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Abstract. Generally, the sea ice prediction skills can be improved via assimilating available observations of the sea ice 

concentration (SIC) and the sea ice thickness (SIT) into a numerical forecast model to update the initial fields of the model. 10 

However, due to the lack of SIT satellite observations in the melting season, only SIC fields in the forecast model can be 

directly updated, which will bring about the dynamical mismatch between SIC and SIT to affect the model prediction 

accuracy. In order to solve this problem, a statistically based bivariate regression model of SIT, named as BRMT, is 

tentatively established based on the grid reanalysis data of SIC and SIT, to reconstruct the daily Arctic sea ice thickness data. 

Both BRMT-constructed SIT and several popular reanalysis datasets are compared to each other and validated based on 15 

available SIT observations in situ. Results show that BRMT can effectively reproduce the spatial and temporal changes of 

ice thickness in the melting season, and BRMT-constructed SIT is more accurate in capturing the change trend of ice 

thickness over a period of time, also the reconstructed SIT of one-year ice and multi-year ice types in the central Arctic and 

E Greenland Sea are closer to the observations. Further, as SIT from BRMT and SIC from satellite remote sensing are jointly 

assimilated into the ice-sea coupled numerical model, the prediction accuracy of SIC and SIT in the Arctic melting season is 20 

significantly improved, especially the SIC in the marginal ice zone and SIT in the central Arctic. 

1 Introduction 

The Arctic is one of the most important regions for the exchange of materials and energy between the atmosphere and the 

ocean, and the major interaction between the Arctic Ocean and the global climate system is reflected through the sea ice. 

However, observations in the past 30 years have shown that Arctic sea ice is undergoing rapid changes (Kwok and 25 

Cunningham, 2015). From 1979 to 2017, the sea ice extent decreased by 3.24 million square kilometres in September, with a 

significant decrease in the Arctic sea ice margin from the Beaufort Sea in the west to the Barents Sea in the north (Liu et al., 

2019). As the ice shrinks, the ice floes are thinning. Recent satellite data show an average reduction of about 50% in Arctic 

sea ice thickness (SIT) compared to submarine sea ice observations during 1958-1976 (Kwok and Rothrock, 2009). The 

above changes in Arctic sea ice have aroused people's attention and posed major opportunity to Arctic maritime activities, 30 
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such as polar shipping, fishing and oil/gas resources exploration. Meanwhile, the grasp of sea ice concentration (SIC), SIT 

and other information is crucial for the polar research (Takuya et al., 2018). Therefore, accurate real-time sea ice prediction 

has become an urgent need (Eicken, 2013). It is well known that Arctic sea ice numerical models used for the synoptic-scale 

forecasting depend heavily on the initial state fields of the model. Therefore, it is necessary to integrate the sea ice 

observations into the numerical forecast model using appropriate data assimilation methods to generate a more realistic 35 

initial condition and improve the prediction ability of Arctic sea ice (Lisæter et al., 2003). 

Lindasy and Zhang (2006) used Nudging method to assimilate SIC observation. The assimilated SIC improves the match 

with the observed extent, but the sea ice draft in the Fram Strait is underestimated by 0.64 m compared with the available 

observations. Lisæter et al. (2003) assimilated SIC observation data using the Ensemble Kalman Filter (EnKF) (Evensen, 

1994) based on the coupled ice-sea model. Although the correlation coefficient between the forecast SIC and SIT reaches 40 

more than 0.5 in winter, it drops below 0.3 or even reaches a negative value in the melting season. Wang et al. (2013) 

proposed a method combining optimal interpolation with the Nudging to assimilate SIC. Results show that there are 

significant improvements for SIC analysis result in the sea ice margin region in summer, but there are deviations in the 

prediction of sea ice extent. Yang et al. (2015a) used Local Singular Evolution Interpolation Kalman Filter (LSEIK) to 

assimilate SIC in summer. The consistency of forecast SIC with satellite observations is improved, but the multi-year ice 45 

thickness in the central Arctic is overestimated by more than 1 m. 

Day et al. (2014) showed that accuracy of initial SIT is also important for the prediction of SIC and sea ice extent in summer. 

Lisæter et al. (2007) used EnKF to assimilate the SIT detected by Cryosat satellite and improved the quality of initial SIT 

forecast field. The results showed the prediction accuracy of SIC, sea surface temperature (SST) and sea surface salinity are 

well improved by the SIT assimilation. Yang et al. (2014) used LSEIK to simultaneously assimilate Special Sensor 50 

Microwave Imager/Sounder (SSMIS) SIC and Soil Moisture and Ocean Salinity (SMOS) SIT in the cold season. Compared 

with only SIC assimilation or no data assimilation, the root mean square error (RMSE) of SIT forecast results is reduced 0.47 

m. However, SMOS SIT observation data are only applicable to thin ice (<1 m) (Tian-Kunze et al., 2014), the assimilation of 

which only improves the one-year ice prediction in the marginal area of sea ice, while the thick (multi-year) ice cannot be 

significantly improved during the early melting and freezing seasons (Yang et al., 2016; Xie et al., 2016). In cold season, Mu 55 

et al. (2018b) not only assimilated SMOS SIT and SSMIS SIC observation data, but also simultaneously assimilated 

Cryosat-2 SIT observation data which can better capture interannual changes of thick ice areas (Laxon et al., 2013). By using 

the complementary characteristics of the two kinds of thickness data, the overall RMSE of SIT and SIC is smaller than the 

counterpart under the condition of assimilating both SMOS SIT and SSMIS SIC data. 

It is worth noting that there are few studies on the prediction of SIT during the melting season due to the sparse in situ SIT 60 

observations and insufficient satellite remote sensing SIT observations (Ricker et al., 2014; Ricker et al., 2017). In order to 

solve this problem, Mu et al. (2018a) combined the skill of satellite thickness assimilation in the freezing season with the 

model skill in the melting season, and a combined model and satellite thickness (CMST) is proposed to estimate the 

thickness of Arctic sea ice in the melting season. Yang et al. (2019) used the restart files from the CMST system as the sea 
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ice initial condition, which assimilated the SIC from satellite remote sensing and the SIT from SMOS and CryoSat-2. Based 65 

on this, an integrated sea ice seasonal prediction system (SISPS) is designed for the real-time prediction of summer sea ice 

conditions in the Arctic. CMST estimation is heavily dependent on the quality of satellite data products and the 

parameterization schemes of physical processes in the model, which has certain uncertainties (Mu et al., 2018a). Chi and 

Kim (2021) proposed an ensemble one-dimensional convolutional neural network using the deep learning (DL) approach. It 

concatenates the input features of multiple Advanced Microwave Scanning Radiometer 2 (AMSR2) channel types generated 70 

by mathematical operation to estimate SIT with a resolution of 25 km. However, due to the high uncertainties of summer SIT 

retrievals, some researchers including Chi only estimated the SIT for the freezing season (October to April) (Kaleschke et al., 

2012; Lee et al., 2020). 

In this study, based on the strong positive correlation between SIC and SIT from the perspective of statistical significance 

(Yang et al., 2015b), we proposed a bivariate regression model of SIT (BRMT) to obtain the SIT records in the melting 75 

season covering the whole Arctic region. To conform to the realistic sea ice state, we consider the multi-year historical 

reanalysis data of SIC and SIT in the melting season, and construct the correlation between them. Then, using satellite 

remote sensing observation data of SIC and the relationship between them, the corresponding "pseudo" observation field of 

SIT can be reconstructed. Finally, based on the sea-ice coupled model, the spatial multiscale recursive filter (SMRF) data 

assimilation method is used to jointly assimilate the SIC observations from satellite remote sensing and the SIT "pseudo" 80 

observations from BRMT, so as to generate a more real sea ice initial field and obtain higher prediction accuracy of sea ice 

variables. 

The paper is organized as follows: In Sect. 2, we describe the observation data, reanalysis data and other SIT data sets used 

to evaluate the SIT regression model. Sect. 3 focuses on the BRMT, briefly introduces the numerical model and assimilation 

method used in the prediction experiments, and gives the evaluation criteria. The comparisons among the reconstructed SIT 85 

via BRMT, in situ observations and several reanalysis datasets are presented in Sect. 4. On this basis, the real-time Arctic sea 

ice numerical forecast experiments are carried out in Sect. 5. Finally, the discussion and conclusion of this study are drawn 

in Sect. 6. 

2 Data sources 

2.1 Observation data 90 

In this work, SIC refers to the proportion of sea ice covered area in unit space, the variation range of which is 0-1. The daily 

SIC observations are derived from the daily passive microwave data of the special sensor microwave/imager (SSMI) carried 

by DMSP F-17. It was processed by National Snow and Ice Data Centre (NSIDC) with NASA team algorithm (Cavalieri et 

al., 2012). The spatial resolution is 25 km×25 km. 

