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Abstract. Dynamic natural processes govern snow distribution in mountainous environments throughout the world. 

Interactions of these different processes create spatially variable patterns of snow depth across a landscape. Variations in 10 

accumulation and redistribution occur at a variety of spatial scales, which are well established for moderate mountain terrain. 

However, spatial patterns of snow depth variability in steep, complex mountain terrain have not been fully explored due to 

insufficient spatial resolutions of snow depth measurement. Recent advances in uncrewed aerial systems (UAS) and structure 

from motion (SfM) photogrammetry provide an opportunity to map spatially continuous snow depths at high resolution in 

these environments. Using UAS and SfM photogrammetry, we produced 12 snow depth maps at a steep couloir site in the 15 

Bridger Range of Montana, USA, during the 2019-2020 winter. We quantified the scale breaks of snow depth distribution in 

this complex mountain terrain at a variety of resolutions over two orders of magnitude (0.02 m to 20 m) and time steps (4 to 

58 days) using variogram analysis in a high-performance computing environment. We found that spatial resolutions greater 

than 0.5 m do not capture the complete patterns of snow depth spatial variability within complex mountain terrain and that 

snow depths are autocorrelated within horizontal distances of 15 m. The results of this research have the potential to reduce 20 

uncertainty currently associated with snowpack and snow water resource analysis by documenting and quantifying snow depth 

variability and snowpack evolution on relatively inaccessible slopes in complex terrain at high spatial and temporal resolutions. 

1 Introduction 

Seasonal mountain snowfall is a critical natural resource globally but can also present a natural hazard for mountainous 

communities. Understanding the spatial distribution and temporal evolution of seasonal snow depth, defined as the vertical 25 

distance from the snow surface to the base of the snowpack (Fierz et al., 2009), is essential for water resource managers, local 

governments, climate researchers, and avalanche forecasters. However, quantifying snow depth across a landscape, especially 

one comprised of mountainous terrain, is challenging due to the multi-scalar nature of physical processes governing the 

distribution of snow depth (Blöschl, 1999; Bühler et al., 2016; Egli et al., 2011; Elder et al., 1998; Grünewald et al., 2010; 

Liston et al., 2007; Schweizer et al., 2008). These physical processes interact in different ways throughout the landscape, 30 
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influencing the local spatial variability of snow depth in non-homogenous ways over spatial scales ranging from less than a 

centimeter to 100 meters (m) or greater. The international snow depth monitoring community follows guidelines for selecting 

research sites in wind-sheltered, flat locations (Buchmann et al., 2021). Although such relatively homogenous terrain allows 

for clearer differentiation of some specific processes influencing snow depth distribution, such as wind-vegetation interactions 

(Deems et al., 2006), previous research overlooks steep, complex slopes, an essential characteristic of mountainous terrain, 35 

where much of the seasonal snowpack exists (Deschamps-Berger et al., 2020). In this study, we define the slope scale as a 

spatial extent of < 0.2 km2 and complex terrain as mountainous topographies including hillslopes > 25° with interspersed rock 

outcrops, vertical cliff features, and variable slope geometries. 

 

A major challenge in accurately analyzing the spatial variability of snow depth is acquiring measurements at an appropriate 40 

spatial resolution (Clark et al., 2011; Kinar and Pomeroy, 2015). Current methods for mapping snow depth in a spatially 

continuous manner within steeper mountain topographies are limited (López‐Moreno et al., 2015; Meyer and Skiles, 2019). 

Traditional methods of measuring snow depth include in-situ snow surveys, snow pits, and automated weather stations (AWS), 

which provide a spatially incomplete measure of snow depth made up of sparse point measurements distributed 

heterogeneously over the landscape (Dozier, 2011; Dozier et al., 2016; Elder et al., 1998; Grünewald et al., 2010; López-45 

Moreno et al., 2011). Point measurement locations typically avoid exposure to snow avalanches due to safety and logistical 

concerns, and therefore measurements collected from relatively flat, planar terrain are overrepresented compared to 

measurements from steeper slopes. Remotely sensed measurements, on the other hand, can acquire spatially continuous snow 

depth measurements across a variety of terrain at multiple resolutions without exposing observers to avalanches. Current 

satellite-derived snow depth data (e.g., Pléiades, WorldView-3, and WorldView-4) are easily accessed, spatially continuous, 50 

and, through stereo imagery processing, map snow depth at 2 m horizontal resolution with 0.5 m vertical accuracy (Deschamps-

Berger et al., 2020; Hu et al., 2016; Marti et al., 2016). Yet this horizontal resolution and vertical accuracy is still insufficient 

for capturing some of the finer-scale processes which influence snow depth distributions in complex terrain (Eker et al., 2019). 

Terrestrial laser-scanning can acquire spatially continuous centimeter-scale resolution snow depth data, but is limited by its 

inherent field of view and shadowing by steep topographic features (Deems et al., 2013; Fey et al., 2019; Prokop et al., 2015). 55 

Airborne laser-scanning (e.g., Airborne Snow Observatory - Painter et al., 2016) circumvents the terrain-shadowing 

shortcomings of terrestrial laser-scanning yet remains cost-prohibitive for many researchers (Brandt et al., 2020; Bühler et al., 

2015; Dozier et al., 2016; Meyer and Skiles, 2019). 

