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Abstract. The Tibetan Plateau (TP) contains the largest amount of snow outside the polar regions and is the source of many 

major rivers in Asia. An accurate long-range (i.e., seasonal) meteorological forecast is of great importance for this region. The 

fifth-generation seasonal forecast system of the European Centre for Medium-Range Weather Forecasts (SEAS5), provides 

global long-range meteorological forecasts including over the TP. However, SEAS5 uses land initial conditions produced by 

assimilating Interactive Multisensor Snow and Ice Mapping System (IMS) snow data only below 1500 m altitude, which may 15 

affect the forecast skill of SEAS5 over mountainous regions like the TP. To investigate the impacts of snow assimilation on 

the forecasts of snow, temperature and precipitation, twin ensemble reforecasts are initialized with and without snow 

assimilation above 1500 m altitude over the TP for the spring and summer 2018. Significant changes occur in the springtime. 

Without snow assimilation, the reforecasts overestimate snow cover and snow depth while underestimating daily temperature 

over the TP. Compared to satellite-based estimates, precipitation reforecasts perform better in the west TP (WTP) than in the 20 

east TP (ETP). With snow assimilation, the reforecasts of snow cover, snow depth and temperature are consistently improved 

in the TP in the spring. However, the positive bias between the precipitation reforecasts and satellite observations worsens in 

the ETP. Compared to the experiment with no snow assimilation, the snow assimilation experiment significantly increases 

temperature and precipitation for the ETP and around the longitude 95°E. The higher temperature after snow assimilation, in 

particular the cold bias reduction after initialization, can be attributed to the combined effects of a more realistic, decreased 25 

snowpack and of wind changes, providing favourable conditions for generating more precipitation. Overall, snow assimilation 

can improve seasonal forecasts through the interaction between land and atmosphere. 

1 Introduction 

The Tibetan Plateau (TP) is often regarded as the “Third Pole” due to high altitudes and complex terrains (Qiu, 2008), and 

plays an important role in the atmospheric circulation of the northern hemisphere, regulating mid-latitude westerlies and the 30 

Asian monsoon system (Yang et al., 2014; Yang et al., 2019; Chen et al., 2020). In addition, the TP is the headwater of many 



2 
 

major rivers in Asia, such as the Indus, Brahmaputra, Yellow, Yangtze and Lancang-Mekong River. Thus, it is also regarded 

as the “Asian water tower” (Immerzeel et al., 2010; Kuang and Jiao, 2016). Considering the special role of the TP, an accurate 

long-range (i.e., seasonal) meteorological forecast in this region would provide a reliable meteorological background for the 

downstream regions, and further bring huge socioeconomical benefits through the prediction of meteorological and 35 

hydrological processes (Hansen, 2002; Shafiee-Jood et al., 2014; Clark et al., 2017; Ceglar et al., 2018; Li et al., 2019). 

The fifth-generation seasonal forecast system of the European Centre for Medium-Range Weather Forecasts (ECMWF, SEAS5) 

is a forecast model configuration of ECMWF’s Integrated Forecasting System (IFS) comprising the IFS atmosphere model 

coupled to the NEMO 3.4 ocean model and LIM2 sea-ice model. A comprehensive description of SEAS5 is provided by 

Johnson et al. (2019). The SEAS5 provides operational meteorological forecasts for a lead time of up to 7 months with an 40 

ensemble of 51 members. Reforecasts with 25 members over the historical period (1981-2016) are used for calibration of 

operational forecasts. These reforecasts have also been used to evaluate the ability of SEAS5 in forecasting temperature and 

precipitation. For example, Wang et al. (2019) compared SEAS5 with its predecessor in the Australian continent and found 

that a large improvement was achieved in forecasting daily maximum temperature and precipitation, yet with little 

improvement in daily minimum temperature. Gubler et al. (2020) found that the SEAS5 was reliable in forecasting temperature 45 

and precipitation in many regions of South America affected by ENSO variability. In addition, Ehsan et al. (2020) showed that 

SEAS5 could capture the observed climatological mean and variability patterns of peak summer monsoon precipitation over 

Pakistan, despite being biased over complex topography zones. Chevuturi et al. (2021) indicated that SEAS5 performed well 

in forecasting dynamical features of the large-scale monsoon one month ahead. 

