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Abstract. The temperature distribution in ice sheets is worthy of attention given the strong relation with ice dynamics and the

intrinsic information about past surface temperature variations. Here we refine the classical analysis of free oscillations in an

ice sheet by analytically solving the thermal evolution of an ice column. In so doing, we provide analytical solutions to the

one-dimensional Fourier heat equation over a finite motionless ice column for a more general (Robin ) boundary condition

problem. The time evolution of the temperature profiles appears to be strongly dependent on the column thickness L and5

largely differs from previous studies that assumed an infinite column thickness. Consequently, the time required for the column

base to thaw depends on several factors besides the ice thermal properties:
:
A

::::::::
thorough

::::::::::::
understanding

::
of

:::
ice

::::::::::::::
thermodynamics

:
is
:::
of

:::::::::
paramount

::::::::::
importance

:
if
:::

an
:::::::
accurate

::::::::::
description

::
of

:::::::
glaciers,

:::
ice

::::::
sheets

::::
and

:::
ice

::::::
shelves

::
is

::
to

:::
be

::::::
found.

:::
Yet

:::::
there

:::::
exists

:
a
:::::::::
significant

::::
gap

::
in

::::
our

:::::::::
theoretical

:::::::::
knowledge

:::
of

:::
the

:::::::::::::
time-dependent

:::::::::
behaviour

:::
of

:::
ice

:::::::::::
temperatures

:::
due

:::
to

:::
the

:::::::::
inevitable

::::::::::
compromise

:::::::
between

::::::::::::
mathematical

:::::::::
tractability

::::
and

:::
the

::::::::
accurate

::::::::
depiction

::
of

::::::::
physical

::::::::::
phenomena.

:::
In

:::::
order

::
to

::::::
bridge

::::
this10

:::::::
shortfall,

:::
we

::::
have

::::::::::
analytically

::::::
solved

:::
the

:::
1D

:::::::::::::
time-dependent

::::::::::::::::
advective-diffusive

:::
heat

::::::::
problem

::::::::
including

:
a
::::::
source

::::
term

::::
due

::
to

::::
strain

:::::::
heating

:::
and

::
a

:::::::::::
sophisticated

:::
top

::::::::
boundary

::::::::
condition

::::::
(Robin

:::::
type)

:::
that

::::::::
considers

::::::::
potential

:::::::::::::
non-equilibrium

:::::::
thermal

:::::
states

:::::
across

:::
the

::::::
ice-air

::::::::
interface.

::::
The

:::::::
solution

::
is

::::::::
expressed

::
in

:::::
terms

:::
of

::::::::
confluent

:::::::::::::
hypergeometric

::::::::
functions

::::::::
following

::
a
:::::::::
separation

::
of

:::::::
variables

:::::::::
approach.

::::::::::::::::::::
Non-dimensionalisation

::::::
reduces

:::
the

:::::::::
parameter

:::::
space

::
to

::::
four

:::::::
numbers

::::
that

::::
fully

::::::::
determine

:::
the

::::::
shape

::
of

::
the

::::::::
solution

::
at

::::::::::
equilibrium:

:::::::
surface

:::::::::
insulation,

:::::::
effective

::::::::::
geothermal

::::
heat

:::::
flow,

:::
the

:::::
Peclét

:::::::
number

::::
and

:::
the

::::::::
Brikman

:::::::
number.15

:::::::::::
Nevertheless,

:::
the

::::::::
transient

:::::::::
component

:::
is

::::::
mostly

::::::::::
determined

:::
by

:::
the

::::::
Peclét

:::::::
number

:::
and

::::
the

:::::::
effective

:::::
heat

:::
flux

::::::::::
parameter,

::::
while

:
the initial temperature profile, the boundary conditions and the ice-column thickness L. This timescale is classically

considered to be the period of a binge-purge oscillator, a potential mechanism behind the Heinrich Events. Our analytical

solutions show a broad range of periods for typical-size column thicknesses. In the limit L→∞, the particular valuesof

the prescribed temperature at the top of the column become irrelevant and the reference value of ∼ 7000 years, previously20

estimated for an idealised infinite domain, is retrieved. More generally, we prove that solutions with different upper boundary

conditions, covered by our formulation, converge to the same result in such a limit. These results ultimately illustrate a subtle

connection between internal free (the binge-purge hypothesis) and externally-driven (a time-dependent boundary condition at
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the top) mechanisms caused by the finitude of the domain. Since thermomechanical instabilities (i.e., the transition between two

plausible modes of basal lubrication governed by the thermal state of the ice) are the triggering mechanism of a binge-purge25

oscillator, internal free oscillations are sensitive to the particular climatic forcing imposed as a boundary condition at the

top of the ice column. Lastly, analytical
:::::::::
distribution

::::::::::::
exponentially

::::::::
converges

:::
to

:::
the

::::::::
stationary

::::::::
solution.

::::
The

::::::::
particular

::::
top

::::::::
boundary

::::::::
condition

:::::::
appears

::
to

:::
be

:::::::
essential

::::
for

:::
the

:::::::
upwards

:::::::::
advective

::::::::
scenario,

::::
thus

:::::::
yielding

:::::::
warmer

:::::::::::
temperatures

::
in
::::

the

:::::
entire

::::::
column

::::
with

:::::::::
increasing

::::::::
intensity

::
as

:::
the

:::::::::
geothermal

::::
heat

::::
flux

:::::
takes

:::::
higher

::::::
values.

:::
On

:::
the

::::::::
contrary,

::::::::::
temperature

:::::::
profiles

::
are

::::::::::
completely

::::::::::
independent

:::
of

:::
the

::::::
surface

:::::::::
insulation

:::
for

:::
the

::::::::::
downwards

::::::::::
counterpart.

::
A
:::::::

further
::::::
energy

::::::
content

:::::
study

:::
of

:::
the30

:::::::
transient

::::::::::
component

::::::
reveals

::::
that

:::
the

::::::::::
downwards

::::::::
scenario

:::::::::
exchanges

::::::
energy

:::
at

:
a
::::::

higher
::::

rate
::::
than

::::
the

:::::::
upwards

:::::::::
advective

::::
case,

:::::::
leading

::
to

:::::
faster

:::::::::::
convergence

:::
to

:::
the

::::::::::
equilibrium

:::::::
thermal

:::::
state.

::::
We

::::
have

::::::::
extended

::::
our

:::::
study

::
to

::
a
:::::::
broader

:::::
range

:::
of

::::::
vertical

::::::::::
dependency

:::
of

:::
the

::::::::
advective

:::::
term,

::::::
unlike

:::::
prior

::::::
studies

::::::
limited

:::
to

:::::
linear

::::
and

::::::::
quadratic

:::::::
profiles.

:::::::
Results

:::::
show

::::
that

::
the

::::::::
exponent

::::::::
m= 3/2

::::
best

:::::::
describes

::::::::::
benchmark

::::::::::
experiments

::::
(e.g.,

::::::::::
EISMINT)

::::::
vertical

::::::::
velocities

:::
and

::
is
::::::::
therefore

:::::::::
applicable

::
as

::
an

::::::::::
independent

:::::::::
analytical

::::::
control

::
on

:::
the

:::::::::::
temperature.

::::
The solutions presented herein are applicable in any context where our35

Robin boundary problem is satisfied
::::::
general

:::
and

:::::
fully

::::::::
applicable

::
to

::::
any

:::::::
problem

::::
with

::
an

:::::::::
equivalent

:::
set

::
of

::::::::
boundary

:::::::::
conditions

:::
and

:::
any

:::::
given

:::::
initial

::::::::::
temperature

::::::::::
distribution.

:::::::::
Analytical

::::::
results

::
of

:::
this

:::::
work

::::::::::
additionally

:::::::
provide

::::::
refined

:::::::::
benchmark

::::::::
solutions

::
to

:::
test

:::::::::::::::
thermomechanical

::::::
models.

Copyright statement. TEXT

1 Introduction40

Periodic episodes of extreme iceberg discharge have captivated the glaciological and paleoclimatological community for
:::
The

::::
study

:::
of

::
ice

::::::::::::::
thermodynamics

::
is
:::
of

::::::
crucial

:::::::::
importance

:::
for

::::::::::::
understanding

:::
the

:::::::::
behaviour

::
of

:::::::
glaciers,

:::
ice

:::::
sheets

::::
and

:::
ice

:::::::
shelves,

::
as

::::
their

::::::::
evolution

::
is

:::::::
strongly

:::::::::
dependent

:::
on

:::
the

:::::::
physical

:::::::::
properties

::
of

:
the last three decades. Yet the ultimate cause of these

so-called Heinrich Events (HE) remains elusive. Several mechanisms have been proposed in the literature that can be broadly

classified into two branches: internal free and externally-driven oscillations.45

Free oscillations were first proposed in MacAyeal (1993a) as manifestations of the Laurentide Ice Sheet (LIS) purging

excess ice volume. This interpretation rests on the assumption that a transition exists between two potential states of basal

lubrication (Alley and Whillans, 1991; Hughes, 1992) and it is known as the binge-purge hypothesis. Namely, when the basal

icetemperature is below the pressure melting point, the ice sheet is assumed to be stagnant and it simply thickens due to

snow accumulation. As a result of the geothermal heat flow, the ice column is expected to warm and the base eventually50

yields melting. At this point, the icesheet is no longer at rest and begins to slide over a lubricated sediment bed. The purge

phase continuous until the basal temperature gradient exceeds the value that can be maintained by .
:::
Ice

::::::::::::::
thermodynamics

::
is the

geothermal heat flux and the frictional energy dissipation combined. MacAyeal (1993a) thus investigated what causes the bed

of the LIS in Hudson Bay and Hudson Strait to shift from a frozen to a thawed state as well as the time length involved in this
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process. To this end, he developed a conceptual model that shows how amplitude and periodicity depend on two environmental55

factors: the annual average sea-level temperature and the atmospheric lapse rate (MacAyeal, 1993a). Furthermore, a periodicity

of T ≈ 7000 years was estimated from these two factors for a simplified geometry. This value was determined as the time

required for the base of a semi-infinite one-dimensional motionless ice column to reach the melting point due to a constant

geothermal heat flow (analytically from Carslaw and Jaeger, 1988) and it marks the onset of the purge phase on a binge-purge

cycle. The absence of time dependent boundary conditions throughout the study is noteworthy.
:::::
result

::
of

::
a

:::::::
complex

::::::::
interplay60

:::::::
between

:::::::::
advection,

:::::::
diffusion

::::
and

:::::::
various

::::
heat

:::::::
sources.

:::::
Only

::
an

::::::::
accurate

::::::::::::
representation

::
of

:::::
these

::::::::
processes

::::
will

:::::
allow

:::
for

::
a

:::::
robust

:::::::::
description

:::
of

:::
ice

::::
flow,

:::::
mass

:::::::
balance

:::
and

::::::
overall

::::::::
stability.

::
In

:::
this

:::::::
context,

:::
the

:::::::::::
development

:::
of

::::::::
analytical

::::::::
solutions

:::
for

::
ice

::::::::::::::
thermodynamics

:::
can

:::::::
provide

::::::
deeper

:::::::::::::
comprehension

::
of

:::
the

::::::::::
fundamental

:::::::
physics

::
of

:::
ice,

::
as

::::
they

:::
are

:::::::::
intuitively

:::::::::::
interpretable,

:::::
reveal

::::::
hidden

:::::::::
symmetries

::::
and

::::::
further

::::
serve

:::
as

:
a
::::::::::
verification

:::
tool

::
of

:::::::::
numerical

:::::::
models.

Even though both the period and amplitude of the free oscillations appear to be dependent on environmental factors, the65

same study dismissed the possibility of an oscillation period imposed by an external harmonic atmospheric forcing as a result

of the strong amplitude attenuation with depth. In other words, if such a periodic external climate forcing did exist, its imprint

would be negligible at the base of the ice sheet. To prove so, MacAyeal (1993a) showed that the corresponding e-folding decay

length of a T ≈ 7000 years periodicity reads
√
2k/ω = 314 m for a motionless ice column. Moreover, a constant vertical

velocity was also considered so as to account for a potential advection term, thus increasing the e-folding decay length to 97070

m. In view of these results, it is evident that a harmonic surface temperature fluctuation would become negligible at the base of

a thick ice sheet.
:::::
Robin

::::::
(1955)

:::
and

::::::::
Lliboutry

::::::
(1963)

::::
first

:::
laid

:::
the

:::::::::::
groundwork

::
for

::::::::::::
understanding

::::::::::
ice-column

::::::::::::::
thermodynamics

::
in

:::
the

:::::::
presence

:::
of

::::::
vertical

:::::::::
advection

::
by

::::::::
providing

:::::::::
analytical

::::::::
solutions

:::
for

:::
the

::::::::
stationary

::::::
cases.

:::::
These

:::::::
seminal

:::::
works

:::::::
offered

:::::::
valuable

::::::
insights

::::
into

:::
the

::::::::::
steady-state

::::::::
behaviour

::
of

:::
ice

:::::::
columns

::::::
subject

::
to
::::::::::::::::
advective-diffusive

:::::::::
processes.

:::::::::::
Nevertheless,

::::
they

:::
did

:::
not

:::::::
consider

:::
the

:::::::::::::
time-dependent

::::::::
evolution

::
of
:::

ice
::::::::::::

temperatures.
::::::
Hence,

::::
their

:::::::::::
applicability

::::
was

::::::
limited

::
to

:::::::::
situations

::::::::
involving75

:::::::::
steady-state

:::
ice

::::
flow

::::
and

::::
fixed

::::::::::::
environmental

:::::::::
conditions.

:

To provide quantitative support to the conceptual model, a low-order model of the HE cycle was additionally developed

(MacAyeal, 1993b) to confirm that
:
In

::
a
::::::
broader

:::::::
context,

:
the theoretical estimation of HE periodicity T is in fact determined

by the aforementioned environmental factors (MacAyeal, 1993a). In this two-dimensional model, iceflow mechanics and mass

balance are combined in a manner that yields null horizontal ice flow when the base is frozen whereas deforming sediments80

allow for rapid sliding when the base is melted. Internal ice deformation is disregarded and ice thickness is assumed to be

uniform along the cross section of the LIS (from Hudson Bay to the mouth of Hudson Strait). Remarkably, the numerical

periodicity showed a discrepancy from the theoretical estimation of solely 4%.However, this relaxation oscillator model

assumes a characteristic ice stream purge timescale of 250 years, given the absence of explicit simulations of a Hudson Strait

ice stream. Notably, this choice is relevant for the long timescale of the HE since it determines the switch from purge to growth85

behaviour, found to be 450 years in the numerical results.
:::
1D

:::::::::::::::
advective-diffusive

::::::::
equation

:::
has

::::
been

:::::::::
thoroughly

::::::
studied

::
in

:
a
:::::
wide

::::
range

:::
of

:::::
fields,

::::::::::
particularly

::
in

:::::::::
dispersion

::::::::
problems.

::
In

:::::
early

::::::
studies,

:::
the

:::::
basic

::::::::
approach

::::
was

::
to

::::::
reduce

:::
the

::::::::::::::::
advection-diffusion

:::::::
equation

::
to

:
a
::::::
purely

::::::::
diffusive

:::::::
problem

::
by

::::::::::
eliminating

:::
the

::::::::
advective

:::::
terms.

:::::
This

:::
was

::::::::
achieved

:::
via

:
a
:::::::
moving

:::::::::
coordinate

::::::
system

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Ogata and Banks, 1961; Harleman and Rumer, 1963; Bear, 1975; Guvanasen and Volker, 1983; Aral and Liao, 1996; Marshall et al., 1996)
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::
or

::::::
through

:::
the

::::::::::
introduction

::
of

:::::::
another

::::::::
dependent

:::::::
variable

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Banks and Ali, 1964; Ogata, 1970; Lai and Jurinak, 1971; Marino, 1974; Al-Niami and Rushton, 1977)90

:
.
::
To

:::::
solve

::
the

:::::::::
equations,

::::
quite

::::::
diverse

:::::::::::
mathematical

::::::::
methods

::
are

::::
also

:::::::::
employed,

::::
such

::
as

:::
the

::::::
Laplace

:::::::::::::
transformation

:::::::::::::::
(McLachlan, 2014)

:
,
::
the

::::::
Hankel

:::::::::
transform

::::::::::::::::::::::
(Debnath and Bhatta, 2014)

:
,
:::
the

:::
Aris

:::::::
moment

:::::::
method

::::::::::::::::
(Merks et al., 2002),

:::::::
Green’s

:::::::
function

::::::::::::
(Evans, 2010)

::
or

:::::::::::
superposition

::::::::::
approaches

::::::::::::::::::::::
(Lie and Scheffers, 1893)

:::::
among

::::::
others.

::::::
More

:::::
recent

:::::::
studies

:::::
(e.g.,

:::::::::
Selvadurai,

::::::
2004)

:::::::
provide

::::::::::::
time-dependent

:::::::::
analytical

::::::::
solutions

::
for

::::::
which

:::::
Darcy

::::
flow

::
is
:::::::::
applicable,

:::
yet

::
it
:::::
lacks

::
an

::::::::::
appropriate

:::
set

::
of

::::::::
boundary

:::::::::
conditions

::::
given

:::
the

::::::
infinite

::::::
length

::
of

:::
the

:::::::
domain.

:
95

Since then, dynamic 3D ice-sheet models have been used to investigate the mechanisms underlying HEs
::::::::::
Steady-state

:::
ice

::::::::::
temperature

:::::::::
distribution

:::::::
studies

::::
also

::::::
provide

:::::::::
analytical

::::::::
solutions

::
in

::::::::
bounded

::::::
spatial

::::::::
domains,

:::
but

:::
fall

:::::
short

::
if

:::
the

::::::::
transient

:::::
nature

::
of

:::
the

:::::::
solution

::
is

::
to

::
be

::::::::
captured.

::::
This

:
is
:::
the

::::
case

::
of

:::
the

::::::
studies

::
on

:::
the

:::::
shear

::::::
heating

:::::::
margins

::
of

:::::
West

:::::::
Antarctic

:::
ice

:::::::
streams

:::::::::::::::::::::::::::
(e.g., Perol and Rice, 2011, 2015)

:::
for

:::::
which

::
a
::::::
steady

:::
but

:::::
more

:::::::
refined

::::::::::::::
one-dimensional

::::::
thermal

::::::
model

::::
was

:::::::::
produced,

::::
first

:::::::::
introduced

::
by

:::::::::::::
Zotikov (1986).

::::::::::::::::::::::::
Meyer and Minchew (2018)

:::
later

::::::
solved

:
a
::::::
similar

::::::::::::::::
advective-diffusive

:::::::
problem

:::::
under

:::::::::
stationary100

::::::::
conditions

::::::::::
accounting

:::
for

:
a
::::::::

constant
::::::::::::
strain-heating

:::
rate

::::
and

::::::
further

:::::::::
neglecting

::::::
lateral

::::::::::
(horizontal)

::::::::
advection

:::::
after

:
a
:::::::

scaling

:::::::
analysis.

:::::
These

::::::::::::::
one-dimensional

::::::
studies

:::::::
imposed

:
a
:::::::::
stationary

:::::
nature

::
of

:::
the

::::::::::
temperature

::::::::::
distribution,

::::
thus

::::::::
assuming

::
an

::::::::
idealised

::::::::::
equilibrated

:::::
energy

:::::
state.

:

::::::
Despite

:::::
these

::::::::::::
simplifications,

::::
heat

:::::::
transfer

:
is
::::::::::
well-known

::
to

:::
be

:
a
:::::::::::::::
three-dimensional

::::::
process

::::
with

:
a
::::::
higher

::::
level

::
of

::::::::::
complexity

:::
that

:::::::::::
encompasses

::::::
several

:::::::::::
mechanisms

::::
such

::
as

:::::::::
horizontal

:::
and

:::::::
vertical

::::::::
advection,

::::
the

:::::::
potential

::::::::
presence

::
of

:::::
liquid

:::::
water

::::::
within105

::
the

::::
ice,

::
a

::::::
varying

:::
ice

:::::::::
thickness,

:::::::
internal

::::
heat

::::::::::
deformation

::::
and

::::::::
frictional

::::
heat

::::::::::
production

::::::
among

:::::
others

:::::::
(Greve

:::
and

:::::::
Blatter,

:::::
2009).