 

Imagery captured from uncrewed aerial systems (UAS) combined with structure-from-motion (SfM) photogrammetry 60 

techniques allows for low-cost collection of spatially continuous centimeter-scale resolution snow depth data with few terrain 

limitations, making it an attractive tool for snow depth distribution mapping in complex, non-forested mountain terrain (Avanzi 

et al., 2018; Bühler et al., 2016; De Michele et al., 2016; Eberhard et al., 2021; Gaffey and Bhardwaj, 2020; Redpath et al., 

2018; Revuelto et al., 2021). Numerous studies conclude that UAS and SfM techniques are effective at mapping snow depth 
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variability at the slope scale, yet most focus on simpler terrain and only compare two individual timestamps of data (Adams 65 

et al., 2018; Avanzi et al., 2018; Boesch et al., 2016; Bühler et al., 2016; Cimoli et al., 2017; De Michele et al., 2016; Eberhard 

et al., 2021; Gabrlik et al., 2019; Harder et al., 2016; McCormack and Vaa, 2019; Redpath et al., 2018; Peitzsch et al., 2018; 

Vander Jagt et al., 2015). 

 

Seasonal snowpack is constantly evolving and the process scales at which it changes are variable throughout both space and 70 

time (Blöschl, 1999). The spatial and/or temporal resolutions of measurements in previous snow depth research have been 

insufficient to capture the process scales of spatial heterogeneity in the evolving snowpack (Clark et al., 2011; López-Moreno 

et al., 2011). Here, we utilize 0.02 m horizontal resolution UAS/SfM derived snow depth observations as our baseline for 

further snow depth spatial variability analysis. The observation scales in this study span multiple orders of magnitude spatially 

(0.02 m grid covering approximately 0.2 km2 extent) on 12 distinct observation days over five months. These scales allow us 75 

to observe centimeter-scale vertical changes in snow depth across the slope scale, here defined as < 0.2 km2. Prior studies 

demonstrate the value of the slope scale for exploring the complex nature of snow depth variability and understanding 

avalanche formation processes (Anderton et al., 2004; Birkeland, 2001; Birkeland et al., 1995; Kronholm and Birkeland, 2007; 

López‐Moreno et al., 2015; Schweizer et al., 2008; Wirz et al., 2011). The temporal resolution of this study allows us to observe 

the evolution of snow depth spatial variability throughout the winter, in comparison to previous research that inferred patterns 80 

of snow depth spatial variability from sparse temporal observations (López‐Moreno et al., 2015). 

 

Our study considers the question: What is the optimal sample spacing that fully captures snow depth variability at the slope 

scale in complex mountain terrain? The objective of this work is to quantify the spatial resolutions necessary for accurate 

representation of snow depth spatial variability and its seasonal evolution in complex terrain. To achieve this, we analyze the 85 

differences in patterns of snow depth between complex and relatively simple mountain terrain at the slope scale. We also 

investigate the temporal evolution of snow depth spatial variability throughout the course of a winter at our study site. 

2 Research Site 

The research site is a steep sub-alpine mountain basin within the Bridger Range of southwest Montana, USA (45.834° N, -

110.935° E), at the head of the South Fork Brackett Creek watershed (Fig. 1). The Bridger Range is classified as an 90 

intermountain snow and avalanche climate characterized by average December through March temperatures from -3.5 to -7°C 

and average annual snowfall of approximately 7.5 m measured at Bridger Bowl Ski Area (Mock and Birkeland, 2000). The 

surrounding area (sometimes referred to as “wolverine basin”), has been the site of frequent snow and avalanche research over 

the past 20 years (Deems, 2002; Landry et al., 2004; Lundy et al., 2001; Van Peursem et al., 2016) due to its safe access, 

heterogeneous terrain, and proximity to Bridger Bowl Ski Area’s network of automated weather stations (AWS). 95 
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Figure 1: Overview of study location in the Bridger Range of Montana, USA, with the research site (dotted polygon), the 

Hourglass couloir (solid red), the meadow (dashed purple), and the Brackett meadow AWS (white triangle) shown. Photograph 

of the Hourglass couloir in the upper left with couloir outlined. Data map source: U.S. Geological Survey, 2017. 

 100 

There are two distinct mountain topographies, a steep couloir and sheltered meadow, within the research site that are subject 

to similar meteorological conditions. The Hourglass (2250 – 2550 m a.s.l.) is a couloir and avalanche path that has a mean 

slope angle of 33° and is mainly composed of rock scree, outcrops of limestone cliffs, and 1 - 2 m subalpine fir and Engelmann 

spruce trees. Mature, 10 - 20 m in height, coniferous trees and 1 m tall shrubs/bushes border the main avalanche path. Ridgetop 

wind-loading from dominant westerly storms result in large cornice growth during the winter along the top of the couloir and 105 

frequent small natural avalanches within the avalanche path (Lundy et al., 2001). The Hourglass is infrequently skied due to 

its avalanche-prone terrain, and we observed approximately 5 unique ski tracks throughout our field season. The meadow 

(2240 m a.s.l.) is adjacent to the runout of the Hourglass, has a mean slope of 5°, and consists of a mix of grasses and shrubs 

with 10 - 20 m tall mature coniferous forests on its north, west, and south sides. The meadow is sheltered from all but easterly 

wind directions and localized severe weather by the surrounding dense forest and steep 300 m headwall to its west. 110 
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We used meteorological data from three AWS in the immediate vicinity of the research site for measuring snow depth and 

other related meteorological variables. The Brackett meadow AWS (2240 m), located in the meadow, measured hourly 

temperature, relative humidity, wind speed, wind direction, net radiation, and snow depth from 6 November 2019, to 10 June 

2020. The Brackett meadow AWS’s below-treeline, wind-protected location is similar to many SNOTEL sites (Molotch and 115 

Bales, 2006). Additionally, our research site is within 2 km of Bridger Bowl Ski Area’s Alpine AWS (2286 m) and Ridge 

AWS (2591 m), which measure hourly temperature, relative humidity, wind speed, wind direction and snow depth from a 

sheltered forest opening and an exposed ridgeline, respectively. 

