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Abstract.

ies:-A thorough understanding of ice thermodynamics
is of paramount importance if an accurate description of glaciers, ice sheets and ice shelves is to be found. Yet there exists
a significant gap in our theoretical knowledge of the time-dependent behaviour of ice temperatures due to the inevitable
compromise between mathematical tractability and the accurate depiction of physical phenomena. In order to bridge this
shortfall, we have analytically solved the 1D time-dependent advective-diffusive heat problem including a source term due to

strain heating and a sophisticated top bounda e) that considers potential non-equilibrium thermal states

condition (Robin t

across the ice-air interface. The solution is expressed in terms of confluent hypergeometric functions following a separation
of variables approach. Non-dimensionalisation reduces the parameter space to four numbers that fully determine the shape of
the solution at equilibrium: surface insulation, effective geothermal heat flow, the Peclét number and the Brikman number.

Nevertheless, the transient component is mostly determined by the Peclét number and the effective heat flux parameter.
while the initial temperature : it i i ts—t i i
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top-of-the-iee-column—Lastlyanalyticat-distribution exponentially converges to the stationary solution. The particular top
boundary _condition appears to be essential for the upwards advective scenario, thus yielding warmer temperatures in_the
entire column with increasing intensity as the geothermal heat flux takes higher values. On the contrary, temperature profiles
are completely independent of the surface insulation for the downwards counterpart. A further energy content study of the
transient component reveals that the downwards scenario exchanges energy at a higher rate than the upwards advective
case, leading to faster convergence to the equilibrium thermal state. We have extended our study to a broader range of
vertical dependency of the advective term, unlike prior studies limited to linear and quadratic profiles. Results show that

the exponent m = 3/2 best describes benchmark experiments (e.g., EISMINT) vertical velocities and is therefore applicable as
an independent analytical control on the temperature. The solutions presented herein are applicable-in-any-context-where-our
Rebin-boundary problem-is-satisfiedgeneral and fully applicable to any problem with an equivalent set of boundary conditions
and any given initial temperature distribution. Analytical results of this work additionally provide refined benchmark solutions

to test thermomechanical models.

Copyright statement. TEXT

1 Introduction

study of ice thermodynamics is of crucial importance for understanding the behaviour of glaciers, ice sheets and ice shelves
as their evolution is strongly dependent on the physical properties of the last-three-decades—Yet-theultimatecause-of-these
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hy—result of a complex interpla

between advection, diffusion and various heat sources. Only an accurate representation of these processes will allow for a
robust description of ice flow, mass balance and overall stability. In this context, the development of analytical solutions for
ice thermodynamics can provide deeper comprehension of the fundamental physics of ice, as they are intuitively interpretable,
reveal hidden symmetries and further serve as a verification tool of numerical models.

a-thiekieesheet—Robin (1955) and Lliboutry (1963) first laid the groundwork for understanding ice-column thermodynamics

in the presence of vertical advection by providing analytical solutions for the stationary cases. These seminal works offered
valuable insights into the steady-state behaviour of ice columns subject to advective-diffusive processes. Nevertheless, they did
not consider the time-dependent evolution of ice temperatures. Hence, their applicability was limited to situations involving
steady-state ice flow and fixed environmental conditions.

MaeAyeal;1993b)to-confirm-that-In a broader context, the theoretical-estimation-of HE-periodicityTis-in-fact-determined

a—TNotaory; O vah O s ong d O H G H W s ompurg O-2row

behaviour; found-to-be450-yearsinthenumeriealresults—1D advective-diffusive equation has been thoroughly studied in a wide

range of fields, particularly in dispersion problems. In early studies, the basic approach was to reduce the advection-diffusion
equation to a purely diffusive problem by eliminating the advective terms. This was achieved via a moving coordinate system

.g., Ogata and Banks, 1961; Harleman and Rumer, 1963; Bear, 1975; Guvanasen and Volker, 1983; Aral and Liao, 1996; Marshall et al.



90 Banks and Ali, 1964; Ogata, 1970; Lai and Jurinak, 1971; Marino, 1974; A

- To solve the equations, guite diverse mathematical methods are also employed, such as the Laplace transformation (McLachlan, 2014)
»the Hankel transform (Debnath and Bhatta, 2014), the Aris moment method (Merks et al., 2002), Green’s function (Evans, 2010).
or_superposition approaches (Lie and Scheffers, 1893) among others. More recent studies (e.g.. Selvadurai, 2004) provide
time-dependent analytical solutions for which Darcy flow is applicable, yet it lacks an appropriate set of boundary conditions

95 given the infinite length of the domain.

or through the introduction of another dependent variable (e.g.

sSteady-state ice
temperature distribution studies also provide analytical solutions in bounded spatial domains, but fall short if the transient
nature of the solution is to be captured. This is the case of the studies on the shear heating margins of West Antarctic ice streams.
(e.g:, Perol and Rice, 2011, 2015) for which a steady but more refined one-dimensional thermal model was produced, first
100  introduced by Zotikov (1986). Meyer and Minchew (2018) later solved a similar advective-diffusive problem under stationary
conditions accounting for a constant strain-heating rate and further neglecting lateral (horizontal) advection after a scaling
analysis. These one-dimensional studies imposed a stationary nature of the temperature distribution, thus assuming an idealised
equilibrated energy state.
Despite these simplifications, heat transfer is well-known to be a three-dimensional process with a higher level of complexity
105 that encompasses several mechanisms such as horizontal and vertical advection, the potential presence of liquid water within
the ice, a varying ice thickness, internal heat deformation and frictional heat production among others (Greve and Blatter,
2009). Full numerical models are therefore also essential if a simultaneous consideration of such mechanisms needs to be
achieved (Winkelmann et al., 2011; Pattyn, 2017).
Numerical models require caution as their accuracy and consistency must be previously assessed. Intercomparison projects
110 are thus fundamental since they can provide consensus in a series of benchmark experiments that further serve as a reference
solution for validation. In this context, analytical descriptions are extremely useful as they provide a control irrespective
of the resolution or discretization schemes. For instance, Marshat-and-Clarke-(1997)-used-a-3D-modelto-simulate-the L1S;

115

appropriate representationrofauthors of the iee streamsBEISMINT benchmarks, Huybrechts and Payne (1996), already noted the

120 lack of analytical temperature solutions for such cases. Previously obtained solutions relied on strong assumptions regarding

the particular vertical velocity profile (linear profile, Robin 1955; quadratic, Raymond 1983) and therefore an independent
analytical description of the temperatures was not available.