::::
Full

:::::::::
numerical

::::::
models

:::
are

::::::::
therefore

::::
also

::::::::
essential

::
if

:
a
::::::::::::

simultaneous
:::::::::::
consideration

:::
of

::::
such

:::::::::::
mechanisms

:::::
needs

::
to

:::
be

:::::::
achieved

:::::::::::
(Winkelmann

::
et
:::
al.,

:::::
2011;

::::::
Pattyn,

::::::
2017).

:

::::::::
Numerical

:::::::
models

::::::
require

::::::
caution

:::
as

::::
their

:::::::
accuracy

::::
and

::::::::::
consistency

::::
must

::
be

:::::::::
previously

::::::::
assessed.

::::::::::::::
Intercomparison

:::::::
projects

::
are

::::
thus

:::::::::::
fundamental

:::::
since

::::
they

:::
can

::::::
provide

:::::::::
consensus

::
in

::
a
:::::
series

::
of

:::::::::
benchmark

:::::::::::
experiments

:::
that

::::::
further

:::::
serve

::
as

::
a
::::::::
reference110

::::::
solution

::::
for

:::::::::
validation.

::
In

::::
this

:::::::
context,

:::::::::
analytical

::::::::::
descriptions

:::
are

:::::::::
extremely

::::::
useful

::
as

:::::
they

:::::::
provide

:
a
:::::::

control
::::::::::
irrespective

::
of

:::
the

::::::::
resolution

:::
or

:::::::::::
discretization

::::::::
schemes. For instance, Marshall and Clarke (1997) used a 3D model to simulate the LIS,

though no discharges were reproduced within the wide range of model parameters. ? first modeled oscillatory behaviour in

three-dimensional Shallow Ice Approximation (SIA) models with ad hoc basal sliding. Along with other studies, the authors

noted the necessary evolving drainage and till mechanics providing potential insight into our understanding of the physical115

processes that caused Hudson Strait oscillations (?, ?; 2010) . From highly reduced models (e.g. , Tulaczyk et al., 2000b

) to a complex Herterich-Blatter-Pattyn ice model (e.g., Bougamont et al., 2011), multiple approaches have been found for

a wide degree of comprehensiveness in ice stream dynamics in which the basal hydrology has become essential for an

appropriate representation of
::::::
authors

::
of

:
the ice streams

::::::::
EISMINT

:::::::::::
benchmarks,

::::::::::::::::::::::::
Huybrechts and Payne (1996)

:
,
::::::
already

:::::
noted

:::
the

:::
lack

:::
of

::::::::
analytical

::::::::::
temperature

::::::::
solutions

:::
for

::::
such

:::::
cases.

:::::::::
Previously

::::::::
obtained

::::::::
solutions

:::::
relied

::
on

::::::
strong

:::::::::::
assumptions

::::::::
regarding120

::
the

:::::::::
particular

:::::::
vertical

:::::::
velocity

::::::
profile

::::::
(linear

::::::
profile,

::::::::::
Robin 1955

:
;
::::::::
quadratic,

:::::::::::::
Raymond 1983

:
)
::::
and

::::::::
therefore

::
an

:::::::::::
independent

::::::::
analytical

:::::::::
description

::
of

:::
the

:::::::::::
temperatures

::::
was

:::
not

::::::::
available.

:::::
There

::
is

::
an

::::::::
inevitable

:::::::::::
compromise

:::::
when

::::::::
designing

::::::
models

::::
that

:::
are

::::
both

:::::::::::::
mathematically

:::::::
solvable

:::
and

:::::::
capable

::
of

:::::::::
accurately

::::::::::
representing

:::::::::
real-world

::::::::::
phenomena.

:
It
::
is

::::
thus

::
of

::::::
utmost

:::::::::
importance

::
to

::::::::
carefully

:::::::
navigate

:::
this

::::::::
trade-off,

:::::::
deciding

:::
the

::::::::::
appropriate

4



::::
level

::
of

:::::::::
analytical

:::::::::
tractability

::::
and

::::::::
physical

::::::
realism

::::::
based

:::
on

:::
the

:::::::
specific

:::::
goals

:::
of

:::
the

:::::
study.

:::::::::
Attaining

:::
the

:::::
right

:::::::
balance125

:::::
allows

:::
for

:::::::::
meaningful

:::::::
insights

:::::
while

:::::::
avoiding

::::::::
excessive

::::::::::::
computational

::::::::
demands

::
or

:::::::::::::::
oversimplification

:::
that

::::
may

::::::
hinder

:::::::
accurate

:::::::::::
representation

::::
and

::::::::::::
understanding

::
of

:::
the

::::::::
real-world

:::::::
system.

More recently, Robel et al. (2013) focused on the temporal variability of an ice stream accounting for basal hydrology,

modeled as a single lumped spatial element assuming a single velocity to represent ice discharge. The surface temperature

and the
:::::::::
Simplified

::::::::
solutions,

::
or

:::::
those

::::
with

:::::::
reduced

:::::::::::::
dimensionality

:::
are

:::::::
however

::::::
useful.

::
In

::::
this

::::
line,

::::::::::
Dahl-Jensen

::
et
:::
al.

::::::
(1998)130

::::::
inferred

::::
past

:::::::
climatic

:::
and

::::::::::::
environmental

:::::::::
conditions

:::
via

:
a
:::::::::::::
thermodynamic

:::::::
ice-core

:::::::
analysis

:::::
using

:
a
::::::::::::::
one-dimensional

:::::::::
numerical

::::::
model.

:::::
Their

:::::
study

:::::
relied

:::
on

::::::::::
assumptions

::::::::
regarding

:::
the

::::::::
stationary

:::::::::
behaviour

::
of

:::
ice

:::::::
columns

::::::
during

::
the

::::
core

:::::::::
formation

:::::::
process.

:::
The

::::::::::
temperature

:::::::
history

:::
was

:::::::
divided

::
in

::::
125

:::::::
intervals

::::::
where

:::
the

::::::
Monte

:::::
Carlo

:::::::
method

::::
tests

::::::::
randomly

:::::::
selected

::::::::::::
combinations

::
of

::::::
surface

:::::::::::
temperatures

::::
and

:
geothermal heat flux were found to be important controls of the character of the ice flow. In

particular, an oscillatory binge-purge mode was also present and appeared to be primarily caused by re-freezing of meltwater135

due to ice thinning during stagnation. The remarkable dependence of both the periodicity and the amplitude of these events on

the boundary conditions of the system (surfacetemperature and geothermal heat flux) suggests that even a zero-dimensional

spatial model (i.e., a single spatial element) is highly sensitive to time-independent forcing.

Nevertheless, none of these studies discussed the theoretical implications of estimating HE periodicity under the assumption

of a (oversimplified) semi-infinite domain.In addition, these assumptions lack a more general treatment of the plausible140

boundary conditions at the top of the ice column. Despite the fact that the characteristic binge timescale determined the HE

periodicity solely from environmental factors (lapse rate and sea level temperature) in prior studies, it does not necessarily

imply that such periodicity is independent of the atmospheric temperature conditions and the energy balance across the ice-air

interface . Strictly speaking, one can only conclude that the periodicity T cannot be imposed by a harmonic forcing at the

:::::::
densities.

:::::::
Vertical

:::::::
profiles

::::
were

::::::::
compared

:::
to

:::::::::::::::::
numerically-obtained

:::::::
profiles

::::::::
assuming

::
an

:::::::::
unchanged

:::::::
surface

::::::::::
temperature.

:
145

:::::
Other

::::::::
numerical

::::::
studies

::::
have

:::::::::::
incorporated

::::
more

:::::::
realistic

::::::::
transient

:::::::::
behaviour,

:::::
while

::::
often

::::::
relying

:::
on

::::::
diverse

:::::::::::::
simplifications.

:::
For

::::::::
instance,

:::::
Robel

::
et
:::

al.
::::::
(2013)

::::::::
assumed

:
a
::::::

linear
:::::::
vertical

::::::::::
temperature

::::::
profile

::
to

::::::::
simplify

:::
the

:::::::::
calculation

:::
of

:::::::
vertical

::::
heat

:::::::::
conduction

::::::
within

::
an

:::
ice

::::::
stream.

::::::
While

:::
this

::::::::::::
simplification

::::::::
facilitated

:::
the

::::::::
analysis,

:
it
:::::::

limited
:::
the

:::::::
accuracy

::::
and

::::::
realism

::
of
:::::

their

::::::::::
temperature

::::::::
solutions.

::
A

:::::
linear

::::::
profile

::::::
further

::::::
implied

:::
an

::::::::::
equilibrated

::::::
energy

::::
state

::::
and

::
an

:::::::::::
instantaneous

:::::::::::
perturbation

::
of

:::::
basal

::::::::::
temperatures

:::
for

::
a

::::
given

:::::::
surface

::::::::::
temperature

::::::::
variation.150

:::::::::
Traditional

:::::::::
approaches

:::::
both

::::
from

:::::::::
numerical

:::
and

:::::::::
analytical

::::::::::
perspectives

::::::
assume

:::
the

::::::::
simplest

:::::::
heat-flux

:::::::::
boundary

::::::::
condition

:
at
:::
the

:
ice surface

:
:
:::
the

:::::::::
imposition

::
of

:::
the

:::
air

::::::::::
temperature

::
at

:::
the

::::::::
uppermost

:::
ice

:::::
layer.

:::::::::::
Nevertheless,

::
in
:::::
view

::
of

:::
the

::::::
surface

:::::::
fraction

::
of

:::
the

:::::::::
Greenland

:::
and

::::::::
Antarctic

:::
Ice

::::::
Sheets

:::::::
covered

:::
by

:
a
:::
firn

:::::
layer

:::::
(90%

::::
and

:::::::
∼100%,

::::::::::
respectively,

:::::
Noël

::
et

:::
al.,

:::::
2022;

:::::::
Brooke

:
et
::::

al.,
:::::
2022),

::
a
:::::
more

:::::::::::
sophisticated

:::::::::
description

:::
of

:::
the

::::::
energy

::::::
balance

::::::::
between

:::
the

:::
ice

:::
and

:::
the

::::::::::
atmosphere

::::
may

:::
be

:::::::::
beneficial.

::::::
Already

:::::
noted

:::
by

::::::::::::::::::::::
Carslaw and Jaeger (1988),

::::::::::
prescribing

:
a
::::
fixed

::::::::::
temperature

::
is

::
in

:::
fact

::
a
::::
limit

::::
case

::
of

:
a
:::::::
broader

:::
set

::
of

::::::::
boundary155

::::::::
conditions

::::::
known

:::
as

:::::
’linear

::::
heat

::::::::
transfer’

::
or

:::::::::
’Newton’s

:::
law

::
of

::::::::
cooling’

:::
that

::::::::
accounts

:::
for

:
a
:::::
more

:::::::
realistic

:::
heat

::::
flux

::::::
across

:::
the

:::::::
interface

:::::
given

::
by

:::
the

::::::::::
temperature

:::::::::
difference

:::::::
between

:::
the

:::
two

::::::
media.

Even so,
::
In

:::
this

:::::
study,

:::
we

::::::::::
analytically

::::
solve

:::
the

:::::::::::::
time-dependent

:::::::
problem

::
of

:::
an

:::::::::::::::
advective-diffusive

:::
ice

::::::
column

::
in
:::
the

::::::::
presence

::
of

:::::
strain

::::::
heating

::::
with

::
a
:::::::::::
sophisticated

::::::
surface

::::::::
boundary

:::::::::
condition

::::::::::::::::::::::::::::::::::::
(Robin type, e.g., Gustafson and Abe, 1998).

::::
Our

::::::::
approach
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:::::::
accounts

:::
for

:::
the

::::::::
temporal

::::::::
evolution

:::
of

:
the T ≈ 7000 year periodicity appears widely used in the literature as a reference160

value for ice-sheet models. Yet the theoretical implications of treating the problem with a more realistic finite medium remain

unexplored. We herein investigate the consequences of considering a one-dimensional motionless ice column with a finite

thickness L and quantify the impact of explicit boundary and initial conditions . A
:::::::::
temperature

::::::::::
distribution

:::::
rather

::::
than

::::::::
assuming

::
an

::::::::::
equilibrated

:::::
state,

::::
thus

:::::::
allowing

:::
for

::
a
:::::
more

:::::::
accurate

::::::::::::
representation

::
of

:::
the

:::
ice

:::::::::
behaviour

::
in

::::::::
response

::
to

::::::::
changing

:::::::
external

:::::::::
conditions.

:::
By

::::::::::
considering

:::::::::::::
time-dependent

:::::::::
processes,

:::
we

::::
aim

::
to
::::::::

improve
:::
the

::::::::::::
understanding

:::
of

:::
ice

:::::::::
dynamics,

::::::::::
particularly165

::
in

::::::::
scenarios

:::::
where

:::::::
glacier

:::
and

:::
ice

:::::
sheet

::::::::
response

::
to
:::::::

climate
::::::
change

:::
is

:
a
::::

key
:::::::
concern.

:::::::::
Moreover,

::::::::
transient

::::::::
solutions

:::::
offer

::
the

::::::::
potential

:::
to

:::::
refine

:::
the

::::::::::::
interpretation

::
of

:::
ice

:::::
core

::::
data,

:::::::
leading

::
to
:::::::::

improved
:::::::::::::
reconstructions

::
of

::::
past

::::::::
climatic

:::::::::
conditions

:::
and

::::::::::
additionally

:::::::
provide

::::::::
analytical

::::::::
solutions

::
to

:::
the

:::::::::::::
time-dependent

::::::::::
temperature

::::::
profile

::::::::
problem

:::
that

::::
can

::::::::
constitute

:
a
:::::::

helpful

:::::::::
benchmark

::
to

:::::::::
numerical

:::::::::::::::
thermomechanical

::::::
models

::
of
:::

ice
::::::
sheets.

::::
The

:
formulation of the problem

:::::::::
considered

::::
here is given in

Section 2; the approach followed in this work is presented in Section 3; analytical solutions are shown in Section 4; results are170

discussed in Sections 5, 6 and 7; our concluding remarks are given in Section 8.

2 Finite thickness
:::::::::::::::::
Advective-diffusive

:::
ice

::::::
column

Let us now elaborate on the
::::::
physical

:
description of a more realistic one-dimensional ice column with a finite thickness

L
:::::::
diffusive

::::
heat

:::::::::
transport,

::::::
vertical

::::::::
advection

::::
and

:::::
strain

::::
heat. Our domain is then defined as the interval y ∈ [0,L]≡ L. First,

we must reformulate
::::::::::::
z ∈ [0,L]≡ L.

:::
We

::::
shall

::::::::
formulate

:
the problem imposing the necessary additional

:
a
::::::::::
generalized boundary175

condition at the top of the motionless columny = L
::::::
column,

:::::
z = L

:
(Fig. 1).

In the simplest physical scenario, the ice surface temperature is set to the air temperature value θ(L,t) = Tair. However, the

particular surface temperature is in fact the result of the energy balance between the ice and the atmosphere. A more general

approach considers that the ice and the air may not be always at thermal equilibrium, thus yielding a heat flux due to a vertical

temperature gradient. The thermal equilibrium is only reached if the ice surface and the atmosphere temperatures are identical.180

In such conditions , the heat flux across the interface is null and the vertical gradient at the top
::
To

:::::::
address

::::
this

:::::::::
limitation,

::
we

:::::
refine

::::
the

::::::
surface

::::::::
boundary

::::::::
condition

:::
by

:::::::::::
incorporating

::
a
:::::::
potential

::::::::
deviation

:::::
from

:::
the

:::
air

::::::::::
temperature,

::::::::::
accounting

:::
for

:::
the

::::::::
insulation

:::::
effect

:::::
given

::
by

::
a

:::
firn

::::
layer

::
in

:::
the

:::::::::
uppermost

::::::
region

::
of

:::
the

:::
ice

:::::::
column.

::::
This

:
is
::
a
:::::
highly

::::::::
probable

:::::::
scenario

::::::::::
considering

::
as

::::::::
explained

::
in

::::::
Section

::
1.

::::
The

::::::
thermal

:::::::::
insulation

:::::
effect

:
is
::
a
:::::
direct

::::::::::
consequence

:::
of

::
the

::::
firn

::::::
density

::::::::
reduction

:::::::
towards

:::
the

::::::
surface

::::
(e.g.

::::::
Stevens

::
et

:::
al.,

:::::
2020)

::::
and

::::
falls

:::::
within

:::
the

::::::::
so-called

:::::
linear

:::::::::::
heat-transfer

::::::::
boundary

:::::::::
conditions

::
or

:::::::::
‘Newton’s

:::
law

::
of

::::::::
Cooling’185

:::::::
(Carlsaw

::::
and

::::::
Jaeger,

:::::
1989,

::::::
Chapter

::
§
::::
1.9).

:

::::
This

::::::::
refinement

:::::::
enables

:
a
:::::
more

:::::::
accurate

:::::::::::
representation

::
of

:::
the

::::::
surface

::::
heat

:::::::
transfer

::::::::
dynamics

:::
and

:::::::::
contributes

::
to

:
a
:::::::::::::
comprehensive

:::::::::::
understanding

:::
of

:::
the

::::::
energy

::::::
balance

::::::
within

:
the ice columnvanishes. In this description, both the surface ice temperature and

the vertical gradient can consequently
:::::
θ(L,t)

::::
and

::
its

::::::
vertical

::::::::
gradient

::::::
θz(L,t)::::

can vary in time:

βθyz + θ = Tair, yz
:
= L, t > 0, (1)190

6



Figure 1. Schematic view of the motionless one-dimensional ice column with a finite thickness L
::::::
vertical

:::::::
advection

::::
w(z)

::::
and

::::
strain

::::
heat

:::::
source

:::
term

::
Ω. Temperature evolution is dictated by the heat equation and an appropriate set of initial and boundary conditions. Subscripts

denote partial differentiation. At the top, both the ice temperature and the vertical gradient can vary in time, thus allowing for non-equilibrium

thermal states across the ice-air interface. At the base, the vertical gradient is fixed to the value given by the
:::::::
combined

::::::::::
contribution

::
of

geothermal heat flux θy =−G/k
:::
flow

::::
and

::::::
potential

:::::
basal

:::::::
frictional

:::
heat

::::::::::
θz =−Υ/k. Note that our formulation is one-dimensional so that

the x-axis is solely introduced for visualization.

where italic subscripts denote partial differentiation and β is a parameter with length dimensions that modulates the permissible

deviation between ice and air temperatures . Equation ?? falls within the so-called linear heat transfer boundary conditions

(e.g., Carslaw and Jaeger, 1988, Chapter § 1.9) and β
:::
and is often referred to as the surface thermal resistance (per unit area).

::::
This

::::::
refined

::::::::
boundary

::::::::
condition

:::::::
reflects

:::
the

::::
fact

:::
that

::::
the

:::
ice

:::
and

:::
the

:::
air

::::
may

::::
not

::
be

:::::::
always

::
at

:::::::
thermal

::::::::::
equilibrium,

::::
and

:::::
allows

:::
for

:
a
::::
heat

::::
flux

:::
due

::
to

::
a
::::::
vertical

::::::::::
temperature

::::::::
gradient.

:::
The

:::::::
thermal

::::::::::
equilibrium

::
is

::::
only

:::::::
reached

:
if
:::
the

:::
ice

::::::
surface

::::
and

:::
the195

:::::::::
atmosphere

:::::::::::
temperatures

:::
are

::::::::
identical.

::
In

::::
such

::::::::::
conditions,

:::
the

::::
heat

:::
flux

::::::
across

:::
the

:::::::
interface

::
is

::::
null

:::
and

:::
the

:::::::
vertical

:::::::
gradient

::
at

::
the

::::
top

:::
the

:::
ice

:::::::
column

:::::::
vanishes

:::::::::
regardless

::
of

:::
the

:::::
value

::
of

::
β.