3 Methods 

Our study aims to quantify optimal sample spacing to fully capture the spatial variability of snow accumulation and 120 

redistribution at the slope scale in complex mountain terrain. To achieve this goal, we first generated digital surface models 

(DSMs) with UAS-based SfM photogrammetry techniques collected on 12 field days during the 2019 - 2020 winter. We 

collected in-situ snow depth measurements via manual probe for validation. Then, we used the high resolution (0.02 m 

horizontal) DSMs and resampled at coarser resolutions to calculate multi-resolution variograms to assess the scales of spatial 

variability patterns in snow depth. Finally, we used scene-wide coefficient of variation calculations to analyze seasonal patterns 125 

in snow depth spatial variability. 

3.1 UAS Surveys 

We designed our aerial surveys to achieve horizontal spatial resolutions of < 0.05 m to observe centimeter-scale differences in 

snow depths throughout the entire study site (De Michele et al., 2016; Fierz et al., 2009). We used a commercially available 

DJI Phantom 4 RTK UAS equipped with a 20-megapixel camera and Real-Time-Kinematic (RTK) Global Navigation Satellite 130 

System (GNSS) with the DJI DRTK2 GNSS mobile station. We conducted repeated pre-planned missions over the research 

site flying the UAS autonomously in a grid pattern at 50 m above ground level with 70% front/side image overlap, resulting 

in < 0.02 m per pixel average ground sampling distance and approximately 550 overlapping images each field day, similar to 

Goetz & Brenning (2019). A data gap exists between 17 March 2020 and 14 May 2020, due to the onset of the COVID-19 

pandemic. 135 

 

To constrain topographic error in post-processing, we collected 25 stationary and easily recognizable ground control points 

with high-resolution RTK GNSS survey equipment during the snow-free season to incorporate into the digital surface models. 

Due to variable snow cover, we used a partial selection of the 25 ground control points in each individual model by selecting 

points that were not covered by snow. To constrain snow depth observation error, we deployed and surveyed snow depth 140 
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validation point targets prior to flights in safe accessible locations within the study area and manually measured snow depths 

at each point immediately after the flights (described further in Sect. 3.3). 

3.2 Digital Surface Model (DSM) Creation 

For each field date, we processed the overlapping imagery to derive snow depth maps using three steps: Post-Processing-

Kinematic (PPK) location corrections, SfM processing of imagery for DSM creation, and DSM-differencing to derive snow 145 

depth. 

 

We post-processed the UAS location data to improve the quality of the RTK GNSS positions and ensure accurate co-

registration of output models using RTKLIB (Takasu, 2009) and the R software environment (R Core Team, 2021) in the 

WGS84 geographic coordinate system (EPSG::4326). Using the MTSU reference station (~21 km from the study site), the 150 

National Aeronautics and Space Administration’s Daily Global Positioning Systems broadcast ephemeris data, and the UAS 

RINEX and Timestamp files, our PPK processing resulted in positional accuracies of less than 0.1 m for most UAS photo 

locations. This additional step was necessary due to limited satellite connectivity of the RTK system from the poor sky view 

of high-relief topography at our study site. 

 155 

We completed SfM photogrammetric processing using the software package Agisoft Metashape Pro Version 1.6.2/1.6.6 

(Agisoft, 2020), which generates 3-D surface models from overlapping imagery and point matching (Alidoost and Arefi, 2017; 

Carbonneau and Dietrich, 2017; Gabrlik et al., 2018; Nolan et al., 2015). We filtered, aligned, and reduced the error of the 

geolocated imagery before the addition of ground control points for final batch processing. Finally, we ensured accurate co-

registration by aligning the vertical and horizontal positions of the models to available snow-free ground control points (Adams 160 

et al., 2018). Utilizing fewer ground control points and UAS equipped with RTK provides similar accuracies as traditional 

ground control point driven SfM workflows (Revuelto et al., 2021). This processing workflow produced a DSM interpolated 

from a dense point cloud and an orthomosaic for further analysis. We used simple DSM-differencing techniques to calculate 

snow depths throughout our site by subtracting a snow-free DSM collected on 8 July 2020, from each snow-on DSM, resulting 

in snow depth DSMs used for further spatial variability analysis. We removed poor quality DSMs if deemed unacceptable 165 

through comparison with probed snow depths, visual inspection, and expert judgment (Table A1). Examples of these thresholds 

include observed limited point matching while processing, unrealistic snow depths, inaccurate DSM reconstruction surfaces, 

and unrealistic snow depth distributions. 

3.3 Manual Snow Depth Collection 

We collected traditional manual snow depth measurements through in-situ probing primarily within the lower elevations of 170 

the research area. These geolocated validation point snow depths were used for error assessment of UAS-derived snow depths. 

To determine the 1 m2 average, variation, and range at validation points, we probed manual in-situ snow depths at the center 
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and four corners of each deployed marker (López-Moreno et al., 2011). We collected location information for each of these 

manual snow depth measurements with handheld GPS units (3 - 5 m accuracy). Additionally, we manually collected a single 

in-situ avalanche crown profile in the upper elevations of the couloir on 28 February 2020, which included total snow depth, 175 

25 individual snow layer thicknesses, grain type and size measurements, and an extended column test (ECT) as per Greene et 

al. (2016). We calculated summary statistics for manual snow depth measurements and their UAS-derived equivalent depths 

for each field day (Table A2). 