In addition, to assess the reconstructed SIT and predicted SIT, two type of in situ SIT observations are used. The first is the 95 

sea ice draft, which comes from Upward Looking Sonar (ULS) measurements of Beaufort Gyre Experiment Program 
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(BGEP). It can be converted into thickness by multiplying by 1.1, which is approximately equal to the ratio of mean 

seawater density of 1024 kg m-3 and sea ice density of 910 kg m-3 (Nguyen et al., 2011). The error of ULS measurements of 

ice draft is estimated about 0.1 m (Melling et al., 1995). The other is the SIT data, which is derived from Ice Mass balance 

Buoys (IMB) deployed on the surface of Arctic sea ice (Perovich et al., 2022). The two acoustic rangefinders on the IMB 100 

monitor the position of the ice bottom and the snow and as well as the ice surface, which is used to estimate the SIT. The 

accuracy of both detectors is 5 mm (Richter-Menge et al., 2006). In this study, the data are selected from mooring facilities 

of the BGEP_A located in (74° 59.816′ N, 149° 58.149′ W), BGEP_B located in (78° 0.395′ N, 149° 58.462′ W), BGEP_D 

located in (73° 59.649′ N, 139° 59.043′ W) and 25 IMB buoys with available SIT during the melting season from 2011 to 

2015. 105 

2.2 Other data sets 

The reanalysis data used in the regression model are from TOPAZ4 version of the Nansen Centre for Environment and 

Remote Sensing, Norway's Sea Ice/Ocean Numerical Prediction System (Xie et al., 2017). The data set is named 

Arctic_Reanalysis_Phys_002_003. It includes daily SIC, SIT and sea ice velocity. The spatial resolution is 12.5km×12.5km, 

the time range is from 1 January 1991 to 31 December 2019, and the region covers the Arctic Ocean. 110 

Besides, three additional SIT data sets are selected as the contrasts to more comprehensively validate the accuracy of the 

reconstructed SIT. The first is the Arctic SIT record of CMST, which is generated via assimilating weekly averaged Cryosat-

2 SIT, daily SMOS SIT and daily Special Sensor Microwave Imager Sounder SIC (Mu et al., 2018a) into the Massachusetts 

Institute of Technology general circulation model (MITgcm), using a local Error Subspace Transform Kalman filter 

(LESTKF) coded in the parallel data assimilation framework (PDAF). The CMST (v1.0) are provided north of 65° N from 1 115 

October 2010 to 31 December 2016. The other two come from Pan-Arctic Ice-Ocean Modeling and Assimilation System 

(PIOMAS), and Global Ice-Ocean Modeling and Assimilation System (GIOMAS) (Zhang and Rothrock, 2003), both of 

which are composed of global Parallel Ocean and sea Ice Models (POIM) with data assimilation capability. POIM couples 

the Parallel Ocean Program and the Thickness and Enthalpy Distribution sea ice model. The atmospheric information used to 

drive the PIOMAS and GIOMAS are from NCEP/NCAR reanalysis data, including the wind, the surface air temperature and 120 

the cloud cover to compute solar and long wave radiation. In addition, sea ice concentration information from the NSIDC 

near real time product are assimilated into the model to improve ice thickness estimates. In this study, the daily averaged SIT 

of PIOMAS V2.1 and the monthly averaged SIT of GIOMAS are selected respectively, and the time range is 1 July to 30 

September from 2011 to 2015. 

https://doi.org/10.5194/tc-2022-92
Preprint. Discussion started: 2 June 2022
c© Author(s) 2022. CC BY 4.0 License.



5 

 

3 Method 125 

3.1 Bivariate regression model of SIT 

Considering that it is impossible to obtain Arctic SIT observation from the satellites remote sensing in the melting season 

since the most advanced inversion algorithm was impeded by the saturated surface water vapor from the surface snow melt 

(Ricker et al., 2017), we focus on the reconstruction of SIT in the melting season (boreal July-September). Meanwhile, in 

order to facilitate the comparison of the reconstructed SIT with those from other data sets and in situ observation, the 130 

TOPAZ4 reanalysis from 2011 to 2015 is chosen as an example to develop the bivariate regression model for SIT. 

First of all, the TOPAZ4 reanalysis of the SIC and SIT from 2004 to 2018 are selected to calculate the daily spatial 

correlation coefficients of SIC and SIT in the melting season. According to the scatter plots between correlation coefficients 

and dates (Fig. 1), except for a few dates, most of the correlation coefficients between SIC and SIT in all years are between 

0.80 and 0.95, which completely pass the significance test. It indicates that there is a strong correlation between SIC and SIT, 135 

which provides the theoretical support for the establishment of regression model in the next step. 

 

Figure 1. Spatial correlation coefficient between daily sea ice concentration and sea ice thickness during melting season from 2004 to 

2018. 

In order to match the reanalysis data grid (609×881) with the observation data grid (304×448), data pre-processing is 140 

required to project the reanalysis data of SIC and SIT into the observation grid in the melting season (92 days in total) from 

2004 to 2018. In order to illustrate the construction process of the model, 1 July 2011 is chosen as an example (the flow chart 
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is shown in Fig. 2). Firstly, the reanalysis data of daily SIC and SIT are selected on 1 July in 14 years from 2004 to 2010 and 

from 2012 to 2018. In order not to introduce a priori knowledge, the reanalysis data of 2011 is removed from the selection of 

years. Then, the linear regression process is carried out at each grid point of the whole region (non null point) for each year, 145 

with SIC being as the independent variable and SIT being as the dependent variable. The corresponding SIC-SIT regression 

relation at each grid point can be obtained for each year. 

Start

Select the reanalysis data of SIC and SIT on 

day 1 July      year 

(Range of      : 2004-2010, 2012-2018)

Linear regression for each grid point

Calculate SIT based on the regression 

relationship and the observation of SIC 

on day 1 July 2011

Storage of the constructed SIT field

         Whether    

       is equal to 2018 

 Determine the weights for each year 

relative to the 2011 using the AHP 

Obtain the weighted average SIT field on 

day 1 July 2011

Experience adjusting constructed SIT field

End

      Add 1 to      

  (excluding 2011)

No

Yes

 

Figure 2. A flow chart of bivariate regression model of SIT (take 1 July 2011 as an example). 
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The SIT at each grid point at each year can be calculated from the fitting relation and the SIC observational data on 1 July 150 

2011, that is, 14 groups of SIT fields are formed on 1 July 2011. Then, the 9-quartile scale method in the Analytic Hierarchy 

Process (AHP) (Rahman & Frair, 1984) is used to determine the weight of each year relative to 2011, as shown in Table A1 

in the appendix (all results pass the consistency test). The constructed SIT field on 1 July 2011 is obtained by the weighting 

average. The construction process of thickness field on other days in 2011 is the same as the process mentioned above. It is 

worth noting that the selection of reanalysis data time period in the process of reconstructing SIT in other years is slightly 155 

different from that in 2011. In order to avoid the target year of the current construction process, the years selected for the 

model calculation in different target years are different. The details can be seen in Table A1 in the appendix. 

Finally, according to the SIC observational data, the SIT field is empirically adjusted to make the constructed SIT consistent 

with the SIC (Preller et al., 2002): if the value of SIC at a certain grid point is 0 and the constructed SIT at this grid point is 

not 0, the ice will be removed from the constructed SIT field; If the value of constructed SIT at a certain grid point is 0 and 160 

the SIC at this grid point is not 0, the constructed SIT is adjusted to 1.0 m (if SIC > 0.5) or 0.5 m (if SIC < 0.5). The 

empirically adjusted SIT fields in the melting season from 2011 to 2015 is the reconstructed SIT via BRMT. 

3.2 Numerical model and data assimilation method 

3.2.1 The ice-ocean coupled model 

The used ocean model in this study is the MITgcm (Marshall et al., 1997), which solves the three-dimensional primitive 165 

equations with implicit linear free-surface under the hydrostatic and Boussinesq approximations. The ocean model is coupled 

to a sea-ice model that computes ice thickness, ice concentration, and snow cover as Zhang et al. (1998) and that simulates a 

viscous-plastic rheology using an efficient parallel implementation of the Zhang and Hibler (1997) solver. The coupled 

model used in this study adopts a global cubic spherical grid, and the Arctic region includes 510×510 grid points with an 

average horizontal distance of 18 km. The open boundary is about 55° N in the Atlantic Ocean and Pacific Ocean. 170 

The atmospheric forcing fields include 10 m surface wind speed, 2 m temperature, relative humidity, precipitation, 

downward longwave and shortwave radiations. Through the two-way coupled process between ice and sea, the ocean 

component model provides the sea ice component model with information such as ablation/freezing potential, SST and 

salinity, surface velocity, while the sea ice model provides the information of the SIC, fresh water and salinity fluxes, ice-sea 

stress and others. The heat flux on the sea ice surface is referred to the results of Parkinson and Washington (1979). The 175 

change of sub-grid ice thickness in the sea ice model is taken into account in the calculation of conduction heat flux. In other 

words, the sea ice is divided into 7 categories according to the SIT value in a horizontal grid. The variation of heat flux and 

albedo caused by snow cover and the process of snow-ice conversion are considered on the surface of sea ice. The albedo of 

dry ice, wet ice, dry snow and wet snow is 0.87, 0.78, 0.98 and 0.80, the sea-ice drag coefficient is 5.2, and the sea-ice 

intensity is 2.7×104 Pa (Losch et al., 2010). 180 
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3.2.2 The SMRF data assimilation method 

Xie (2005) shows that in the process of data assimilation, if the error of long wavelength could not be well corrected, the 

short wavelength error could not be well corrected either. The SMRF is a method that can realize the sequential correction 

from long wavelength to short wavelength and extract multiscale information through a single three-dimensional variational 

(3DVAR) analysis (Zhang et al., 2020). 185 

In SMRF, firstly, a recursive filter operator  with the small filter parameter  is applied to the initial guess field. The 

parameter  is set to small value in order to ensure that information of all spatial scales could pass the filter. The cost 

function and its gradient are calculated based on the filtered initial guess field. Then, another recursive filter operator  with 

the parameter  is applied to the negative gradient of the cost function. This filter parameter  should select a larger value 

at the beginning to extract the "longest" wavelength information in the observational data. A line search process (More and 190 

Thuente, 1994) is performed along this gradient direction to find the appropriate step size, and the estimated value is updated. 