There is an inevitable compromise when designing models that are both mathematically solvable and capable of accurately

representing real-world phenomena. It is thus of utmost importance to carefully navigate this trade-off, deciding the appropriate



125

130

135

140

145

150

155

level of analytical tractability and physical realism based on the specific goals of the study. Attaining the right balance
allows for meaningful insights while avoiding excessive computational demands or oversimplification that may hinder accurate
representation and understanding of the real-world system.

and-the Simplified solutions, or those with reduced dimensionality are however useful. In this line, Dahl-Jensen et al. (1998)
inferred past climatic and environmental conditions via a thermodynamic ice-core analysis using a one-dimensional numerical
model. Their study relied on assumptions regarding the stationary behaviour of ice columns during the core formation process.
The temperature history was divided in 125 intervals where the Monte Carlo method tests randomly selected combinations

as—a—=S b O O P peraty

densities. Vertical profiles were compared to numerically-obtained profiles assuming an unchanged surface temperature.

Other numerical studies have incorporated more realistic transient behaviour, while often relying on diverse simplifications.
For instance, Robel et al. (2013) assumed a linear vertical temperature profile to simplify the calculation of vertical heat
conduction within an ice stream. While this simplification facilitated the analysis, it limited the accuracy and realism of their
temperature solutions. A linear profile further implied an equilibrated energy state and an instantaneous perturbation of basal

Traditional approaches both from numerical and analytical perspectives assume the simplest heat-flux boundary condition
at the ice surface; the imposition of the air temperature at the uppermost ice layer. Nevertheless, in view of the surface fraction
of the Greenland and Antarctic Ice Sheets covered by a firn layer (90% and ~100%, respectively, No€l et al., 2022; Brooke
et al., 2022), a more sophisticated description of the energy balance between the ice and the atmosphere may be beneficial.
Already noted by Carslaw and Jaeger (1988), prescribing a fixed temperature is in fact a limit case of a broader set of boundary.
conditions known as "linear heat transfer” or "Newton’s law of cooling” that accounts for a more realistic heat flux across the
interface given by the temperature difference between the two media.

Evenrso;In this study, we analytically solve the time-dependent problem of an advective-diffusive ice column in the presence
of strain heating with a sophisticated surface boundary condition (Robin type, e.g., Gustafson and Abe, 1998). Our approach
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an equilibrated state, thus allowing for a more accurate representation of the ice behaviour in response to changing external
165 conditions. By considering time-dependent processes, we aim to improve the understanding of ice dynamics, particularly
in scenarios where glacier and ice sheet response to climate change is a key concern. Moreover, transient solutions offer
the potential to refine the interpretation of ice core data, leading to improved reconstructions of past climatic conditions
and additionally provide analytical solutions to the time-dependent temperature profile problem that can constitute a helpful

benchmark to numerical thermomechanical models of ice sheets. The formulation of the problem considered here is given in

170 Section 2; the approach followed in this work is presented in Section 3; analytical solutions are shown in Section 4; results are

discussed in Sections 5, 6 and 7; our concluding remarks are given in Section 8.

2 Finite thicknessAdvective-diffusive ice column

Let us now elaborate on the physical description of a more realistic one-dimensional ice column with a—finite—thiekness

Ldiffusive heat transport, vertical advection and strain heat. Our domain is thea-defined as the interval 4-c{0:5=~L—First;
175 we-mustreformulatez € [0, L] = £. We shall formulate the problem imposing the-necessary-additional-a generalized boundary
condition at the top of the motionless-eohtmny—7F-column, z = L (Fig. 1).

In the simplest physical scenario, the ice surface temperature is set to the air temperature value 6(L,t) = T,;,. However, the

particular surface temperature is in fact the result of the energy balance between the ice and the atmosphere. A-mere-general

180

we refine the surface boundary condition by incorporating a potential deviation from the air temperature, accounting for the
insulation effect given by a firn layer in the uppermost region of the ice column. This is a highly probable scenario considerin
as explained in Section 1. The thermal insulation effect is a direct consequence of the firn density reduction towards the surface

2020) and falls within the so-called linear heat-transfer boundary conditions or ‘Newton’s law of Cooling’

185

.g. Stevens et al.,

Carlsaw and Jaeger, 1989, Chapter § 1.9).

This refinement enables a more accurate representation of the surface heat transfer dynamics and contributes to a comprehensive
understanding of the energy balance within the ice columnvanishes. In this description, both the surface ice temperature and

the-vertical-gradient-can-—consequentty-0( L. 1) and its vertical gradient 6, (L,¢) can vary in time:

190 B0y, 40 ="Ta, yz=1L,1t>0, 1)
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Figure 1. Schematic view of the metionless-one-dimensional ice column with a-finite-thiekness—vertical advection w(z) and strain heat
source term €). Temperature evolution is dictated by the heat equation and an appropriate set of initial and boundary conditions. Subscripts
denote partial differentiation. At the top, both the ice temperature and the vertical gradient can vary in time, thus allowing for non-equilibrium
thermal states across the ice-air interface. At the base, the vertical gradient is fixed to the value given by the combined contribution of

geothermal heat flux6;=—G#:flow and potential basal frictional heat 0. = —Y /k. Note that our formulation is one-dimensional so that

the z-axis is solely introduced for visualization.

where italic subscripts denote partial differentiation and 3 is a parameter with length dimensions that modulates the permissible

deviation between ice and air temperatures -

B-and is often referred to as the surface thermal resistance (per unit area).