 

We completed an assessment of error by calculating mean, standard deviation, root mean square error (RMSE) (Eq. 1) and 180 

normalized median absolute deviation (NMAD) (Eq. 2) values for the differences between UAS-derived and probed snow 

depths for both the complete set of snow depth DSMs and a subset with poor quality models of the meadow removed. RMSE 

is defined as 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑃𝑖 − 𝑂𝑖)

2𝑛
𝑖=1           (1) 

where n is the number of observations, P is the predicted value and O is the observed value, and NMAD is represented by 185 

𝑁𝑀𝐴𝐷 = 1.4826 × median(|𝑥𝑖 − 𝑥𝑚𝑒𝑑𝑖𝑎𝑛|)        (2) 

where 1.4826 is the scale factor for comparison with standard deviation, xi is the difference in measured snow depths for point 

i, and xmedian is the median of the dataset of differences. 

Our error assessment followed a condensed version of the accuracy and precision measures presented in Adams et al. (2018) 

and Eberhard et al. (2021). The mean difference and RMSE are common measures of accuracy. Standard deviation and NMAD 190 

are common measures of precision, with NMAD being more resistant to outliers. We extracted the 1 m2 median and inner 

quartile range (IQR) values from the corresponding snow depth DSM for each manually collected snow depth measurement 

location and used the median value for error assessment. 

3.4 Digital Surface Model (DSM) Detrending 

In preparation for variability analysis, we detrended each snow depth DSM to focus analysis on the resultant residual surfaces 195 

as per Lutz and Birkeland (2011). This allowed us to calculate omnidirectional variograms. First, we masked individual 

vegetation features, such as trees, out of all DSMs while attempting to retain some snow surface between features. We used 

QGIS version 3.20.1 (QGIS.org, 2021) and the SAGA-GIS plugin’s DTM Filter tool (Vosselman, 2000) to filter out localized 

vertical spikes in elevation in the snow-free 8 July 2020, DSM and apply a 0.1 m buffer along the masked feature boundaries 

to account for minor vegetation shifts due to wind or snow creep (Table A3). We checked this mask against high resolution 200 

orthoimagery produced in the SfM workflow to ensure accuracy and applied this mask to each DSM included in our analysis. 
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We created detrended surfaces for each DSM using elevation, aspect, and distance-from-ridge as independent variables 

potentially contributing to snow depth trends. We extracted elevation, aspect, and distance-from-ridge raw surfaces from the 

snow-free 8 July 2020, DSM. Then, we calculated trend surfaces by selecting the most significant (lowest p-value) independent 205 

variable resulting from a least-squares linear regression for snow depth and each independent variable for each individual 

DSM. We subtracted the resultant trend surface from the raw snow depth DSM to produce detrended residual DSMs for each 

field day. If no independent variables proved significant (p > 0.05), we detrended the DSMs by subtracting the mean snow 

depth from the raw snow depth DSM instead. A final correction using a 3 standard deviation filter and expert judgment 

removed erroneous outlier data from the detrended residual snow depth DSMs (Höhle and Höhle, 2009). 210 

3.5 Variogram Calculation and Fit 

We calculated experimental omnidirectional variograms of the detrended residual snow depth DSMs at a variety of spatial 

resolutions and then fit spherical models in the R software environment (R Core Team, 2021). First, we resampled the 

detrended residual DSMs from their original 0.02 m spatial resolution to 0.05, 0.1, 0.25, 0.5, 1, 2.5, 5, 10, and 20 m horizontal 

spatial resolutions using a nearest-neighbour method to avoid over-smoothing the residual DSMs. We then calculated 215 

experimental variograms for each resolution for each field day and fit spherical models to each of these independent 

experimental variograms. The maximum distance considered for our variogram calculations was set to the maximum distance 

between point pairs within the two scenes, respectively, and we used minimum lag distances equal to the minimum point pair 

distances. Due to the large number of points contained in the high-resolution DSMs (0.02, 0.05, and 0.1 m) and the computing 

power required for variogram analysis of such large datasets, we used a simple random sampling of 3 million points to process 220 

the experimental variograms for these three resolutions. To ensure reproducibility, we used a pre-set seed when randomly 

sampling. We utilized the USGS Yeti supercomputer for all of our variogram calculations and model fitting (Falgout and 

Gordon, 2022). 

3.6 Coefficient of Variation Calculation 

We calculated the coefficient of variation (CV) (Eq. 3) of the vegetation masked and outlier removed snow depth DSMs in the 225 

R software environment (R Core Team, 2021) defined as  

𝐶𝑉 =
𝜎

𝜇
             (3) 

where  is standard deviation and  is mean snow depth. We calculated the CV values for a variety of nearest neighbour 

resampled resolutions to ensure consistent results and to reduce the computational load of calculating 0.02 m resolution snow 

depth DSMs. 230 
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4 Results 

 

4.1 Snow Depth DSM Error and Detrending Results 

We compared manual in-situ validation point snow depth measurements (n = 70) with our DSM-differenced snow depths to 235 

assess error in our UAS-derived snow depths (Fig. 2). The seasonal mean, standard deviation, RMSE, and NMAD of 

differences between probed and UAS-derived snow depths show the effect of poor model quality on snow depth measurements 

(Table 1). The daily mean, standard deviation, and RMSE of differences between UAS-derived and probed snow depths varied 

considerably throughout the season (Table A1) and showed an increase in accuracy and a slight decrease in precision 

throughout the season (Fig. A1). 240 

 

Figure 2: Measured snow depths (m) from 1 January 2020 - 5 June 2020, including additional in-situ probed measurement 

days where uncrewed aerial system (UAS) models were discarded due to poor surface reconstruction. Brackett meadow 

automated weather station (AWS, blue) represents the sonic-rangefinder measured snow depth. Probed (yellow) snow depths 

are collected manually in-situ as validation points. UAS (red) snow depths are derived from digital surface model (DSM)-245 

differencing at each validation point on a given observation day. Probed points represent snow depth measurements from 
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within the meadow and low relief and lower elevation portions of the Hourglass, and do not represent the same location as the 

sonic rangefinder attached to the Brackett meadow AWS. 