We can then physically interpret this parameter β as the thermal insulation of the ice-air interface. In other words, β is a

length-scale over which the ice column feels the air temperature. A zero value corresponds to an ideal conductor (θ(L,t) =

7



Tair), whereas β →∞ represents a perfect thermal insulator characterized by a null heat exchange across the interface. In the200

limit case β = 0, the interface ice-air is always at thermal equilibrium (i.e., θ = Tair). For β ̸= 0, we allow for a heat exchange

across the ice surface driven by the temperature difference between the two media.

Considering diffusive heat transport,
::::::
vertical

:::::::::
advection,

:::
and

:
a
::::::::
potential

:::
heat

:::::::
source, the ice temperature θ(y,t)

:::::
θ(z, t) satisfies

an initial value problem given by the heat equation:



θt = κθzz −wθz +Ω, ξ ∈ L, t > 0,

θ = θ0(z), z ∈ L, t= 0,

θz =−Υ/k, z = 0, t > 0,

βθz + θ = Tair, z = L, t > 0,

(2)205

where G is the
:::
the

::::
heat

::::::
source

::
Ω

:
is
:::

an
:::::::::::::
inhomogeneous

::::
term

::::
that

:::::::
captures

:::::
strain

::::
heat

:::
and

:::::::::
horizontal

:::::::::
advection,

::::::::::
Υ=G+Q

::
is

::
the

:::::::::
combined

::::::::::
contribution

::
of

:
geothermal heat flux

::
G

:::
and

::::::::
potential

::::
basal

::::::::
frictional

::::
heat

::
Q, k is the ice conductivity and κ is the

ice diffusivity(,
:
assumed to be constantsince we do not explicitly consider the firn layer above the ice)

:
.
:::
We

::::::
further

:::::::
consider

::
a

::::::::::
z-dependent

::::::
vertical

:::::::
velocity

::::::::::
component

:::::
given

::
by

:::::
w(z).

The initial temperature profile reads θ0(y) = θb +(θL − θb)y/L, where θL and θb are the initial temperatures at the top and210

the base of the column, respectively. This linear profile is introduced for simplicity and it allows us to explicitly determine the

impact of the initial basal
::
In

:::::
order

::
to

:::::
solve

:::
the

:::::::
problem,

:::
we

:::::
must

:::
first

:::::::
provide

:::
the

::::::::
particular

::::
form

:::
of

:::
the

::::::
vertical

:::::::
velocity

:::::
term.

::
As

::
in

:::::::::::::::::
Clarke et al. (1977)

:::
and

::::::::::::
Zotikov (1986)

:
,
:::
we

:::
first

:::::::
assume

:
a
:::::
linear

::::::::
variation

::
of

::::
w(z)

::::
with

::::::
depth:

w(z) = w0
z

L
::::::::::

(3)

:::::
where

:::
w0 :

is
:::
the

::::::
vertical

:::::::
velocity

::
at

:::
the

:::
ice

::::::
surface

:::::
z = L.

::::
This

::::::::::
dependency

::
is

::::::
widely

::::
used

::
in

:::
the

:::::::
literature

::::::::::::::::::::::::::::::::::::::::::::
(e.g., Joughin et al., 2002, 2004; Suckale et al., 2014)215

:::
and

:::::::
standard

:::::
values

:::
for

:::
w0::::::

usually
::::
read

::::::
0.1-0.2

::
m/surface ice temperature independently.

::
yr

:::::::::::::::::::::::::::::::::::::::::
(Glovinetto and Zwally, 2000; Spikes et al., 2004)

:
.
::::::::::
Nonetheless,

:::
we

::::
will

::::::
further

::::::
explore

::
in

:::::::
Section

:
6
:
a
:::::
more

::::::
general

::::::::::
relationship

::::
that

:::::
better

::::::::
describes

::::::
vertical

::::::::
velocities

::::::::
modeled

::
by

::::::
Glen’s

::::
flow

:::
law

::
as

::::::::
discussed

::
in
:::
the

:::::::::
EISMINT

:::::::::
benchmark

:::::::::::
experiments

::::::::::::::::::::::::
(Huybrechts and Payne, 1996)

:
.

We must stress that the system described as above (Eq. 2) builds upon MacAyeal (1993a) and aims at a purely vertical

diffusive heat-transfer description of a motionless ice column. In reality, heat transfer is well-known to be a three-dimensional220

process with a higher level of complexity that encompasses several mechanisms as horizontal/vertical advection , potential

presence of liquid water within the ice, a varying ice thickness, internal heat deformation and frictional heat production among

others. The current problem is approached by using analytical techniques and so the complexity of
:::
The

:::::::::::::
inhomogeneous

:::::
term

:
Ω
::::

can
::::::::::
encompass

:
a
:::::::

number
:::
of

:::::::::
processes,

::::::
though

::::
here

:::
we

:::::
focus

:::
on

:::::
strain

:::::::
heating

::
S
::::

and
:::::::::
horizontal

::::::::
advection

:::
H,

:::
so

::::
that

::::::::::
Ω= S +H.

::::
The

:::::::::::
strain-heating

:::::
term

::
S

::
is

::
a

:::::::
function

::
of
:

the system is critical if an analytical solution is to be found. The225

simplicity of our description provides new insight from a theoretical perspective
::::::
second

:::::::
invariant

::
of

:::
the

:::::
stress

::::::
tensor.

::
In

:::::::
general,

:
it
:::
can

:::
be

::::::::
expressed

:::
as

:::::::::
S = σij ϵ̇ij ,

:::::::
wherein

:::
σij::

is
:::
the

:::::::
Cauchy

:::::
stress

:::::
tensor

::::
and

:::
ϵ̇ij ::

is
:::
the

:::::
strain

:::
rate

::::::
tensor

:::::::::
(expressed

::
in

:::::
index

8



::::::::
notation).

::::::::
Applying

:::::
Glen’s

::::
law,

:::
the

::::
rate

::
of

:::::
strain

::::::
heating

:::
can

:::
be

::::::::
simplified

:::
as:

:

S = σij ϵ̇ij ≃ 2A−1/n ϵ̇
(n+1)/n
lat

::::::::::::::::::::::::
(4)

:::::
where

:::::::::::::::
ϵ̇lat = ϵ̇12 = ux/2 :::::::

assumes
:::
that

:::
the

::::::::
dominant

:::::::::
component

::
of

:::
the

:::::
strain

:::
rate

:::::
tensor

::
is

:::
the

:::::
lateral

:::::
strain

::::
rate

:::
ϵ̇lat ::::::::::::::::::::

(e.g., Meyer et al., 2019)230

:::
and

::::::::::
summation

::
is

::::::
implied

:::::
over

:::::::
repeated

::::::::
indexes.

::::
This

::::::::::
assumption

:::::::
ensures

:::
the

::::::::
analytical

::::::::::
tractability

::
of

:::
the

::::::::
solution

:::::
while

::::::::
including

:
a
:::::::
potential

::::::::
constant

:::::
strain

::::::::::
contribution

:::::::::
throughout

:::
the

:::
ice

::::::
column.

3 Fourier method

Our aim is to solve the initial boundary value problem by using the Fourier method, also known as separation of variables (an

overview of the method is given in Appendix A, for a standard reference see e.g., Kalnins et al., 2018). Consequently, we first235

need to find a change of variable that leaves us with homogeneous boundary conditions in order to determine the corresponding

eigenvalues
:::
The

:::::::::
horizontal

:::::::::
advection

::::
term

:::
H

::::
can

:::::
imply

::
a
::::
heat

::::::
source

:::
or

:
a
:::::

sink
:::::::::
depending

:::
on

:::
the

::::
sign

::
of
::::

the
:::::::::
horizontal

::::::::::
temperature

:::::::
gradient

:::::
along

:
a
::::::::
particular

::::::::
direction.

::::
We

:::::
herein

:::::::
consider

:::::
such

:
a
::::::::::
contribution

:::
by

:::::::
defining

:
a
:::::::::::::
depth-averaged

::::::
lateral

::::::::
advection

::::
term

::::::::::::::::
(Meyer et al., 2019)

:
:

H=

1∫
0

(u · n̂)θn̂dξ,

::::::::::::::::

(5)240

:::::
where

::
u

::
is

::::::::
horizontal

:::::::
velocity

::::::
vector,

::̂
n

::
is

:::
the

::::::
normal

:::::
vector

:::::
along

:::
an

:::::::
arbitrary

::::::::
direction

::::::::
contained

::
in

:::
the

::::::::
horizontal

:::::
plane

::::
and

::::::::::
θn̂ = ∂θ/∂n̂

:::::::
denotes

:::
the

:::::::::
directional

::::::::
derivative

:::::
along

::̂
n.

Let us then define the new variable ξ(y,t) for the problem determined by
:::
This

:::::::::::
assumptions

:::::
allow

::
us

::
to

:::::::
include

:
a
::::::::
potential

::::
strain

::::
heat

::::::
source

::
S

:::
and

::
a

::::::::
horizontal

::::::::
advection

:::
of

:::
heat

:::::
term

::
H

:::::
while

:::::::
keeping

:::
the

::::::::
analytical

:::::::::
tractability

::
of

:
Eq. 2:

ξ = θ−Tair +(y−β−L)
G

k
245

Therefore, in terms of the new variable the problem under consideration reads:
:
.
::::
The

:::::::::
limitations

::
of

::::
these

:::::::::::::
simplifications

:::
are

::::::::
discussed

::
in

::::::
Section

::
7.

:



ξt = κξyy, y ∈ L, t > 0,

ξ = f(y), y ∈ L, t= 0,

ξy = 0, y = 0, t > 0,

βξy + ξ = 0, y = L, t > 0,

where the initial state is f(y) = θ0(y)−Tair +(y−β−L) G
k .

9



3
:::::::::
Analytical

:::::::
solution250

As a result, we now have a homogeneous problem that can be solved by
:::
Let

:::
us

::::::
outline

:::
our

:::::::::
analytical

::::::::
approach.

::::
We

::::
first

::::::::::::::::
non-dimensionalise

:::
our

::::::::
problem

:::
and

:::::::
exploit

:::
the

:::::::
linearity

:::
of

:::
the

:::::::::
differential

::::::::
operator

:::
by

::::::
further

:::::::::::
decomposing

::::
the

:::::::
solution

::
as

:
a
::::

sum
:::

of
::::::::
stationary

::::
and

::::::::
transient

::::::::::
components

::
to
::::

deal
:::::

with
:::
the

:::::::::::::
inhomogeneity.

::::::
Lastly,

:::
we

:::::
apply

:
separation of variables

(Appendix A). If a solution exists, it determines the vertical temperature profile at any given time for the
::
to

:::::
obtain

::
a
:::::::
solution

::
of

:::
the

:::::::::::::
time-dependent

:::::::
problem

::::
and

::::::
impose

:::
the

::::::::::::
corresponding

:
initial and boundary conditionsprovided by Eq. 2

:
.
:::::::::
Derivation255

:::::
details

:::
are

:::::::::
elaborated

::
in

::::::::
Appendix

::
A.

4 Analytical solution

The solution ξ(y,t) to the boundary problem determined by the Set 2 (derivation details in Appendix B) reads:

:
It
::
is

::::::
natural

::
to

::::::::::::::::
non-dimensionalise

:::
our

::::::::
problem

::
by

:::::::
defining

:::
the

::::::::
following

:::::::::
variables:

ξ(y=
z

L
:::

, τ =
κ

L2
::::::

t), θ
::

=

∞∑
n=0

Ancos
√
λnye

−κλnt
T

Tair
:::

, w̃=
L

κ
w,

::::::

β̃=
β

L
,

::::

Ω̃=
L2

κTair
Ω

::::::::

(6)260

where the eigenvalues λn are given by the transcendental equation:

cot
(
L
√
λn

)
= β

√
λn.

Equation ?? does not admit an algebraic representation, hence requiring a numerical method to compute λn. Here we

implemented the Brent-Dekker algorithm (Dekker, 1969; Brent, 1971) with a tolerance of 10−8. This root-finding algorithm

choice combines the bisection method, the secant method and the inverse quadratic interpolation.265

The coefficients An can be readily obtained applying orthogonality among eigenfunctions:
::::
tildes

:::
are

::::::::::
hereinafter

:::::::
dropped

::
to

::::::
lighten

::
the

::::::::
notation.

:

An =
2

L

L∫
0

ξ(y,0) cos
(√

λny
)
dy.

::::::
Hence,

::
we

::::
can

::::::
express

:::
our

::::::::
Problem

:
2
:::
as:

θτ = θξξ −wθξ +Ω, ξ ∈ L̃, τ > 0,

θ = θ0(ξ), ξ ∈ L̃, τ = 0,

θξ = γ, ξ = 0, τ > 0,

βθξ + θ = 1, ξ = 1, τ > 0,
:::::::::::::::::::::::::::::::

(7)270

10



It is noteworthy that if β is strictly zero
:::::
where

::::::::::::::::
γ =−TairΥ/(kL),

::::::::
w = Pe ξ

:::
and

:::::
θ0(ξ):::

are
:::
the

::::::::::::::
non-dimensional

::::::::::
geothermal

:::
heat

::::
flux,

:::::::
vertical

:::::::
velocity

:::
and

:::::
initial

:::::
profile

:::::::::::
respectively.

:::
The

:::::::
vertical

::::::
velocity

::::
has

::::::
thereby

::::
been

:::::::::::
conveniently

::::::::
expressed

::
in

:::::
terms

::
of

:::
the

:::::
Peclét

:::::::
number

:::::::::::
Pe = w0L/κ (i.e., the ice surface temperature is prescribed θ(L,t) = Tair), the solution is equivalent to

finding the eigenvalues satisfying the equation cos
(
L
√
λn

)
= 0 and can be obtained analytically as :

√
λn =

(
n+

1

2

)
π

L
,275

where n= 0,1,2, ...
::::
ratio

::
of
:::::::::

advective
::
to

::::::::
diffusive

::::
heat

:::::::::
transport).

::::
The

::::::::::::::
non-dimensional

::::::
strain

::::
heat

::::::
source

::::
term

::
S
::::

can
:::
be

::::::::
identified

::::
with

:::
the

:::::::::
Brinkman

::::::
number

:::
Br

:::
as

:::::
noted

::
in

:::::
Table

::
1,
::::::

which
:::::::::
represents

:::
the

::::
ratio

:::
of

::::::::::
deformation

:::::::
heating

::
to

:::::::
thermal

:::::::::
conduction

::::
(see

:::::
Table

::
2).

In this particular case, the corresponding coefficients An also allow for analytical expression:

An = 4(θb − θL)

[
cos(nπ)

2nπ+π

]
− 8L

G̃

k

[
1

2nπ+π

]2
.280

Employed parameter values and range further explored in Fig ??. Magnitude Symbol Fixed value MacAyeal (1993)

Explored range (units)(Fig. ??) Initial ice basal temperature θb (◦C) -10.0 -10.0 -50,-10Initial ice surface temperature θL (◦C)

-25.0 N/A -50,-10Geothermal heat flux G (mW/m2) 50.0 32.0 25,100Air temperature Tair (
◦C) -25.0 N/A -50, -10

4 Vertical temperature profile

We now present the vertical profiles θ(y,t) from analytical solutions given by Eq. ?? for three different thicknesses,
:::
The285

:::::::::::::
non-dimensional

:::::::
number

::
γ

:
is
:::
the

:::::::::
combined

::::::::::
contribution

::
of

:::::::::
geothermal

::::
heat

::::
flux

:::
and

::::::::
potential

::::
basal

::::::::
frictional

::::
heat,

::::::::::
normalised

::
by

:::
the

:::::::
vertical

::::::::::
temperature

:::::::
gradient

::::
that

::::::
would

:::::
exists

:::
for

::
a

::::::
column

::::::::
thickness

:
L = 1.0

::
and

:::::::::::
temperature

::::
Tair.::

It
::::::::
provides

:::
the

::::::
relative

:::::::
strength

::
of

:::
the

:::::
basal

:::::
inflow

::
of

::::
heat

:::::::::
compared

::
to

:::
the

:::::::::
ice-column

:::::
extent

::::
and

:::
the

::
air

:::::::::::
temperature.

:::
The

::::::::::::
dimensionless

:::::::
problem

::::::
clearly

:::::
shows

::::
that

:::
four

::::::::
numbers

:::::::::
completely

::::::::
determine

:::
the

:::::
shape

::
of

:::
the

::::::::
stationary

::::::::
solution:

:
γ, 1.5

and 2.5 km, at t= 0
::
β,

:::
Pe and t= 4750 years (Fig. ??) using the set of paramters described in Table ??. The second time frame290

value is chosen so that the fastest warming scenario (blue line
::
Br.

:::::
Their

:::::::::
particular

::::::
impact

::
on

:::
the

::::::::::
temperature

:::::::::::
distributions

::
is

:::::
shown

:
in Fig. ??) precisely reaches melting. Since solutions are presented as infinite series, truncation was naturally required.

We kept 100 terms in Eq. ??, though the error is below 0.03% after the 13th term.
:
2.
:

The implications of a finite domain are quite notable. Particularly, the column base warms due to the geothermal heat

flux at a rate that is proportional to ∼ κλ0e
−κλ0t at leading order. Then if we let L > L̃ be two thicknesses, it consequently295

yields that the ratio θt/θ̃t ∼ e−κ(λ0−λ̃0)t exponentially grows
:::::
Given

::::
that

:::
Eq.

::
7
::
is

::::::::::::::
inhomogeneous,

:::
we

::::
will

::::::::::
decompose

:::
the

::::::
solution

:::
as

::
a

::::
sum

::
of

::
a
:::::::
transient

:::::::
µ(ξ,τ)

::::
and

:
a
:::::::::
stationary

::::
ϑ(ξ)

:::::::::::
components, so that rate of change (at y = 0) is larger for

a thicker column since the corresponding eigenvalues λ0 < λ̃0. That is, a thicker ice column implies a faster change of its

basal temperature
::::::::::::::::::::
θ(ξ,τ) = µ(ξ,τ)+ϑ(ξ).

:::
As

:
a
::::::
result,

:::
the

:::::::
transient

::::
and

::::::::
stationary

::::::::
problems

:::
are

::::::
subject

:::
to

:::::::::::
homogeneous

::::
and

11



:::::::::::::
inhomogeneous

::::::::
boundary

:::::::::
conditions

::::::::::
respectively:

:
300 

µτ = µξξ −wµξ, ξ ∈ L̃, τ > 0,

µ= µ0, ξ ∈ L̃, τ = 0,

µξ = 0, ξ = 0, τ > 0,

βµξ +µ= 0, ξ = 1, τ > 0,
::::::::::::::::::::::::::::

(8)

:::
and
Ω= ϑξξ −wϑξ, ξ ∈ L̃,

ϑξ = γ, ξ = 0,

βϑξ +ϑ= 1, ξ = 1,
::::::::::::::::::::::

(9)

:::::
where

:::::::::::::::
µ0 = θ0(ξ)−ϑ(ξ)

::
in

:::
the

:::::
initial

::::::
profile

::
of

:::
the

::::::::
transitory

:::::::
solution.

The impact of β is particularly clear at the top (Fig. ??) , where the temperature slightly increases due to an upward heat305

flux originating at the base (unlike the β = 0 case, where the temperature is prescribed) . We have chosen β = 100 m to display

such mechanism, whilst keeping a reasonable temperature difference (Kurt M. Cuffey, 2010).