This refined boundary condition reflects the fact that the ice and the air may not be always at thermal equilibrium, and
allows for a heat flux due to a vertical temperature gradient. The thermal equilibrium is only reached if the ice surface and the
atmosphere temperatures are identical. In such conditions, the heat flux across the interface is null and the vertical gradient at
the top the ice column vanishes regardless of the value of 5.

We can then physically interpret this-parameter—3 as the thermal insulation of the ice-air interface. In other words, (3 is a

length-scale over which the ice column feels the air temperature. A zero value corresponds to an ideal conductor {0(L,t) =



200 Th,ir), whereas 8 — oo represents a perfect thermal insulator characterized by a null heat exchange across the interface. In the
limit case 8 = 0, the interface ice-air is always at thermal equilibrium (i.e., § = T;,). For 5 # 0, we allow for a heat exchange
across the ice surface driven by the temperature difference between the two media.

Considering diffusive heat transport, vertical advection, and a potential heat source, the ice temperature 6(y;£)-6(2,t) satisfies
an initial value problem given by the heat equation:

0 =k0,, —wh,+Q, £€L,t>0,
0 ="00(2), z€L,t=0,
205 (2)
0.=-"/k, z=0,1t>0,
Bez"’_e:Taira Z:L,t>0,

where &-is-the-the heat source {) is an inhomogeneous term that captures strain heat and horizontal advection, T = G 4@ is
the combined contribution of geothermal heat flux G and potential basal frictional heat (), k is the ice conductivity and « is the
ice diffusivity(, assumed to be constantsinee-we-do-not-explicitly-consider-the-firn-layer-above-the-iee), We further consider a
z-dependent vertical velocity component given by w(z).

210

impaet-of-the-initial-basalln order to solve the problem, we must first provide the particular form of the vertical velocity term.
As in Clarke et al. (1977) and Zotikov (1986), we first assume a linear variation of w(z) with depth:

w(z) = wo% (3)

215 Joughin et al., 2002, 2004; S

and standard values for wg usually read 0.1-0.2 m/surface-ice-temperature-independently—yr (Glovinetto and Zwally, 2000; Spikes et al., 20
. Nonetheless, we will further explore in Section 6 a more general relationship that better describes vertical velocities modeled
by Glen’s flow law as discussed in the EISMINT benchmark experiments (Huybrechts and Payne, 1996).

.V Ave 00 nd—aim

where wy is the vertical velocity at the ice surface z = L. This dependency is widely used in the literature (e.g.

220

The inhomogeneous term
) can encompass a number of processes, though here we focus on strain heating S and horizontal advection H, so that
225 =S8 + H. The strain-heating term S is a function of the sy i tt i i ton—

tvesecond invariant of the stress tensor. In general

it can be expressed as S = 0;.,¢;4, Wherein g;; is the Cauchy stress tensor and ¢€;; is the strain rate tensor (expressed in index
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notation). Applying Glen’s law, the rate of strain heating can be simplified as:

and summation is implied over repeated indexes. This assumption ensures the analytical tractability of the solution while
including a potential constant strain contribution throughout the ice column.

etgenvaluesThe horizontal advection term H can imply a heat source or a sink depending on the sign of the horizontal
temperature gradient along a particular direction. We herein consider such a contribution by defining a depth-averaged lateral
advection term (Meyer et al., 2019):

1
/un9d§, (5)
o

where u is horizontal velocity vector, 1 is the normal vector along an arbitrary direction contained in the horizontal plane and
0a = 00/01 denotes the directional derivative along .

v-This assumptions allow us to include a potential
strain heat source S and a horizontal advection of heat term H while keeping the analytical tractability of Eq. 2=

fZH_Tair+(y_6_L)

s+, The limitations of these simplifications are

discussed in Section 7.

Et:K/Syy, yEﬁ,f>0,

é-:f(y)7 y€£7t207
& =0, y=0,t>0,

By +£=0, y=1L,t>0,

=Q

— alr
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3 Analytical solution

v—Let us outline our analytical approach. We first
non-dimensionalise our problem and exploit the linearity of the differential operator by further decomposing the solution
as a sum of stationary and transient components to deal with the inhomogeneity. Lastly, we apply separation of variables

AppendixA)—tH-asolution-existsit-determines-the-vertical-temperature profile-at-any-given-timefor-the-to obtain a solution

of the time-dependent problem and impose the corresponding initial and boundary conditionsprovided-by—Eg—2. Derivation
details are elaborated in Appendix A.

4 Analvtiealsoluti

It is natural to non-dimensionalise our problem by defining the following variables:

z K > ) T L - B =« L?
Y= 1=—1). = E Apeosy/ \yye "t = qp= = = 0= 9)
= =l L BN I —— T N AR e ©

where the-eigenvalues\-are-given-by-the-transeendental-equation:-

lighten the notation.

L
A= [ €0 cos (Vi) do
0

Hence, we can express our Problem 2 as:

0, =0 —wle +Q, £€L,7>0,
0:90(5)7 fe‘éa 7-:0’
(7N
O =, £E=0,7>0,
BO:+60=1, E=1,7>0,

10
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Ttis-neteweorthy-thatif-5-isstriettyzero-where v = =1, T /(kL), w = Pe £ and 6, are the non-dimensional geothermal

heat flux, vertical velocity and initial profile respectively. The vertical velocity has thereby been conveniently expressed in terms
of the Peclét number Pe = woL /k (i.e., the i i ton1 i

where—n—=-0;12-—ratio of advective to diffusive heat transport). The non-dimensional strain heat source term S can be
identified with the Brinkman number Br as noted in Table 1, which represents the ratio of deformation heating to thermal
conduction (see Table 2).

o
o
)]
Z
3
3
~—
—_ 1
[
>~ Q

- . )
onm+7m|

non-dimensional number 7 is the combined contribution of geothermal heat flux and potential basal frictional heat, normalised
by the vertical temperature gradient that would exists for a column thickness L. =+0and temperature 7;.. It provides the
relative strength of the basal inflow of heat compared to the ice-column extent and the air temperature.