 

Table 1: Seasonal statistics of observed snow depth differences between probed and uncrewed aerial system (UAS)-derived 250 

validation point measurements (DSM = digital surface model; RSME = root mean square error; NMAD = normalized median 

absolute deviation). 

Snow Depth 

DSMs included 
Mean Difference 

(m) 
Standard Deviation 

of Differences (m) 
RMSE of 

Differences(m) 
NMAD of 

Differences (m) 

All 0.44 0.60 0.74 0.21 

Poor Quality 

Removed 
0.27 0.26 0.37 0.16 

 

We collected all validation snow depth measurements, except the crown profile of the 26 February 2020, avalanche, in the 

lower elevations of the Hourglass and throughout the meadow in order to avoid exposure to snow avalanches. We observed 255 

large ranges of measured snow depths within these vegetated areas. For example, the ranges of probed snow depths measured 

within the 1 m2 validation points (n = 70) were as high as 0.49 m, with an average range of 0.13 m. This assessment is not a 

comprehensive assessment of error because our validation snow depths were primarily collected in the safe lower slopes, and 

this assessment is therefore biased towards comparisons of measurements in the meadow. Although far from a complete 

accuracy assessment, our single manual snow depth measurement from upper elevations at the crown of the avalanche (top of 260 

the couloir) exhibited a snow depth difference of only 0.01 m (1.90 m measured vs. 1.89 m UAS-derived), which is well within 

the typical error of manual measurement. 

 

The DSM detrending analysis identified elevation as the most significant independent variable for each day at our study site. 

Therefore, we detrended all snow depth DSMs using the elevation surface derived from the 8 July 2020, snow free-DSM. 265 

 

4.2 Variogram Results 

We compared the results of spherical fit variogram models from the two distinct topographies within our study site and each 

field day at a variety of spatial resolutions. We found a consistent difference in the range, nugget, and sill (semivariance) values 

of the Hourglass and the meadow sites. The Hourglass exhibits a smaller range of autocorrelation, greater nugget values, and 270 

more variability than the meadow (Table 2) when including all dates and snow depth DSM resolutions. We only show the 0.5 

m resolution range values in Table 2 because they are representative of most of the other resolutions’ results and to avoid the 

skew introduced by 10 and 20 m ranges when averaging the results of all resolutions. Additionally, the Hourglass exhibited 
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consistently more snow depth spatial variability on individual field days (Fig. 3) and more seasonal variability in its patterns 

of spatial variability than the meadow (Fig. 4). 275 

 

Table 2: Average spherical fit variogram results for the Hourglass and meadow. 

Calculated Variogram Value: Hourglass Meadow 

Range @ 0.5 m resolution (m) 15.2 62.1 

Mean Nugget (all resolutions) 0.2 0.1 

Mean Semivariance (all resolutions) 0.6 0.2 

 

 

Figure 3: Spherical fit variogram models of detrended snow depth residuals from the Hourglass (HG) and the meadow (MD). 280 

Each panel depicts a specific observation day and colors represent different snow depth DSM resolutions. Five observation 

days were removed from the meadow site timeseries due to poor model quality. Note different y-axis scales for the HG and 

MD rows. 
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 285 

Figure 4: Seasonally averaged, spherical fit variogram models from the Hourglass (HG) and meadow (MD). Colors represent 

different resolutions. Note different y-axis scales. 

 

Temporally, the greatest variability exists earlier in the winter at both the Hourglass and meadow. Variability then decreases 

throughout mid-winter and increases slightly after the first substantial spring melt event that occurred approximately 2 weeks 290 

prior to 14 May 2020. Autocorrelation range generally increased within both the Hourglass and the meadow throughout the 

winter (Fig. 5) followed by pronounced increases in the spring. Sill values were consistently greater at the Hourglass compared 

to the meadow throughout the season (Fig. 5) and were relatively similar across all resolutions except 20 m at the Hourglass 

couloir where greater variability exists throughout the season. Temporally, sill values generally decreased at the Hourglass 

couloir site and remained consistent at the meadow throughout the winter. Additionally, at the Hourglass, the sill increased at 295 

finer resolutions because of a large natural avalanche on 26 February 2020. 
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Figure 5: Relative range and sill patterns of spherical fit variogram models of detrended snow depth residuals in the Hourglass 

(HG) and meadow (MD) throughout the winter. Colors represent different snow depth digital surface model (DSM) resolutions. 300 

The range plot excludes the 20 m range values from the Hourglass for 13 February 2020 and 17 March 2020, which are greater 

than 200 m. 

