the geothermal heat flux and the30

frictional energy dissipation combined. MacAyeal (1993a) thus investigated what causes the bed of the LIS in Hudson Bay

and Hudson Strait to shift from a frozen to a thawed state as well as the time length involved in this process. To this end,

he developed a conceptual model that shows how amplitude and periodicity depend on two environmental factors: the annual

average sea-level temperature and the atmospheric lapse rate (MacAyeal, 1993a). Furthermore, a periodicity of T ≈ 7000 years

was estimated from these two factors for a simplified geometry. This value was determined as the time required for the base35

of a semi-infinite one-dimensional motionless ice column to reach the melting point due to a constant geothermal heat flow

(analytically from Carslaw and Jaeger, 1988) and it marks the onset of the purge phase on a binge-purge cycle. The absence of

time dependent boundary conditions throughout the study is noteworthy.

Even though both the period and amplitude of the free oscillations appear to be dependent on environmental factors, the

same study dismissed the possibility of an oscillation period imposed by an external harmonic atmospheric forcing as a result40

of the strong amplitude attenuation with depth. In other words, if such a periodic external climate forcing did exist, its imprint

would be negligible at the base of the ice sheet. To prove so, MacAyeal (1993a) showed that the corresponding e-folding decay

length of a T ≈ 7000 years periodicity reads
√

2k/ω = 314 m for a motionless ice column. Moreover, a constant vertical

velocity was also considered so as to account for a potential advection term, thus increasing the e-folding decay length to 970

m. In view of these results, it is evident that a harmonic surface temperature fluctuation would become negligible at the base45

of a thick ice sheet.

To provide quantitative support to the conceptual model, a low-order model of the HE cycle was additionally developed

(MacAyeal, 1993b) to confirm that the theoretical estimation of HE periodicity T is in fact determined by the aforementioned

environmental factors (MacAyeal, 1993a). In this two-dimensional model, ice flow mechanics and mass balance are combined

in a manner that yields null horizontal ice flow when the base is frozen whereas deforming sediments allow for rapid sliding50

when the base is melted. Internal ice deformation is disregarded and ice thickness is assumed to be uniform along the cross

section of the LIS (from Hudson Bay to the mouth of Hudson Strait). Remarkably, the numerical periodicity showed a discrep-

ancy from the theoretical estimation of solely 4%. However, this relaxation oscillator model assumes a characteristic ice stream
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purge timescale of 250 years, given the absence of explicit simulations of a Hudson Strait ice stream. Notably, this choice is

relevant for the long timescale of the HE since it determines the switch from purge to growth behaviour, found to be 450 years55

in the numerical results.

Since then, dynamic 3D ice-sheet models have been used to investigate the mechanisms underlying HEs. For instance,

Marshall and Clarke (1997) used a 3D model to simulate the LIS, though no discharges were reproduced within the wide range

of model parameters. Calov et al. (2002) first modeled oscillatory behaviour in three-dimensional Shallow Ice Approximation

(SIA) models with ad hoc basal sliding. Along with other studies, the authors noted the necessary evolving drainage and till60

mechanics providing potential insight into our understanding of the physical processes that caused Hudson Strait oscillations

(Calov et al., 2002; 2010). From highly reduced models (e.g., Tulaczyk et al., 2000b) to a complex Herterich-Blatter-Pattyn

ice model (e.g., Bougamont et al., 2011), multiple approaches have been found for a wide degree of comprehensiveness in ice

stream dynamics in which the basal hydrology has become essential for an appropriate representation of the ice streams.

More recently, Robel et al. (2013) focused on the temporal variability of an ice stream accounting for basal hydrology,65

modeled as a single lumped spatial element assuming a single velocity to represent ice discharge. The surface temperature

and the geothermal heat flux were found to be important controls of the character of the ice flow. In particular, an oscillatory

binge-purge mode was also present and appeared to be primarily caused by re-freezing of meltwater due to ice thinning during

stagnation. The remarkable dependence of both the periodicity and the amplitude of these events on the boundary conditions

of the system (surface temperature and geothermal heat flux) suggests that even a zero-dimensional spatial model (i.e., a single70

spatial element) is highly sensitive to time-independent forcing.

Nevertheless, none of these studies discussed the theoretical implications of estimating HE periodicity under the assump-

tion of a (oversimplified) semi-infinite domain. In addition, these assumptions lack a more general treatment of the plausible

boundary conditions at the top of the ice column. Despite the fact that the characteristic binge timescale determined the HE

periodicity solely from environmental factors (lapse rate and sea level temperature) in prior studies, it does not necessarily75

imply that such periodicity is independent of the atmospheric temperature conditions and the energy balance across the ice-air

interface. Strictly speaking, one can only conclude that the periodicity T cannot be imposed by a harmonic forcing at the ice

surface.