The observational residual is obtained by removing the extracted signal from the observation data. Then, the filter parameter   

is appropriately reduced to extract the "maximum" scale signal in the observational residual at current iteration. As the 

number of iterations increases, the filter parameter  sequentially decreases, so that the information of each scale can be 

extracted successively from long wavelength to short wavelength in order to obtain the analysed field. 195 

3.3 Evaluation criteria 

In order to evaluate the accuracy of the BRMT constructed by the proposed regression model and prove its own superiority 

by comparison with other data sets (Sect. 4) or other numerical prediction experiments (Sect. 5), five statistical metrics are 

used in this paper. It includes RMSE, mean deviation (Bias), Pearson correlation coefficient (Coff), standard deviation (STD) 

and centred root mean square error (CRMSD). The meaning and specific calculation methods are as follows: 200 

                                                                                                                                                   (1) 

                                                                                                                                                             (2) 

                                                                                                                              (3) 
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                                                                                                                                                        (4) 

                                                                                                                         (5) 205 

where,  represents the label of point,  represents the observed value of the -th point,  represents the data set value (or 

forecast value) of the -th point,  and  represents the average value,  represents the total number of points with valid 

values (except land points),  and  indicate that they can represent both observed values and data set values. 

STD, CRMSD and Coff are usually expressed on a polar graph based on the cosine relationship of Eq. (6), which is called 

Taylor graph. The standardized Taylor chart needs to divide the STD and CRMSD of the observed value and the data set 210 

value by the STD of the observed value. The standardized STD and CRMSD of data set are expressed as NSTD and 

NCRMSD, respectively. 

                                                                                                 (6) 

                                                                                                                                                                  (7) 

                                                                                                                                                         (8) 215 

 represents the STD of the observed value,  represents the STD of the data set value. 

4 Comparison of BRMT with in situ observations and other data sets 

4.1 Comparison with other data sets 

Arctic sea ice has significant seasonal variation. The sea ice extent reaches its maximum from February to March. With the 

arrival of the melting season, the sea ice decreases rapidly in July, and the melting speed slows down to some extent in 220 

August. The minimum sea ice extent is usually reached in September. We qualitatively and quantitatively compare the 

averaged SIT via the BRMT with the counterparts of three data sets (CMST, PIOAMS and GIOMAS) in July, August and 

September, respectively. 

From 2011 to 2015, the averaged SIT in July of BRMT is below 1.5 m in the Barents Sea, Kara Sea, Laptev Sea, East 

Siberia Sea and Chukchi Sea. The SIT near the Centre Arctic is about 1.5-2 m, which is relatively consistent with the 225 

performance of PIOMAS (Fig. 3a). The SIT from BRMT in the north of the Canadian Arctic Archipelago (CAA) is slightly 
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lower than that of other data sets, where is mostly covered by ice more than 2.5 m, along with the thick ice more than 3.5 m 

in the coastal area. In contrast, the SIT from CMST in the Central Arctic and the north of the CAA is about 0.5 m thicker 

than BRMT on average, and the SIT in other regions is equivalent to BRMT. Different from other data sets, GIOMAS 

presents the distribution of thicker ice thickness in the whole region, especially for the depiction of thin ice below 1 m. 230 

 

Figure 3. Spatial distribution of sea ice thickness (m) in July (a), August (b) and September (c) averaged from 2011 to 2015 for BRMT, 

CMST, PIOMAS and GIOMAS. 

The differences of the SIT distribution between the four data sets are similar in August and September (Figs. 3b-c). It is 

worth mentioning that PIOMAS always seems to tend to have a smaller sea ice extent and it is difficult to reproduce the 235 

thick ice along the coast, but BRMT have a larger sea ice extent and the meridional gradients at a narrow band along the 

northern coast of Greenland and the CAA is much steeper in the BRMT than in the PIOMAS. In addition, the ice thickness 

around the poles of CMST in the whole melting season is always higher than that of other data sets and even in September, 

the ice thickness is at least about 1.75 m. In contrast, the SIT in September of BRMT around the pole is lower, about 1.25 m. 

In fact, in the detailed comparison between the data sets and the SIT observation of IMB in Sect. 4.2.3, it can be seen that 240 
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CMST does generally overestimate the SIT in the central Arctic, and the SIT from BRMT corrects some of these biases 

present in CMST. 

The frequency distribution of the SIT from BRMT in different ice thickness ranges and different months of melting season is 

almost consistent with the other three data sets (Fig. 4). Overall, in the melting season, 0-1 m thin ice accounts for about half 

of the total ice thickness classification, which is the main ice thickness range. The frequency of the SIT from BRMT in this 245 

range is higher than that of CMST and GIOMAS, increasing by about 12.24 % and 22.45 %, respectively. Correspondingly, 

in the thick ice above 3.5 m, which accounts for less than 1 % of the total ice thickness classification, the frequency of the 

SIT from BRMT is significantly lower than CMST and GIOMAS by 71.86 % and 62.09 %, respectively. Although there is 

not enough in situ SIT observation data covering the whole Arctic in the melting season to prove which data set is more in 

line with the real situation, previous studies have shown that the SIT simulated by GIOMAS in spring and autumn is always 250 

thicker than that observed by cryosat-2 (Watanabe et al., 2019). In addition, the difference between PIOMAS and ICESat 

from February to March in 2004-2008 indicates that PIOMAS has too much thin ice (Schweiger et al., 2011). Compared 

with PIOMAS, which consistently have the maximum frequency in the thickness range of 0-0.5 m throughout the melting 

season, the frequency of the SIT from BRMT in this range decreased by 9.63 %. 

From the discussion above, in the melting season, the SIT from BRMT will not overestimate the SIT below 0.5 m, nor will 255 

there be a large extent of thick ice. It is a better compromise among several other SIT data sets. This fully reflects the 

advantages of big data and machine learning, that is to say, BRMT can make full use of the sea ice data and real-time 

satellite observation data for many years in history, so as to obtain higher precision ice thickness. 

 

Figure 4. Histograms of mean sea ice thickness (m) frequency distributions in July (a), August (b) and September (c) averaged from 2011 260 

to 2015 for BRMT, CMST, PIOMAS and GIOMAS. 
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4.2 Comparison with BGEP ULS data 

Through the analysis in Sect. 4.1, we know that the SIT of GIOMAS is similar to CMST in the frequency distribution of thin 

ice and thick ice, and GIOMAS has biases that is harder to ignore compared with the observation. Therefore, considering the 

simplicity of description and the representativeness of data sets, only three SIT data sets from BRMT, CMST and PIOMAS 265 

are retained when compared with BGEP mooring equipment and IMB buoy. In addition, in order to facilitate the comparison 

with the in situ observation, the objective analysis method is used to process the SIT of data sets (BRMT, CMST and 

PIOMAS in this section or forecast model in Sect. 5) at grid points in a certain range near the observation points. The 

calculation formula is as follows: 

                                                                                                                                                                      (9) 270 

where,  is the number of the data set grid points within the influence radius of the observation position,  represents the 

SIT at the -th data set grid point,  represents the averaged SIT of the data set within the influence radius of the 

observation position, and  represents the weight. The calculation formula is as follows: 

                                                                                                                                                              (10) 

where,  represents the influence radius, and its value is determined by the density of data set grid points near the 275 

observation position.  represents the distance between the  -th data set grid point and the observation point. 