The dimensionless problem clearly shows that four numbers completely determine the shape of the stationary solution: v, +-5
%d%%ﬂ%te&@fgand i i seribed i

Given that Eq. 7 is inhomogeneous, we will decompose the
solution as a sum of a transient 7) and a stationary ¥(£) components, so that fa{&e#ehaﬂge%a{—y—@)—r&%afge%fef

basal-temperataref . As a result, the transient and stationary problems are subject to homogeneous and

11
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inhomogeneous boundary conditions respectively:

fir = pge —wpe, EEL, T>0,
M= o, 56[377-:0,
®)
,LLEZO, §=0,7>0,
Bue + =0, §=1,7>0,
and

Q=V¢ —wde, E€L
ve =7, §=0, ©)
Ble+9=1, £=1,

where pug =0 — (&) in the initial profile of the transitory solution.

The im

~solution to the stationary component (Eq. 9) already differs from previous analytical works as Robin (1955) and
Lliboutry (1963). First, they considered a homogeneous version of the problem (i.c., the-dimensionless-quantity-5/5-shown
contributions are neglected. Moreover, they simplified the top boundary condition £ =1 since they imposed a prescribed
constant temperature value (see also Clarke et al., 1977). However, these refinements still allow for analytically tractability.
and thus the stationary solution is (see Appendix B for derivation details):

2

(&) = Q% oI (1,1; 2,2;—() + Aerflal] + B (10)

B=1—A(2ar"'8e=" + erf[a]). Note that if the inhomogeneous term is zero (i.e., BE<1Q = 0), the fee-surfaceremains

12
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and-Da"never-thawingbase-for-sufficiently low—5/F£—valaes—stationary temperature profile reduces to the well-known error
function previously obtained by Robin (1955) and Lliboutry (1963). Even so, the temperature distribution would still differ as

the boundary condition considered herein reflects a potential insulating top layer unlike prior studies.

in-We now take a step further
and allow for time evolution by solving Eg. 8 and building our solution as the sum of both contributions. Namely, the Hmit
H/H—tgeneral solution of the transient problem ,7) is (see Appendix A for derivation details):

(&) =D [An® (an:6:C) + Bn ¥ (0:850) e 7 (1)
n=0

where ® (a;6;¢) and ¥ («; 0; () are the Kummer (Kummer, 1836) and Tricomi confluent hypergeometric functions respectivel

also known as confluent hypergeometric functions of the first and second kind). «,, = —\,,/ (2wg) and 6 = 1/2. As the

solution must be bounded at the origin, we set B,, = 0.

The full solution 6(&,7) = 9(€) + 7) thus reads:

2 e}
0, )= Q% 2 Fy (1,1; 2,2; —C) + Aerflag] + B+ ZAnql(an;(S; <) e~ AnT (12)

n=0

where the coefficients A,, are obtained from the initial temperature profile (Eq. A.2 in Appendix A).

4 4 i od-forthe binge .

4 Stationary solutions

2Ndeseribes-the-evolution—of-Before displaying the results of the full time-dependent problem, it is worth noting that the

13
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largerpressure-melting-correctionFigure 2 shows our steady-state solutions as vertical profiles for a subset of the permutations

of the non-dimensional numbers Pe, Br, v and (. It is illustrative to compare the shape of our temperature solutions with
Clarke et al. (1977) (Fi
simpler top boundary condition in which the ice surface temperature is fixed to a given value, though the exact same solutions
can be simply obtained by setting 3 = 0 in our case (see Eq. 1).

It is of utmost importance to consider the particular sign of the vertical advection term. In the positive case wy > 0 (i.g..
7). the geothermal heat flux travels upwards not solely by diffusion but also enhanced by the vertical transport, thus warming
the entire column more efficiently and reaching a higher equilibrium temperature. On the contrary, in the negative case wo < 0
(i.e., V7), colder ice is advected from the uppermost part of the column, consequently cooling down the profile. It is worth

. 1 therein). We must stress that a one-to-one comparison is not readil

>

so-that-a-one-to-one-comparison-must-dismisssuch-effect(see-Seetion22)noting the difference in x-axis scales for each case
meaning that the basal temperature variation is several times larger for the upwards vertical advection scenario.

Figure—22—shows—the—sensitivity-of-The non-dimensionalization of our analytical model provides simplicity and further
reduces the parameter dimensionality of the solutions to solely four numbers, each corresponding to one column in Fig. 2.
The Peclét number produces the largest changes in the equilibrium solutions, with the well-known linear profile resulting for

14
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(i.e., 5~46)Pe — 0). The normalized geothermal heat flux also yields large temperature amplitudes within the explored range.

Nevertheless, for wqg < 0, the impact is clearly reduced to the lower half of the column, thus leaving the upper regions nearl
unperturbed. An even more unique behaviour is also found for the base-warmsfaster—sinee-the-columnsurfacecan-eveolvein

surface insulation 5
and the rate of strain heating Br in the presence of downwards advection, where the entire temperature profile is left unchanged
despite varying values of 5 and is anti is-timeseate(Fi Br. This can be
understood as the independence of the particular heat exchange at the ice-air interface if colder ice is transported downwards
and a far more effective heat transport due to advection (Pe = 7 in both cases) than dissipated through strain deformation.

5 Full solutions.

We now present the results of the problem presented in Eq. 2 by considering a more realistic time-dependent description. This
transient nature depends on the initial state of the system, although it exponentially converges to the stationary case as the
transient component vanishes under the assumption of constant boundary conditions. fdeally—the-initial-condition—should-be

ath ha tampe anrofle1mmed o o N—aven nthe hinoce-p = o A
DY s, atd ptro Ssye y—a a V D O pute Y Y

ieTo illustrate the full solutions, we show the explicit time

evolution from an initial profile as it approaches the corresponding stationary solution (Fig 3). In this instance, we employ a

constant initial temperature profile for simplicity 6 — 1.5. With this particular choice, we ensure that the full solution is

below and above of the stationary solution for the upward and downward advection scenarios, respectively. We must stress a
few points here. In Fig. 3a, the uppermost region of the ice column rapidly reduces its temperature due to the effect of a colder
air temperature as the geothermal heat flux contribution requires a longer time to travel from the base. On the contrary, the lower
part of the domain increases its temperature notwithstanding the sudden decrease of the upper half. Once the geothermal heat
flux has propagated upwards, the ice surface temperature slowly starts to increase. This is possible since we are here solving
for a non-zero  value that allows for a difference between the air and the ice surface temperatures. The rate of increasin

temperature_gradually diminishes and it approaches zero as the transient solution asymptotically reaches the temperature
profile given by the stationary temperature profile ¥(§) = limz ;o0 0(8,7). 2%
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corresponding to each column respectively. The remaining three numbers are left unchanged in each column to allow for comparison. First