Even so, the T ≈ 7000 year periodicity appears widely used in the literature as a reference value for ice-sheet models. Yet the

theoretical implications of treating the problem with a more realistic finite medium remain unexplored. We herein investigate80

the consequences of considering a one-dimensional motionless ice column with a finite thickness L and quantify the impact

of explicit boundary and initial conditions. A formulation of the problem is given in Section 2; the approach followed in this

work is presented in Section 3; analytical solutions are shown in Section 4; results are discussed in Sections 5, 6 and 7; our

concluding remarks are given in Section 8.

3



Figure 1. Schematic view of the motionless one-dimensional ice column with a finite thickness L. Temperature evolution is dictated by the

heat equation and an appropriate set of initial and boundary conditions. Subscripts denote partial differentiation. At the top, both the ice

temperature and the vertical gradient can vary in time, thus allowing for non-equilibrium thermal states across the ice-air interface. At the

base, the vertical gradient is fixed to the value given by the geothermal heat flux θy =−G/k. Note that our formulation is one-dimensional

so that the x-axis is solely introduced for visualization.

2 Finite thickness85

Let us now elaborate on the description of a more realistic one-dimensional ice column with a finite thickness L. Our domain is

then defined as the interval y ∈ [0,L]≡ L. First, we must reformulate the problem imposing the necessary additional boundary

condition at the top of the motionless column y = L (Fig. 1).

In the simplest physical scenario, the ice surface temperature is set to the air temperature value θ(L,t) = Tair. However, the

particular surface temperature is in fact the result of the energy balance between the ice and the atmosphere. A more general90

approach considers that the ice and the air may not be always at thermal equilibrium, thus yielding a heat flux due to a vertical

temperature gradient. The thermal equilibrium is only reached if the ice surface and the atmosphere temperatures are identical.

In such conditions, the heat flux across the interface is null and the vertical gradient at the top the ice column vanishes. In this

description, both the surface ice temperature and the vertical gradient can consequently vary in time:
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βθy + θ = Tair, y = L, t > 0, (1)95

where italic subscripts denote partial differentiation and β is a parameter with length dimensions that modulates the permissible

deviation between ice and air temperatures. Equation 1 falls within the so-called linear heat transfer boundary conditions (e.g.,

Carslaw and Jaeger, 1988, Chapter § 1.9) and β is often referred to as the surface thermal resistance (per unit area).

We can then physically interpret this parameter β as the thermal insulation of the ice-air interface. In other words, β is a

length-scale over which the ice column feels the air temperature. A zero value corresponds to an ideal conductor (θ(L,t) =100

Tair), whereas β →∞ represents a perfect thermal insulator characterized by a null heat exchange across the interface. In the

limit case β = 0, the interface ice-air is always at thermal equilibrium (i.e., θ = Tair). For β ̸= 0, we allow for a heat exchange

across the ice surface driven by the temperature difference between the two media.

Considering diffusive heat transport, the ice temperature θ(y,t) satisfies an initial value problem given by the heat equation:



θt = κθyy, y ∈ L, t > 0,

θ = θ0(y), y ∈ L, t= 0,

θy =−G/k, y = 0, t > 0,

βθy + θ = Tair, y = L, t > 0,

(2)105

where G is the geothermal heat flux, k is the ice conductivity and κ is the ice diffusivity (assumed to be constant since we do

not explicitly consider the firn layer above the ice).

The initial temperature profile reads θ0(y) = θb+(θL − θb)y/L, where θL and θb are the initial temperatures at the top and

the base of the column, respectively. This linear profile is introduced for simplicity and it allows us to explicitly determine the

impact of the initial basal/surface ice temperature independently.110

We must stress that the system described as above (Eq. 2) builds upon MacAyeal (1993a) and aims at a purely vertical

diffusive heat-transfer description of a motionless ice column. In reality, heat transfer is well-known to be a three-dimensional

process with a higher level of complexity that encompasses several mechanisms as horizontal/vertical advection, potential

presence of liquid water within the ice, a varying ice thickness, internal heat deformation and frictional heat production among

others. The current problem is approached by using analytical techniques and so the complexity of the system is critical if an115

analytical solution is to be found. The simplicity of our description provides new insight from a theoretical perspective.