The impact of rapid snow variability over the TP during winter and spring on medium-range to subseasonal forecasts has 50 

recently been investigated by Li et al. (2018; 2020b). On the longer seasonal time scale, the impact of the snow initialization 

in seasonal prediction system -in particular in SEAS5- has not been evaluated, especially in the spring season. Considering the 

special climate and topography in this region, a first evaluation of SEAS5 forecasts for the surface fields is needed, as well as 

for precipitation. More importantly, the SEAS5 forecasts were produced without assimilating the Interactive Multisensor Snow 

and Ice Mapping System (IMS) snow data above 1500 m, including over the TP. The same restriction applies to ERA5 55 

reanalyses and to operational ECMWF medium-range forecasts (Orsolini et al., 2019). Although IMS snow cover assimilation 

improves snow and surface representation, it has a complex impact on the atmospheric forecasts. The impact of restricting the 

assimilation of IMS snow data below 1500 m was detailed in De Rosnay et al. (2014). They showed that the new ECMWF 

snow analysis combining improvements of the analysis approach (OI vs Cressman method) and data pre-processing and quality 

control (IMS snow cover product resolution and implementation of a 1500 m altitude threshold) had an overall positive impact 60 

on the atmospheric forecast skill, with root mean square error forecast for the 1000 hPa geopotential height improved by 1–

4 % in the short range (forecasts until day 4). This altitude threshold has been used since its implementation in November 2010, 

including in the recent IFS cycles used for ERA5 (41r2) and in the current operational cycle. However, IMS snow cover 

assimilation in mountainous areas is constantly evaluated to address the complex feedback between the surface and the 

atmosphere. Moving towards coupled assimilation ECMWF aims at enhancing the consistency between the different Earth 65 
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system components, which will allow better exploitation of observations which are sensitive to the surface (such as snow 

cover). Moreover, assimilating the IMS snow data but only below 1500 m altitude might influence the forecasting ability over 

the TP (Wang et al., 2020; Lin et al., 2021), and the inclusion of IMS above an altitude of 1500 m might be beneficial to 

seasonal forecasts at the regional scale. 

In order to investigate the impacts of snow assimilation over the TP on the forecasting ability of the SEAS5, twin intialised 70 

forecast experiments with and without the IMS snow data assimilation (DA) above 1500 m were conducted as a case study in 

the year 2018. The orography threshold for using IMS observations in the snow assimilation system was removed specifically 

on the TP region and maintained elsewhere. The configuration for these experiments are largely similar to the current SEAS5 

but with lower atmospheric (~ 0.44°) and ocean (~ 1°) resolution and a newer IFS model cycle (CY45R1) (IFS CY45R1, 2018). 

Using these twin experiments, this case study investigates how snow assimilation over the TP influences the long-range 75 

prediction of snow, temperature and precipitation over the TP. 

2 Study area 

This study focuses on the TP within China (25-40°N, 73-105°E) (Fig. 1). Regions where the orography > 1500 m account for 

98.7% of the whole study area. Precipitation is influenced by the westerlies, the South Asian and the East Asian summer 

monsoon systems (Schiemann et al., 2009; Yao et al., 2012; Yang et al., 2014). Specifically, precipitation in the southeastern 80 

TP is under the control of the warm and humid Indian monsoon (Li et al., 2020a), with the multiyear-averaged precipitation 

being more than 2000 mm, and most of the precipitation concentrated between May and September. As moisture transport is 

blocked by high mountains, precipitation in northwestern TP is reduced to less than 50 mm (Curio and Scherer, 2016). In 

addition, the multiyear-averaged temperature changes from 20℃ to below -6℃ from southeast to northwest. The climate 

pattern in the eastern TP (ETP) is usually considered as wet, while it is usually considered as dry in the western TP (WTP). 85 

Considering the high spatial variability of the precipitation and temperature in the TP, the study area for our analysis was 

divided into the ETP and the WTP by the longitude 95°E according to previous studies (Qian et al., 2003; Li et al., 2020a). 