Initial temperature profile. Temperature profile after 4750 years. Vertical profiles from analytical solutions θ(y,t) for three

different ice-column thicknesses L = 1.0, 1.5, and 2.5 km. Left panel (a), t= 0 yr; right (b), t= 4750 yr. Solid line represents

solutions for β = 100 m where the case β = 0 is denoted by a dotted line. Parameter values employed are shown in Table ??310

(fixed value column)

Figure ?? further focuses on the basal temperature evolution by comparing the effects of a particular zero/non-zero β value

for different ice thicknesses, yet it does not provide information about the relevance of the particular β choice. The implications

of this choice and their relative magnitude compared to the total thickness is thoroughly presented in Figs. ?? and ??. Since this

thermal insulator parameter has length dimensions, it is illustrative to study its dependency referred to the particular column315

thickness L,
:::::::
solution

::
to

:::
the

::::::::
stationary

::::::::::
component

::::
(Eq.

::
9)

::::::
already

::::::
differs

:::::
from

:::::::
previous

::::::::
analytical

::::::
works

::
as

::::::::::::
Robin (1955)

:::
and

:::::::::::::
Lliboutry (1963)

:
.
:::::
First,

::::
they

:::::::::
considered

:
a
::::::::::::

homogeneous
:::::::
version

::
of

:::
the

:::::::
problem

::
(i.e., the dimensionless quantity β/L shown

in Fig. ??. As β becomes small compared to the ice thickness
:::::
Ω= 0)

:::
so

:::
that

::::::::
potential

:::::
strain

:::::::
heating

::
or

:::::::::
horizontal

::::::::
advective

:::::::::::
contributions

:::
are

:::::::::
neglected.

:::::::::
Moreover,

::::
they

:::::::::
simplified

:::
the

:::
top

:::::::::
boundary

::::::::
condition

:::::
ξ = 1

:::::
since

::::
they

::::::::
imposed

::
a

:::::::::
prescribed

:::::::
constant

::::::::::
temperature

:::::
value

::::::::::::::::::::::::
(see also Clarke et al., 1977).

::::::::
However,

:::::
these

::::::::::
refinements

::::
still

:::::
allow

:::
for

::::::::::
analytically

::::::::::
tractability320

:::
and

::::
thus

:::
the

::::::::
stationary

:::::::
solution

::
is

::::
(see

::::::::
Appendix

::
B

:::
for

::::::::
derivation

:::::::
details):

:

ϑ(ξ) = Ω
ξ2

2
2F2

(
1,1;

3

2
,2;−ζ

)
+A erf [aξ] +B

::::::::::::::::::::::::::::::::::::::::

(10)

:::::
where

:::::::::::::::::2F2(a1,a2;b1, b2,x)::
is

:::
the

::::::::::
generalised

:::::::::::::
hypergeometric

::::::::
function,

:::::::::
ζ = (aξ)

2,
:::::::::::::
a= (w0/2)

1/2,
:::::::::::::::::
A=−γ (π/(4a))

1/2
::::
and

::::::::::::::::::::::::::::::
B = 1−A

(
2aπ−1βe−a2

+erf [a]
)

.
::::
Note

:::
that

::
if

:::
the

:::::::::::::
inhomogeneous

::::
term

::
is

:::
zero

:
(i.e., β/L≪ 1

:::::
Ω= 0), the ice surface remains

12



cold by the influence of the atmosphere temperature (Tair =−25 ◦C). The entire profile is affected by the surface condition325

and thus the basal temperature remains lower as well. On the contrary, if we let β/L=O(1), we find that the ice surface

monotonically warms (due to the upwards geothermal heat flux and the imposed larger insulating condition)and the base

reaches melting faster. This behaviour yields two points worth noting: (1) the saturation in basal temperature for β/L > 0.5

and (2)a "never-thawing" base for sufficiently low β/L values.
::::::::
stationary

::::::::::
temperature

::::::
profile

::::::
reduces

::
to

:::
the

::::::::::
well-known

:::::
error

:::::::
function

:::::::::
previously

:::::::
obtained

::
by

::::::::::::
Robin (1955)

:::
and

::::::::::::::
Lliboutry (1963)

:
.
::::
Even

:::
so,

:::
the

::::::::::
temperature

::::::::::
distribution

:::::
would

::::
still

:::::
differ

::
as330

::
the

::::::::
boundary

:::::::::
condition

:::::::::
considered

:::::
herein

::::::
reflects

::
a
:::::::
potential

:::::::::
insulating

:::
top

::::
layer

::::::
unlike

::::
prior

:::::::
studies.

To complete our study on the impact of the particular β/L choice, we represent the ice surface temperature deviation from

the air temperature boundary condition normalised by the latter as ∆θ = (θ(L)−Tair)/Tair (blue solid line, Fig. ??). We thus

obtain a dimensionless quantity that reflects the surface temperature changes as a function of the relative thermal insulation

referred to the column thickness. The particular ice surface temperature is evaluated when the base reaches melting (red335

solid line, Fig. ??)so as to ensure that the incoming energy is entirely diffused and there are no phase changes. We find ice

temperature deviations up to a 30% from the air temperature (imposed as a boundary condition) in
:::
We

::::
now

::::
take

:
a
::::
step

::::::
further

:::
and

:::::
allow

:::
for

::::
time

::::::::
evolution

:::
by

::::::
solving

::::
Eq.

:
8
::::
and

:::::::
building

:::
our

:::::::
solution

:::
as

:::
the

::::
sum

::
of

::::
both

::::::::::::
contributions.

:::::::
Namely,

:
the limit

β/L→ 1
::::::
general

:::::::
solution

::
of
:::
the

::::::::
transient

:::::::
problem

::::::
µ(ξ,τ)

::
is

::::
(see

::::::::
Appendix

::
A

:::
for

::::::::
derivation

:::::::
details):

:

µ(ξ,τ) =

∞∑
n=0

[AnΦ(αn;δ;ζ)+BnΨ(αn;δ;ζ)]e
−λnτ

:::::::::::::::::::::::::::::::::::::::::::

(11)340

:::::
where

::::::::
Φ(α;δ;ζ)

::::
and

::::::::
Ψ(α;δ;ζ)

:::
are

:::
the

:::::::
Kummer

:::::::::::::::
(Kummer, 1836)

::
and

:::::::
Tricomi

::::::::
confluent

:::::::::::::
hypergeometric

::::::::
functions

::::::::::
respectively

::::
(also

::::::
known

:::
as

::::::::
confluent

:::::::::::::
hypergeometric

::::::::
functions

:::
of

:::
the

::::
first

::::
and

::::::
second

::::::
kind).

:::::::::::::::
αn =−λn/(2w0)::::

and
:::::::
δ = 1/2.

:::
As

::::
the

::::::
solution

:::::
must

::
be

::::::::
bounded

::
at

::
the

::::::
origin,

:::
we

:::
set

::::::
Bn = 0.

Time evolution of the basal temperature for three different thicknesses (in km). Solid line represents solutions for β = 100

m whereas the limit case β = 0 (i.e., fixed surface temperature) is denoted by a dotted line. The boundary condition at the base345

is identical for all cases and given by the geothermal heat flux G. The horizontal dashed lines represent the corrected pressure

melting point for each column thickness.
:::
The

::::
full

::::::
solution

::::::::::::::::::::
θ(ξ,τ) = ϑ(ξ)+µ(ξ,τ)

::::
thus

:::::
reads:

:

θ(ξ,τ) = Ω
ξ2

2
2F2

(
1,1;

3

2
,2;−ζ

)
+A erf [aξ] +B+

∞∑
n=0

AnΦ(αn;δ;ζ)e
−λnτ

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(12)

:::::
where

:::
the

:::::::::
coefficients

::::
An :::

are
:::::::
obtained

::::
from

:::
the

:::::
initial

::::::::::
temperature

::::::
profile

::::
(Eq.

::::
A.2

::
in

::::::::
Appendix

:::
A).

:

4 A new period for the binge/purge oscillator350

4
:::::::::
Stationary

:::::::::
solutions

Prior to a detailed discussion of our results, we must note that the solution to our Robin boundary problem (Eqs. ?? -

??)describes the evolution of
:::::
Before

:::::::::
displaying

:::
the

::::::
results

:::
of

:::
the

:::
full

::::::::::::::
time-dependent

::::::::
problem,

:
it
:::

is
:::::
worth

::::::
noting

::::
that the

13



temperature profile only until the ice column base thaws, and therefore does not show a periodic behaviour of the ice dynamics.

Such behaviour emerges once this solution is considered within MacAyeal’s oscillator (MacAyeal, 1993a, b).
:::::::::::
consideration

::
of355

:
a
::::
more

:::::::::::
sophisticated

::::::
energy

::::::::
exchange

::
at
:::
the

::::::
ice-air

:::::::
interface

::::::
entails

:
a
:::::::::::
perturbation

::
in

:::
the

:::::
entire

::::::::::
temperature

::::::::::
distribution.

:

The temporal dependency of the basal temperature (Fig.??) from our analytical solution (Eq.??)allows us to calculate

the time required for the column base to reach the melting point analogously to the growth phase of a Heinrich event

oscillation (MacAyeal, 1993a). We also account for the pressure correction of the ice melting point as θ = θ̃+αP , where

α= 9.8 · 10−8 K/Pa (e.g., Greve and Blatter, 2009). Knowing that P = ρgL and our column spans the following thickness360

interval L= [1.0,3.5].For ∆L≃ 3.0 km, then θ̃ ≃−2.6 ºC yields a non-negligible correction, making the ice thickness dependence

even stronger as a result of two independent contributions: a more significant insulating effect of a thicker ice columnand a

larger pressure melting correction
:::::
Figure

::
2

:::::
shows

:::
our

::::::::::
steady-state

::::::::
solutions

::
as

:::::::
vertical

::::::
profiles

:::
for

:
a
::::::
subset

::
of

:::
the

:::::::::::
permutations

::
of

:::
the

::::::::::::::
non-dimensional

::::::::
numbers

:::
Pe,

:::
Br,

::
γ
::::
and

::
β.

::
It
::
is
:::::::::
illustrative

:::
to

:::::::
compare

:::
the

::::::
shape

::
of

:::
our

:::::::::::
temperature

:::::::
solutions

:::::
with

::::::::::::::::
Clarke et al. (1977)

::::
(Fig.

:
1
::::::::
therein).

:::
We

::::
must

:::::
stress

::::
that

:
a
:::::::::
one-to-one

::::::::::
comparison

::
is

:::
not

::::::
readily

:::::::
possible

:::::
since

::::
they

:::::::
imposed

::
a365

::::::
simpler

:::
top

::::::::
boundary

::::::::
condition

::
in

::::::
which

:::
the

::
ice

:::::::
surface

::::::::::
temperature

::
is

::::
fixed

::
to

::
a

::::
given

::::::
value,

::::::
though

:::
the

::::
exact

:::::
same

::::::::
solutions

:::
can

::
be

::::::
simply

:::::::
obtained

:::
by

::::::
setting

:::::
β = 0

::
in

:::
our

::::
case

::::
(see

:::
Eq.

:::
1).

:
It
::
is
:::
of

::::::
utmost

:::::::::
importance

::
to
::::::::

consider
:::
the

::::::::
particular

::::
sign

:::
of

:::
the

::::::
vertical

:::::::::
advection

:::::
term.

::
In

:::
the

:::::::
positive

::::
case

::::::
w0 > 0

:::::
(i.e.,

::::
ϑ+),

:::
the

:::::::::
geothermal

::::
heat

:::
flux

::::::
travels

:::::::
upwards

:::
not

::::::
solely

::
by

::::::::
diffusion

:::
but

:::
also

::::::::
enhanced

:::
by

:::
the

::::::
vertical

::::::::
transport,

::::
thus

::::::::
warming

::
the

:::::
entire

:::::::
column

:::::
more

::::::::
efficiently

:::
and

::::::::
reaching

:
a
::::::
higher

::::::::::
equilibrium

::::::::::
temperature.

:::
On

:::
the

:::::::
contrary,

::
in
:::
the

::::::::
negative

:::
case

:::::::
w0 < 0370

::::
(i.e.,

::::
ϑ−),

::::::
colder

:::
ice

::
is

:::::::
advected

:::::
from

:::
the

:::::::::
uppermost

::::
part

::
of

:::
the

:::::::
column,

:::::::::::
consequently

:::::::
cooling

:::::
down

:::
the

::::::
profile. It is worth

stressing that the period of the binge-purge oscillator (MacAyeal, 1993a) did not considered any pressure melting correction

so that a one-to-one comparison must dismiss such effect (see Section ??)
:::::
noting

:::
the

::::::::
difference

::
in

::::::
x-axis

:::::
scales

:::
for

::::
each

:::::
case,

:::::::
meaning

:::
that

:::
the

:::::
basal

::::::::::
temperature

::::::::
variation

:
is
::::::
several

:::::
times

:::::
larger

:::
for

:::
the

:::::::
upwards

:::::::
vertical

::::::::
advection

:::::::
scenario.

Basal temperature. Surface temperature. Ice temperature time series for (a) Base and (b) Surface. Each line represents375

a particular dimensionless β/L choice. The strictly zero case corresponds to β = 0 and L= 1.0 km. A solid black lines

denotes the semi-inifinite domain solution (Carslaw and Jaeger, 1988). The air temperature is fixed for all cases and reads

Tair =−25 ◦C.

Normalised ice surface temperature deviation ∆θ (dark blue line) from the air temperature boundary condition Tair and time

required for the base to thaw (red line) as a function of the normalised insulating parameter β/L. The ice surface temperature380

deviation is evaluated when the base reaches melting.

Figure ?? shows the sensitivity of
:::
The

::::::::::::::::::::
non-dimensionalization

:::
of

:::
our

:::::::::
analytical

:::::
model

::::::::
provides

:::::::::
simplicity

:::
and

:::::::
further

::::::
reduces

:::
the

:::::::::
parameter

::::::::::::
dimensionality

:::
of

:::
the

::::::::
solutions

::
to

:::::
solely

::::
four

:::::::::
numbers,

::::
each

::::::::::::
corresponding

::
to

::::
one

::::::
column

:::
in

::::
Fig.

::
2.

:::
The

::::::
Peclét

::::::
number

::::::::
produces

:::
the

::::::
largest

:::::::
changes

::
in

:::
the

::::::::::
equilibrium

::::::::
solutions,

::::
with

:::
the

::::::::::
well-known

:::::
linear

::::::
profile

::::::::
resulting

:::
for

the thermal state of the base to the thickness of the column L and to the treatment of the surface boundary condition. It is385

clear that the column thickness is a fundamental factor that allows the surface temperature to influence the evolution of the

base. Strictly speaking, the external forcing perturbs the temperature vertical profile of the ice column, thus determining the

basal temperature. When we allow for non-equilibrium thermal states in the top boundary condition
:::::
purely

::::::::
diffusive

::::
case
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(i.e., β ̸= 0)
::::::::
Pe→ 0).

:::
The

::::::::::
normalized

:::::::::
geothermal

::::
heat

::::
flux

:::
also

::::::
yields

::::
large

::::::::::
temperature

:::::::::
amplitudes

::::::
within

:::
the

:::::::
explored

::::::
range.

:::::::::::
Nevertheless,

:::
for

::::::
w0 < 0,

:::
the

::::::
impact

::
is
::::::
clearly

:::::::
reduced

::
to

:::
the

:::::
lower

::::
half

::
of

:::
the

:::::::
column,

:::
thus

:::::::
leaving

:::
the

:::::
upper

::::::
regions

::::::
nearly390

::::::::::
unperturbed.

:::
An

:::::
even

::::
more

::::::
unique

:::::::::
behaviour

::
is

::::
also

:::::
found

:::
for

:
the base warms faster since the columnsurface can evolve in

time towards higher temperatures, thus inducing a lower temperature difference between the base and the top. The relevance

of this effect is inversely proportional to the column thickness, becoming negligible for large L values.

When computing the time required for the base to thaw, the initial temperature profile plays an essential role. The linear

profile is imposed as the initial condition of our analytical solution (Eq. ??) and then, a broad range of θb ::::::
surface

::::::::
insulation

::
β395

:::
and

:::
the

:::
rate

::
of

:::::
strain

:::::::
heating

::
Br

::
in

:::
the

:::::::
presence

:::
of

:::::::::
downwards

:::::::::
advection,

:::::
where

:::
the

:::::
entire

::::::::::
temperature

::::::
profile

::
is

:::
left

:::::::::
unchanged

::::::
despite

::::::
varying

::::::
values

:::
of

:
β
:

and θL values is explored to quantify their impact on this timescale (Fig. ??)
::
Br.

:::::
This

:::
can

:::
be

:::::::::
understood

::
as

:::
the

::::::::::::
independence

::
of

:::
the

::::::::
particular

::::
heat

::::::::
exchange

::
at

:::
the

::::::
ice-air

:::::::
interface

::
if
::::::
colder

:::
ice

:
is
::::::::::

transported
::::::::::
downwards

:::
and

:
a
:::
far

:::::
more

:::::::
effective

::::
heat

:::::::
transport

::::
due

::
to

::::::::
advection

:::::::
(Pe = 7

::
in

::::
both

:::::
cases)

::::
than

:::::::::
dissipated

:::::::
through

::::
strain

:::::::::::
deformation.

:

5
:::
Full

:::::::::
solutions400

:::
We

::::
now

::::::
present

:::
the

:::::
results

:::
of

:::
the

:::::::
problem

::::::::
presented

::
in

:::
Eq.

::
2

::
by

::::::::::
considering

:
a
:::::
more

:::::::
realistic

:::::::::::::
time-dependent

::::::::::
description.

::::
This

:::::::
transient

::::::
nature

:::::::
depends

::
on

::::
the

:::::
initial

::::
state

:::
of

:::
the

:::::::
system,

:::::::
although

::
it
::::::::::::
exponentially

::::::::
converges

::
to
::::

the
::::::::
stationary

::::
case

:::
as

:::
the

:::::::
transient

:::::::::
component

::::::::
vanishes

:::::
under

:::
the

::::::::::
assumption

::
of

:::::::
constant

:::::::::
boundary

:::::::::
conditions. Ideally, the initial condition should be

set by the temperature profile immediately after an event in the binge-purge cycle, yet such a profile is not available. A linear

profile assumes that the temperature in the ice reflects a linear lapse rate in the atmosphere as the ice thickness builds up over405

time.

Figure ?? also shows the dependency of this basal-thawing timescale on the boundary conditionsin our general formulation

(Eq. ??). The impact of the external forcing is evident from Fig
:::
To

:::::::
illustrate

:::
the

::::
full

::::::::
solutions,

::::
we

::::
show

::::
the

::::::
explicit

:::::
time

:::::::
evolution

:::::
from

::
an

::::::
initial

::::::
profile

::
as

:
it
::::::::::

approaches
:::
the

::::::::::::
corresponding

:::::::::
stationary

:::::::
solution

::::
(Fig

::
3).

:::
In

:::
this

::::::::
instance,

:::
we

::::::
employ

::
a

:::::::
constant

:::::
initial

::::::::::
temperature

::::::
profile

:::
for

:::::::::
simplicity

::::::::::
θ0(ξ) = 1.5.

:::::
With

:::
this

::::::::
particular

:::::::
choice,

:::
we

::::::
ensure

:::
that

:::
the

::::
full

:::::::
solution

::
is410

:::::
below

:::
and

::::::
above

::
of

:::
the

::::::::
stationary

:::::::
solution

:::
for

:::
the

:::::::
upward

:::
and

:::::::::
downward

:::::::::
advection

::::::::
scenarios,

:::::::::::
respectively.

:::
We

::::
must

:::::
stress

::
a

:::
few

:::::
points

:::::
here.

::
In

::::
Fig.

::
3a,

:::
the

:::::::::
uppermost

::::::
region

::
of

:::
the

:::
ice

::::::
column

::::::
rapidly

:::::::
reduces

::
its

::::::::::
temperature

::::
due

::
to

:::
the

:::::
effect

::
of

:
a
::::::
colder

::
air

::::::::::
temperature

::
as

:::
the

:::::::::
geothermal

::::
heat

::::
flux

::::::::::
contribution

:::::::
requires

:
a
:::::
longer

::::
time

::
to

:::::
travel

:::::
from

::
the

:::::
base.