3 Fourier method

Our aim is to solve the initial boundary value problem by using the Fourier method, also known as separation of variables (an

overview of the method is given in Appendix A, for a standard reference see e.g., Kalnins et al., 2018). Consequently, we first

need to find a change of variable that leaves us with homogeneous boundary conditions in order to determine the corresponding120

eigenvalues.
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Let us then define the new variable ξ(y,t) for the problem determined by Eq. 2:

ξ = θ−Tair +(y−β−L)
G

k
(3)

Therefore, in terms of the new variable the problem under consideration reads:



ξt = κξyy, y ∈ L, t > 0,

ξ = f(y), y ∈ L, t= 0,

ξy = 0, y = 0, t > 0,

βξy + ξ = 0, y = L, t > 0,

(4)125

where the initial state is f(y) = θ0(y)−Tair +(y−β−L) G
k .

As a result, we now have a homogeneous problem that can be solved by separation of variables (Appendix A). If a solution

exists, it determines the vertical temperature profile at any given time for the initial and boundary conditions provided by Eq.

2.

4 Analytical solution130

The solution ξ(y,t) to the boundary problem determined by the Set 2 (derivation details in Appendix B) reads:

ξ(y,t) =

∞∑
n=0

Ancos
(√

λny
)
e−κλnt, (5)

where the eigenvalues λn are given by the transcendental equation:

cot
(
L
√
λn

)
= β

√
λn. (6)

Equation 6 does not admit an algebraic representation, hence requiring a numerical method to compute λn. Here we imple-135

mented the Brent-Dekker algorithm (Dekker, 1969; Brent, 1971) with a tolerance of 10−8. This root-finding algorithm choice

combines the bisection method, the secant method and the inverse quadratic interpolation.

The coefficients An can be readily obtained applying orthogonality among eigenfunctions:

An =
2

L

L∫
0

ξ(y,0) cos
(√

λny
)
dy. (7)
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It is noteworthy that if β is strictly zero (i.e., the ice surface temperature is prescribed θ(L,t) = Tair), the solution is equiva-140

lent to finding the eigenvalues satisfying the equation cos
(
L
√
λn

)
= 0 and can be obtained analytically as:

√
λn =

(
n+

1

2

)
π

L
, (8)

where n= 0,1,2, ....

In this particular case, the corresponding coefficients An also allow for analytical expression:

An = 4(θb − θL)

[
cos(nπ)

2nπ+π

]
− 8L

G̃

k

[
1

2nπ+π

]2
. (9)145

Table 1. Employed parameter values and range further explored in Fig 6.

Magnitude Symbol Fixed value MacAyeal (1993) Explored range

(units) (Fig. 6)

Initial ice basal temperature θb (◦C) -10.0 -10.0 [-50,-10]

Initial ice surface temperature θL (◦C) -25.0 N/A [-50,-10]

Geothermal heat flux G (mW/m2) 50.0 32.0 [25,100]

Air temperature Tair (
◦C) -25.0 N/A [-50,-10]

5 Vertical temperature profile

We now present the vertical profiles θ(y,t) from analytical solutions given by Eq. 5 for three different thicknesses, L = 1.0, 1.5

and 2.5 km, at t= 0 and t= 4750 years (Fig. 2) using the set of paramters described in Table 1. The second time frame value

is chosen so that the fastest warming scenario (blue line in Fig. 2) precisely reaches melting. Since solutions are presented as

infinite series, truncation was naturally required. We kept 100 terms in Eq. 5, though the error is below 0.03% after the 13th150

term.

The implications of a finite domain are quite notable. Particularly, the column base warms due to the geothermal heat flux

at a rate that is proportional to ∼ κλ0e
−κλ0t at leading order. Then if we let L > L̃ be two thicknesses, it consequently yields

that the ratio θt/θ̃t ∼ e−κ(λ0−λ̃0)t exponentially grows, so that rate of change (at y = 0) is larger for a thicker column since

the corresponding eigenvalues λ0 < λ̃0. That is, a thicker ice column implies a faster change of its basal temperature.155

The impact of β is particularly clear at the top (Fig. 2b), where the temperature slightly increases due to an upward heat flux

originating at the base (unlike the β = 0 case, where the temperature is prescribed). We have chosen β = 100 m to display such

mechanism, whilst keeping a reasonable temperature difference (Cuffey and Paterson, 2010).

Figure 3 further focuses on the basal temperature evolution by comparing the effects of a particular zero/non-zero β value

for different ice thicknesses, yet it does not provide information about the relevance of the particular β choice. The implications160
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(a) Initial temperature profile. (b) Temperature profile after 4750 years.