3 Methods and Data 

3.1 Forecast experiments design 

The configuration of the twin experiments for this case study in the year 2018 is similar to the current SEAS5 (Johnson et al., 90 

2019) but with lower atmospheric (~ 0.44°) and ocean (~ 1°) resolution and a newer IFS model cycle (CY45R1). The ocean 

and sea-ice initial conditions for the twin experiments were provided by the new operational ocean analysis system OCEAN5 

(Zuo et al., 2019). The atmospheric and land initial conditions for both experiments were obtained from dedicated analysis 

experiments with the ECMWF land data assimilation system (LDAS). Details about the LDAS can be found in the Dee et al. 

(2011) and De Rosnay et al. (2014). Here, we use twin forecast experiments that differ only in the land initial states produced 95 
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by two analysis experiments: the control experiment included the assimilation of daily, 4-km IMS snow cover below 1500 m 

globally, as in SEAS5, while the sensitivity experiment (the DA experiment) included, in addition, assimilation of the same 

IMS snow cover above 1500 m. Both analysis experiments were conducted from 1 November 2017 to 30 April 2018, using 

IFS cycle 45R1, in a weakly coupled land-atmosphere data assimilation configuration. The IMS snow data assimilation method 

relies on a two-dimensional optimal interpolation approach which is used to analyse the IFS land surface model (HTESSEL, 100 

Balsamo et al., 2009; Dutra et al., 2010) snow depth, with adjustment of snow density when fresh snow is added by positive 

increments. Full details on the snow data assimilation method are provided in the IFS documentation CY45R1, PART 2 Data 

assimilation Chapter 9 (IFS CY45R1, 2018). 

Using the two analysis experiments as initial land states, twin forecast experiments produced two ensemble reforecasts with a 

spatial resolution of 0.44° and 25 ensemble members. To generate the 25-member ensemble, initial condition perturbations to 105 

atmosphere and ocean initial conditions and perturbations to the atmospheric model were applied. Perturbing the initial 

conditions was used to represent uncertainty in the initial state and to increase the ensemble spread. Among all members, 

ensemble member 0 was initialized from unperturbed atmospheric initial conditions, while in other members, all upper-air 

fields and a limited set of land fields (snow, soil moisture, soil temperature, skin temperature and sea-ice temperature) were 

perturbed. The perturbation of the atmospheric model was use to represent uncertainty from missing or unresolved sub-grid-110 

scale processes (e.g. clouds, convection, radiation, turbulence) which had to be parameterized (Palmer, 2012). 

Both reforecasts start from April 1st, 2018 with a lead time of 4-month, i.e., from April 1st to July 31st, 2018. In order to 

analyse the seasonal changes in the reforecasts with snow DA and without, April 1st to May 31st is defined as spring, while 

June 1st to July 31st is defined as summer. The output temporal resolution ranges from 6-hour to 24-hour depending on the 

variable. In this study, we analysed the impacts of snow assimilation over the TP on the snowpack state (snow cover fraction, 115 

snow depth and snowfall) as well as on near surface variables (land surface albedo, 2m air temperature, 10m wind and total 

precipitation (liquid and snowfall)) and upper air variables (geopotential height and temperature at 600 hPa). 

3.2 Data 

Since IMS snow data was assimilated in the twin analysis experiments, the performance of IMS snow data were evaluated. 