 

Snow depth DSM spatial resolution affected the calculated variograms resulting in larger autocorrelation range, sill, and nugget 

values present in coarser resolution variograms (Fig. 6). At the Hourglass, 0.5 m resolution models accurately represented the 305 

spherical fit variograms of all finer resolutions (0.02, 0.05, 0.1, and 0.25 m) and consistently resulted in autocorrelation range 
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values of ~10 m. 1 m resolution snow depth DSMs captured the pattern of the finer resolution variograms on 75% of the 

observation dates but aligned more closely with coarser resolution variograms (2.5, 5, 10, and 20 m) on 25% of the observation 

dates and exhibited larger, more variable autocorrelation ranges consistently throughout the winter. At the meadow, 2.5 m 

resolution models accurately represented the spherical fit variograms of all finer resolutions (0.02, 0.05, 0.1, 0.5, and 1 m) on 310 

all observation dates. The 5 m resolution differed from finer resolution patterns when seasonally averaged, and the 10 m 

resolution differed from the patterns on a single date and more so when seasonally averaged (Fig. 4). Snow depth DSM 

resolutions of 20 m in both topographies and all observation dates failed to capture the patterns of spatial variability found in 

finer resolutions. 

 315 

Figure 6: Mean range, sill, and nugget values from spherical fit models in the Hourglass (HG) and meadow (MD). Colors 

represent different snow depth digital surface model (DSM) resolutions as shown in Fig. 5. 

4.3 Coefficient of Variation Results 

We compared the calculated coefficient of variation over time at the Hourglass and the meadow. Resultant coefficients of 

variation were similar across a variety of snow depth DSM resolutions. As such we present the 0.5 m resolution results here. 320 

Coefficient of variation values were greater at the Hourglass when compared to the meadow on every observation day (Fig. 

7). The seasonal pattern of variability in the Hourglass started higher in January, decreased then remained consistent through 

March, and peaked in May concurrently with the onset of ablation. At the meadow, the variability decreased throughout the 

season before peaking in May with the onset of ablation. 
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 325 

Figure 7: Coefficient of variation values for each observation day at the Hourglass (HG, blue) and meadow (MD, red) as 

calculated from 0.5 m resolution snow depth digital surface models. 

5 Discussion 

In this study, we analyzed a time series of 12 high-resolution snow depth DSMs derived from UAS and SfM techniques in a 

0.2 km2 study area containing steep-complex and protected-simple terrain in the Bridger Range of Montana, USA. We 330 

collected these data to investigate the scales of spatial variability of snow depth in complex mountain terrain, compare with 

the spatial variability observed in adjacent simple mountain terrain, and explore the temporal evolution of spatial variability 

patterns of snow depth. 

5.1 Snow Depth Differences and Detrending 

Comparisons between DSM-differenced and probed snow depths highlight the challenge of sampling spatially representative 335 

snow depth measurements with underlying vegetation. The 1 m2 validation point measurements had an average range of 0.13 

m while the mean difference between DSM-differenced snow depths and in-situ probed snow depths was 0.27 m (Table 1). 

Both of these point and observational tool measurement differences, as well as our additional error estimates, could be 

attributed to the vegetation captured in the snow-free 8 July 2020 DSM. This vegetated surface had greater than 0.5 m of 

vertical variability across horizontal distances less than 1 m and compressed at an unquantified and spatially heterogenous rate 340 
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under the gradually increasing snowpack. This vegetation effect is largely confined to the lower elevations of our study site, 

which is also primarily where we collected our validation point measurements. Vegetation effect is a recognized weakness of 

UAS-derived snow depth measurement and helps explain the differences we observed between the DSM-differenced snow 

depths and probed validation point measurements in this study (Bühler et al., 2016). 

 345 

Previous research identified wind direction as a contributing variable to their spatial variability findings (Clemenzi et al., 2018; 

Deems et al., 2006; Mendoza et al., 2020; Mott and Lehning, 2010; Mott et al., 2018). Our results suggest that elevation is the 

most significant variable and we detrended the DSMs on this metric. Additionally, the natural elevation gradient within our 

study site runs parallel to the dominant wind direction (west to east) in the Bridger Range allowing for our elevation detrending 

method to account for wind direction. 350 

5.2 Scales of Spatial Variability 

Many previous studies utilized 1 m resolution sampling grids (Clemenzi et al., 2018; De Michele et al., 2016; Deems et al., 

2013; López‐Moreno et al., 2015; Mendoza et al., 2020; Meyer and Skiles, 2019) but without detailed analysis to determine if 

this resolution is sufficient to capture the patterns of spatial variability. Our results indicate 1 m resolution is insufficient in 

steep complex mountain terrain. At our site, 0.5 m resolution results capture the spatial variability patterns seen in all finer 355 

resolutions (0.02, 0.05, 0.1, and 0.25 m) in each observation day at the Hourglass (Fig. 4). Maximum variation exists within a 

15 m range for all sub-0.5 m resolution variograms with a decreasing variance as the range continues to grow beyond the sill. 

Coarser resolution variograms exhibit increasing variance at greater ranges, with increasing variance beyond the sill. 

Furthermore, the mean range values increase dramatically between 0.5 m (15 m), 1 m (29 m), and 2.5 m (48 m) resolutions, 

while decreasing minimally below 0.5 m resolutions (10 to 12 m for 0.02 and 0.25 m resolutions, respectively) (Fig. 6). Our 360 

results suggest that a 0.5 m sampling resolution is necessary to capture small-scale spatial variability of snow depth in complex 

mountain terrain. 