7. Fourth: 8 =0.05, Pe = 7, v = 1.0. The Brikman number

Pe is identically zero in all profiles but the fourth column.
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Figure 3. Time-dependent solution given an initial temperature profile 6,

to illustrate the time-scale differences between the upwards and downward advection scenarios denoted by 01 and 6, respectively.

Dimensionless values: Pe =5.0, v =1.0, Br=0.1 and 8 = 0.05. Black dashed lines represent the stationary solutions ¥(&). To ease

visualization, the time variable is cubically spaced as indicated in the colourbar.

A similar behaviour is found in Fig. 3b. In this case, the base rapidly increases its temperature unlike the ice surface, where
it suddenly diminishes. Even though the geothermal heat flux —tf-the-surface-is-too-coldthe-heat-provided-by-G-maynot-be

17
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the-base-to-thaw-For thinner eolumns; is identical in both scenarios, the additional contribution of advected colder ice from the

surface renders a new equilibrium profile in which not only the upper region of the column is colder, but also the base in itself.

To examine closely the transient nature of the bas i r—Fhi anstatesin-e -inereasei
non-dimensional parameters (Fig. 22)-Altheugh-the-value-of this-threshold-depends-on-the physical-properties-of the-iee-and
the-beundary-eonditions4). This gives us information about the time-dependent effects of each parameter, unlike Fig. 2 that
was restricted to equilibrium states. Addtionally, the continuous representation (i.e., #;-&and-Tir); the-mechanism-stithholds
irrespeetive-of-the-particular-parameter-choteecolourbar in Fig. 4), as opposed to a discrete number of vertical profiles as in

Fig. 3, facilitates comparison among particular parameter choices.
The # i 0

iee-eolumn—particular parameter values were selected so that there would be two scenarios for each number and hence four
i . This setup allows us to separately determine

For a fixed ~ value (v=1.0)
v—strength of advection is only relevant

gradient surpasses-the-value given-by-4a and 4¢) and yields considerably longer equilibratum times. In contrast, the downward
case is nearly independent of the particular advection strength and rapidly reaches thermal equilibrium. A different behaviour
is found when fixing advection and varying the geothermal heat flux —lastly;-the-time required-to-melt-the-base-appearsto-be

i 5% ~rapidly reaching values-above vr-for-, 40°C—y. In such a case, both
regimes (wo < 0 and wy > 0) are perturbed by 7 (Figs. 4e-h). Even so, the uppermost region of the column remains colder,
unlike the high upward advection scenario in which the ice surface eventually increases its temperature due to the combined
effect of diffusion and advection fostered by a thermally insulated ice surface (5 = 0.05).

between-the-base-and-Moreover, Figs. 4b and 4g clearly illustrate two different time scales. A rapid decrease in temperature
at the upper half of the column is a direct consequence of the top;—the-former-inereases—with—-5surface boundary condition
iven that the air temperature is colder than the underlying ice. Nevertheless, we observe a second and slower response by the
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465

470

475

480

485

490

495

upward transport of heat. Diffusion and advection gradually warm the column as the heat source (the geothermal heat flux) is
located at the base. It eventually reaches the upper region and, in the case of high advection (Fig. 4¢). entailing an increase in
ice surface temperature. We must stress that the latter result is only possible due to a more refined top boundary condition (Eq.
1). If advection is diminished (Figs. 4e and 4

sufficiently large values of v, whereas the latter-deereases-with-£—ice surface remains colder since diffusion is spatially limited.

the lower half still warms due to diffusion as it is closer to the heat source for

larger-vertical-gradientfor-afixed-stationary state is considerably shorter for wg < 0. This is a consequence of the temperature

difference between the ba

smaller-amount-of-energy-to-therease-the-temperatare-of-initial 6, and the stationary profile ¥(¢). It can be visualised by the

enclosed area between the two curves: 0 and Y(€). Physically, this area represents the necessary ener: for the initial

indicates the direction of the energy exchange, positive values meaning an increased thermal energy of the column.
More generally, we can also study the evolution of the energy content within the column by performing such an integration

about the overall inflow or outflow of heat, irrespective of the local changes that the temperature profile might undergo (Fig. 5).
Thus, from an arbitrary initial state, we can study how the total energy balance of the eelumn:-hewever,considering-the-second

column depends on the four dimensionless numbers that determine the stationary solutions (Fig. 2).

6 ThelimitL—rooEISMINT

After studying the behaviour of the solutions both at the transitory and stationary regimes, we narrow down our focus to a
particular case: the EISMINT benchmark experiments (Huybrechts and Payne, 1996). We can thus evaluate the non-dimensional
parameters (Table 2) that determine our stationary solution and additionally re-dimensionalise the temperature profiles so as to

ssWe employ identical physical
constants to allow for a one-to-one comparison of our results (see Table 1). As thoroughly discussed in Section 7, the vertical
radient of the horizontal velocity determined the applicability of our analytical solution. For this reason, we shall show-that
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Figure 4. Dimensionless time-dependent solution given an initial temperature profile. For simplicit = 1.5 in all cases.