In order to make a visual comparison with the SIT observations at three mooring locations of BGEP (BGEP_A, BGEP_B 

and BGEP_D), the time series diagrams between the SIT of BRMT, CMST, PIOMAS and the observations at different 

locations are drawn respectively (Fig. 5). It is not difficult to find that the three data sets basically reproduce the changes of 

SIT in different years and months. Compared with CMST and PIOMAS, which depend on the SIT of the background field 280 

based on numerical model simulation, the SIT from BRMT constructed based on the SIC of the single grid point has stronger 

fluctuation in a short time, which is more similar to observation. The numerical model is affected by factors such as 

resolution, meteorological forcing and the completeness of dynamic equation, which is difficult to reproduce for some small-

scale processes. At the same time, the BRMT model is separately operated for each grid every day, resulting in the 

independent of the constructed SIT in adjacent time and space, which can describe some nonlinear processes and reproduce 285 

some small-scale disturbances and abrupt change. It also makes the SIT from BRMT more predictable for the overall 

variation trend of SIT increasing or decreasing than the other two data sets with more gentle variation. For instance, in 

September 2014, at the position of BGEP_D mooring equipment, the SIT firstly decreases and then increases slightly. The 
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SIT from BRMT well captures this feature. In contrast, the change range of PIOMAS is very weak, and CMST even shows a 

trend of rising first and then falling (Fig. 5c). 290 

Except for 2013 and 2014 at BGEP_B station, the SIT from BRMT is closer to the observed data than the CMST and 

PIOMAS data as a whole (Fig. 5). In July every year, the SIT at each station exceeds 1m, and then decreases rapidly with 

time; The sea ice thickness reaches the minimum at the end of August and the beginning of September, and can be reduced 

to zero in some years; After mid-September, the sea ice thickness gradually increased. The SIT from BRMT is larger than 

that from observation and CMST and PIOMAS data during 2013 and 2014 at BGEP_B station. In order to further analyse 295 

the reason for the error of the SIT from BRMT, the reanalysis data set TOPAZ used to build BRMT is added to the 

comparison in Fig. 5, as shown by the yellow dotted line. We note that TOPAZ has significantly overestimated SIT in most 

time periods compared to the observations of the three mooring facilities so the SIT from BRMT is inevitably affected by the 

positive deviation of the basic data set. At the same time, an obvious conclusion is that the SIT processed by BRMT has 

better consistency with the observations than TOPAZ. This can be attributed to the fact that the relationship between SIC and 300 

SIT in TOPAZ is relatively real under the constraints of sea ice physical equation in the numerical model. Based on this 

relationship, the SIC from satellite remote sensing is used by BRMT to construct SIT, so that it is more accurate than 

TOPAZ. 
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 305 

Figure 5. Time series of sea ice thickness (m) during melting season from 2011 to 2015 for BGEP ULS data (blue), BRMT (red), CMST 

(black), PIOMAS (green) and TOPAZ (yellow) at BGEP mooring facilities BGEP_A (a), BGEP_B (b), and BGEP_D (c). J, A and S 

represents July, August, and September, respectively. Locations (d) of mooring facilities BGEP_A (150° W, 75° N), BGEP_B (150° W, 78° 

N), and BGEP_D (140° W, 74° N) are represented by magenta box, red box, and blue box, respectively. 

Then, Fig. 6 displays the scatter diagrams of ice thickness between three data sets (BRMT, CMST, PIOMAS) and three 310 

mooring facilities (BGEP_A, BGEP_B, BGEP_D). Compared with the in situ observation of mooring equipment at 

BGEP_D location, CMST obviously tends to overestimate the thin ice below 1 m. The simulation bias of CMST for ice 

thickness about 0.5 m is even as high as 2 m, and the correlation with observation is only 0.7544. In contrast, the correlation 

of the SIT from BRMT is better than the other two data sets (R=0.843), and the average bias is only 0.0675 m. From the SIT 

time series of BGEP_D in Fig. 5, it can be seen that the maximum deviation between CMST and observation always occurs 315 

in September. In fact, the geographical location of BGEP_D in September is located at the junction of outer thin ice area and 

inner thick ice area of sea ice in Beaufort Sea (Fig. 3c). When the SIT from BRMT is still in the stage of sea ice melting in 

September as observed, the SIT of CMST has gradually begun to freeze, resulting to the thicker SIT compared with the 

observation. This may be due to the fact that CMST has no SIT data for assimilation in the melting season, resulting in that 

the SIC and SIT in the transition area between thin ice and thick ice are not well related in essence, while BRMT makes up 320 

for the defect in the matching range between SIC and SIT. 

On the whole, PIOMAS has better correlation with the observation of three mooring facilities. However, compared with the 

SIT from both BRMT and CMST, it always tends to underestimate the SIT with more than 1.5 m, especially at the beginning 

of the melting season (such as July in 2011-2014 at BGEP_A location, July in 2012 and 2014 at BGEP_D location). In 

addition, according to the calculation, the deviation of SIT between the TOPAZ and the observation at BGEP_B is the 325 

largest among the three mooring facilities (Fig. 6k). This may be the most likely reason why the SIT from BRMT performs 

slightly worse at BGEP_B than CMST and PIOMAS (middle column of Fig. 6). 
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Figure 6. Scatter plot of sea ice thickness (m) during 2011-2015 melting season between BRMT (a-c), CMST (d-f), PIOMAS (g-i), 

TOPAZ (j-l) and BGEP moorings facilities BGEP_A (a, d, g, j), BGEP_B (b, e, h, k), BGEP_D (c, f, i, l), respectively. The blue line 330 

indicates equality and the red line represents the best fit to the observations. The number of total observation points, data set bias, and 

dataset-observation correlation (R) are listed. 

The qualitative comparison of error evaluation criteria among the SIT from BRMT, CMST and PIOMAS is further 

quantified. The details of RMSE and Bias in each year are shown in Fig. 7. We divided three mooring facilities and five 

years into 15 groups of data, each of which contains one for BRMT, one for CMST and one for PIOMAS. Based on this, 335 

according to the comprehensive performance of RMSE and Bias, it is statistically obtained that in 8 groups, the SIT from 

BRMT is significantly better than CMST and PIOMAS or not obviously different from the results of an optimal data set, of 

which there are 4 groups in each of BGEP_A and BGEP_D. For the 4 groups in BGEP_B, the SIT of BRMT is worse than 

the other two data sets, with the worst result in 2013 (RMSE=0.6124 m, Bias=0.4862 m). The RMSE and Bias of CMST are 

apparently greater than those of BRMT and PIOMAS in BGEP_D and they even reach 0.9888 m and 0.8270 m, respectively 340 
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in 2014. The Bias of PIOMAS SIT has more negative values, which further indicates that the SIT of PIOMAS is 

underestimated relative to observation. 

 

Figure 7. RMSE (m) versus bias during melting season from 2011 to 2015 (marked in different colours) for BRMT ( ), CMST ( ) and 

PIOMAS ( ) relative to BGEP moorings BGEP_A (a), BGEP_B (b) and BGEP_D (c). 345 

Based on the above analysis, we attempt to give some conclusive suggestions on the selection of SIT data sets in the melting 

season. For the region near the location of BGEP_A and BGEP_D mooring facilities, BRMT is not a disappointing option. 

At BGEP_B, however, BRMT is not recommended, and CMST may be the better choice. It should be noted that near the 

location of BGEP_D, the CMST is not convincing. Compared with the observation, BRMT and CMST are more likely to 

overestimate SIT, while PIOMAS is more likely to underestimate SIT. 350 

4.3 Comparison with IMB buoy data 

Compared with the fixed position BGEP mooring equipment, the IMB buoy data can provide us with more information 

about the temporal and spatial variation of SIT. For comparison, a total of 25 available buoy data in the melting season from 

2011 to 2015 are selected (Fig. 8d). Because Taylor diagram can illustrate how well the models match in terms of correlation, 

RMSE and the ratio of variances (Taylor, 2001), it is considered to summarize the relative merits of different models and 355 

track changes in performance of models. In addition, there are systematic deviations for CMST and PIOMAS, and they can 

be reduced by removing the average thickness of each data set (Mu et al., 2018a). Accordingly, CRMSD and STD of SIT in 

BRMT, CMST and PIOMAS are normalized. The Taylor diagrams of the three data sets are shown in Figs. 8a-c respectively. 
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Figure 8. Taylor diagrams of (a) BRMT, (b) CMST and (c) PIOMAS with respect to all available IMB buoy data during melting seasons 360 

from 2011 to 2015. The green dotted lines indicate the normalized CRMSD. The trajectories of all the IMB buoys are shown in (d). The 

reference observations are indicated by Ref in red. 

Generally speaking, most of the points in BRMT, CMST and PIOMAS are concentrated in the range where NSTD and 

NCRMSD are less than 5, and only some sporadic points are scattered outside. We make an in-depth analysis of the points of 

these two parts. In the part with small deviation evaluation criteria value (Enlarged figure is not shown), the correlation 365 

between the SIT from BRMT and IMB buoy data is better. The averaged value of correlation coefficient in the SIT from 

BRMT is about 0.69, while in CMST and PIOMAS, this value is 0.46 and 0.48 respectively. The CRMSD of the SIT from 

BRMT is not obviously different from CMST and PIOMAS, and the normalized values of three data sets are 1.40, 1.34 and 

1.38 respectively. However, compared with the NSTDs of CMST and PIOMAS (1.41 and 1.52), BRMT performed slightly 

worse (1.80). The changes of different models on different statistical variables can be explained. Because the construction of 370 

BRMT is independent in space and time, it has no constraints or correlation, which leads to the fluctuation of SIT in adjacent 

space and time is greater than that in other data sets. Nevertheless, this also explains why the difference in NCRMSD, which 

removes the mean of time series (Mu et al., 2018a), between BRMT and the other two data sets is not as large as that in 

NSTD. What’s more, the better correlation between the SIT from BRMT and IMB buoy maybe is related that BRMT 
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contains more historical information of SIT in melting season, which also means that the SIT from BRMT can better reflect 375 

the variation trend than CMST and PIOMAS. 