 

However, our results suggest 2.5 m resolution sampling grids are adequate to capture spatial variability in the protected terrain 

at the meadow. The finer resolution patterns evident in the mean variograms of the meadow are similar to the 2.5 m resolution 365 

while the 5, 10 and 20 m resolutions differ distinctly with generally larger range values (Fig. 4). The autocorrelation range 

values at the meadow scale directly with snow depth DSM resolution while the sill values remain consistent across snow depth 

DSM resolutions (Fig. 6). Given this relationship, the 2.5 m resolution captures both the fine and coarse resolution patterns in 

the meadow. This distinct difference in snow depth spatial variability between complex and simple terrain provides evidence 

of the contrasting snow distributions in the two mountain topographies. 370 

 

Previous research reported autocorrelation range values for snow depths of 15 - 25 m in a variety of mountain terrain with an 

additional correlated scaling break above 50 m (Clemenzi et al., 2018; López‐Moreno et al., 2015; Mendoza et al., 2020). We 
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found similarly consistent less than 20 m range values in the steep complex terrain in the Hourglass and greater than 50 m 

range values in the meadow. Our results also suggest that the range of autocorrelation increased throughout the winter at both 375 

sites. We attribute this to increasingly homogenous snow depth distributions over larger distances due to wind redistribution 

near ridges (Mott and Lehning, 2010) and small-scale redistribution processes (Mott et al., 2011). Increasingly leptokurtic 

distributions evident in scene-wide violin plots, especially at the meadow, indicate that snow depth distributions were largely 

concentrated near the mean snow depth for each given observation day (Fig. A2a) and became more uniform as snow depth 

increases. 380 

 

Our results show that snow depth variability generally decreased throughout the season in the complex terrain of the Hourglass 

(Fig. 7). This suggests that a deeper snowpack tends to decrease the spatial variability of snow depth as terrain and vegetation 

features become less influential on snow depth distribution across space (Deems et al., 2006; Elder et al., 1991; Harder et al., 

2016). There was a slight increase in snow depth variability at the Hourglass following two notable events: a natural avalanche 385 

on February 26 and the first major spring melt during the first half of May (Fig. 3). An increase in sill values and a clear 

distribution change of snow depth residuals provide evidence for these snow depth distribution shifts (Fig. A2b). The spring-

melt-aligned increase in spatial variability is similar to changes during ablation periods reported by López-Moreno et al. (2015) 

who used the coefficient of variation as the measure of variability over the course of eight observation days spread over two 

winters. 390 

5.3 Limitations 

Snow depth DSM creation through UAS and SfM photogrammetry workflows is distinctly challenged by snow surface 

conditions and their interaction with local lighting (Bühler et al., 2016, 2017; Goetz and Brenning, 2019). DSMs from certain 

observation days had to be removed from further analysis due to poor quality, which can be attributed to homogenous snow 

surfaces that occurred due to either recent snowfall with minimal wind, cloud cover producing low light, or a combination of 395 

both. The wind-sheltered and nearly flat terrain of the meadow limited the influence of surface texture creating processes, such 

as wind-redistribution and natural snow sluffing, resulting in uniform minimally textured snow surfaces and more observed 

days removed from further analysis (Table A2). These poor-quality models affected errors in snow depth measurement (Table 

1, Table A3) and, once removed, the error in our remaining models was comparable to the reported error margins of other 

similar UAS-derived snow depth research (Adams et al., 2018; Eberhard et al., 2021; Revuelto et al., 2021). Therefore, we are 400 

confident that our retained UAS-derived snow depth observations in steep mountain terrain are accurate. 

 

The analytical approach used in this study is limited by computational resource availability. Processing the collected raw 

imagery (approximately 550 images per observation day) to produce snow depth DSMs for the 0.2 km2 site required 

approximately 8 hours per observation day while processing on a powerful local computer (specifications in Table A3). The 405 

processing time for variogram analysis scaled directly with snow depth DSM resolutions (Fig. A3). Processing times increased 
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exponentially at finer resolutions, from 1 second at 2.5 m resolution to 32.5 hours at 0.1 m resolution while processing in 

parallel on the USGS Yeti supercomputer (specifications online). After numerous failed attempts due to memory overloading 

when calculating experimental variograms for the 0.02 and 0.05 m resolution DSMs, we utilized a simple random sample of 3 

million points for all 0.02 and 0.05 m resolution DSMs. Therefore, the processing times for 0.02 and 0.05 m resolutions 410 

increased solely due to the additional time to randomly sample. Processing times for high-resolution DSM analysis at 

resolutions finer than 0.5 m offered little additional value (see Figs. 4, 5, and 6) given the computational requirements thereby 

supporting a spatial sampling grid of 0.5 m for snow depth spatial variability analysis. 

 

Our results are from a thorough analysis of a single study site and under the influence of only the interactions of the local 415 

topography and meteorological events from one winter season. The spatially limited in-situ snow depth validation 

measurements are not completely representative of our entire research site, particularly at upper elevations near the ridgeline. 

Additionally, our snow depth measurement errors from the UAS-SfM photogrammetry process may contribute to snow depth 

spatial variability error, but these errors are challenging to accurately quantify (Redpath et al., 2018) and likely contribute a 

trivial amount (Adams et al., 2018; Eberhard et al., 2021; Revuelto et al., 2021). We also attempted to account for these small 420 

errors by conducting repeated UAV flights over the course of a season, using GCPs from the same locations on both snow-

free and snow-covered sampling flights, and choosing a site with a relatively deep snowpack (Goetz and Brenning, 2019). 

Future snow depth spatial variability research should consider observing a wider variety of complex mountain terrains and 

using additional remote sensing tools for further validation. 

 425 

6 Conclusions 

This study quantifies the relevant spatial sampling scales for accurately mapping snow depth spatial variability in complex 

mountain terrain. We used a time series of uncrewed aerial systems (UAS)-derived centimeter-scale models of evolving snow 

distribution in a steep complex couloir as well as an adjacent sheltered flat mountain meadow. We demonstrate that 0.5 m 

sample spacing resolution is necessary for accurately capturing the naturally occurring spatial variability of snow depth in 430 

complex terrain at our study site. This finding contrasts with previous research that typically utilized 1 m resolution models. 