:::
On

:::
the

:::::::
contrary,

:::
the

:::::
lower

:::
part

::
of

:::
the

:::::::
domain

::::::::
increases

::
its

::::::::::
temperature

::::::::::::::
notwithstanding

:::
the

::::::
sudden

:::::::
decrease

::
of

:::
the

:::::
upper

:::::
half.

::::
Once

:::
the

::::::::::
geothermal

::::
heat

:::
flux

:::
has

::::::::::
propagated

::::::::
upwards,

:::
the

:::
ice

::::::
surface

::::::::::
temperature

::::::
slowly

:::::
starts

::
to

:::::::
increase.

:::::
This

:
is
::::::::

possible
::::
since

:::
we

:::
are

::::
here

:::::::
solving415

::
for

::
a
::::::::
non-zero

::
β

:::::
value

:::
that

::::::
allows

:::
for

::
a

::::::::
difference

::::::::
between

:::
the

::
air

::::
and

:::
the

:::
ice

:::::::
surface

:::::::::::
temperatures.

::::
The

::::
rate

::
of

:::::::::
increasing

::::::::::
temperature

::::::::
gradually

:::::::::
diminishes

::::
and

::
it
::::::::::
approaches

::::
zero

:::
as

:::
the

:::::::
transient

::::::::
solution

::::::::::::
asymptotically

:::::::
reaches

:::
the

:::::::::::
temperature

:::::
profile

:::::
given

:::
by

:::
the

:::::::::
stationary

::::::::::
temperature

::::::
profile

:::::::::::::::::::
ϑ(ξ) = limτ→∞ θ(ξ,τ). ??. As we would expect, lower Tair values yield

longer basal-thowing timescales, though solely for ice thicknesses below ∼ 2 km. For thicker ice, the periodicity appears to

be independent of the surface ice temperature. We therefore find that, for this parameter choice (Table ??), Lthr = 2 km is a420

15



Figure 2.
:::::::

Stationary
::::::
vertical

:::::::::::::
non-dimensional

:::::::::
temperature

::::::
profiles

::::::
ϑ(ξ,τ).

:::::
Upper

::::
row:

::::::
upward

::::::
vertical

::::::::
advection.

:::::
Lower

::::
row:

::::::::
downward

:::::
vertical

::::::::
advection.

:::::
Note

::
the

:::::::
different

:::
x-

:::
axis

:::::
scale.

:::::::
Solutions

:::
are

::::
fully

:::::::::
determined

::
by

::::
four

:::::::::::::
non-dimensional

:::::::
numbers:

:::
Pe,

:::
β,

:
γ
::::

and
:::
Br,

::::::::::
corresponding

::
to

::::
each

::::::
column

:::::::::
respectively.

::::
The

:::::::
remaining

:::::
three

::::::
numbers

:::
are

:::
left

::::::::
unchanged

::
in

::::
each

::::::
column

::
to

::::
allow

:::
for

:::::::::
comparison.

::::
First

::::::
column:

:::::::
γ = 1.0,

:::::::
β = 0.05.

:::::::
Second:

::::::
γ = 1.0,

::::::
Pe = 7.

:::::
Third:

::::::::
β = 0.05,

::::::
Pe = 7.

::::::
Fourth:

::::::::
β = 0.05,

::::::
Pe = 7,

:::::::
γ = 1.0.

:::
The

:::::::
Brikman

::::::
number

::
Pe

::
is

::::::::
identically

:::
zero

::
in

::
all

::::::
profiles

:::
but

:::
the

::::
fourth

:::::::
column.
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Figure 3.
::::::::::::
Time-dependent

::::::
solution

::::
given

::
an

:::::
initial

:::::::::
temperature

:::::
profile

::::
θ0(ξ):::::::

(vertical
::::
dotted

::::
line).

:::
For

::::::::
simplicity,

:::
we

:::
here

::::::
assume

:::::::::
θ0(ξ) = 1.5

:
to
:::::::

illustrate
:::

the
:::::::::

time-scale
::::::::
differences

:::::::
between

:::
the

:::::::
upwards

::::
and

::::::::
downward

::::::::
advection

:::::::
scenarios

:::::::
denoted

::
by

:::
θ+

::::
and

:::
θ−,

::::::::::
respectively.

:::::::::::
Dimensionless

:::::
values:

::::::::
Pe = 5.0,

:::::::
γ = 1.0,

:::::::
Br = 0.1

::::
and

::::::::
β = 0.05.

:::::
Black

:::::
dashed

::::
lines

::::::::
represent

:::
the

:::::::
stationary

::::::::
solutions

::::
ϑ(ξ).

:::
To

::::
ease

::::::::::
visualization,

::
the

::::
time

::::::
variable

::
is

:::::::
cubically

:::::
spaced

::
as

:::::::
indicated

::
in

:::
the

:::::::
colourbar.

threshold value above which the time required to thaw is decoupled of the top boundary condition. A distinct parameter choice

will alter this particular value, yet we expect this behaviour to remain present.

Such a threshold is a compelling result and deserves further elaboration. Since here we focus on the time required for the

base to thaw, it is fundamental to consider the temperature gradient between the base and the top. The vertical temperature

gradient must be supported by425

:
A
:::::::
similar

::::::::
behaviour

::
is

:::::
found

::
in

::::
Fig.

:::
3b.

::
In

:::
this

:::::
case,

:::
the

::::
base

::::::
rapidly

::::::::
increases

::
its

::::::::::
temperature

::::::
unlike

:::
the

:::
ice

::::::
surface,

::::::
where

:
it
::::::::
suddenly

::::::::::
diminishes.

::::
Even

::::::
though

:
the geothermal heat flux . If the surface is too cold, the heat provided by G may not be

sufficient to support a large enough temperature difference (within the column ) so that the base reaches the melting point. For

a given choice of G, k and Tair, there exists a minimum ice thickness Lmin that yields a temperature gradient that allows for
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the base to thaw. For thinner columns,
:
is

:::::::
identical

::
in
:::::
both

::::::::
scenarios,

:::
the

::::::::
additional

:::::::::::
contribution

::
of

:::::::
advected

::::::
colder

::
ice

:::::
from

:::
the430

::::::
surface

::::::
renders

:
a
::::
new

::::::::::
equilibrium

::::::
profile

::
in

:::::
which

:::
not

::::
only

:::
the

:::::
upper

::::::
region

::
of

:::
the

::::::
column

::
is

::::::
colder,

:::
but

:::
also

:::
the

::::
base

::
in

:::::
itself.

:

::
To

:::::::
examine

:::::::
closely

:::
the

:::::::
transient

::::::
nature

::
of

:
the base always remains frozen. This further translates in a sudden increase in

the basal-thawing timescale
::::::::
solutions,

::
we

:::::::
present

:::
the

::::::::::
temperature

::::::::
evolution

::
of

:
a
:::::
given

::::::
initial

:::::
profile

:::
for

::
a

::::::
certain

:::::
range

::
of

:::
the

:::::::::::::
non-dimensional

::::::::::
parameters (Fig. ??). Although the value of this threshold depends on the physical properties of the ice and

the boundary conditions
::
4).

::::
This

:::::
gives

:::
us

::::::::::
information

:::::
about

:::
the

:::::::::::::
time-dependent

::::::
effects

::
of

::::
each

:::::::::
parameter,

::::::
unlike

::::
Fig.

:
2
::::
that435

:::
was

::::::::
restricted

::
to

::::::::::
equilibrium

:::::
states.

:::::::::::
Addtionally,

:::
the

:::::::::
continuous

::::::::::::
representation

:
(i.e., k, G and Tair), the mechanism still holds

irrespective of the particular parameter choice
::::::::
colourbar

::
in

::::
Fig.

:::
4),

::
as

:::::::
opposed

:::
to

:
a
:::::::
discrete

:::::::
number

::
of

:::::::
vertical

::::::
profiles

:::
as

::
in

:::
Fig.

::
3,

::::::::
facilitates

::::::::::
comparison

::::::
among

::::::::
particular

:::::::::
parameter

::::::
choices.

The time required for the base to thaw decreases as the geothermal heat flux increases.A similar behaviour is found with

increasing L due to the thermal insulating effect of the ice column, particularly for lowgeothermal heat flux values.This is440

consistent with what we expected, as a higher geothermal heat flux provides a larger amount of heat (per unit time)to the

ice column.
::::::::
particular

::::::::
parameter

::::::
values

:::::
were

:::::::
selected

::
so

::::
that

::::
there

::::::
would

::
be

::::
two

::::::::
scenarios

:::
for

::::
each

:::::::
number

:::
and

::::::
hence

::::
four

:::::::::::
permutations:

::::::::
low/high

::::::::
advection

::::
(i.e.,

:::
Pe)

:::
and

::::::::
low/high

:::::::::
geothermal

::::
heat

::::
(i.e.,

:::
γ).

::::
This

:::::
setup

:::::
allows

:::
us

::
to

::::::::
separately

:::::::::
determine

::
the

::::
role

::::::
played

::
by

:::::
each

:::::::::
mechanism

::::::
during

:::
the

:::::::
transient

::::::
regime

::
of

:::
the

::::::::
solution.

The initial conditions are also essential to quantify the time required for the ice base to thaw. We have considered a linear445

initial vertical profile θ0(y) = θb +(θL − θb)y/L, so as to understand the explicit dependency of
:::
For

::
a

::::
fixed

::
γ

:::::
value

:::::::
(γ=1.0),

the initial surface temperature θL and the initial basal temperature θb independently
::::::
strength

:::
of

::::::::
advection

::
is
:::::

only
:::::::
relevant

::
in

:::
the

::::::
upward

::::::::
scenario

:
(Figs. ?? and ??) . Namely, the impact of θL is determined by the column thickness, with a more

acute dependence for low L values. This was expected as the vertical temperature gradient increases for a fixed temperature

difference between base and top if the column thickness is reduced. A never-thawing base is plausible when such a vertical450

gradient surpasses the value given by
::
4a

:::
and

:::
4c)

::::
and

:::::
yields

:::::::::::
considerably

:::::
longer

:::::::::::
equilibratum

:::::
times.

:::
In

:::::::
contrast,

:::
the

:::::::::
downward

:::
case

::
is
::::::
nearly

::::::::::
independent

::
of

:::
the

:::::::::
particular

::::::::
advection

:::::::
strength

:::
and

::::::
rapidly

:::::::
reaches

:::::::
thermal

::::::::::
equilibrium.

::
A

:::::::
different

:::::::::
behaviour

:
is
::::::
found

::::
when

::::::
fixing

::::::::
advection

:::
and

:::::::
varying the geothermal heat flux . Lastly, the time required to melt the base appears to be

rather sensitive to the initial basal temperature, rapidly reaching values above 25 kyr for θb <−40◦C.
:
γ.

::
In
:::::

such
:
a
:::::
case,

::::
both

::::::
regimes

:::::::
(w0 < 0

::::
and

:::::::
w0 > 0)

:::
are

::::::::
perturbed

:::
by

::
γ

:::::
(Figs.

:::::
4e-h).

:::::
Even

:::
so,

:::
the

:::::::::
uppermost

::::::
region

::
of

:::
the

:::::::
column

:::::::
remains

::::::
colder,455

:::::
unlike

:::
the

::::
high

:::::::
upward

::::::::
advection

:::::::
scenario

::
in
::::::

which
:::
the

:::
ice

::::::
surface

:::::::::
eventually

::::::::
increases

::
its

:::::::::::
temperature

:::
due

::
to

:::
the

:::::::::
combined

:::::
effect

::
of

:::::::
diffusion

::::
and

::::::::
advection

:::::::
fostered

::
by

::
a
::::::::
thermally

::::::::
insulated

:::
ice

::::::
surface

:::::::::
(β = 0.05).

:

Figure ?? particularly shows a non-monotonic behaviour of the basal-thawing timescale with respect to the ice thickness.

To understand this behaviour there are several factors that must be considered simultaneously. It is illustrative to look at the

vertical profiles shown in Fig. ??. The fact that T is non-monotonic with L at θb <−30◦C is a consequence of two factors:460

the necessary energy budget to warm an ice column and the vertical temperature gradient. For a fixed temperature difference

between the base and
::::::::
Moreover,

:::::
Figs.

::
4b

::::
and

::
4g

::::::
clearly

::::::::
illustrate

::::
two

:::::::
different

::::
time

::::::
scales.

::
A

:::::
rapid

:::::::
decrease

:::
in

::::::::::
temperature

:
at
::::

the
:::::
upper

::::
half

::
of

:::
the

:::::::
column

::
is

:
a
:::::
direct

:::::::::::
consequence

:::
of the top, the former increases with L

::::::
surface

::::::::
boundary

:::::::::
condition,

::::
given

::::
that

:::
the

::
air

:::::::::::
temperature

:
is
::::::
colder

::::
than

:::
the

:::::::::
underlying

:::
ice.

::::::::::::
Nevertheless,

::
we

:::::::
observe

:
a
:::::::

second
:::
and

::::::
slower

:::::::
response

:::
by

:::
the

18



::::::
upward

::::::::
transport

::
of

::::
heat.

::::::::
Diffusion

::::
and

::::::::
advection

::::::::
gradually

:::::
warm

:::
the

:::::::
column

::
as

:::
the

::::
heat

::::::
source

:::
(the

::::::::::
geothermal

::::
heat

::::
flux)

::
is465

::::::
located

::
at

:::
the

::::
base.

::
It
:::::::::
eventually

::::::
reaches

:::
the

:::::
upper

::::::
region

::::
and,

::
in

:::
the

::::
case

::
of

::::
high

:::::::::
advection

::::
(Fig.

::::
4c),

:::::::
entailing

:::
an

:::::::
increase

::
in

::
ice

:::::::
surface

::::::::::
temperature.

:::
We

:::::
must

:::::
stress

:::
that

:::
the

:::::
latter

::::
result

::
is
::::
only

:::::::
possible

::::
due

::
to

:
a
:::::
more

::::::
refined

:::
top

::::::::
boundary

::::::::
condition

::::
(Eq.

::
1).

::
If

::::::::
advection

::
is
::::::::::
diminished

:::::
(Figs.

::
4e

::::
and

:::
4g)

:::
the

:::::
lower

:::
half

::::
still

::::::
warms

:::
due

::
to
::::::::
diffusion

::
as

::
it
::
is

:::::
closer

::
to

:::
the

::::
heat

::::::
source

:::
for

:::::::::
sufficiently

::::
large

::::::
values

::
of

::
γ, whereas the latter decreases with L.

:::
ice

::::::
surface

:::::::
remains

:::::
colder

:::::
since

:::::::
diffusion

::
is

:::::::
spatially

:::::::
limited.

470

For slight variations of the thickness δL around L= 1.5 km, while fixing the initial basal temperatureto e. g. , θb =−30◦C,

the time required to thaw the base increases regardless of the sign of δL. In other words, it takes longer

::
As

::::::
shown

::
by

:::
the

::::::
colour

::::::
legend

::
in

:::
Fig.

::
3,

:::
the

::::
time

:::::::
required

:
to reach the melting point either for a thinner or a thicker column.

This local minimum is a balance between the total energy necessary to heat the column and the fact that a thinner one implies a

larger vertical gradient for a fixed
::::::::
stationary

::::
state

::
is
:::::::::::
considerably

::::::
shorter

:::
for

:::::::
w0 < 0.

::::
This

:
is
::
a
:::::::::::
consequence

::
of

:::
the temperature475

difference between the base and the top. If we consider the effect of these factors explicitly: first, a thinner column requires a

smaller amount of energy to increase the temperature of
:::::
initial

:::::
θ0(ξ) :::

and
:::
the

::::::::
stationary

::::::
profile

:::::
ϑ(ξ).

:
It
:::
can

:::
be

::::::::
visualised

:::
by

:::
the

:::::::
enclosed

::::
area

:::::::
between

:::
the

::::
two

::::::
curves:

:::::
θ0(ξ)::::

and
::::
ϑ(ξ).

::::::::::
Physically,

:::
this

::::
area

:::::::::
represents

:::
the

::::::::
necessary

::::::
energy

::
Q
:::

for
:::

the
::::::

initial

::::
state

:::::
θ0(ξ) ::

to
:::::
reach

:::
the

:::::::::
equilibrium

::::::
profile

::::
ϑ(ξ)

:::
so

:::
that

:::::::::::::::
Q=

∫ 1

0
∆θ(ξ)dξ,

:::::::
wherein

:::::::::::::::::::
∆θ(ξ) = ϑ(ξ)− θ0(ξ).::::

The
::::
sign

::
of

::
Q

::::
thus

:::::::
indicates

:::
the

::::::::
direction

::
of

:::
the

::::::
energy

::::::::
exchange,

:::::::
positive

::::::
values

:::::::
meaning

::
an

::::::::
increased

:::::::
thermal

::::::
energy

::
of

:::
the

:::::::
column.480

::::
More

:::::::::
generally,

:::
we

:::
can

::::
also

::::
study

:::
the

::::::::
evolution

:::
of

::
the

::::::
energy

:::::::
content

:::::
within

:::
the

:::::::
column

::
by

::::::::::
performing

::::
such

:::
an

:::::::::
integration

:::
over

:::
the

::::
full

:::::::
solution

:::::::::::::::::
Q(τ) =

∫ 1

0
θ(ξ,τ)dξ.

::::
This

::::::
yields

:::
the

::::::::::::
corresponding

:::::
energy

:::::::
content

::::
time

:::::
series

:::
and

::::::::
provides

::::::::::
information

::::
about

:::
the

::::::
overall

::::::
inflow

::
or

::::::
outflow

:::
of

::::
heat,

::::::::::
irrespective

::
of

:::
the

::::
local

:::::::
changes

:::
that

:::
the

::::::::::
temperature

::::::
profile

:::::
might

:::::::
undergo

::::
(Fig.

:::
5).

:::::
Thus,

::::
from

::
an

::::::::
arbitrary

:::::
initial

::::
state,

:::
we

:::
can

:::::
study

::::
how

:::
the

::::
total

::::::
energy

::::::
balance

::
of

:
the column; however, considering the second

factor, a thinner column would yield a larger vertical temperature gradient (ultimately yielding a slowdown in the warming rate485

as the geothermal heatflux is fixed in the BC). The combination of both effects allows for the local minima found in Fig. ??
:::
ice

::::::
column

::::::::
depends

:::
on

::
the

::::
four

::::::::::::
dimensionless

::::::::
numbers

:::
that

:::::::::
determine

::
the

:::::::::
stationary

::::::::
solutions

::::
(Fig.

::
2).

6 The limit L → ∞
:::::::::
EISMINT

::::
After

::::::::
studying

:::
the

:::::::::
behaviour

::
of

:::
the

::::::::
solutions

::::
both

::
at

:::
the

:::::::::
transitory

:::
and

:::::::::
stationary

:::::::
regimes,

:::
we

:::::::
narrow

:::::
down

:::
our

:::::
focus

::
to

::
a

::::::::
particular

::::
case:

:::
the

::::::::
EISMINT

::::::::::
benchmark

::::::::::
experiments

::::::::::::::::::::::::
(Huybrechts and Payne, 1996)

:
.
:::
We

:::
can

::::
thus

:::::::
evaluate

:::
the

:::::::::::::
non-dimensional490

:::::::::
parameters

:::::
(Table

::
2)

::::
that

::::::::
determine

::::
our

::::::::
stationary

:::::::
solution

:::
and

::::::::::
additionally

:::::::::::::::
re-dimensionalise

:::
the

::::::::::
temperature

::::::
profiles

:::
so

::
as

::
to

:::
ease

::
a
:::::::
physical

::::::::::::
interpretation.

Compared to previous work, the analytical solutions presented herein account for an additional degree of freedom in terms

of the domain definition: the ice column thickness L. Nonetheless, these solutions should converge under certain conditions

to the L-independent solution of Carslaw and Jaeger (1988) if we let L→∞. For completeness
:::
We

::::::
employ

::::::::
identical

:::::::
physical495

:::::::
constants

:::
to

::::
allow

:::
for

::
a
:::::::::
one-to-one

::::::::::
comparison

::
of

:::
our

::::::
results

::::
(see

:::::
Table

::
1).