Figure 2. Vertical profiles from analytical solutions θ(y,t) for three different ice-column thicknesses L = 1.0, 1.5, and 2.5 km. Left panel

(a), t= 0 yr; right (b), t= 4750 yr. Solid line represents solutions for β = 100 m where the case β = 0 is denoted by a dotted line. Parameter

values employed are shown in Table 1 (fixed value column)

of this choice and their relative magnitude compared to the total thickness is thoroughly presented in Figs. 4 and 5. Since this

thermal insulator parameter has length dimensions, it is illustrative to study its dependency referred to the particular column

thickness L, i.e., the dimensionless quantity β/L shown in Fig. 4. As β becomes small compared to the ice thickness (i.e.,

β/L≪ 1), the ice surface remains cold by the influence of the atmosphere temperature (Tair =−25 ◦C). The entire profile is

affected by the surface condition and thus the basal temperature remains lower as well. On the contrary, if we let β/L=O(1),165

we find that the ice surface monotonically warms (due to the upwards geothermal heat flux and the imposed larger insulating

condition) and the base reaches melting faster. This behaviour yields two points worth noting: (1) the saturation in basal

temperature for β/L > 0.5 and (2) a "never-thawing" base for sufficiently low β/L values.

To complete our study on the impact of the particular β/L choice, we represent the ice surface temperature deviation from

the air temperature boundary condition normalised by the latter as ∆θ = (θ(L)−Tair)/Tair (blue solid line, Fig. 5). We thus170

obtain a dimensionless quantity that reflects the surface temperature changes as a function of the relative thermal insulation

referred to the column thickness. The particular ice surface temperature is evaluated when the base reaches melting (red solid

line, Fig. 5) so as to ensure that the incoming energy is entirely diffused and there are no phase changes. We find ice temperature

deviations up to a 30% from the air temperature (imposed as a boundary condition) in the limit β/L→ 1.

6 A new period for the binge/purge oscillator175

Prior to a detailed discussion of our results, we must note that the solution to our Robin boundary problem (Eqs. 5 - 7) describes

the evolution of the temperature profile only until the ice column base thaws, and therefore does not show a periodic behaviour
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Figure 3. Time evolution of the basal temperature for three different thicknesses (in km). Solid line represents solutions for β = 100 m

whereas the limit case β = 0 (i.e., fixed surface temperature) is denoted by a dotted line. The boundary condition at the base is identical for

all cases and given by the geothermal heat flux G. The horizontal dashed lines represent the corrected pressure melting point for each column

thickness.

of the ice dynamics. Such behaviour emerges once this solution is considered within MacAyeal’s oscillator (MacAyeal, 1993a,

b).

The temporal dependency of the basal temperature (Fig. 3) from our analytical solution (Eq. 5) allows us to calculate the180

time required for the column base to reach the melting point analogously to the growth phase of a Heinrich event oscillation

(MacAyeal, 1993a). We also account for the pressure correction of the ice melting point as θ = θ̃+αP , where α= 9.8 · 10−8

K/Pa (e.g., Greve and Blatter, 2009). Knowing that P = ρgL and our column spans the following thickness interval L=

[1.0,3.5]. For ∆L≃ 3.0 km, then θ̃ ≃−2.6 ºC yields a non-negligible correction, making the ice thickness dependence even

stronger as a result of two independent contributions: a more significant insulating effect of a thicker ice column and a larger185

pressure melting correction. It is worth stressing that the period of the binge-purge oscillator (MacAyeal, 1993a) did not

considered any pressure melting correction so that a one-to-one comparison must dismiss such effect (see Section 7).

Figure 3 shows the sensitivity of the thermal state of the base to the thickness of the column L and to the treatment of the

surface boundary condition. It is clear that the column thickness is a fundamental factor that allows the surface temperature

to influence the evolution of the base. Strictly speaking, the external forcing perturbs the temperature vertical profile of the190

ice column, thus determining the basal temperature. When we allow for non-equilibrium thermal states in the top boundary
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(a) Basal temperature. (b) Surface temperature.

Figure 4. Ice temperature time series for (a) Base and (b) Surface. Each line represents a particular dimensionless β/L choice. The strictly

zero case corresponds to β = 0 and L= 1.0 km. A solid black lines denotes the semi-inifinite domain solution (Carslaw and Jaeger, 1988).

The air temperature is fixed for all cases and reads Tair =−25 ◦C.

Figure 5. Normalised ice surface temperature deviation ∆θ (dark blue line) from the air temperature boundary condition Tair and time

required for the base to thaw (red line) as a function of the normalised insulating parameter β/L. The ice surface temperature deviation is

evaluated when the base reaches melting.
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condition (i.e., β ̸= 0), the base warms faster since the column surface can evolve in time towards higher temperatures, thus

inducing a lower temperature difference between the base and the top. The relevance of this effect is inversely proportional to

the column thickness, becoming negligible for large L values.