However, in protected, simple mountain terrain we show that 2.5 m sample spacing is sufficient. This test of extremely fine 

resolution surface models is relevant for the planning of future snow depth studies in mountain environments both from a 

spatial variability and processing perspective. Not only does capturing 0.5 m resolution data increase field efficiency, whether 

by traditional methods or using remote sensing approaches, but it also decreases the computational expense of processing and 435 

analyzing the data. This resolution improves our ability to observe large spatial extents with confidence that accurate 

measurements of snow depth spatial variability are captured. 
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We show consistent snow depth autocorrelation ranges to be 10-20 m in steep complex terrain of the Hourglass and 50–65 m 

in the meadow, which aligns with scaling breaks identified in previous literature on snow depth spatial variability (Deems et 440 

al., 2006; López‐Moreno et al., 2015; Mendoza et al., 2020). We also show that the steep complex terrain in the Hourglass 

exhibited greater spatial variability over smaller distances throughout the winter than the protected simple terrain of the 

meadow. Additionally, we show that the seasonal evolution of spatial variability is not the same in both topographies. The 

specific spatial and temporal scales at which snow depth varies within these two terrains influence sampling strategies as they 

relate to topography and our understanding of snow distributions within the varied mountain landscape we depend on for water 445 

resource storage and recreation. 

Appendices 

Table A1: Models removed due to poor quality. 

Location Observation Dates Removed From Analysis 

Hourglass 7 January 2020 

Meadow 7 January 2020, 10 January 2020, 4 February 2020, 13 February 2020, 10 March 2020, 14 May 2020 

 

Table A2. Summary statistics of all measured and uncrewed aerial systems (UAS)-derived snow depths (HS) from the 450 

Hourglass and meadow on all sampling days. Low-quality modelled meadow days removed from analysis filled grey. All 

values reported in meters. 

Sampling 

day (all 

2020) 

Brackett 

Meadow 

AWS 

Measured 

HS (m) 

Mean 

Probed 

HS (m) 

Probed 

HS 

Range 

(m) 

UAS-

derived 

mean HS at 

Validation 

Points (m) 

UAS-

derived 

HS 

Range 

(m) 

Mean 

Difference 

Between 

Probed HS 

and UAS-

derived HS 

(m) 

RMSE of 

Difference 

Between 

Probed HS 

and UAS-

derived HS 

(m) 

Standard 

Deviation of 

Difference 

Between 

Probed HS 

and UAS-

derived HS 

(m) 

7 January 0.96 1.16 0.09 1.23 0.31 0.7 0.15 0.16 

10 January 1.11 1.22 0.13 2.36 0.1 1.14 1.14 0.05 

15 January 1.22 1.41 0.11 1.8 0.28 0.39 0.41 0.17 

4 February 1.51 1.73 0.11 2.74 0.59 1.01 1.04 0.27 

13 February 2.22 2.59 1.11 2.28 0.63 0.32 0.86 0.98 

21 February 2.11 2.12 0.12 2.39 4.25 0.27 1.1 1.11 

27 February 2.11 2.26 0.29 2.03 0.41 0.23 0.34 0.29 
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6 March 1.90 1.95 0.79 1.79 1.51 0.16 0.37 0.35 

10 March 2.07 2.12 0.17 1.7 1.63 0.42 0.74 0.7 

17 March 2.01 2.11 0.2 2.35 0.57 0.24 0.31 0.22 

14 May 1.57 1.75 0.65 1.92 3.42 0.31 0.81 0.77 

25 May 1.19 1.37 0.14 1.51 0.17 0.15 0.17 0.09 

 

Table A3: SAGA-GIS DTM Filter tool settings. 

Setting Radius Slope Use Confidence Intervals 

Value 10 m 30° Yes 

 455 

Table A4: Local processing computer specifications 

CPU Cores RAM GPU 

32 128 GB (4) NVIDIA GeForce RTX2080 Ti 
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Figure A1: Snow depth uncrewed aerial systems (UAS)-derived error (m) throughout the 2019/2020 winter field season. Each 460 

variable is calculated with all manually probed validation points and corresponding UAS-derived snow depths for each 

observation day. 
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Figure A2a: Violin plots of detrended snow depth residuals in the meadow site with colors representing different resolutions. 465 

Black dots represent median value and color shades represent the distribution of points for each resolution on each sampling 

day. 
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Figure A2b: Violin plots of detrended snow depth residuals in the Hourglass with colors representing different resolutions. 470 

Black dots represent median value and color shades represent the distribution of points for each resolution on each sampling 

day. 

 

 

Figure A3: Variogram processing times for the 27 February 2020, observation day. Colors indicate different snow depth digital 475 

surface model (DSM) resolutions and the number labels are the variogram processing times (in seconds) for each DSM. Note 

that fully processing the 0.05 and 0.02 m grids was too computationally expensive even when using a supercomputer. 

Therefore, we randomly sampled three million points from those DSMs before calculating the variograms. Thus, the processing 

times for 0.05 and 0.02 m are similar. 

  480 
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Code and Data Availability 

The timeseries of snow depth digital surface models (before vegetation masking, detrending, and outlier removal), the 

vegetation masked Hourglass and meadow shapefiles and .csvs of data for the figures presented are available in a US 

Geological Survey data release, located at: https://doi.org/10.5066/P9YCIA1R. 
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