It can be clearly seen from Figs. 8a-c that the SIT of the three data sets collectively shows a large deviation at the same six 

IMB buoys, namely 2011L, 2012G, 2013G, 2013H, 2014F and 2015E. Actually, the SIT of the six IMB buoys show the 

same characteristics. Here, the IMB_2013H buoy (Fig. 9a) is chosen as an example to illustrate because its NSTD and 

NCRMSD in the three data sets reached the maximum. The SIT of this buoy has almost no change from 3-30 September, 380 

2013 and the STD is only 0.009 but the SIT from BRMT, CMST and PIOMAS show some fluctuations. Although the 

fluctuation amplitude is not violent, the ratio of STD and CRMSD in three data sets to the observed STD is more than 10 

times. 

 

Figure 9. Sea ice thickness (m) time series on the trajectories of (a) 2013H, (b) 2013B, (c) 2014I and (d) 2013F in different region: IMB 385 

buoy data (blue), BRMT (red), CMST (black), PIOMAS (green) (The date format is yyyy/mm/dd). Each IMB buoy trajectory is shown in 

the top left corner which is indicated by a red line. The statistics for IMB buoy data, BRMT, CMST, and PIOMAS are also shown in each 

plot (STDs and CRMSDs are unnormalized). 

Based on the above analysis, in order to analyse the results more comprehensively and deeply, an additional comparison of 

RMSE between the SIT from BRMT, CMST, PIOMAS and IMB buoys is added (the complete results can be seen in Table 390 

A2 in the Appendix). In order to enhance the readability of the results, the RMSEs of the SIT from BRMT, CMST and 

PIOMAS are divided into three levels: excellent, good and failed. Then, the RMSEs in Table A2 are classified according to 
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error levels, sea ice types and regions. The number of RMSEs in each category is counted for BRMT, CMST and PIOMAS, 

respectively, just as shown in Fig. 10. First of all, in terms of the division of regions, there are the most buoys in the Central 

Arctic and Beaufort Sea, with 11 buoys. Because the trajectory of the only one buoy in the Chukchi Sea during the study 395 

period is in the Central Arctic, its results are counted into the Central Arctic for the convenience of expression. In the Central 

Arctic, the overall performance of the SIT from BRMT is extremely better than that of CMST and PIOMAS, and the RMSE 

of only one buoy is the worst in the three data sets (Fig. 10a). In the Beaufort Sea, although the number of BRMT in the 

excellent level is not a few, the number of BRMT in the failed level is also large, and the overall result is basically the same 

as that of PIOMAS (Fig. 10b). There are relatively few buoys in E Greenland Sea and Laptev Sea, only 2 and 1 respectively. 400 

There is a remarkable difference in the performance of BRMT in these two regions. Compared with CMST and PIOMAS, 

the results are the best in E Greenland Sea and the worst in Laptev Sea (Figs. 10c-d). 

 

Figure 10. Bar chart of total numbers for BRMT (blue), CMST (red) and PIOMAS (yellow) distributed in three scales (excellent, good, 

faired) based on RMSE metric statistics of all datasets, respectively. We show values over all ice types (a-d), MYI (e-h), FYI (i-l) and over 405 

Central Arctic (a, e, i), Beaufort Sea (b, f, j), E Greenland Sea (c, g, k), Laptev Sea (d, h, l). MYI=Multi-year Ice, FYI=First-year ice. 

Now the representative time series of SIT are discussed respectively (Figs. 9b-d). The IMB_2013B buoy located in the 

Central Arctic, shown in Fig. 9b, has a complete record of the SIT throughout the melting season in 2013. It can be seen 

from the figure that the SIT from BRMT perfectly captures the trend that the SIT firstly thickens slightly and then decreases 

gradually, and the correlation coefficient with the observation reaches 0.78. On the contrary, CMST and PIOMAS go the 410 

opposite way. In the time series of other buoys in the Central Arctic, CMST almost always tends to overestimate SIT, while 

PIOMAS tends to underestimate SIT most of the time. Especially in September at the end of the melting season, the SIT of 
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CMST invariably tends to increase during this period, but in fact, the sea ice continues to slowly melt. Nevertheless, the SIT 

from BRMT captures the variation of SIT almost every time. It is inferred that the BRMT with the historical correlation 

information between SIC and SIT can better reflect the change trend of SIT. It is gratifying that BRMT not only performs 415 

well in multi-year ice (MYI), but also shows quite good performance in first-year ice (FYI) (Figs. 10e, i). It is remarkable 

that due to the limited horizontal resolution of the basic data used to construct SIT, the SIT error of BRMT near the land is 

also relatively large. 

As shown in Fig. 9c, the observed SIT in the Beaufort Sea continues to decline from 1.3 m in mid-late July to 0.8 m in early-

August, while the averaged SIT of BRMT remain at 1.5 m in mid and late July, showing a downward trend after August 6, 420 

and then close to the observation in mid-August. In September of Fig. 9d, the SIT has been slightly underestimated by 

BRMT. Especially at the end of September, the SIT of BRMT still fluctuated up and down at 0.8 m, while the observed SIT 

was always above 1.1 m. These are speculated that BRMT has the lag response to the initial melting state and the stagnation 

to maintain the melting state at the end of melting season when facing the regions with the rapid melting or freezing of sea 

ice. Although the performance of the SIT from BRMT in the Beaufort Sea is not as prominent as that in the Central Arctic, 425 

some regularities in different periods are still found, which also provides some new ideas for the improvement of the 

subsequent model. 

Compared with the Central Arctic and the Beaufort Sea, the number of buoys in the E Greenland Sea and the Laptev Sea is 

too small to draw some convincing conclusions. However, we are gratified that the SIT from BRMT has a brilliant 

performance in both MYI and FYI in the E Greenland Sea (Figs. 10g, k). Finally, the performance of the SIT from BRMT in 430 

different ice types has no significant tendency to be good or bad, so it can be considered that the above conclusion is valid 

for all ice types. This conclusion may be more reliable if more buoys of the type of FYI are involved in the comparison. 

5 Retroactive real-time forecast experiments 

In the Sect. 4, we have made a detailed analysis of the advantages and disadvantages of the reconstructed SIT via BRMT 

compared with other data sets and its accuracy compared with in situ observation. However, it still makes us wonder whether 435 

the forecast accuracy of Arctic sea ice variables can be improved when the real-time reconstructed SIT from BRMT is 

introduced into the assimilation process? As a consequence, taking September 2011 as an example, based on the SIT from 

BRMT, this section uses the multi-scale sea ice multi-element joint assimilation method to carry out the retroactive real-time 

forecast experiments in the Arctic melting season. 

5.1 Experiment design 440 

In the forecast experiments, numerical results of SIC and SIT from the ice-ocean coupled model are used as the background 

field on 1 September 2011; the SIC from satellite remote sensing and the SIT from BRMT at the corresponding time are 

used as the observation field (The SIT field from on 1 September is shown in Fig. 11). Using the SMRF method, SIC and 
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SIT observations are assimilated to update the background field to obtain the analysed one; then, the analysed field is 

regarded as the initial forecast field, and the forecast results from 2-8 September 2011 are obtained by the 7 d integration of 445 

the ice-ocean coupled model. In the next step, the 24 h forecast results (i.e., 2 September) are used as the background field 

and the observed SIC and the SIT from BRMT at the corresponding time are assimilated to provide the initial field of the 

next 7 d forecast; the forecast results from 3-9 September 2011 are obtained by model simulation. According to this process, 

the data assimilation and model integration are alternately rolled until 30 September 2011, and the one-month numerical 

forecast of Arctic sea ice is realized. 450 

 

Figure 11. The constructed sea ice thickness from BRMT on 1 September 2011 (unit: m). 

Table 1. Comparison of Exp_Ctrl, Exp_SIC and Exp_SIC&SIT initial fields. 

Experiment title Assimilation method Assimilated SIC Assimilated SIT 

Exp_Ctrl None None None 

Exp_SIC The SMRF method SIC from Satellite remote sensing Empirically adjusted SIT 

Exp_SIC&SIT The SMRF method SIC from Satellite remote sensing The SIT from BRMT 

The initial fields for the three experiments are shown in Table 1. The Exp_Ctrl is a control experiment, which does not 

assimilate any data and only integrates forward through the ice-ocean coupled model. The other two experiments both use 455 

the SMRF data assimilation method, but differ in the construction of the initial SIC and SIT. The Exp_SIC only assimilates 

the SIC and empirically adjusts the SIT. The Exp_SIC&SIT jointly assimilates both the SIC and the SIT from BRMT. 
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5.2 Results 

5.2.1 Sea ice concentration forecast 

For intuitive and effective comparison, RMSE time series of SIC forecast results relative to satellite remote sensing 460 

observation in the three experiments (Exp_Ctrl, Exp_SIC, Exp_SIC&SIT) are shown in Fig. 12a. In order to more clearly 

express the difference of SIC between joint assimilation and single-variable assimilation, RMSE time series in the Exp_SIC 

and Exp_SIC&SIT experiments in Fig. 12a are enlarged (Fig. 12b). 