When computing the time required for the base to thaw, the initial temperature profile plays an essential role. The linear195

profile is imposed as the initial condition of our analytical solution (Eq. 5) and then, a broad range of θb and θL values is

explored to quantify their impact on this timescale (Fig. 6). Ideally, the initial condition should be set by the temperature

profile immediately after an event in the binge-purge cycle, yet such a profile is not available. A linear profile assumes that the

temperature in the ice reflects a linear lapse rate in the atmosphere as the ice thickness builds up over time.

Figure 6 also shows the dependency of this basal-thawing timescale on the boundary conditions in our general formulation200

(Eq. 1). The impact of the external forcing is evident from Fig. 6b. As we would expect, lower Tair values yield longer basal-

thowing timescales, though solely for ice thicknesses below ∼ 2 km. For thicker ice, the periodicity appears to be independent

of the surface ice temperature. We therefore find that, for this parameter choice (Table 1), Lthr = 2 km is a threshold value

above which the time required to thaw is decoupled of the top boundary condition. A distinct parameter choice will alter this

particular value, yet we expect this behaviour to remain present.205

Such a threshold is a compelling result and deserves further elaboration. Since here we focus on the time required for the base

to thaw, it is fundamental to consider the temperature gradient between the base and the top. The vertical temperature gradient

must be supported by the geothermal heat flux. If the surface is too cold, the heat provided by G may not be sufficient to support

a large enough temperature difference (within the column) so that the base reaches the melting point. For a given choice of G,

k and Tair, there exists a minimum ice thickness Lmin that yields a temperature gradient that allows for the base to thaw. For210

thinner columns, the base always remains frozen. This further translates in a sudden increase in the basal-thawing timescale

(Fig. 6b). Although the value of this threshold depends on the physical properties of the ice and the boundary conditions (i.e.,

k, G and Tair), the mechanism still holds irrespective of the particular parameter choice.

The time required for the base to thaw decreases as the geothermal heat flux increases. A similar behaviour is found with

increasing L due to the thermal insulating effect of the ice column, particularly for low geothermal heat flux values. This is215

consistent with what we expected, as a higher geothermal heat flux provides a larger amount of heat (per unit time) to the ice

column.

The initial conditions are also essential to quantify the time required for the ice base to thaw. We have considered a linear

initial vertical profile θ0(y) = θb+(θL − θb)y/L, so as to understand the explicit dependency of the initial surface temperature

θL and the initial basal temperature θb independently (Figs. 6c and 6d). Namely, the impact of θL is determined by the column220

thickness, with a more acute dependence for low L values. This was expected as the vertical temperature gradient increases

for a fixed temperature difference between base and top if the column thickness is reduced. A never-thawing base is plausible

when such a vertical gradient surpasses the value given by the geothermal heat flux. Lastly, the time required to melt the base

appears to be rather sensitive to the initial basal temperature, rapidly reaching values above 25 kyr for θb <−40◦C.

Figure 6d particularly shows a non-monotonic behaviour of the basal-thawing timescale with respect to the ice thickness.225

To understand this behaviour there are several factors that must be considered simultaneously. It is illustrative to look at the
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vertical profiles shown in Fig. 2. The fact that T is non-monotonic with L at θb <−30◦C is a consequence of two factors:

the necessary energy budget to warm an ice column and the vertical temperature gradient. For a fixed temperature difference

between the base and the top, the former increases with L, whereas the latter decreases with L.

For slight variations of the thickness δL around L= 1.5 km, while fixing the initial basal temperature to e.g., θb =−30◦C,230

the time required to thaw the base increases regardless of the sign of δL. In other words, it takes longer to reach the melting

point either for a thinner or a thicker column. This local minimum is a balance between the total energy necessary to heat the

column and the fact that a thinner one implies a larger vertical gradient for a fixed temperature difference between the base

and the top. If we consider the effect of these factors explicitly: first, a thinner column requires a smaller amount of energy to

increase the temperature of the column; however, considering the second factor, a thinner column would yield a larger vertical235

temperature gradient (ultimately yielding a slowdown in the warming rate as the geothermal heat flux is fixed in the BC). The

combination of both effects allows for the local minima found in Fig. 6d.

7 The limit L → ∞

Compared to previous work, the analytical solutions presented herein account for an additional degree of freedom in terms of

the domain definition: the ice column thickness L. Nonetheless, these solutions should converge under certain conditions to the240

L-independent solution of Carslaw and Jaeger (1988) if we let L→∞. For completeness, we shall show that the theoretical

periodicity of MacAyeal (1993a) is in fact retrieved in such limit irrespective of the specific boundary condition at the top.