:::
As

:::::::::
thoroughly

:::::::::
discussed

::
in

::::::
Section

::
7,

:::
the

:::::::
vertical

:::::::
gradient

::
of

:::
the

:::::::::
horizontal

::::::
velocity

::::::::::
determined

:::
the

:::::::::::
applicability

::
of

:::
our

:::::::::
analytical

:::::::
solution.

:::
For

::::
this

::::::
reason, we shall show that
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Figure 4.
:::::::::::
Dimensionless

::::::::::::
time-dependent

::::::
solution

:::::
given

:::
an

:::::
initial

:::::::::
temperature

::::::
profile.

::::
For

::::::::
simplicity,

::::
here

::::::::::
θ0(ξ) = 1.5

::
in

:::
all

:::::
cases.

:::
Left

:::::::
column:

::::::
upward

::::::::
advection

::::::
w0 > 0.

:::::
Right

:::::::
column:

::::::::
downward

::::::::
advection

:::::::
w0 < 0.

::::
Each

:::
row

:::::::::
represents

:
a
::::::::

particular
:::::
choice

:::
of

:::
the

::::::::::::
non-dimensional

:::::::
numbers

::
Pe

:::
and

::
γ.
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Figure 5.
:::::

Column
::::::

energy
::::::
content

::
as

:
a
:::::::
function

::
of

:::
time

:::
for

:::
the

:::::::
explored

::::
range

::
of
:::::::::::::

non-dimensional
:::::::
numbers:

:::
(a)

:::
Pe,

:::
(b)

:::
Br,

::
(c)

::
β

:::
and

:::
(d)

::
γ.

::::
Solid

::::
line:

::::::
upward

:::::::
advection

::::::::
(w0 > 0).

:::::
Dotted

::::
line:

::::::::
downward

:::::::
advection

::::::::
(w0 < 0).

:::
The

::::::
energy

::
is

::::::
obtained

::::::
through

:::::::::
integration

::
of

::::
each

:::::::::
temperature

:::::
profile

:
at
::::

any
::::
given

::::
time,

::
so

:::
that

::::::::::::::::
Q(τ) =

∫ 1

0
θ(ξ,τ)dξ.

::::
Note

:::
the

:::::
y-axis

:::::::::
logarithmic

::::
scale.

Time to reach the pressure melting point as a function of the ice thickness L, initial and boundary conditions in our general formulation.

β = 100 m for all solutions. (Eq. ??). Boundary conditions: (a) Geothermal heat flux G and (b) Air temperature Tair. Initial conditions: (c)

Initial ice surface temperature θL and (d) Initial basal temperature θb. Each panel represents the dependency of T to the explored range of

values given in Table ?? while fixing the remaining variables.21



the theoretical periodicity of MacAyeal (1993a) is in fact retrieved in such limit irrespective of the specific boundary condition

at the top.
:::::
focus

::
on

:::
the

:::
ice

::::::
divide

:::::
results

::
of

:::::::::
EISMINT

:::::::::
benchmark

:::::::::::
experiments

::::::::::::::::::::::::::::::::
(Fig. 3 in Huybrechts and Payne, 1996)

:
.

The particular conditions under which our solution converges must imply an equivalent physical scenario to the one established500

by MacAyeal (1993a). Specifically, he considered an initial temperature profile that follows an atmospheric lapse rateΓ since

the ice column is assumed to be assembled by snow precipitation. Hence the temperature solution is decomposed into a steady

and a transient component, corresponding to Γ and the ’excess’ of geothermal heat flux G̃=G− kΓ respectively. In addition,

pressure melting corrections were not considered. If we account for this particular formulation in our more general approach,

the estimated 6944-year-period is retrieved in the limit L→∞ (Fig. ??).

Table 1.
:::::
Values

::
of

::::::::
employed

::::::
physical

::::::::
constants.

::::::
Symbol

::::
Value

: ::::::
Quantity

::
A

:::::::::::
1016 Pa3yr−1

:::::::::::
Pre-exponential

:::::::
flow-law

::::::::
parameter

ρ
: :::::::::

910 kg3m−3
::
Ice

::::::
density

::
k

::::::::::::
2.1 Wm−1K−1

: ::::::
Thermal

::::::::::
conductivity

::
cp :::::::::::::

2009 J kg−1K−1
::::::
Specific

:::
heat

:::::::
capacity

::
Tair: :::::

239 K
:::::::::
Atmosphere

:::::::::
temperature

b
: ::::::::::::::

8.7× 10−4 K m−1
: :::::

Change
::
of

::::::
melting

::::
point

::::
with

:::
ice

::::
depth

::
G

:::::::::
42 mK m−2

:::::::::
Geothermal

:::
heat

::::
flow

::
w0: ::::::::::

−0.3 m yr−1
: :::::::

EISMINT
::::::

vertical
:::::::
velocity

:
at
:::
the

::::::
surface

::
L

::::::::
∼ 3000 m

::::::::
EISMINT

::
ice

:::::::
thickness

:

505

Even though the eigenvalues of our problem satisfy a different relation in the limit β = 0, we shall prove that convergence

to the 6944-year-period is independent of β and therefore consistent with previous results. Let φ
:::
As

:::::
noted

:::
by

:::
the

:::::::
authors,

::::::::
EISMINT

::::::::
modeled

:::::::::::
temperatures

::::::
greatly

::::::
varied

::::::::::
particularly

::::
near

:::
the

:::::
base.

::::::::::::
Unfortunately,

::
an

:::::::::::
independent

::::::::
analytical

:::::::
control

::
on

::::::::::
temperature

::::
was

:::
not

::::::::
available,

:::
the

::::::
reason

:::::
being

::
a
::::::
vertical

:::::::
velocity

::::::
profile

::::
(and

::::::::
therefore

::
a
:::::
strain

::::
rate)

::::
that

:::
did

:::
not

::::::
match

::
the

:::::::
vertical

:::::::
velocity

::::::
profile

:::::::
obtained

::
if
::::::
Glen’s

::::
flow

::::
law

::
is

::::::::
employed

:::::::::::::::::::::::::::::::::::::
(Huybrechts and Payne, 1996, Fig. 3 therein)

:
.
::::::::
Available510

::::::::
analytical

::::::::
solutions

:::
are

::::::::::::
Robin (1955)

::
and

:::::::::::::::
Raymond (1983)

::
for

::
a
:::::
linear

::::
and

:
a
::::::::
quadratic

:::::::
vertical

:::::::
velocity

::::::
profile,

:::::::::::
respectively.

:::::
These

:::::::
solutions

::::::::::::
underestimate

:::
and

:::::::::::
overestimate,

:::::::::::
respectively.

::::::
Hence,

:
a
::::::
vertical

:::::::
velocity

::::
field

:::
that

:::::
better

:::::::
matches

::::::
values

:::::::
modeled

::::
with

:::::
Glen’s

::::
law

::::
must

::::
take

:::
an

:::::::
exponent

::::::::
between

:::::
m= 1

:::::::
(linear) and ϕ be two solutions of our general boundary problem (Set

2) with a zero and a non-zero β value respectively and arbitrary initial conditions. The difference between solutions is then:

:::::
m= 2

::::::::::
(quadratic).

:::::
More

::::::::
generally,

:::
we

:::
can

:::::
write:

:
515

∆
.
= ϕ−φw(ξ)

::::
=

∞∑
n=0

Ancos
√
λnye

−κλnt−ncos

√
λ̃nye

−κλ̃nt.w0ξ
m

::::
(13)

:::::
where

:::::
m> 0

::::
can

::
be

::::::
chosen

::
to

::::::::
reproduce

:::
the

::::::
vertical

:::::::
velocity

:::::::
modeled

:::
via

::::::
Glen’s

::::
flow

:::
law

:::::::::::::::::::::::::::::::::::
(see Fig. 3 in Huybrechts and Payne, 1996)

:
.
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We must recall that the eigenvalues for a non-zero β case
::
In

:::
the

::::::
absence

::
of
::::::
source

::::
term

:
(i.e., ϕ) must satisfy Eq. ??. With an

appropriate change of variable xn = L
√
λn, it is clear that:520

lim
L→∞

[
tan(xn) =

L

βxn

]
→ xn =

(
n+

1

2

)
π,

since the right hand side goes to zero, we are thus left with roots of tan(xn) = 0. Note that n= 0,1,2..., which precisely

correspond to the eigenvalues of the β = 0 case.

Hence, it is straightforward to see that the spatial and temporal dependency in ∆ vanish in the limit L→∞. Additionally,

given that the only L-order term is not proportional to β in the initial conditions,
:::::
Ω= 0)

:::
as

::
in

:::
the

:::::::::
EISMINT

:::::::::::
experiments,525

::
we

::::
can

::::::
provide

:::::::::
analytical

:::::::
solutions

::
of

:
the coefficients An :::::::::

temperature
::::::::::
distribution

:::
for

:
a
:::::::
general

:::::::::
power-law

::::::::::
dependency

::
of

:::
the

::::::
vertical

:::::::
velocity

:::::::::
(derivation

::::::
details

::
in

::::::::
Appendix

:::
C):

:

ϑ−(ξ) =
pγ

(pw0)
p Γ
(
p,pw0ξ

m+1
)
+C

:::::::::::::::::::::::::::::::

(14)

:::::
where

::::::
Γ(n,x)

::
is

:::
the

:::::::::
incomplete

:::::::
Gamma

:::::::
function

::::::::::::::::::::::::::::::
(e.g., Abramowitz and Stegun, 1965),

:::::::::::::
p= (m+1)−1 and Ãn become identical

in such a limit. We then conclude that ∆= 0 if β is finite as L→∞. In other words, we have proven that both solutions are530

asymptotically equivalent irrespective of β as the ice thickness approaches infinity.
::
C

::
is

:
a
:::::::
constant

:::::
given

:::
by

:::
the

:::
top

::::::::
boundary

::::::::
condition

:::
(see

:::::::::
Appendix

:::
C).

MacAyeal (1993a) seemingly showed that the boundary conditions and
:::
This

:::::::
general

:::::::
solution

:::::
allows

::
us

::
to
:::::
study

:::
the

::::::::
exponent

::
m

:::
that

::::
best

:::::::
matches

::
the

:::::::::
EISMINT

:::::::
modeled

:::::::
vertical

:::::::
velocity.

:::::
Figure

::
6

:::::
shows

:
a
:::::::
number

::
of

::::::
vertical

::::::::
velocities

::::
and

::::
their

:::::::::::
corresponding

::::::::::
temperature

:::::
profile

::
at

::::::::::
equilibrium.

:::
We

:::::::
retrieve

:::::::::::
Robin (1955)

:::
and

:::::::::::::::
Raymond (1983)

::
for

::::::
m= 1

:::
and

::::::
m= 2,

::::::::::
respectively.

:::
We

:::::
must535

::::
stress

::::
that

:
a
:::::::
vertical

:::::::
velocity

:::::
profile

::::
with

:::
an

:::::::
exponent

::::::::
m= 1.5

::::::
closely

:::::::
matches

:::
the

::::::
velocity

::::
field

::::::::
modeled

::::
with

:::::
Glen’s

::::
flow

::::
law

:::
and

:::::
yields

::
a
::::::::::
temperature

::::::
profile

:::::
nearly

::::::::
identical

::
to

:::
the

::::::::::
temperature

::::::::::
distribution

::::::::
calculated

::
in
::::::::::

EISMINT.
::::::::::
Temperature

:::::::
profiles

::::::::::
substantially

:::::
differ

::::
from

::::::::::::
Robin (1955)

:::
and

:::::::::::::::
Raymond (1983)

:::::::
solutions,

::::
thus

:::::::
showing

:::
the

::::::
critical

::::::
choice

::
of

:::::::::
power-law

::::::::
exponent

::
m,

::::::::::
particularly

::::
near

:::
the

:::::
base.

:::
In

::::
fact,

:::
we

::::
find

:::
that

:::
the

::::::
upper

::::
40%

::
of

:
the ice base temperature are decoupled by estimating

that the e-fold decay of a periodic forcing with ω = 2.84× 10−11 s−1 in a motionless column reads
√
2k/ω = 314 m. This540

estimation solely considers periodic signals, whilst leaving unexplored the implication of a non-periodic forcing.Our results

affirm otherwise: though an oscillatory forcing rapidly attenuates with depth, Fig. ?? and ?? show that the base is in fact

strongly coupled with both the external conditions and the initial thermal state of the ice. The strength of this coupling is

determined by the column thickness L and the subsequent boundary conditions.

Figure ?? further shows that the ice thickness at which decoupling between the surface and the base occurs is almost545

independent of the top boundary conditions. In other words, we find that for MacAyeal (1993a)’s choice of geothermal heat

flux G̃ (Table ??), the base evolves irrespective of the surface conditions for values L > 3.0 km
::::::
column

::
is

:::::::::
irrespective

:::
of

:::
the

::::::::
particular

:::::::::::
z-dependency

:::
of

::
the

:::::::
vertical

:::::::
velocity.
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Time required for the column base to thaw as a function of the ice column thickness L. This timescale is classically considered to be the

period of a binge-purge oscillator, a potential mechanism behind the Heinrich Events. Colours represent the air temperature:

Tair,1 =−40ºC, Tair,2 =−30ºC and Tair,3 =−20ºC. Solid line represents solutions for β = 100 m whereas the case β = 0 (i.e., fixed

surface temperature) is denoted by a dotted line. The boundary condition at the base θy =−G/k is identical for all cases.

Figure 6.
:::
Left

:::::
panel:

::::::
vertical

::::::
velocity

::::::
profiles

::
of
:::

the
::::

form
:::::::::::
w(ξ) = w0ξ

m
:::

for
::::
five

::::::
different

::::::
values

::
of

:::
the

:::::::
exponent

::::
m=

:::
1.0,

::::
1.25,

:::::
1.50,

::::
1.75,

:::
2.0.

::::::
Velocity

::::::::
magnitude

::
at
:::
the

::::::
surface

::::
reads

:::::::::
w0 =−0.3

::::
m/yr

:::
(i.e.,

:::::::::
downwards

:::::::::
advection).

::::::::::
Robin (1955)

::::::
vertical

::::::
velocity

:::::::::
assumption

:::::::::
corresponds

::
to

:::::
m= 1,

:::::::
whereas

:::::::::::::
Raymond (1983)

::::::
employs

::::::
m= 2.

::::
Right

:::::
panel:

::::::::::
homologous

::
ice

::::::::::
temperature

::
Th::

at
:::::::::
equilibrium

::
as

::::
given

:::
by

::::::
solution

::
in

:::
Eq.

::
14

::::
after

::::::::::::::
dimensionalisation

::
of

:::::
ϑ−(ξ).
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7 Conclusions

7
:::::::::
Discussion550

:::
The

::::::::
adoption

::
of

::::::::::::
dimensionless

:::::::
variables

::::::
results

::
in

::::::::
enhanced

::::::::
generality

::::
and

:::::::::::
mathematical

:::::::::::
convenience,

:::::
albeit

::
at

:::
the

:::::::
expense

::
of

::::::
veiling

:::
the

:::::::
practical

::::::::::
significance

::
to

::::
real

::::::
glaciers

::::
and

:::
ice

::::::
sheets.

:::
We

::::
have

:::::::::::
consequently

::::::::
tabulated

::::
data

:::
for

:::::::::::
characteristic

::::::
values

::
to

:::
ease

::::::::::::
interpretation

:::::
(Table

:::
2),

::::
thus

:::::::
showing

::::
that

:::
the

:::::::
explored

:::::
range

:::::::::::
encompasses

:::::::
realistic

:::::
values

:::::
found

::
in
:::
ice

:::::
caps.

We have considered the implications of a finite one-dimensional ice column domain with a given thickness L on the solutions

of Fourier heat equation. The main purpose of the current work is to advance our understanding of how the thickness of an ice555

sheet influences its thermal evolution and further reconsider an important foundational piece of literature in the binge-purge

hypothesis (MacAyeal, 1993a, b) in the more realistic setup of a finite thickness ice column and more general (Robin)boundary

conditions. Unlike previous work, we provide analytical solutions that are explicitly dependent on this new degree of freedom

L, thus quantifying its relevance without further approximations
:::
We

::::
first

::::
start

:::
by

:::::::::
comparing

::::
our

::::::
results

::::
with

::
a

:::::::::
previously

:::::::
obtained

:::::::
solution

:::
for

:
a
::::::
simpler

::::
case

:::::::::::::::::::::
(e.g., Clarke et al., 1977).

:::
We

::::::
obtain

:::::::
identical

::::::
results

::
by

::::::
setting

:::
the

:::
ice

::::::
surface

::::::::::
temperature560

::
to

:
a
::::
fixed

:::::
value

:::::
given

::
by

:::
the

:::
air

:::::::::::
temperature,

:::
i.e.,

::::::
setting

:::::
β = 0

::
in

:::
Eq.

::
2

:::::
(Figs.

::
2c

::::
and

:::
2f).

:::::::::::
Prominently,

:::
not

::::
only

:::
the

::
ice

:::::::
surface

:::
but

:::
also

:::
the

:::::
entire

:::::::
column

:
is
:::::::::
perturbed

::
for

::
a

:::::::
non-zero

::
β

:::::
value.

::::
This

::::::
further

::::::
implies

::::
that

:::
the

::::::
thermal

::::
state

:::
of

:::
the

::::
base

:
is
::::::::
sensitive

::
to

:::
the

::::::::
particular

::::::
energy

:::::::
balance

::
at

:::
the

:::::
ice-air

::::::::
interface

:::
for

:::
the

::::::
upward

::::::::
advective

::::::::
scenario.

:::
On

:::
the

::::::::
contrary,

:::::
under

::::::::::
downwards

::::::::
advective

:::::::::
conditions,

:::
the

:::::::
thermal

:::::
basal

:::::::::
equilibrium

::
is
::::::

found
::::::::::
irrespective

::
of

:::
the

:::::::
specific

:::
top

::::::::
boundary

::::::::
condition

:::::
(Figs.

:::
2e,

:::
2f

:::
and

::::
2g),

:::::::
provided

::
a
:::
null

:::::
strain

:::::::
heating

::::
rate.

::
If

:::
the

:::::
latter

::::::::
condition

::
is

:::::::
relaxed,

::::
then

:::
the

::::
base

:::::::
becomes

:::::::
warmer

::
as

:::
the

:::::::::
insulating565

::::::::
parameter

::
β

::::::::
increases

::::
(Fig.

:::
2h).

As a result of our new domain definition, we have studied physically-plausible scenarios imposed by a more general (Robin)

boundary condition at the top of the motionless ice column. This approach considers that the ice and the air may not be always

at thermal equilibrium, thus yielding a heat flux across the interface due to a vertical temperature gradient . As a result, both

the ice temperature at the top and its vertical gradient are allowed to vary in time. If the ice surface happens to reach the air570

temperature ,
::::
Even

:::::::
though

:::
the

::::::::::
equilibration

:::::
time

:::::::
depends

::
on

::::
the

::::::::
particular

:::::
initial

:::::
state,

:::
the

:::::::::
downward

::::::::
advective

::::
case

::::::
seems

::
to

:::::::
converge

:::
to

:::
the

:::::::::
stationary

:::::::
solution

:::::
faster

::::
than

:::
the

:::::::
upward

::::::::
scenario

::::::::::
irrespective

::
of

:
the

::::::::
particular

::::::::
insulating

:::::
value

:::
at

:::
the

::
ice

:::::::
surface

::::
(Fig.

:::
5).

::::
This

::::::
entails

:::
that

::::::
under

:::::::::
downward

::::::::
advective

:::::::::
conditions,

:::
the

::::::
overall

:::::::
balance

::
of

::::::
energy

::::::::
exchange

::
is
::::::
solely

::::::
dictated

:::
by

:::
the

:::
air

:::::::::::
temperature,

:::
the

:::::::::
geothermal

::::
heat

::::
flux

::::
and

:::
the

:::
ice

::::::
vertical

::::::::
velocity,

::::
thus

:::::::::
dismissing

::::
any

:::::::
potential

:::::::
surface

::::::::
insulating

::::::
effects.