 

 465 
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Figure 12. (a) RMSEs of sea ice concentration during 2 September to 7 October 2011 (each segment represents the 7 d forecast) between 

the forecast results of Exp_Ctrl (green), Exp_SIC (red), Exp_SIC&SIT (blue) and the SSMI observation. (b) Enlarge the results of 

Exp_SIC and Exp_SIC&SIT in (a). 

It can be seen from Fig. 12a that the RMSE in Exp_Ctrl is within the range of 0.2-0.25, with an average value of 0.23. 

However, RMSEs in Exp_SIC and Exp_SIC&SIT are in the range of 0.07-0.12, which are much smaller than Exp_Ctrl. In 470 

other words, data assimilation greatly reduces the deviation between the forecast results and the satellite observation. It is not 

difficult to see from Fig. 12b that although the two experiments use the same initial field of SIC, the RMSE in 

Exp_SIC&SIT is always smaller than that in Exp_SIC no matter in which forecast period. Obviously, the initial fields of SIC 

and SIT are improved in Exp_SIC&SIT at the same time, which makes the dynamic coordination of SIC and SIT better in 

the physical meaning, and then indirectly improves the prediction accuracy of SIC. 475 

In addition, the relationship graph between the forecast error and the forecast time suggests that RMSEs of 1-7 days SIC 

forecast results in Exp_SIC&SIT are significantly smaller than those in Exp_SIC, especially during the period from 2-12 

September and 20-27 September (Fig. 13). This indicates that the improvement of the SIT initial field not only significantly 

improves the SIC forecast accuracy, but also has a long-term stable effect. To sum up, the Exp_SIC&SIT with BRMT added 

to the assimilation of the original single variable, whether in terms of the performance of the overall RMSE of each 480 

experiment, or in terms of the variation of the error with the prediction time, shows remarkable stability and accuracy in the 

prediction application of Arctic SIC. 
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Figure 13. RMSEs of the 1 d (orange), 2 d (blue), 3 d (green), 4 d (brown), 5 d (dark blue), 6 d (pink), 7 d (sky blue) sea ice concentration 485 

forecast results in Exp_SIC(a), Exp_SIC&SIT (b) relative to the SSMI observation during the period of 2 September to 7 October 2011. 

Here, we give a specific example to illustrate the difference of sea ice freezing process between the two cases of assimilating 

SIC and jointly assimilating both SIC and SIT. The observation indicates that there is a relatively obvious sea ice freezing 

process during 17-20 September 2011 (Fig. 14a). Although the SIC forecast results from the two comparative experiments 

starting on 17 September also can capture this process well (Figs. 14b and 14c), the Exp_SIC has a wider range of SIC 490 

values greater than 0.7 compared with the observation and Exp_SIC&SIT. For further accurate analysis, the marginal ice 

zone (defined as SIC < 0.3) of satellite observation and two experiments are plotted respectively, as shown in Fig. 15. As 

shown in Figs. 14b and 15b, the outline and hierarchical structure of marginal ice zone in Exp_SIC are relatively vague, and 

especially in the range of 120° W-160° W, the marginal ice zone is fractured or missing. Moreover, with the increase of 

prediction time, more and more scattered sea ice inconsistent with the observation is generated outside the marginal zone. In 495 

Exp_SIC&SIT, which jointly assimilates the SIC and SIT, the extent of the marginal ice zone is basically consistent with the 

observation, the changes of SIC are well-bedded, and the fine structure of the sea ice in the East Siberian Sea can also be 

accurately captured. The essential reason for the obvious difference in the marginal ice zone between the two comparative 

experiments is that the extent of SIC and SIT in Exp_SIC&SIT can match each other, and the corresponding relationship 

between them is reasonable. However, for Exp_SIC, driven by the model background field of SIT with large error, the sea 500 

ice in the SIT forecast field is too thick, and even the SIT at the marginal zone is almost the same as that in the inner zone. 

These reasons indirectly lead to the narrow extent of marginal ice zone in its SIC forecast field, which can not precisely 

reflect the real state of sea ice. The same conclusion can be obtained in other forecast periods. 
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Figure 14. Sea ice concentration (b, c) forecasts of Exp_SIC (b) and Exp_SIC&SIT (c) for 1-4 days based on 17 September 2011. The 505 

observed sea ice concentration fields (a) on the corresponding day are shown. 
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Figure 15. Snapshots of marginal ice zone forecasts for 1-4 days on 17 September 2011. The observation (a) and the forecasts of Exp_SIC 

(b) and Exp_SIC&SIT (c) are shown. 

5.2.2 Sea ice thickness forecast 510 

Figure 16 compares the 24 h forecast SIT of Exp_Ctrl, Exp_SIC, and Exp_SIC&SIT with the observed SIT from ULS 

mooring facilities (BGEP_2011B, BGEP_2011D) and buoys (IMB_2011K, IMB_2011L).  

It is not difficult to see from Fig. 16 that the predicted SIT of Exp_Ctrl continuously tends to be overestimated. Exp_Ctrl has 

a flat performance when the observation fluctuates sharply with time, while Exp_Ctrl shows an abnormal fluctuation when 

the observation is flat. It can be seen from Table 2 that the predicted SIT of the other two experiments with the data 515 

assimilation (Exp_SIC and Exp_SIC&SIT) are more precise than that of Exp_Ctrl without data assimilation. 
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Figure 16. Comparison of averaged sea ice thickness (unit: m) from 1-30 September 2011 between the 24 h forecast results of Exp_Ctrl 

(green dotted line), Exp_SIC (black dotted line) and Exp_SIC&SIT (red dotted line) and the observations (solid blue line) of 

BGEP_2011B (a), BGEP_2011D (b), IMB_2011K (c), IMB_2011L (d). 520 

Table 2. Average absolute deviations of sea ice thickness (m) between 24 h predicted results of Exp_Ctrl, Exp_SIC, Exp_SIC&SIT and 

observations. 

 Exp_Ctrl Exp_SIC Exp_SIC&SIT 

BGEP_2011B 2.23 0.59 0.28 

BGEP_2011D 3.21 0.74 0.32 

IMB_2011K 2.72 1.63 0.43 

IMB_2011L 1.46 1.33 0.14 

Compared with the observations of the BGEP_2011B (Fig. 16a), the fluctuation trend of SIT decreasing first and then rising 

with time can be better captured in Exp_SIC&SIT. In contrast, the initial SIT field of Exp_SIC has not been corrected by 

observed SIT, resulting in a large initial error. Although the prediction error of SIT is reduced under the assimilation of 525 

observed SIC, it is still quite different from the observation. Compared with the observations of BGEP_2011D (Fig. 16b), 

the SIT of Exp_SIC&SIT generally tends to be underestimated and cannot present the peak value of observed SIT, while its 

averaged absolute deviation compared to observed data (0.32 m) is much smaller than Exp_SIC (0.74 m). 
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Among four groups of observations, the averaged absolute deviations between the forecast results and the observation at the 

IMB_2011K buoy are the largest, as shown in Table 2. As an example, we analyse the results on 21 September, in which 530 

time the absolute deviation between Exp_SIC&SIT and the IMB_2011K buoy is biggest. In fact, according to the predicted 

sea ice extent on that day, the IMB_2011K buoy locates at the sea ice marginal area of the Beaufort Sea. According to the 

results of the frequency distribution of SIT by BRMT in September in Sect. 4.1 and the variation law of SIT by BRMT in the 

Beaufort Sea at the end of September in Sect. 4.3, there is a situation of overestimating the amount of thin ice and 

continuously maintaining the melting state. Nevertheless, the real situation could be that the buoy was located in the non-535 

marginal area with thicker ice, or the SIT in the marginal area of the Beaufort Sea was underestimated by BRMT. 

The IMB_2011L buoy located in the Central Arctic has been in operation since 13 September 2011, and a total 19 d data 

have been obtained until 1 October. It is worth noting that the absolute deviations of SIT in Exp_SIC&SIT at the 

IMB_2011L buoy is the smallest during four groups of observations, with a value of 0.14 m. This result is consistent with 

the conclusion in Sect. 4.3. In other words, BRMT can better capture the variation trend and range of SIT in the Central 540 

Arctic, so the accuracy of predicted SIT in the Central Arctic is higher than that in other regions when it is applied to the 

numerical forecast of SIT as an assimilation observation field. 