The IMS snow data used in this study was retrieved from the National Snow and Ice Data Centre (NSIDC) and has a resolution 120 

of 4 km. More details about this dataset can be found in https://nsidc.org/data/g02156. In this study, the raw IMS snow data 

was post-processed as following steps to get the IMS snow cover fractions with the same grids of the reforecasts. Firstly, the 

raw IMS snow data was resampled to a resolution of 0.005° (1/100 of the resolution of the reforecasts) based on the nearest 

cell. Secondly, a fishnet which had a resolution of 0.5° and was coincidence with the grids of the reforecasts was produced. In 

each grid of the fishnet, there were 10,000 cells of the IMS snow data as the resolution of the IMS snow data after resampling 125 

was one-hundredth of that of the fishnet. The number of cells which were covered by snow was counted and then divided by 

10,000 to get the ratio of the snow cover cells in each grid. Finally, the ratios of the snow cover cells in every grid of the fishnet 

were calculated to obtain the IMS snow cover fractions with the same grids of the reforecasts. 

https://nsidc.org/data/g02156
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A daily snow cover fraction dataset for TP (hereinafter: TPSCF) provided by China National Cryosphere Desert Data Centre 

was used as observation. The dataset was produced based on MODIS normalized snow index data with the spatial resolution 130 

of 500 m, combing with the terrain data and a variety of snow cover estimation algorithm, realized re-estimation of snow cover 

under the conditions of cloud cover. The dataset only has data from January to June in each year. More details about this 

dataset can be found in https://www.scidb.cn/en/detail?dataSetId=633694460970008576&dataSetType=journal#. Moreover, 

a daily snow depth dataset for TP (hereinafter: TPSD) produced by Yan et al. (2021) was also used. The TPSD dataset was 

derived from the fusion of snow probability data and the long-term series of snow depth dataset over China and has a spatial 135 

resolution of 0.05°. More details about the TPSD dataset can be found in http://data.tpdc.ac.cn/zh-hans/data/0515ce19-5a69-

4f86-822b-330aa11e2a28/. 

In addition, gridded temperature and precipitation from multiple sources were used to benchmark the ability of the twin 

reforecasts because of sparse meteorological stations in the TP. The gridded temperature dataset (CN05.1) was generated based 

on the 2416 meteorological stations in China by Wu and Gao (2013) and had been used in many other studies (Xu et al., 2009; 140 

Wu et al., 2017). The CN05.1 temperature dataset is at the daily scale and has a spatial resolution of 0.25°. The gridded 

precipitation includes Global precipitation measurement (GPM), which is an international satellite mission launched by the 

National Aeronautics and Space Administration (NASA) and the Japanese Space Agency (JAXA) (Hou et al., 2014). The 

spatial and temporal resolutions of GPM are 0.1° and half-hourly, respectively. GPM has been compared with other satellite 

precipitation products in many studies (Guo et al., 2016; Tan and Duan, 2017; Prakash et al., 2018) and ranks top among them. 145 

Besides the gridded data, in-situ temperature and precipitation observations in TP were also used. There are 64 meteorological 

stations in total, and most of them are located in the ETP. The gauged data were quality-controlled and provided by the China 

Meteorological Data Sharing Service System, and were also used in the generation of the CN05.1 dataset. 

4 Results 

4.1 Changes in snow variables with the snow assimilation 150 

Considering that the only difference between the twin forecast experiments is whether assimilating IMS above 1500 m over 

the TP or not, the snow cover is firstly analysed to evaluate the effects of the snow assimilation. The spatial differences in 

snow cover fraction between IMS and TPSCF, and between the ensemble reforecasts and TPSCF in spring are presented in 

Fig. 2a-c. For most places of the TP, the snow cover fraction of IMS and the two reforecasts are larger than the TPSCF snow 

cover fraction. The differences between the IMS and TPSCF snow cover fraction (IMS minus TPSCF) are smaller than 0.4 for 155 

most places. The snow cover fraction of the control reforecasts is significantly larger than the TPSCF snow cover fraction 

around the boundary of the WTP and ETP where the differences (the control reforecasts minus TPSCF) are larger than 0.6. 