:
575

:::
The

:::::::::
tractability

:::
of

:::
the

::::::::
analytical

::::::::
solution

::::
does

:::
not

:::::
allow

:::
for

::::::
further

::::::::::
complexity

::::
and

:::::
hence

:::::::::
additional

::::::::
numerical

::::::::
methods

:::::
would

:::
be

::::::::
necessary

::
if
:::::

such
:
a
::::::::

physical
::::::::::
description

::
is

:::::::
desired.

:::::::::::
Nonetheless,

:
a
::::::::

constant
:::::::::
horizontal

::::::::
advection

:::::
term

::::
was

::::
also

:::::::::
introduced

::
as

:::
part

:::
of

:::
the

:::::::::::::
inhomogeneous

::::
term

::
Ω,

:::
for

::::::
which

:::
the

::::
sign

::
of

:::
the

::::::::
horizontal

:::::::::::
temperature

:::::::
gradients

:::::
must

::
be

::::::
chosen

::
a

:::::
priori.

:::::
Even

::::::
though

::::::::
horizontal

:::::::::
variability

::
of

:::::::::::
temperature

::::::::::
distributions

:::
can

::::
vary

:::::::
greatly,

:::
we

:::::::
account

:::
for

:::
this

:::::
effect

::::::::
assuming

::
a

:::::::
constant

::::
term

::::::::::
(throughout

:::
the

:::
ice

:::::::
column)

:::::::
entering

:::
the

::::
heat

::::::::
equation,

:::
thus

:::
not

:::::::::
reflecting

:::::
much

::
of

:::
the

::::::::
non-local

:::::::
features

::
of

:::
the580

::::::
thermal

::::::::
structure

::
of

:::
the

:::
ice

:::::
sheets.

:
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:::
We

::::
must

:::::
stress

::::
that

:::
the

:::
our

:::::::::
analytical

::::::::
solutions

:::
are

:::
not

:::::::
limited

::
to

::::::
regions

:::::
with

::::::::
negligible

:::::::::
horizontal

:::::::::
velocities,

:::::
since

:::
the

:::
true

:::::::::::
constraining

:::::::
quantity

::
is

:::
the

:
vertical gradient vanishes leading to a thermal equilibrium state.

:::::::
gradient

::
of

:::
the

:::::::::
horizontal

::::::
velocity

:::
uz .

::::::
Hence,

:::::
rapid

::::::
sliding

::::::
regions

::::
with

:
a
::::::
nearly

:::::::
constant

::::::::
horizontal

:::::::
velocity

::::::::::
throughout

::
the

:::::::
vertical

:::
axis

:::
are

::::
also

:::::::
suitably

::::::::
described

::
by

:::
our

:::::::::
solutions,

:::
for

:::
that

::::::
uz ≃ 0

:::::::
implies

:::
that

:::
the

::::::::::
temperature

::::::
profile

::
is

::::::
merely

::::::::::
transported

:::::
along

:::
the

::::
flow

::::::::
direction,585

::::
while

::::::::
keeping

:::
the

:::::
shape

:::
of

:::
the

:::::::
vertical

::::::::::
temperature

::::::::::
distribution.

:::::
One

:::
can

:::::
argue

::::
that

:::
the

:::::::::
additional

::::::
source

:::
of

::::
heat

:::
due

:::
to

:::::::
frictional

:::::::::
dissipation

::::::
should

:::
be

::::
now

:::
also

::::::::::
considered.

:::::::::::
Nonetheless,

::
in

:::::
terms

::
of

::::::::::
temperature

::::::::::
distribution,

:::
this

:::::
effect

::
is

:::::::::
equivalent

::
to

::
an

::::::::
increased

:::::::::
geothermal

::::
heat

::::
flux

::
as

:
it
::
is
::::::
purely

::::::::
restricted

::
to

:::
the

::::::
column

::::
base

:::
and

::::::::
therefore

::::::
already

::::::::::::
encompassed

::
in

:::
Eq.

::::
A.1.

We find that the ice thickness plays a fundamental role in the Fourier solutions, which implies that a semi-infinite domain590

is an oversimplification (for the ice thickness range present in nature). The temperature at the base is highly dependent on

the particular boundary condition at the top of the ice column. Particularly
:
It
::
is
::::::

worth
::::::
noting

:::
that

::::::
phase

:::::::
changes

:::
are

::::
not

:::::
herein

::::::::::
considered,

:::
so

:::
that

:::::::::::
temperature

::::::::
evolution

::
is

::::::
strictly

::::::::
confined

::
to
::::::

values
::::::

below
:::
the

::::::::::::::
pressure-melting

::::::
point.

::::::
Unlike

::
a

::::::::
numerical

::::::
solver,

::::::
where

::::::::::
temperature

::
is

::::::::
manually

:::::::
limited, these solutions are significantly distinct from each other for ice

thicknesses L < 2 km.
::::
must

:::
be

:::::
taken

::::
with

:::::::
cautious

::
as

:::
we

:::
are

:::::::::
describing

:
a
::::::
frozen

::
ice

:::::::
column.

:::::::
Results

:::
are

:::
still

::::::::::
compatible

::::
with595

:
a
:::::::
potential

::::
heat

::::::::::
contribution

::::
due

::
to

::::
basal

::::::::
frictional

::::
heat

:::
Eq.

::
2,

:::
for

:::
that

:::
fast

::::::
sliding

:::::::
regions

::
are

:::::
often

::::::
related

::::
with

::::::::
temperate

:::::
basal

:::::::::
conditions.

:::::::::::
Nevertheless,

::
an

:::::::::
additional

::::::::::
contribution

::::::
would

:::::
imply

::
an

::::::::
increased

::::::
vertical

::::::::::
temperature

:::::::
gradient

:::::
even

:
if
:::
the

:::::::
column

::::
base

::::::::
eventually

:::::::
reached

:::
the

::::::::::::::
pressure-melting

:::::
point.

:

Our analytical approach allows us to quantify the sensitivity of the solution both to the initial and boundary conditions. In

our particular parameter choice, the thermal state of the base completely decouples from the upper boundary condition (i.e.600

, external forcing) for L values above 2 km and its thermal evolution becomes solely a function of the lower
:::
The

::::::::
potential

:::::::
existence

:::
of

::
an

:::::::::
insulating

:::
firn

:::::
layer

::
at

:::
the

:::::::
surface

:::::::
presents

:
a
::::::::
physical

::::::::::
justification

:::
for

:::
the

::::
new

:::
top

:
boundary condition (i. e.

:::
Eq.

::
1).

:::
Ice

::::::
forms

::
by

:::::
snow

:::::::::::
densification

::::::
through

::::
time

::::
(see

::::::
review

::
in

:::::::::::
Stevens et al.

:
,
::::
2020

:
), the geothermal heat flux). A distinct

choice will alter this value, yet we expect this behaviour to remain present.

Notably, in the limit L→∞, the prior L-independent solution (Carslaw and Jaeger, 1988) is retrieved, consequently yielding605

the 6944 years periodicity estimated by MacAyeal (1993a). For completeness, we showed that such periodicity is in fact

retrieved irrespective of the particular boundary condition at the top. This confirms the robustness of our results.

Regarding a potential estimation of the binge-purge periodicity based on our analytical solutions, the new degree of freedom

L entails strong consequences. First, large temporal variability can be explained solely by considering a change in ice thickness

without any additional factors. In other words, this provides a source of natural internal variability irrespective of the external610

forcing. For a 1-4 km thick ice sheets, this variability spans a 7-12 kyr range. In addition,
:::
thus

:::::::
yielding

:::::
layers

:::
of

:::::::::::
progressively

::::::::
increasing

::::::
density

::::::::::
descending

::::
from

:::
the

::::::
surface.

:::::::::
Likewise,

::::
snow

:::::::
thermal

::::::::::
conductivity

::::::::
increases

::::
with

::::::
density

::::::::::::::::::::
(e.g., Sturm et al., 1997)

:
,
:::::::
resulting

::
in

::
a
::::
poor

::::
heat

:::::::::
conductor

::
as

:::
the

:::::::
snow-air

::::::::
interface

::
is

::::::::::
approached.

:::
As

:::::::
already

:::::
noted

::
by

::::::::::::::::::::::
Carslaw and Jaeger (1988)

:
,

:
if
:::
the

::::
flux

:::::
across

::
a
::::::
surface

::
is

::::::::::
proportional

::
to
:::
the

:::::::::::
temperature

::::::::
difference

:::::::
between

:::
the

:::::::
surface

:::
and

:::
the

::::::::::
surrounding

::::::::
medium, the

explicit consideration of distinct initial temperature profiles manifests a high sensitivity of the binge-purge oscillator period to615

its initial state.
:::::::::
appropriate

::::::::
boundary

::::::::
condition

:::::
takes

:::
the

::::
form

::
of

::::
Eq.

::
1,

:::::
rather

::::
than

:::
the

::::::::::::
oversimplified

:::::::
version

::::::::::::
θ(L,t) = Tair.
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::::
Here

:::
we

::::::::
explicitly

:::::::
describe

:::
the

:::
ice

::::::
column

::::
with

::
a

:::::::
constant

::::::
thermal

:::::::::::
conductivity,

:::
but

:::
we

:::::
allow

:::
for

:
a
:::
firn

:::::
layer

::
to

::
be

::::::
treated

::
as

::
a

:::
thin

::::::
surface

::::
skin

::
of

::::
poor

:::::::::::
conductivity

:::::::::::::::::::::::::::::::::::::::::
(equivalent to Chapter I, Carslaw and Jaeger, 1988)

:
.
:::::::::
Nonethless,

:::::
when

:::::
β = 0

::
is

::::::::
imposed,

::
the

:::::::::
traditional

::::::::
approach

::::
with

:::
no

:::
firn

::::
layer

::
is
:::::::::
recovered.

Moreover, a finite thickness also determines the mechanism by which an atmospheric perturbation might potentially influence620

the time required to melt the ice base since we have quantified the effect of a prescribed surface temperature and a vertical

gradient. For a fixed L value, besides the geothermal heat flux, both the vertical gradient and the temperature at the top govern

the
:::
Our

::::::::
practical

:::::::
exercise

:::::
with

:::
the

:::::::::
EISMINT

:::::::::
benchmark

:::::::::
illustrates

:::
the

::::::::::
importance

::
of

:::
the

:::::::::
analytical

::::::::
solutions.

::::::::::
Previously

:::::::
obtained

::::::::
solutions

::::
have

::::::
strong

::::::::::
assumptions

:::
on

::::
how

:::::::
vertical

:::::::
velocity

:::::::
changes

::::
with

:::::::
column

::::::
height:

:::::
linear

:::::::::::::
(Robin, 1955)

:::
and

:::::::
quadratic

::::::::::::::::
(Raymond, 1983)

::::::
vertical

:::::::
velocity

:::::::
profiles

:::::::::
(exponents

::::::
m= 1

::::
and

::::::
m= 2

::
in

::::
Fig.

:::
6).

:::::::::
Therefore,

::::
they

:::::::::::
respectively625

::::::::::
overestimate

::::
and

::::::::::::
underestimate

:::
the

:::::::
velocity

::::
field

:::::::
modeled

:::::
with

:::::
Glen’s

:::::
flow

::::
law.

::
In

:::::
order

::
to

::::::
obtain

:
a
:::::
more

:::::::
accurate

:::::::
vertical

:::::::
velocity,

:::
we

::::
solve

:::
for

:::
the

:
temperature time evolution, consequently defining the particular binge-purge periodicity estimation.

:::::::
allowing

:::
for

::::::::::
intermediate

::::::
values

::
of

:::
the

::::::::
exponent

::
to
:::::::
capture

:
a
:::::::::
behaviour

:::
that

::::
lies

::::::
amidst

:
a
:::::
linear

::::
and

:
a
::::::::
quadratic

:::::::::::
dependency.

:::
Our

::::::
results

::::
show

::::
that

:::
for

::
the

::::::
choice

::::::::
m= 3/2,

:::
we

:::::
obtain

::
a
:::::
nearly

::::::::
identical

::::::
velocity

::::
field

::::
and

:::::::::::
consequently

:
a
::::::::::
temperature

::::::
profile

:::
that

:::::
fairly

:::::::::
reproduces

:::
the

:::::
mean

:::::
profile

:::
in

::::::::
EISMINT

::::::::::
benchmark.

::::::::
Solutions

:::::
herein

:::::::::
presented

:::
are

:::
thus

:::::::::
applicable

::
to

:
a
:::::
wide

:::::
range630

::
of

::::::
vertical

:::::::
velocity

:::::::::::
distributions

:::
and

:::
can

:::
be

::::::
chosen

::::::
simply

::
by

:::::::::
modifying

:::
the

::::::::
exponent

::::
value

:::
m.

:

It must be stressed that even though we have shown that the ice base temperature is in fact coupled with the boundary

conditions,

Table 2.
::::::::::::
Non-dimensional

:::::::::
definitions,

::::::::::
characteristic

:::::
range

:::
and

::::::::
EISMINT

:::::::::::
corresponding

:::::
values

:::
(see

::::
also

::::
Table

:::
1).

:::::::::
Summation

::
is

::::::
implied

:::
over

:::::::
repeated

::::::
indices.

::::::
Symbol

::::::::
Definition

:::::::::::
Characteristic

:::::
range

::::::::
EISMINT

Pe
L

κ
w0 0.0− 30.0

:::::::
26.07
::::

Br
L2

κTair
σij ϵ̇ij 0.0− 1.0

::::::
0.0
::

Λ
L2

κTair

∫ 1

0
(u · n̂)θn̂ dξ 0.0− 0.01

:::::::
0.0
::

γ −Tair

kL
Υ 0.125− 2.0

::::::::
1.90
:::

β
β

L
0.0− 0.125
::::::::

0.0
::
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8
::::::::::
Conclusions

:::
We

::::
have

:::::::::
determined

:::
the

::::::::
analytical

:::::::
solution

::
to

:::
the

:::
1D

:::::::::::::
time-dependent

::::::::::::::::
advective-diffusive

:::
heat

::::::::
problem

::::::::
including

:
a
::::::
source

::::
term635

:::
due

::
to

:::::
strain

:::
rate

::::::::::
deformation

::::
and

:
a
:::::
more

::::::
realistic

:::
set

::
of

::::::::
boundary

::::::::::
conditions.

:::
The

:::::::
solution

::::
was

::::::::
expressed

::
in

:::::
terms

::
of

::::::::
confluent

:::::::::::::
hypergeometric

::::::::
functions

::::::::
following

:
a
:::::::::
separation

::
of

::::::::
variables

::::::::
approach.

::::::::::::::::::::
Non-dimensionalisation

:::::::
reduced

:::
the

:::::::::
parameter

:::::
space

::
to

:::
four

::::::::
numbers

:::
that

::::
fully

:::::::::
determine

:::
the

:::::
shape

::
of

:::
the

:::::::
solution

::
at

::::::::::
equilibrium.

::::
The

:::::::
transient

:::::::::
component

::::::::::
additionally

:::::::
depends

:::
on

::
the

::::::
initial

::::::::::
temperature

:::::::::
distribution

::::
and

:::::::::::
exponentially

:::::::::
converges

::
to

:::
the

::::::::
stationary

:::::::
solution.

:

:::
The

::::
sign

::
of

:::
the

:::::::
vertical

::::::::
advection

::
is

::
of

::::::
utmost

::::::::::
importance

::
as

:
it
::::::::::
determines

:::
the

:::::::
direction

:::::
along

::::::
which

::::::::::
temperature

::::::::
gradients640

::
are

:::::::::::
transported.

:::::::
Notably,

:
the periodicity of the HE cannot be imposed by the frequency of an external forcing

::::::::
particular

::::::::
boundary

::::::::
condition

::
at

::
the

:::
ice

::::::
surface

::
is
::::::::
irrelevant

::
in

::
a

:::::::::
downward

::::::::
advective

:::::::
scenario,

::::::
unless

::
an

:::::::::
additional

:::::
source

::
of

::::
heat

::::::
within

::
the

:::::::
column

::
is

::::::
present

::::
(i.e.,

:::::::
Br ̸= 0).

:::::
This

::::::
implies

:::
that

:::::::
regions

::::
with

::::::::
negligible

:::::
strain

:::::::
heating

::::
rates

::::::
present

::
a

::::::
similar

::::::::::
temperature

:::::::::
distribution

:::
for

:::
the

::::::::::
uppermost

:::
part

:::
of

:::
the

:::::::
column

::::::::
regardless

:::
of

:::
the

::::::::
particular

::::::::::
geothermal

::::
heat

::::
flux

:::::
value.

::::
This

:::
is

:::
true

:::::
even

::
for

::::::
highly

:::::::::
insulating

::::::::
conditions

:
at the ice surface. Rather, the timescale to reach melting conditions is determined by the ice645

thickness and the energy condition at the base and the surface,
::::::
where

:::::
colder

:::
ice

::
is

:::::::::
transported

:::::
more

::::::::
efficiently

::::
than

::::
heat

::::::
travels

:::::::
upwards

:::
due

::
to

::::::::
diffusion.

:

:::
The

::::::::
transient

::::::
regime

:::
also

::::::
differs

::::::::
regarding

:::
the

::::
sign

::
of

:::
the

::::::::
advective

:::::
term.

::::
Our

::::::
energy

::::::
content

:::::
study

::::::
reveals

::::
that

:::::::::
downward

::::::::
advection

::
is

::
a

:::::
much

:::::
more

:::::::
efficient

:::::::
manner

::
of

:::::::::
changing

:::
the

::::::
energy

:::::::
content

::
as

::::
the

::::::
thermal

:::::::::::
equilibrium

::
is

:::::::
reached

::::::
earlier

::::::::
compared

::
to

:::
the

:::::::
upwards

::::::::
scenario.

::::
This

:::::
holds

:::
true

:::
for

:::
all

::::::::
parameter

::::::
values

:::::
herein

::::::::
explored.650

Lastly, we note that a subtle connection exists between internal free (the binge-purge hypothesis) and externally-driven

(in the sense of a time-dependent boundary condition at the top) mechanisms caused by the finitude of the domain. Since

thermomechanical instabilities (i.e. ,
::::::
Unlike

::::
prior

:::::::
studies,

:::
our

::::::::
analytical

::::::::
approach

::::::
allows

::
us

::
to

:::::::
quantify

:::
the

::::::
relative

::::::::::
importance

::
of

::::
each

:::::::::::::::
non-dimensional

::::::::
parameter

:::::
both

::
at

::::::::::
equilibrium

::::
and

::::::
during

:::
the

:::::::::
transitory

:::::::
regime.

::::::
Peclét

:::::::
number

:::::
(both

::::
sign

::::
and

:::::::::
magnitude)

::::
and

::
γ

::::::
dictate

:::
the

:::::::::::
temperature

::::::::::
distribution

::
of

:
the transition between two plausible stages of basal lubrication655

governed by the thermal state of the ice) are the triggering mechanism of a binge-purge oscillator, internal free oscillations

are sensitive to the particular climatic forcing imposed as a boundary condition at the top of the ice column. This double-fold

nature of thermomechanical instabilities is only exhibited when a finite domain is considered, further supporting the use of

such analytical solutions in simple low-dimensional ice-sheet models where temperature profiles are otherwise prescribed
:::
ice

::::::
column

::::::
during

:::
the

::::
first

::::::
instants

::
of

:::
the

:::::::::
transitory

::::::
regime.

:::
As

::::
this

:::::::::::::
time-dependent

:::::::
solution

::::::::
vanishes,

:::
the

:::::
slower

:::::
effect

:::
of

:::::
strain660

::::::
heating

:::
rate

::::
and

:::
the

::::::
surface

::::::::
insulating

:::::::::
parameter

::::::
become

:::::::
relevant

::
to

:::::::::
determine

:::
the

::::::::
stationary

:::::
shape

::
of

:::
the

::::::::::
temperature

::::::
profile.