Table 3. Average absolute deviations of sea ice thickness (m) between 168 h predicted results of Exp_Ctrl, Exp_SIC, Exp_SIC&SIT and 

observations 

 Exp_Ctrl Exp_SIC Exp_SIC&SIT 

BGEP_2011B 2.25 0.25 0.22 

BGEP_2011D 3.29 0.69 0.27 

IMB_2011K 3.02 1.61 0.39 

IMB_2011L 1.52 1.39 0.12 

For the three experiments (Table 3), the average absolute deviations between the 168 h forecast results and the observed 545 

values are also compared. The results show that, similar to the 24 h forecast results, only assimilating the SIC in the 

Exp_SIC can reduce the average absolute deviation of SIT by more than 50 % compared with the Exp_Ctrl, except for the 

IMB_2011L observation. Moreover, in Exp_SIC&SIT, jointly assimilating SIC and reconstructed SIT can further reduce the 

average absolute deviation of SIT compared with Exp_SIC, especially in IMB_2011K and IMB_2011L, which can be 

decreased by more than 80 %. Therefore, the improvement of SIT prediction accuracy by joint assimilation of SIC and 550 

reconstructed SIT will not weaken with the increase of forecast time, which also means its short-term prediction performance 

is stable. However, it should be noted that in Exp_SIC and Exp_SIC&SIT, the average absolute deviations of 168 h forecast 

results are slightly smaller than those of 24 h forecast results (Tables 2 and 3). This may be attributed to the fact that only 

SIC or SIT are assimilated in the initial field, while other variables such as sea ice velocity and sea surface temperature do 
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not match in dynamics. With the increase of forecast time, they are gradually adjusted and consistent through dynamic 555 

integration, resulting in the improvement of prediction accuracy. 

5.2.3 Interaction between SIC and SIT 

In order to deeply explore the role of BRMT based on the interaction between SIC and SIT in Exp_SIC&SIT prediction 

experiment, the BGEP_2011B mooring facility is taken as an example. A line segment AB is drawn in Fig. 17, which is the 

550 km long. The position BGEP_2011B is taken as the midpoint of AB, which is 275 km away from A or B point. The 560 

position of point A is (80° 9.666′ N, 155° 20.322′ W, and the position of point B is (75° 51.126′ N, 144° 30.606′ W). 

 

Figure 17. The schematic plot of mooring facility BGEP_2011B as the midpoint of line AB with a total length of 550 km. 

In Fig. 18, the correlation coefficients along AB between the 24h forecast results of SIC and SIT in Exp_SIC and 

Exp_SIC&SIT from 1-30 September 2011 is shown. The white grid indicates that there is no sea ice at this location. As can 565 

be seen from Fig. 18, both Exp_SIC and Exp_SIC&SIT show a positive correlation between SIC and SIT. It means that the 

larger the sea ice extent is, the thicker the SIT remains, which is consistent with the thermodynamics mechanism of sea ice 

proposed by Lisæter et al. (2003). 

It is noted that in Fig. 18a, correlation coefficients between SIC and SIT within the range of 0-275 km are mostly above 0.75, 

while there is a large extent of no sea ice within the range of 275-550 km and the rest values are mostly less than 0.75 except 570 

for the relatively high abnormal value of correlation coefficient due to the lack of data. This may be attributed that Exp_SIC 

only assimilates SIC, leading to poor dynamic coordination between SIC and SIT in the model integration process and the 

underestimation of sea ice extent. With the increase of the distance, the corresponding latitude gradually decreases and gets 

closer to the edge of the sea ice, so that the sea ice becomes thinner and its thermodynamic properties becomes more and 
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more localized, resulting in the weak correlation. This also explains why the 24 h predicted SIT of Exp_SIC is significantly 575 

different from the BGEP_2011B and even the predicted SIT tends to be close to 0 after 12 September (Fig. 16a). 
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Figure 18. The correlation coefficients plot along AB between the 24 h forecast results of sea ice concentration and sea ice thickness in 

Exp_SIC (a) and Exp_SIC&SIT (b) from 2 September to 1 October 2011 (Line AB intersects BGEP_2011B at 275 km (red heart)). 580 

Similar to Fig. 18a, the correlation coefficients in the range of 0-275 km are higher than that in the range of 275-550 km in 

Fig. 18b. However, the difference is that the correlation coefficient corresponding to 96.7 % grid points in Fig. 18b is 0.95 or 

above, much higher than the 38.4 % in Fig. 18a. This result is not surprising. It is sufficient to indicate that the good 

interactive relationship in BRMT between SIC and SIT has a positive impact on the coordination of the two in the model 

integration process. In particular, it is noted that the predicted SIT of Exp_SIC&SIT almost coincide with the observations 585 

from 7-12 September in Fig. 16a. Correspondingly, the correlation coefficient during this period between predicted SIC and 

predicted SIT is close to 1 in the heart-shaped row of Fig. 18b. At the same time, the predicted SIT of Exp_SIC is much 

larger than the observations (Fig. 16a) and the correlation coefficient of the heart-shaped line in Fig. 19a is obviously less 

than that of Exp_SIC&SIT. This seems to give us a new inspiration. The correlation between the predicted SIC and the 

predicted SIT is closely related to the quality of predicted SIT. This also explains the reason why BRMT based on the 590 

interaction between SIC and SIT has a good performance in the forecast experiments of various sea ice elements. 

6 Discussions and conclusions 

In this study, a bivariate regression model is proposed to solve the problem that Arctic ice thickness in melting season cannot 

be detected by satellite remote sensing technology. The regression model is established through using the reanalysis data of 

SIC and SIT. Then, the SIT field can be constructed according to the SIC observational data at each grid point and the 595 

corresponding regression model, named as BRMT. 

From the distribution of averaged SIT during the multi-year melting seasons, the SIT from BRMT model is a better 

compromise between other ice thickness data sets (CMST, PIOMAS and GIOMAS), which can describe the quantity and 

hierarchical distribution of thin ice more accurately and will not overestimate the SIT in the thick ice area like CMST. At the 

BGEP mooring facilities, BRMT basically reproduces the change of SIT in different years and months. The regression 600 

model based on a single grid point makes the SIT of BRMT more fluctuating in a short period than CMST and PIOMAS, 

which also makes BRMT more accurate to capture the change trend in a period of time. In particular, the lower RMSE and 

bias of BRMT at BGEP_A and BGEP_D positions show that the overall performance of the SIT from BRMT during the 

melting seasons is slightly better than that of other data sets. In the comparison of the deviation between each data set and 25 

IMB buoys located in different regions, the SIT from BRMT, which has multi-year historical correlation information of SIC 605 

and SIT, has significantly better consistency with in situ observation for both MYI and FYI in the Central Arctic than CMST 

and PIOMAS. In addition, the outstanding performance of the SIT from BRMT in the E Greenland Sea and in parts of the 

Beaufort Sea cannot be ignored. 

Although the SIT from BRMT has gratifying highlights compared with other SIT data sets, it still has some shortcomings, 

such as the overestimation of SIT at BGEP_B mooring equipment, the lag response to the initial melting state and the 610 
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stagnation to maintain the melting state at the end of melting season. The discrepancy between the SIT from BRMT and in 

situ observed SIT may come from the deviation of the reanalysis data set selected by the model and the coarse grid 

resolution of the SIC data from satellite remote sensing observation. As a result, there are few grid points with SIT value 

near the in situ observation position, so that the true SIT at this position is replaced by inaccurate weighted SIT at other 

positions within the influence radius, resulting in large errors. In the supplementary experiment, the AMSR-E satellite 615 

remote sensing observation SIC data with a resolution of 12.5 km (https://nsidc.org/data/ae_si12/versions/3) is used in the 

bivariate regression model of SIT to replace the observation with the original resolution of 25 km. Then, RMSEs between 

the newly constructed SIT from BRMT and 25 IMB buoys are simply compared with those of the original constructed SIT, 

CMST and PIOMAS. Results show that the newly constructed SIT are better than those from the other three data sets in 

seven buoys (Table A3). 620 

In addition to the above effects caused by data errors, in fact, the relationship between SIC and SIT is nonlinear and 

complicated. Generally, the same SIC value corresponds to multiple SIT values and the range of thickness values stays large, 

so it is a little difficult to describe the relationship between them only using the fitting relationship. The ability of neural 

network in self-learning and high-speed searching for optimal solutions is extremely suitable for building the nonlinear 

model. However, whether the performance of DL can be improved depends on the size of the data set. The more parameters 625 

DL model will learn, the more data and computing costs required for training will also increase. Otherwise, problems with 

more dimensions and small data will lead to over fitting of the network. On the premise of high spatial resolution, it needs 

millions or even tens of millions of samples to train a usable network for Arctic sea ice (Chi and Kim, 2017; Andersson et al., 

2021). In contrast, the bivariate regression model proposed in this study only needs about 1400 samples, which greatly saves 

the calculation time and cost. In the future, we expect to further explore the advantages and disadvantages between DL and 630 

statistical methods in constructing SIT, and even consider more elements related to SIT and introduce them into DL model, 

so as to provide more reliable references for the record of Arctic SIT in the melting season. 