Left column: upward advection wg > 0. Right column: downward advection wy < 0. Each row represents a particular choice of the

non-dimensional numbers Pe and ~.
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at-the-tep—focus on the ice divide results of EISMINT benchmark experiments (Fig. 3 in Huybrechts and Payne, 1996).
500 he-partietls itions under whi ion-converges i an equi i neest

Symbol Value_ Quantity

A 107% Payr ™} Pre-exponential flow-law parameter
o | 20090 kg KT Specific heat capacity.
Tois. 239K Atmosphere temperature

505

As noted by the authors
EISMINT modeled temperatures greatly varied particularly near the base. Unfortunately, an independent analytical control

on temperature was not available, the reason being a vertical velocity profile (and therefore a strain rate) that did not match

510 the vertical velocity profile obtained if Glen’s flow law is employed (Huybrechts and Payne, 1996, Fig. 3 therein). Available

analytical solutions are Robin (1955) and Raymond (1983) for a linear and a quadratic vertical velocity profile, respectively.

These solutions underestimate and overestimate, respectively. Hence, a vertical velocity field that better matches values modeled

with Glen’s law must take an exponent between m — 1 (linear) and &

ard a

515 m = 2 (quadratic). More generally, we can write:

~U I

A=¢—pw(€)= ZAncos\/ Apye "t cosy/ ;\nyef"i”t.w &m (13)
n=0

where m > 0 can be chosen to reproduce the vertical velocity modeled via Glen’s flow law (see Fig. 3 in Huybrechts and Payne, 1996

A~
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We-mustreeall-that the-eigenvaluesfor-anon-zero-5-ease-In the absence of source term (i.e., ¢)-mustsatisty-Eg—22-With-an
520 appropriate change of variable Ly A, citis clear that:

525 ) =0) as in the EISMINT experiments
we can provide analytical solutions of the eeefficients—A—temperature distribution for a general power-law dependency of the
vertical velocity (derivation details in Appendix C):

_ Py +1
97 (&) = ' (p,pwo™™)+C (14)
( ) (pwo)p ( ) )
530

This general solution allows us to study the exponent
535 temperature profile at equilibrium. We retrieve Robin (1955) and Raymond (1983) for m = 1 and m = 2, respectively. We must
and yields a temperature profile nearly identical to the temperature distribution calculated in EISMINT. Temperature profiles
m, particularly near the base. In fact, we find that the upper 40% of the ice base-temperature-aredecoupled-by-estimating

—11

=L in a-metionlesscolumaroad — 314

540

545

mcolumn is irrespective of the

articular z-dependency of the vertical velocity.
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Figure 6. Left panel: vertical velocity profiles of the form w(&) = wo&™ for five different values of the exponent m = 1.0, 1.25, 1.50

1.75, 2.0. Velocity magnitude at the surface reads wyg = —0.3 m/yr (i.e., downwards advection). Robin (1955) vertical velocity assumption

corresponds to m = 1, whereas

solution in Eq. 14 after dimensionalisation of ¥~ (§).
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7 Conclusions

7 Discussion

The adoption of dimensionless variables results in enhanced generality and mathematical convenience, albeit at the expense of
veiling the practical significance to real glaciers and ice sheets. We have consequently tabulated data for characteristic values
to ease interpretation (Table 2), thus showing that the explored range encompasses realistic values found in ice caps.

‘We first start by comparing our results with a previousl
obtained solution for a simpler case (e.g., Clarke et al., 1977). We obtain identical results by setting the ice surface temperature

= 01in Eq. 2 (Figs. 2¢ and 2f). Prominently, not only the ice surface

3 S

to a fixed value given by the air temperature, i.e., settin

but also the entire column is perturbed for a non-zero 3 value. This further implies that the thermal state of the base is sensitive

to the particular energy balance at the ice-air interface for the upward advective scenario. On the contrary, under downwards
2f

advective conditions, the thermal basal equilibrium is found irrespective of the specific top boundary condition (Figs. 2e

and 2¢), provided a null strain heating rate. If the latter condition is relaxed, then the base becomes warmer as the insulatin
arameter J increases (Fig. 2h).

temperature-Bven though the equilibration time depends on the particular initial state, the downward advective case seems
to_converge to the stationary solution faster than the upward scenario irrespective of the particular insulating value at the
ice surface (Fig. 3). This entails that under downward advective conditions, the overall balance of energy exchange is solely.
dictated by the air temperature, the geothermal heat flux and the ice vertical velocity, thus dismissing any potential surface

The tractability of the analytical solution does not allow for further complexity and hence additional numerical methods
would be necessary if such a physical description is desired. Nonetheless, a constant horizontal advection term was also
introduced as part of the inhomogeneous term €, for which the sign of the horizontal temperature gradients must be chosen a
priori. Even though horizontal variability of temperature distributions can vary greatly, we account for this effect assuming a
constant term (throughout the ice column) entering the heat equation, thus not reflecting much of the non-local features of the

thermal structure of the ice sheets.
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We must stress that the our analytical solutions are not limited to regions with negligible horizontal velocities, since the
true constraining quantity is the vertical gradient-vanishes-leading-to-a-thermal-equilibrium-state—gradient of the horizontal
velocity u.. Hence, rapid sliding regions with a nearly constant horizontal velocity throughout the vertical axis are also suitably.

585 described by our solutions, for that u, = 0 implies that the temperature profile is merely transported along the flow direction,
while keeping the shape of the vertical temperature distribution. One can argue that the additional source of heat due to
frictional dissipation should be now also considered. Nonetheless, in terms of temperature distribution, this effect is equivalent
to an increased geothermal heat flux as it is purely restricted to the column base and therefore already encompassed in Eq. A.1.

590

It is worth noting that phase changes are not
herein considered, so_that temperature evolution is strictly confined to values below the pressure-melting point. Unlike a
numerical solver, where temperature is manually limited, these solutions are-significantly—distinctfrom-each-otherfor-iece

595  thieknesses-E—<2-km-must be taken with cautious as we are describing a frozen ice column. Results are still compatible with
a potential heat contribution due to basal frictional heat Eq. 2, for that fast sliding regions are often related with temperate basal
conditions. Nevertheless, an additional contribution would imply an increased vertical temperature gradient even if the column
base eventually reached the pressure-melting point.