:

:
A
::::::::

practical
:::::::
example

:::::
based

:::
on

:::::::::
EISMINT

:::::::::
benchmark

::::::::::
experiments

:::::
eases

:::
the

:::::::::::
interpretation

:::
of

:::
our

::::::::::::
dimensionless

::::::::::
formulation

:::
and

::::::::
illustrates

:::
the

::::::::
relevance

::
of

:::
the

::::::::
analytical

::::::::
solutions

::::::::
presented

::::::
herein.

:::
By

:::::::::
employing

::
the

::::::::::
incomplete

::::::
Gamma

::::::::
function,

:::
we

:::
are

:::
able

::
to

:::::::
provide

:::::
exact

:::::::
solutions

:::
for

:
a
:::::::
general

:::::::::
power-law

:::::::::
formulation

:::
of

::
the

:::::::
vertical

:::::::
velocity

::::::
profile.

::::
This

::::
takes

::
a
::::
step

::::::
forward

:::
on

::
the

:::::::::
analytical

::::::::::
temperature

::::::
control

:::::::
available

::
in
:::
the

:::::::::
literature,

::::::::
previously

:::::::
limited

::
to

:
a
:::::
linear

:::
and

::
a
::::::::
quadratic

::::::::::
dependency.

:::
We

::::
find665

:::
that

:::
the

:::::::
vertical

:::::::
velocity

::::::
profile

::::
with

::
an

::::::::
exponent

::::::::
m= 3/2

::::::
closely

:::::::
matches

:::
the

:::::::
velocity

:::::
field

:::::::
modeled

::::
with

::::::
Glen’s

::::
flow

::::
law
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:::
and

:::::
yields

::
a

::::::::::
temperature

:::::
profile

::::::
nearly

:::::::
identical

::
to

:::
the

::::::::::
temperature

::::::::::
distribution

:::::::::
calculated

::
in

:::::::::
EISMINT.

::::
This

:::::
result

:::
thus

::::::
yields

::
an

::::::::::
independent

::::::::
analytical

:::::::
control

::
of

:::
the

::::::::::
temperature,

:::::::::
applicable

::
to

::::
real

::::::
vertical

:::::::
velocity

::::::
profiles

::::::::
obtained

:::
via

:::::
Glen’s

::::
flow

::::
law.

:

:::::
Lastly,

:::
we

::::
note

::::
that

:::
our

::::::::
analytical

::::::::
solutions

:::
are

::::::
general

:::
and

::::
can

::
be

:::::::
applied

::
to

:::
any

:::::
initial

::::::::
boundary

:::::
value

:::::::
problem

::::
that

:::::
fulfils

::
the

:::::::::
conditions

::::::
herein

:::::::::
described.

::::
They

:::
can

:::::::
provide

::::::::::
temperature

:::::::::::
distributions

::
for

::::
any

:::
1D

:::::::
problem

::
at

::::::::
arbitrarily

:::::
high

:::::
spatial

::::
and670

:::::::
temporal

::::::::::
resolutions,

::::
that

::::::::
considers

:::
the

:::::::::
combined

::::::
effects

::
of

:::::::::
diffusion,

::::::::
advection

::::
and

:::::
strain

:::::::
heating

::::::
without

::::
any

:::::::::
additional

::::::::
numerical

::::::::::::::
implementation.

:::::::::::
Furthermore,

::::
they

::::::
present

::
a

::::::
reliable

::::::::::
benchmark

:::
test

:::
for

:::
any

:::::::::
numerical

::::::::::::::
thermomecanical

::::::
solver

::
to

:::::::
quantify

:::::::
accuracy

::::::
losses

:::
and

::::::::
necessary

::::::
spatial

:::
and

::::::::
temporal

:::::::::
resolutions.
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Code and data availability. All scripts to obtain the results herein presented and to further plot figures can be found in: https://github.com/

d-morenop/Suplementary_ice-column-thermodynamics
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Appendix A: Separation of variables
:::
and

::::
full

:::::::
solution680

Let us briefly outline the separation of variables technique before elaborating on the solutions of our general problem. Consider

the following initial/boundary problem on an interval I ⊂ R,



µτ = µξξ −wµξ, ξ ∈ L̃, τ > 0,

µ= µ0, ξ ∈ L̃, τ = 0,

µξ = 0, ξ = 0, τ > 0,

βµξ +µ= 0, ξ = 1, τ > 0,

(A.1)

This technique looks for a solution of the form:
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uµ
:
(yξ, tτ

:
) = Y X

:
(yξ)T (tτ

:
), (A.2)685

where the functions Y and T are to be determined. Assuming that there exists a solution of A.8 and plugging the function

u= Y T
:::::::
µ=XT

:
into the heat equation, it follows:

T ′

κT

Tτ

T
::

=
Y ′′

Y

Xξξ

X
−w

Xξ

X
::::::::::

=−λ, (A.3)

for some constant λ. Thus, the solution u(y,t) = Y (y)T (t)
:::::::::::::::::
µ(ξ,τ) =X(ξ)T (τ) of the heat equation must satisfy these equa-

tions. Additionally, in order for u to satisfy the boundary conditions, we arrive to:690

 Y ′′(y) =−λY (y) y ∈ I
Y satisfies our BCs.

This is a well-known eigenvalue problem. Namely, a constant λ that satisfies Eq. ?? for some function X (not identically zero)

is called an eigenvalue of −∂2
y for the given boundary conditions. Hence, the function Y is an eigenfunction with associated

eigenvalue λ.

Therefore, in
:
In

:
order for a function of the form u(y,t) = Y (y)T (t)

::::::::::::::::
µ(ξ,τ) =X(ξ)T (τ)

:
to be a solution of the heat equation695

on the interval I ⊂ R, T
::::
T (τ)

:
must be a solution of the ODE T ′ =−κλT

::::::::::
Tτ =−κλT . Direct integration leads to:

T (tτ
:
) =Ae−κλt−κλτ

::::
, (A.4)

for an arbitrary constant A.

::::::::::
Additionally,

:::
in

::::
order

:::
for

::::::
µ(ξ,τ)

::
to
::::::
satisfy

:::
the

::::::::
boundary

::::::::::
conditions,

::
we

::::::
arrive

::
to

:
a
:::::::::::
second-order

:::::
linear

:::::::
ordinary

::::::::::
differential

:::::::
equation:

:
700 

Xξξ(ξ)−w(ξ)Xξ(ξ)+λX(ξ) = 0, ξ ∈ L̃,

Xξ = 0, ξ = 0,

βXξ +X = 0, ξ = 1,
:::::::::::::::::::::::::::::::::::::

(A.5)

:
It
::
is

::::::::
necessary

:::
to

::::::
provide

:::
the

::::::::
particular

:::::
shape

:::
of

:::
the

:::
the

:::::::
function

:::::
w(ξ).

:::::
First,

::
we

::::
will

:::::::
employ

:::
the

:::::
linear

:::::
profile

:::::::::::
w(ξ) = w0ξ

::
so

:::
that

:::
the

::::::::::
differential

:::::::
equation

::::
now

:::::
reads

:::::::::::::::::::::::::::::
Xξξ(ξ)−w0ξXξ(ξ)+λX(ξ) = 0.

::::
This

:::::::
equation

::::
can

::
be

:::::
easily

:::::::::
identified

::::
with

:::
the

::::::::::
well-known

:::::::
confluent

:::::::::::::
hypergeometric

::::::::::
differential

:::::::
equation

::::::::::::::::::::::::::::::::::::::::::
(e.g., Abramowitz and Stegun, 1965; Evans, 2010)

::::::
defined

::
as:

:

ξXξξ +(δ− ξ)Xξ −αX = 0,
::::::::::::::::::::::::

(A.6)705
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::::::
Simply

::
by

::::::::
defining

:::::::::::::
α=−λ/(2w0),:::::::

δ = 1/2
::::
and

::::::::::
ζ = w0ξ

2/2,
:::

we
::::

can
:::::
write

:::
our

:::::::
solution

::
in

:::::
terms

:::
of

:::
the

:::
two

:::::::::::
independent

:::::::
Kummer

:::
and

:::::::
Tricomi

:::::::::
functions:

X(ξ) = C1Φ(α,δ,ζ)+C2Ψ(α,δ,ζ)
:::::::::::::::::::::::::::::

(A.7)

:::::
where

:::
C1 :::

and
:::
C2:::

are
::::::::
constants

::
to

:::
be

:::::::::
determined

:::::
from

:::
the

::::::::
boundary

:::::::::
conditions.

:::
At

:::
the

:::::
base,

:::
the

:::::::
solution

::::
must

::::::
vanish,

:::
so

:::
we

::
set

:::::::
C2 = 0

::::
given

::::
that

:::::::
Tricomi

:::::::
function

:::::::::
Ψ(α,δ,ζ)

:::::::
diverges

::
at

:::
the

:::::
origin.

::::
The

::::::
second

::::::::
boundary

::::::::
condition

::::
(i.e.,

::
at
::::::
ξ = 1)

::::::
allows710

::
us

::
to

::::::::
determine

:::
the

::::::::::
eigenvalues

:::
λn::

of
:::
the

:::::::
problem

::
as

:::
we

::::
look

:::
for

:::
all

:::::
values

::
of

:::
αn::::

that
::::::
satisfy:

βΦξ (αn, δ,ζ)+Φ(αn, δ,ζ) = 0, at ξ = 1,
::::::::::::::::::::::::::::::::::

(A.8)

:::
and

::::
then

:::
we

:::::::
compute

:::
the

::::::::::
eigenvalues

:::::::::::::
λn =−2w0αn.

::::
This

::
is

::
in

:::
fact

::
a
:::::::::::
trascendental

:::::::
equation

::::
with

:::
no

::::::::
algebraic

::::::::::::
representation

:::
and

::::::::
therefore,

:::
the

::::::
values

::
of

:::
αn :::

are
::::::::::
numerically

::::::::::
determined.

Thus, for each eigenfunction Yn :::
Xn with corresponding eigenvalue λn, we have a solution Tn such that:715

uµ
:
n(yξ, tτ:) = Y X

: n(yξ)Tn(tτ:), (A.9)

is a solution of the heat equation on our interval I which satisfies the BC. Moreover, given that the problem A.8 is linear, any

finite linear combination of a sequence of solutions {un} ::::
{µn}:is also a solution. In fact, it can be shown that an infinite series

of the form:

uµ
:
(yξ, tτ

:
)≡

∞∑
n=1un=0µ

::::
n(yξ, tτ:), (A.10)720

will also be a solution of the heat equation on the interval I that satisfies our BC, under proper convergence assumptions of

this series. The discussion of this issue is beyond the scope of this work.

Appendix B: Solution of the problem

Let us elaborate on the solution of our general problem (Section ??) by first solving the associated eigenvalue problem. As we

employ the separation of variables technique, the solution takes the form :725

ξ(y,t) =

∞∑
n=0

Yn(y)Tn(t),

:::
We

:::
can

::::
then

::::::
express

:::
the

::::::::
transitory

:::::::
solution

:::
as:

:

θ(ξ,τ) =

∞∑
n=0

AnΦ(αn;δ;ζ)e
−λnτ

::::::::::::::::::::::::::::

(A.1)
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where the functions Yn(y) and Tn(t) are to be determined. After the consequent change of variable so that Y (y) satisfies Eq.

??, we arrive to :
:::::
where

:::
the

::::::::::
coefficients

:::
An :::

are
::::
given

:::
by

:::
the

:::::
initial

:::::::::
condition.730

::::
Since

::::
the

::::::::
confluent

:::::::::::::
hypergeometric

::::::::
functions

::::
are

:::::::::
orthogonal,

::::
the

:::::::::
normalized

:::::::::::::
eigenfunctions

:::::
form

::
an

:::::::::::
orthonormal

:::::
basis

:::::
under

::
the

:::::::::::::
ϱ(ξ)-weighted

::::
inner

:::::::
product

::
in

:::
the

::::::
Hilbert

:::::
space

:::
L2,

::::
thus

:::::::
allowing

::
to
:::::
write

:::
the

::::::::::
coefficients

:::
An :::

as:

Y A
:n=

1

||Φn||2

1∫
0

::::::::::

(
θ(yξ,0)−ϑ(ξ

::::::::
)=Ancos

√
λny

)
+Bnsinϱ(ξ)Φ

:::::

(√
λnyαn;δ;ζ

:::::

)
,dξ.
::

(A.2)

where An and Bn are to be determined. Applying the boundary conditions imposed in Set 2, it is clear that all sine coefficients

are identically zero Bn = 0 and the eigenvalues
√
λn are given by the transcendental equation:735

Appendix B:
:::::::::
Stationary

:::::::
solution

:::
For

:::
the

:::::::::
stationary

::::::
regime,

:::
we

:::
do

:::
not

:::::
need

::
to

:::::
apply

:::::::::
separation

:::
of

::::::::
variables

:::
for

:::
that

:::
the

::::::::
problem

:::::::
reduces

::
to

::
a

:::::::::::
second-order

:::::::
ordinary

:::::::::
differential

:::::::
equation

:::
in

::::
only

:::
one

::::::::::
independent

:::::::
variable

::
ξ:

:
Ω= ϑξξ −wϑξ, ξ ∈ L̃,

ϑξ = γ, ξ = 0,

βϑξ +ϑ= 1, ξ = 1,

(B.1)

Even though the eigenvalues
:::
we

::::
have

::::::::
increased

:::
the

:::::::::
complexity

:
of the problem are given by a trascendental equation with no740

algebraic representation, ξ(y,0) is a function of the form f(y) = a+ by and the coefficients An yield an explicit integration:

An =
2

L

√
λn(a+ bL)sin

(√
λnL

)
+ bcos

(√
λnL

)
− b

λn

where a=G/k+(θL − θsl) and b= θsl −Tair − (β+L)G/k.

Hence
::::
with

:
a
::::::
refined

:::
top

::::::::
boundary

::::::::
condition

::::
and

:::::::::::::::
non-homogeneous

::::
term

::
Ω, the solution of our general problem reads:

:::
can

:::
still

:::
be

:::::
found

::::::::::
analytically:

:
745

ξϑ
:
(y,tξ) =

∞∑
n=0

AncosΩ
ξ2

2
2F2

:::::::

(√
λnye

−κλnt1,1;
3

2
:::::

,2;−ζ
::::

)
+A erf
:::::

[
aξ
::

]
+B
:::

(B.2)

:::::
where

:::::::::::::::::2F2(a1,a2;b1, b2,x)::
is

:::
the

::::::::::
generalised

:::::::::::::
hypergeometric

::::::::
function,

:::::::::
ζ = (aξ)

2,
:::::::::::::
a= (w0/2)

1/2,
:::::::::::::::::
A=−γ (π/(4a))

1/2
::::
and

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
B = 1−A

(
2aπ−1βe−a2

+erf [a]
)
−Ω

(
(β+1/2) 2F2(1,1;3/2,2,a

2)+βa2 2F2(2,2;5/2,3,a
2)/3

)
:
is
::

a
:::::::
constant

:::::
given

:::
by

::
the

::::
top

::::::::
boundary

:::::::::
condition.

:::::
Note

::::
that

:::::::::::::
hypergeometric

::::::::
function

:::
can

:::
be

::::::
easily

:::::::::::
differentiated

:::::::::
following

::::
e.g.,

:::
Eq.

::::::
15.2.1

:::
in

:::::::::::::::::::::::::
Abramowitz and Stegun (1965)

:
.750
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Appendix C: Limit case β = 0

It is crucial to consider that the eigenvalue equation given by Eq. ?? does not hold for β = 0. In such case, after the consequent

change of variable so that Y (y) satisfies Eq.??, we arrive to:

Yn(y) =Ancos
(√

λny
)
+Bnsin

(√
λny

)
,

where An and Bn are to be determined. Applying the boundary conditions imposed in Set 2, it is clear that all sine coefficients755

are identically zero, Bn = 0, and the eigenvalues read:

Appendix C:
:::::::::
EISMINT

:::::::::
stationary

:::::::
solution

::
In

:::
this

:::::::
section,

:::
we

::::
also

::::::
assume

:::::::
thermal

::::::::::
equilibrium,

::::
thus

::::::::
reducing

:::::
again

:::
the

:::::::
problem

::
to

::
a
:::::::::::
second-order

:::::::
ordinary

::::::::::
differential

:::::::
equation

::
in

::::
only

::::
one

:::::::::::
independent

:::::::
variable

::
ξ:

√
λn =n+

1

2

π

L
,


0 = ϑξξ −wϑξ, ξ ∈ L̃,

ϑξ = γ, ξ = 0,

βϑξ +ϑ= 1, ξ = 1,

(C.1)760

where n= 0,1,2, ...
::
we

:::::
have

::
set

::::::
Ω= 0

:::
for

:
a
:::::::::
one-to-one

::::::::::
comparison

::::
with

:::::::::
EISMINT

:::::::::
benchmark

::::::::::
experiments.

From orthogonality of the eigenfunctions Yn(y), the coefficients An of our solution are calculated following:

:::::
Unlike

:::
the

:::::::
general

:::::::::
stationary

:::::::
solution

:::::
shown

:::
in

:::
Eq.

::::
B.2,

:::
we

:::::
allow

:::
for

:
a
:::::::
general

:::::::::
power-law

::::::
vertical

::::::::
velocity

:::::
profile

:::
of

:::
the

::::
form

::::::::::::
w(ξ) = w0ξ

m.
::::
The

:::::::
solution

:::
can

::
be

::::
then

:::::::::
expressed

::
as:

:

An =
2

L

L∫
0

ξϑ−
::

(y,0ξ)=
pγ

(pw0)
p

::::::::

cosΓ
:

(√
λnyp,pw0ξ

m+1

:::::::::

)
dy.+C

:::
(C.2)765

where ξ(y,0) = G̃
k (y−L)− θL + θb. Since ξ(y,0) is a function of the form f(y) = ay+ b and the eigenvalues allow for an

analytical expression, the integration of the coefficients An is straightforward:

:::::::::::::
p= (m+1)−1,

::::::::::::::::::::::::::::::::::::::::::
C = 1− [2β (pw0)

p
e−pw0 +Γ(p,w0p)]pγ/(pw0)

p
::
is

:
a
:::::::
constant

:::::
given

:::
by

:::
the

:::
top

::::::::
boundary

::::::::
condition

::::
and

:::::
Γ(·, ·)

::
is

::
the

::::::
upper

:::::::::
incomplete

::::::
gamma

:::::::
function

:::::::
defined

:::
as:

AnΓ:

(
a,x
::

)
= 4(θb − θL)

cos(nπ)

2nπ+π
−8L

G̃

k

1

2nπ+π
2.

∞∫
x

e−tta−1dt

::::::::::

(C.3)770

It is clear that this series converges and satisfies the initial condition imposed by ξ(y,0) given that:
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∞∑
n=0

cos(nπ)

2nπ+π
=

1

4
,

∞∑
n=0

1

(2nπ+π)2
=

1

8
.

::::::::::
Additionally,

::::
the

:::::::
solution

:::
can

::
be

::::
also

:::::::::
expressed

::
in

:::::
terms

::
of

::::::::
Kummer

::::::::
confluent

:::::::::::::
hypergeometric

:::::::
function

::
Φ

:::::
given

:::
the

:::::::
relation

::::::::::::::::::::::::::::::::::::::::::::
(Abramowitz and Stegun, 1965, Eqs. 6.5.3 and 6.5.12):

:
775

Γ(a,x) = Γ(a)− a−1xae−xΦ(1,1+ a;x)
::::::::::::::::::::::::::::::::::

(C.4)

Hence, the solution of Problem 1 reads:

ζ(y,t) =

∞∑
n=0

Ancos
(√

λny
)
e−κλnt,

::::::::
stationary

:::::::
solution

::
is

::::::::
equivalent

::
to
::::::::::::::::::::::
∼ Φ

(
1,p+1;pw0ξ

m+1
)
.
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