Furthermore, the forecast experiments in Arctic sea ice melting season are carried out when only assimilating SIC and jointly 

assimilating both SIC and the SIT from BRMT. Results of two experiments indicate the bivariate assimilation scheme 

(hereinafter referred to as Exp_SIC&SIT) shows good stability and accuracy in the short-term forecast of Arctic SIC and SIT. 635 

Especially, the marginal ice zone predicted by Exp_SIC&SIT is basically consistent with observation and it can accurately 

capture the fine structure of sea ice. In addition, in the Central Arctic, the averaged absolute deviation between the predicted 

SIT and the observed SIT is only 0.14 m at the IMB position, which is far less than 1.33 m in the Exp_SIC. This result is 

consistent with the conclusion that BRMT is able to capture the variation trend of SIT in the Central Arctic and better agree 

with the observation. We also found that the correlation between the predicted SIC and predicted SIT is mostly 0.95 or above 640 

in Exp_SIC&SIT. These results strongly demonstrate that the BRMT has certain application prospects and can be widely 

used in the Arctic sea ice melting season. 

Finally, there are interactions and constraints among the sea ice and ocean. For the problems of how they interact and 

coordinate with each other in the ice-sea coupled model, the further in-depth analysis will be carried out from the perspective 
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of dynamic and thermal processes of sea ice. It is hope to improve the constructed model of SIT during Arctic sea ice 645 

melting season and the physical process of the numerical model, so as to realize the accurate forecast in the Arctic sea ice 

and marine environment elements. 

Appendix 

Table A1. The weights of certain years from 2004 to 2018 relative to 2011, 2012, 2013, 2014 and 2015, respectively. Cal_year=The year 

used to calculate the weight. Tar_year=Target year. Nan=None data. 650 

Tar_year 

Cal_year 
2011 2012 2013 2014 2015 

2004 0.0156 0.0124 0.0106 Nan Nan 

2005 0.0224 0.0163 0.0135 0.0113 Nan 

2006 0.0338 0.0229 0.0180 0.0145 0.0122 

2007 0.0518 0.0342 0.0248 0.0194 0.0158 

2008 0.0793 0.0521 0.0357 0.0267 0.0213 

2009 0.1200 0.0795 0.0532 0.0376 0.0295 

2010 0.1771 0.1200 0.0803 0.0546 0.0414 

2011 Nan 0.1769 0.1204 0.0821 0.0590 

2012 0.1771 Nan 0.1769 0.1241 0.0862 

2013 0.1200 0.1769 Nan 0.1844 0.1299 

2014 0.0793 0.1200 0.1769 Nan 0.1943 

2015 0.0518 0.0795 0.1204 0.1844 Nan 

2016 0.0338 0.0521 0.0803 0.1241 0.1943 

2017 0.0224 0.0342 0.0532 0.0821 0.1299 

2018 0.0156 0.0229 0.0357 0.0546 0.0862 

Table A2. RMSEs (m) of sea ice thickness among BRMT, CMST, PIOMAS and in situ sea ice thickness observations of 25 IMB buoys 

(The date format is yyyy/mm/dd). MYI=Multi-year ice; FYI=First-year ice; CA=Central Arctic; B=Beaufort Sea; C=Chukchi Sea; 

L=Laptev Sea; E=E Greenland Sea. Nan=None data. The underline indicates that the RMSE is the smallest of the three datasets. 

IMB buoy Data range Ice type Region BRMT CMST PIOMAS 

2011C 2011.7.1-8.11 MYI CA 0.2473 0.9713 0.3327 

2011I 2011.8.5-8.23 MYI B 0.2204 0.4265 0.2170 

2011J 2011.8.6-9.30 MYI B 1.4817 1.4031 1.1522 

2011K 2011.8.9-8.14/9.1-9.30 MYI B 0.3918 0.2727 0.1525 

2011L 2011.9.13-9.30 MYI CA 0.1685 0.3353 0.1181 
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IMB buoy Data range Ice type Region BRMT CMST PIOMAS 

2012D 2012.7.11-7.25/8.6-9.30 FYI CA 0.7792 1.7555 1.6248 

2012G 2013.7.1-8.11/8.14-8.15/8.18-9.6 FYI CA 0.4186 0.4595 0.3503 

2012H 2012.9.10-30/2013.7.1-9.26 FYI B 0.3202 0.2897 0.5538 

2012I 2012.8.14-9.30 MYI C 0.1599 0.4651 0.1813 

2012J 2012.8.25-9.30/2013.7.1-8.3 MYI L 0.5367 0.4105 0.2808 

2012L 2012.8.27-9.30/2013.7.1-8.28 MYI B 1.2109 1.4096 1.7758 

2012M 2012.8.29-9.29/2013.7.1-8.14 MYI E 1.2163 1.5608 1.6098 

2013B 2013.7.1-9.30 MYI CA 0.2580 0.5858 0.4596 

2013F 2013.8.25-9.30/2014.7.1-9.30 MYI B 0.4353 0.2780 0.2082 

2013G 2013.9.4-9.30 MYI B 0.6005 0.7842 1.2323 

2013H 2013.9.3-9.30 MYI CA 0.3147 0.2868 0.4797 

2014B 2014.7.1-7.29 FYI B 0.4886 0.4134 0.3804 

2014C 2014.7.1-8.24 FYI B 0.2169 0.2181 0.6470 

2014D 2014.7.1-7.14/7.16-7.31 MYI CA Nan 0.6852 1.1991 

2014F 2014.9.17-9.30 MYI B 0.2649 0.3026 0.5098 

2014I 2015.7.1-8.22 MYI B 0.3314 0.1790 0.2441 

2015D 2015.7.1-8.29/9.1-9.30 MYI CA 0.6678 1.2153 0.9346 

2015E 2015.7.1-7.6 FYI B 0.2461 0.9598 0.6130 

2015F 2015.8.13-9.30 MYI CA 0.2493 0.2306 0.4785 

2015G 2015.9.13-9.30 MYI CA 0.2014 0.1169 0.3509 

Table A3. RMSEs (m) of sea ice thickness among N-SIT, BRMT, CMST, PIOMAS and in situ sea ice thickness observations of 25 IMB 

buoys (The date format is yyyy/mm/dd). N-SIT=Newly con-structed sea ice thickness, BRMT=original constructed sea ice thickness. 655 

Nan=None data. The underline indicates that the RMSE is the smallest of the four datasets. 

IMB buoy N-SIT BRMT CMST PIOMAS 

2011C 0.1931 0.2473 0.9713 0.3327 

2011I 0.3023 0.2204 0.4265 0.2170 

2011J 0.9473 1.4817 1.4031 1.1522 

2011K 0.5245 0.3918 0.2727 0.1525 

2011L 0.1534 0.1685 0.3353 0.1181 

2012D 1.0438 0.7792 1.7555 1.6248 

2012G 0.6090 0.4186 0.4595 0.3503 

2012H 0.7053 0.3202 0.2897 0.5538 

https://doi.org/10.5194/tc-2022-92
Preprint. Discussion started: 2 June 2022
c© Author(s) 2022. CC BY 4.0 License.



35 

 

IMB buoy N-SIT BRMT CMST PIOMAS 

2012I 0.4515 0.1599 0.4651 0.1813 

2012J 0.6155 0.5367 0.4105 0.2808 

2012L 0.9049 1.2109 1.4096 1.7758 

2012M 0.6157 1.2163 1.5608 1.6098 

2013B 0.2740 0.2580 0.5858 0.4596 

2013F 0.6592 0.4353 0.2780 0.2082 

2013G 0.3690 0.6005 0.7842 1.2323 

2013H 0.2186 0.3147 0.2868 0.4797 

2014B 0.9087 0.4886 0.4134 0.3804 

2014C 0.6073 0.2169 0.2181 0.6470 

2014D Nan Nan 0.6852 1.1991 

2014F 0.1265 0.2649 0.3026 0.5098 

2014I 1.0065 0.3314 0.1790 0.2441 

2015D 0.9383 0.6678 1.2153 0.9346 

2015E 1.0604 0.2461 0.9598 0.6130 

2015F 0.3197 0.2493 0.2306 0.4785 

2015G 0.2140 0.2014 0.1169 0.3509 

Data availability 

The SIC observational data set is available at the NSIDC (https://nsidc.org/data/NSIDC-0051/versions/1and https://nsidc.org 

/data/AU_SI12/versions/1). The sea ice draft data from the ULS measurements of BGEP are available at the WHOI 

(https://www2.whoi.edu/site/beaufortgyre/data/mooring-data/2011-2012-mooring-data-from-the-bgep-project/), and the IMB 660 

data from are available from the CRREL-Dartmouth Mass Balance Buoy Program (http://imb-crrel-dartmouth.org/archived-

data/). The SST data are available at ESA Climate Change Initiative's Sea Surface Temperature (https://climate.esa.int/en/od 

p/#/project/sea-surface-temperature). The SIT grid data from PIOMAS and GIOMAS are available at PSC (http://psc.apl.uw. 

edu/research/projects/arctic-sea-ice-volume-anomaly/data/model_grid and http://psc.apl.uw.edu/data/global-sea-ice-giomas-

data-sets/). The Arctic combined model and satellite SIT dataset is available at PANGAEA (https://doi.pangaea.de/10.1594/ 665 

PANGAEA.891475). The reanalysis data of SIC and SIT are available at CMEMS(https://resources.marine.copernicus.eu 

/?option=com_csw&task=results?option=com_csw&view=details&product_id=ARCTIC_REANALYSIS_PHYS_002_003). 
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