600
existence of an insulating firn layer at the surface presents a physical justification for the new top boundary condition (i—e-
Eg. 1). Ice forms by snow densification through time (see review in Stevens et al., 2020), the-geothermal-heat-flux)—A-distinet
hoi H-alter-this-value. his behavi . .
605
610

r-thus yielding layers of progressively
increasing density descending from the surface. Likewise, snow thermal conductivity increases with density (e.g., Sturm et al., 1997
» Tesulting in a poor heat conductor as the snow-air interface is approached. As already noted by Carslaw and Jaeger (1988),
if the flux across a surface is proportional to the temperature difference between the surface and the surrounding medium, the

615 exp onsideration-of-distinetin emperature-profiles-manifests-a-hieh-sensitivity-of-the binee-puree-o ator-pe

itsinitiat-state—appropriate boundary condition takes the form of Eq. 1, rather than the oversimplified version 0(L,t) = To;,.
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620

625

630

Here we explicitly describe the ice column with a constant thermal conductivity, but we allow for a firn layer to be treated as a
thin surface skin of poor conductivity (equivalent to Chapter I, Carslaw and Jaeger, 1988). Nonethless, when 8 = 0 is imposed
the traditional approach with no firn layer is recovered.

the—Our practical exercise with the EISMINT benchmark illustrates the importance of the analytical solutions. Previousl

obtained solutions have strong assumptions on how vertical velocity changes with column height: linear (Robin, 1955) and

uadratic (Raymond, 1983) vertical velocity profiles (exponents m = 1 and m = 2 in Fig. 6). Therefore, they respectivel

overestimate and underestimate the velocity field modeled with Glen’s flow law. In order to obtain a more accurate vertical
velocity. we solve for the temperature i i i i i iodieity-estimati
allowing for intermediate values of the exponent to capture a behaviour that lies amidst a linear and a quadratic dependency.
Our results show that for the choice m = 3/2, we obtain a nearly identical velocity field and consequently a temperature profile
that fairly reproduces the mean profile in EISMINT benchmark. Solutions herein presented are thus applicable to a wide range
of vertical velocity distributions and can be chosen simply by modifying the exponent value m.

Symbol Definition Characteristic range | EISMINT
L
Pe —wo 0.0—30.0 26.07
R OV
L2
Br ——0ij€ij 0.0-1.0 0.0
HTair VA N
A L [ (u-1) 04 d¢ 0.0 0.01 0.0
KT ir ° " haaaae -
Tair
— T 0.125 — 2.0 1,90
B % 0.0-0.125 0.0

27



635

640

645

650

655

660

665

8 Conclusions

We have determined the analytical solution to the 1D time-dependent advective-diffusive heat problem including a source term
due to strain rate deformation and a more realistic set of boundary conditions. The solution was expressed in terms of confluent
hypergeometric functions following a separation of variables approach. Non-dimensionalisation reduced the parameter space
to four numbers that fully determine the shape of the solution at equilibrium. The transient component additionally depends on
the initial temperature distribution and exponentially converges to the stationary solution.

The sign of the vertical advection is of utmost importance as it determines the direction along which temperature gradients
are_transported. Notably, the periodiei i ing-particular
boundary condition at the ice surface is irrelevant in a downward advective scenario, unless an additional source of heat within

0). This implies that regions with negligible strain heating rates present a similar temperature

the column is present (i.e., Br

distribution for the uppermost part of the column regardless of the particular geothermal heat flux value. This is true even

for highly insulating conditions at the ice surface-+
thickness-and the energy condition-at the base-and the surface, where colder ice is transported more efficiently than heat travels
upwards due to diffusion.

The transient regime also differs regarding the sign of the advective term. Our energy content study reveals that downward
advection is a much more efficient manner of changing the energy content as the thermal equilibrium is reached earlier
compared to the upwards scenario. This holds true for all parameter values herein explored.

thermomechantealinstabilities-G-e—~-Unlike prior studies, our analytical approach allows us to quantify the relative importance

of each non-dimensional parameter both at equilibrium and during the transitory regime. Peclét number (both sign and
. tiont Lausible_s 1  lubricati

magnitude) and v dictate the temperature distribution of th

column during the first instants of the transitory regime. As this time-dependent solution vanishes, the slower effect of strain
heating rate and the surface insulating parameter become relevant to determine the stationary shape of the temperature profile.
A practical example based on EISMINT benchmark experiments eases the interpretation of our dimensionless formulation
and illustrates the relevance of the analytical solutions presented herein. By employing the incomplete Gamma function, we are
able to provide exact solutions for a general power-law formulation of the vertical velocity profile. This takes a step forward on
the analytical temperature control available in the literature, previously limited to a linear and a guadratic dependency. We find
that the vertical velocity profile with an exponent m = 3/2 closely matches the velocity field modeled with Glen’s flow law.
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and yields a temperature profile nearly identical to the temperature distribution calculated in EISMINT. This result thus yields

an independent analytical control of the temperature, applicable to real vertical velocity profiles obtained via Glen’s flow law.

Lastly, we note that our analytical solutions are general and can be applied to any initial boundary value problem that fulfils

670  the conditions herein described. They can provide temperature distributions for any 1D problem at arbitrarily high spatial and

temporal resolutions, that considers the combined effects of diffusion, advection and strain heating without any additional

numerical implementation. Furthermore, they present a reliable benchmark test for any numerical thermomecanical solver to
quantify accuracy losses and necessary spatial and temporal resolutions.

Code availability. TEXT

675 Data availability. TEXT

Code and data availability. All scripts to obtain the results herein presented and to further plot figures can be found in: https://github.com/

d-morenop/Suplementary_ice-column-thermodynamics

Sample availability. TEXT

Video supplement. TEXT

680 Appendix A: Separation of variables and full solution

Let us briefly outline the separation of variables technique before elaborating on the solutions of our general problem. Consider

the following initial/boundary problem on an interval Z C R,

fr = flee — Wie, cel, 7>0,
= Lo, E,/:‘,T:O7
H = Ho 3 AD)
pe =0, £E=0,7>0,
6M§+,LL:O7 §=1,7>0,

This technique looks for a solution of the form:
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up(yé,tr) = Y X (y&)T(t1), (A2)

where the functions Y and 7' are to be determined. Assuming that there exists a solution of A.8 and plugging the function

#—=¥-p = XT into the heat equation, it follows:

T'T,  Y'Xee o Xe
el e Sy fulel. S A3
ATV X XN A

for some constant A. Thus, the solution «{y#+)=¥-{nTH-p(£. 1) = X (£)T'(1) of the heat equation must satisfy these equa-

aorde O+ .
Ys vige O

Y'(y)=-AY(y) yeTl
Y satisfies our BCs.