The particular conditions under which our solution converges must imply an equivalent physical scenario to the one estab-

lished by MacAyeal (1993a). Specifically, he considered an initial temperature profile that follows an atmospheric lapse rate

Γ since the ice column is assumed to be assembled by snow precipitation. Hence the temperature solution is decomposed into245

a steady and a transient component, corresponding to Γ and the ’excess’ of geothermal heat flux G̃=G− kΓ respectively. In

addition, pressure melting corrections were not considered. If we account for this particular formulation in our more general

approach, the estimated 6944-year-period is retrieved in the limit L→∞ (Fig. 7).

Even though the eigenvalues of our problem satisfy a different relation in the limit β = 0, we shall prove that convergence

to the 6944-year-period is independent of β and therefore consistent with previous results. Let φ and ϕ be two solutions of250

our general boundary problem (Set 2) with a zero and a non-zero β value respectively and arbitrary initial conditions. The

difference between solutions is then:

∆
.
= ϕ−φ=

∞∑
n=0

[
Ancos

(√
λny

)
e−κλnt − Ãncos

(√
λ̃ny

)
e−κλ̃nt

]
. (10)

We must recall that the eigenvalues for a non-zero β case (i.e., ϕ) must satisfy Eq. 6. With an appropriate change of variable

xn = L
√
λn, it is clear that:255

lim
L→∞

[
tan(xn) =

L

βxn

]
→ xn =

(
n+

1

2

)
π, (11)
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(a) (b)

(c) (d)

Figure 6. Time to reach the pressure melting point as a function of the ice thickness L, initial and boundary conditions in our general

formulation. β = 100 m for all solutions. (Eq. 1). Boundary conditions: (a) Geothermal heat flux G and (b) Air temperature Tair. Initial

conditions: (c) Initial ice surface temperature θL and (d) Initial basal temperature θb. Each panel represents the dependency of T to the

explored range of values given in Table 1 while fixing the remaining variables.
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since the right hand side goes to zero, we are thus left with roots of tan(xn) = 0. Note that n= 0,1,2..., which precisely

correspond to the eigenvalues of the β = 0 case.

Hence, it is straightforward to see that the spatial and temporal dependency in ∆ vanish in the limit L→∞. Additionally,

given that the only L-order term is not proportional to β in the initial conditions, the coefficients An and Ãn become identical260

in such a limit. We then conclude that ∆= 0 if β is finite as L→∞. In other words, we have proven that both solutions are

asymptotically equivalent irrespective of β as the ice thickness approaches infinity.

MacAyeal (1993a) seemingly showed that the boundary conditions and the ice base temperature are decoupled by estimating

that the e-fold decay of a periodic forcing with ω = 2.84× 10−11 s−1 in a motionless column reads
√

2k/ω = 314 m. This

estimation solely considers periodic signals, whilst leaving unexplored the implication of a non-periodic forcing. Our results265

affirm otherwise: though an oscillatory forcing rapidly attenuates with depth, Fig. 6 and 7 show that the base is in fact strongly

coupled with both the external conditions and the initial thermal state of the ice. The strength of this coupling is determined by

the column thickness L and the subsequent boundary conditions.

Figure 7 further shows that the ice thickness at which decoupling between the surface and the base occurs is almost inde-

pendent of the top boundary conditions. In other words, we find that for MacAyeal (1993a)’s choice of geothermal heat flux G̃270

(Table 1), the base evolves irrespective of the surface conditions for values L > 3.0 km.

8 Conclusions

We have considered the implications of a finite one-dimensional ice column domain with a given thickness L on the solutions

of Fourier heat equation. The main purpose of the current work is to advance our understanding of how the thickness of an ice

sheet influences its thermal evolution and further reconsider an important foundational piece of literature in the binge-purge275

hypothesis (MacAyeal, 1993a, b) in the more realistic setup of a finite thickness ice column and more general (Robin) boundary

conditions. Unlike previous work, we provide analytical solutions that are explicitly dependent on this new degree of freedom

L, thus quantifying its relevance without further approximations.

As a result of our new domain definition, we have studied physically-plausible scenarios imposed by a more general (Robin)

boundary condition at the top of the motionless ice column. This approach considers that the ice and the air may not be always280

at thermal equilibrium, thus yielding a heat flux across the interface due to a vertical temperature gradient. As a result, both

the ice temperature at the top and its vertical gradient are allowed to vary in time. If the ice surface happens to reach the air

temperature, the vertical gradient vanishes leading to a thermal equilibrium state.