Fherefore-in-In order for a function of the form «{y-+=¥HFHu(E,7) = X ()T (1) to be a solution of the heat equation
on the interval Z C R, 7-T'(7) must be a solution of the ODE F=—+XTT, = —rAT. Direct integration leads to:

A~~~

T(tr) = Ae " "7 (A.4)

for an arbitrary constant A.

in order for p(&,7) to satisfy the boundary conditions, we arrive to a second-order linear ordinary differential

Xee(§) —w()Xe(§) +AX(§) =0, (€L,

Xe =0, £=0, (A5)
BXe+X =0, &E=1,

It is necessary to provide the particular shape of the the function w(&). First, we will employ the linear profile w(£) = w

— 0. This equation can be easily identified with the

so that the differential equation now reads X

well-known confluent hypergeometric differential equation (e.g., Abramowitz and Stegun, 1965; Evans, 2010) defined as:

EXee+ (0= Xe—aX =0, (A6)
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725

Simply by defining o« = —\/(2w 2/2. we can write our solution in terms of the two independent

Kummer and Tricomi functions:
X(€) = C1®(0,6,0) + Co¥ (2,0.0) A7)

where C'; and (> are constants to be determined from the boundary conditions. At the base, the solution must vanish, so we

= 1) allows

diverges at the origin. The second boundary condition (i.e., at

= () given that Tricomi function ¥ (¢, ¢

us to determine the eigenvalues \,, of the problem as we look for all values of «,, that satisfy:

B (0n,0,0) + P (an,0,¢) =0, at £ =1, (A8)

and then we compute the eigenvalues \,, = —2wq«,,. This is in fact a trascendental equation with no algebraic representation
and therefore, the values of «,, are numerically determined.

Thus, for each eigenfunction ¥5-X,, with corresponding eigenvalue A, we have a solution 7}, such that:

is a solution of the heat equation on our interval Z which satisfies the BC. Moreover, given that the problem A.8 is linear, any
finite linear combination of a sequence of solutions {#73{ 1, } is also a solution. In fact, it can be shown that an infinite series

of the form:

oo

wp(Y€,tr) =Y et tn=opin (Y6, 17), (A.10)

will also be a solution of the heat equation on the interval Z that satisfies our BC, under proper convergence assumptions of

this series. The discussion of this issue is beyond the scope of this work.

Appendix B: Selution-of-the proeblem

E,t) = Ya(y)Tu(t),

n=0

We can then express the transitory solution as:

0(&7) = An®(an;6:0)e 7 (A1)

n=0

31



730

735

740

745

750

22 we-arrive-to—where the coefficients A,, are given by the initial condition.
Since the confluent hypergeometric functions are orthogonal, the normalized eigenfunctions form an orthonormal basis
under the -weighted inner product in the Hilbert space L2, thus allowing to write the coefficients A,, as:

1
Ydn= |\<1>1 E / (9@M> Ancos\/x’y) +Bnsing()® (ﬁy%@%) A (A2)
" 0

Appendix B: Stationary solution

For the stationary regime, we do not need to apply separation of variables for that the problem reduces to a second-order
ordinary differential equation in only one independent variable &:

Q=1 —wle, E€L,
— £€=0, (B.1)
Ble+0=1, £=1,

Even though fheetgelwa}ue&we have increased the complexity of the problem afe—gweﬂ—by—a—tfaseeﬁdeﬂeal—eqaaﬂeﬂ—w&h—ﬂe

2
L A n

— S - Vs alr
Heneewith a refined top boundary condition and non-homogeneous term (2, the solution ef-eur-general-problemreads:
can still be found analytically:

001 = 3 Aeosts oy (f ye 1 2 <> +Aaf [g]iﬁ B2)

n=0

the top boundary condition. Note that hypergeometric function can be easily differentiated following e.g., Eq. 15.2.1 in
Abramowitz and Stegun (1965).
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Appendix C: Limitease3=0

755

Appendix C: EISMINT stationary solution

In this section, we also assume thermal equilibrium, thus reducing again the problem to a second-order ordinary differential
equation in only one independent variable &£:
021955—11}’(95, fEE,
1x
B +1 =1, &E=1,

where #=0:-152-—we have set 2 = 0 for a one-to-one comparison with EISMINT benchmark experiments.

Unlike the general station solution shown in Eq. B.2, we allow for a general power-law vertical velocity profile of the
form w(&) = wp€™ . The solution can be then expressed as:
L
9 [
765 A, = Z/@Q;(Z/,OE): ( m)p cosl’ <\/ /\nyp,pwoém“> dy+C (C2)
S pwo p,PWos 49T

m+1)"L,0=1-]2 P P is a constant given by the top boundary condition and
I'(-,-) is the upper incomplete gamma function defined as:
cos(nm) G 1 7 a1
770 A, L |a,x | =4(0,—0 —8L— . 4 dt C3
— (qg) M?nﬂ+ﬂ k2nm4+m— c €3
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780

785

> cos(nm 1
3 (nm) _

s nt4+m 47
S
L~ (2nm+m)2 8

Il
o

2

Additionally, the solution can be also expressed in terms of Kummer confluent hypergeometric function ® given the relation
Abramowitz and Stegun, 1965, Egs. 6.5.3 and 6.5.12):

Ifa,0) =) ~ola"c " 0(1,1  0ix) ©

Hence, the solution-of Problem1reads—

C(y:1) =3 Ancos ( Av) e
n=0

stationary solution is equivalent to ~ ® (1,p+ 1;pwe€™1).
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