We find that the ice thickness plays a fundamental role in the Fourier solutions, which implies that a semi-infinite domain

is an oversimplification (for the ice thickness range present in nature). The temperature at the base is highly dependent on the285

particular boundary condition at the top of the ice column. Particularly, these solutions are significantly distinct from each other

for ice thicknesses L < 2 km.

Our analytical approach allows us to quantify the sensitivity of the solution both to the initial and boundary conditions. In

our particular parameter choice, the thermal state of the base completely decouples from the upper boundary condition (i.e.,
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Figure 7. Time required for the column base to thaw as a function of the ice column thickness L. This timescale is classically considered

to be the period of a binge-purge oscillator, a potential mechanism behind the Heinrich Events. Colours represent the air temperature:

Tair,1 =−40ºC, Tair,2 =−30ºC and Tair,3 =−20ºC. Solid line represents solutions for β = 100 m whereas the case β = 0 (i.e., fixed

surface temperature) is denoted by a dotted line. The boundary condition at the base θy =−G/k is identical for all cases.

external forcing) for L values above 2 km and its thermal evolution becomes solely a function of the lower boundary condition290

(i.e., the geothermal heat flux). A distinct choice will alter this value, yet we expect this behaviour to remain present.

Notably, in the limit L→∞, the prior L-independent solution (Carslaw and Jaeger, 1988) is retrieved, consequently yielding

the 6944 years periodicity estimated by MacAyeal (1993a). For completeness, we showed that such periodicity is in fact

retrieved irrespective of the particular boundary condition at the top. This confirms the robustness of our results.

Regarding a potential estimation of the binge-purge periodicity based on our analytical solutions, the new degree of freedom295

L entails strong consequences. First, large temporal variability can be explained solely by considering a change in ice thickness

without any additional factors. In other words, this provides a source of natural internal variability irrespective of the external

forcing. For a 1-4 km thick ice sheets, this variability spans a 7-12 kyr range. In addition, the explicit consideration of distinct

initial temperature profiles manifests a high sensitivity of the binge-purge oscillator period to its initial state.

Moreover, a finite thickness also determines the mechanism by which an atmospheric perturbation might potentially influ-300

ence the time required to melt the ice base since we have quantified the effect of a prescribed surface temperature and a vertical

gradient. For a fixed L value, besides the geothermal heat flux, both the vertical gradient and the temperature at the top govern

the temperature time evolution, consequently defining the particular binge-purge periodicity estimation.
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It must be stressed that even though we have shown that the ice base temperature is in fact coupled with the boundary

conditions, the periodicity of the HE cannot be imposed by the frequency of an external forcing at the ice surface. Rather, the305

timescale to reach melting conditions is determined by the ice thickness and the energy condition at the base and the surface.

Lastly, we note that a subtle connection exists between internal free (the binge-purge hypothesis) and externally-driven

(in the sense of a time-dependent boundary condition at the top) mechanisms caused by the finitude of the domain. Since

thermomechanical instabilities (i.e., the transition between two plausible stages of basal lubrication governed by the thermal

state of the ice) are the triggering mechanism of a binge-purge oscillator, internal free oscillations are sensitive to the particular310

climatic forcing imposed as a boundary condition at the top of the ice column. This double-fold nature of thermomechanical

instabilities is only exhibited when a finite domain is considered, further supporting the use of such analytical solutions in

simple low-dimensional ice-sheet models where temperature profiles are otherwise prescribed.

Code availability. TEXT

Data availability. TEXT315

Code and data availability. All scripts to obtain the results herein presented and to further plot figures can be found in: https://github.com/

d-morenop/Suplementary_ice-column-thermodynamics

Sample availability. TEXT

Video supplement. TEXT

Appendix A: Separation of variables320

Let us briefly outline the separation of variables technique before elaborating on the solutions of our general problem. Consider

the following initial/boundary problem on an interval I ⊂ R,


ut = κuyy y ∈ I, t > 0

u(y,0) = φ(y) y ∈ I

u satisfies certain BCs.

(A.1)
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This technique looks for a solution of the form:

u(y,t) = Y (y)T (t), (A.2)325

where the functions Y and T are to be determined. Assuming that there exists a solution of A.1 and plugging the function

u= Y T into the heat equation, it follows:

T ′

κT
=

Y ′′

Y
=−λ, (A.3)

for some constant λ. Thus, the solution u(y,t) = Y (y)T (t) of the heat equation must satisfy these equations. Additionally, in

order for u to satisfy the boundary conditions, we arrive to:330

 Y ′′(y) =−λY (y) y ∈ I
Y satisfies our BCs.

(A.4)

This is a well-known eigenvalue problem. Namely, a constant λ that satisfies Eq. A.4 for some function X (not identically zero)

is called an eigenvalue of −∂2
y for the given boundary conditions. Hence, the function Y is an eigenfunction with associated

eigenvalue λ.

Therefore, in order for a function of the form u(y,t) = Y (y)T (t) to be a solution of the heat equation on the interval I ⊂ R,335

T must be a solution of the ODE T ′ =−κλT . Direct integration leads to:

T (t) =Ae−κλt, (A.5)

for an arbitrary constant A. Thus, for each eigenfunction Yn with corresponding eigenvalue λn, we have a solution Tn such

that:

un(y,t) = Yn(y)Tn(t), (A.6)340

is a solution of the heat equation on our interval I which satisfies the BC. Moreover, given that the problem A.1 is linear, any

finite linear combination of a sequence of solutions {un} is also a solution. In fact, it can be shown that an infinite series of the

form:

u(y,t)≡
∞∑

n=1

un(y,t), (A.7)

will also be a solution of the heat equation on the interval I that satisfies our BC, under proper convergence assumptions of345

this series. The discussion of this issue is beyond the scope of this work.
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Appendix B: Solution of the problem

Let us elaborate on the solution of our general problem (Section 4) by first solving the associated eigenvalue problem. As we

employ the separation of variables technique, the solution takes the form:

ξ(y,t) =

∞∑
n=0

Yn(y)Tn(t), (B.1)350

where the functions Yn(y) and Tn(t) are to be determined. After the consequent change of variable so that Y (y) satisfies Eq.

A.4, we arrive to:

Yn(y) =Ancos
(√

λny
)
+Bnsin

(√
λny

)
, (B.2)

where An and Bn are to be determined. Applying the boundary conditions imposed in Set 2, it is clear that all sine coefficients

are identically zero Bn = 0 and the eigenvalues
√
λn are given by the transcendental equation:355

cot
(
L
√
λn

)
= β

√
λn, (B.3)

that admits no algebraic representation, hence requiring a numerical method to compute λn.

From orthogonality of the eigenfunctions Yn(y), the coefficients An of our solution are calculated following:

An =
2

L

L∫
0

ξ(y,0) cos
(√

λny
)
dy. (B.4)

where ξ(y,0) = G̃
k (y−L)− θL + θb.360

Even though the eigenvalues of the problem are given by a trascendental equation with no algebraic representation, ξ(y,0)

is a function of the form f(y) = a+ by and the coefficients An yield an explicit integration:

An =
2

L

√
λn(a+ bL)sin

(√
λnL

)
+ bcos

(√
λnL

)
− b

λn
(B.5)

where a=G/k+(θL − θsl) and b= θsl −Tair − (β+L)G/k.

Hence, the solution of our general problem reads:365

ξ(y,t) =

∞∑
n=0

Ancos
(√

λny
)
e−κλnt, (B.6)

18



Appendix C: Limit case β = 0

It is crucial to consider that the eigenvalue equation given by Eq. 6 does not hold for β = 0. In such case, after the consequent

change of variable so that Y (y) satisfies Eq. A.4, we arrive to:

Yn(y) =Ancos
(√

λny
)
+Bnsin

(√
λny

)
, (C.1)370

where An and Bn are to be determined. Applying the boundary conditions imposed in Set 2, it is clear that all sine coefficients

are identically zero, Bn = 0, and the eigenvalues read:

√
λn =

(
n+

1

2

)
π

L
, (C.2)

where n= 0,1,2, ....

From orthogonality of the eigenfunctions Yn(y), the coefficients An of our solution are calculated following:375

An =
2

L

L∫
0

ξ(y,0) cos
(√

λny
)
dy. (C.3)

where ξ(y,0) = G̃
k (y−L)− θL + θb. Since ξ(y,0) is a function of the form f(y) = ay+ b and the eigenvalues allow for an

analytical expression, the integration of the coefficients An is straightforward:

An = 4(θb − θL)

[
cos(nπ)

2nπ+π

]
− 8L

G̃

k

[
1

2nπ+π

]2
. (C.4)

It is clear that this series converges and satisfies the initial condition imposed by ξ(y,0) given that:380

∞∑
n=0

cos(nπ)

2nπ+π
=

1

4
, (C.5a)

∞∑
n=0

1

(2nπ+π)2
=

1

8
. (C.5b)

Hence, the solution of Problem 1 reads:

ζ(y,t) =

∞∑
n=0

Ancos
(√

λny
)
e−κλnt, (C.6)
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