Meanwhile, the differences in snow cover fraction when the DA reforecasts minus TPSCF are smaller than 0.4 for most places, 

which is consistent with the differences between IMS and TPSCF. Figure 2d-f presents the spatial differences in snow cover 

fraction between the two reforecasts. In both the spring and the whole period, with added snow assimilation, the snow cover 160 

https://www.scidb.cn/en/detail?dataSetId=633694460970008576&dataSetType=journal
http://data.tpdc.ac.cn/zh-hans/data/0515ce19-5a69-4f86-822b-330aa11e2a28/
http://data.tpdc.ac.cn/zh-hans/data/0515ce19-5a69-4f86-822b-330aa11e2a28/
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fraction of the DA reforecasts is significantly smaller than that of the control reforecasts for most places of the TP, especially 

for the ETP and around the boundary of the WTP and ETP. However, in summer, the differences between the two reforecasts 

are small and range from -0.1 to 0.1 for most places. Overall, the positive bias in snow cover is much reduced in the DA 

reforecasts, at least in the spring. 

The time series of snow depth from April 1st to July 31st for the two ensemble reforecasts and TPSD are presented in Fig. 3. 165 

The snow depth was averaged over the domain (i.e., the WTP and ETP) and the times series were smoothed by a 5-day moving 

windows. The blue area and line represent the ranges and ensemble-mean of the control reforecasts, respectively; while the 

orange area and line represent the ranges and ensemble-mean of the DA reforecasts, respectively. The black line represents 

TPSD data. Both in the WTP and ETP, the ensemble-means of the snow depth of the two reforecasts are higher than those of 

the TPSD data. However, the snow depth of the DA reforecasts is closer to the TPSD data than that of the control reforecasts. 170 

The differences in snow depth between the two reforecasts decrease with time. In the WTP (Fig. R5a), the snow depth of the 

control reforecasts is higher than that of the DA reforecast for the whole period, while in the ETP, the snow depth of the two 

ensemble reforecasts is almost the same in the summer. Although the snow depth of the two ensemble reforecasts has an 

overall downward seasonal trend, the snow depth of the DA reforecasts increases around April 15th. 

Figure 4 presents the spatial differences in snow depth between the ensemble reforecasts and TPSD, and between the two 175 

reforecasts. The spatial differences in snow depth are similar with those in snow cover fraction in spring. Generally, the snow 

depths of the two reforecasts are higher than the TPSD snow depth for most places of the TP. However, in both the spring and 

the whole period, the snow depth of the control reforecasts is significantly higher than the TPSD snow depth around the 

boundary of the WTP and ETP in the southern TP. The differences in snow depth between the two reforecasts (the DA 

reforecasts minus the control reforecasts) range from -60 cm to 6 cm. The positive bias in snow depth is also much reduced in 180 

the DA reforecasts, which is consistent with the decreases in snow cover fraction due to the added assimilation of IMS snow 

cover. The snow depth of the DA reforecasts is less than that of the control reforecasts at the 5% significance level for most 

places of the TP, especially for the ETP and around the boundary of the WTP and ETP in the southern TP. As for summer, the 

spatial distributions of snow depth are similar between the two reforecasts. The differences between the two reforecasts range 

from -6 to 6 cm for most places of the TP. 185 

Since the changes of snow cover leads to changes in land surface albedo after snow assimilation, Figure 5 (top row) presents 

the spatial differences in land surface albedo between the two ensemble reforecasts. In either the spring or the whole period, 

the land surface albedo of the DA reforecasts is smaller than that of the control reforecasts for most places of the TP, especially 

for the ETP and around the boundary of the WTP and ETP in the southern TP. The differences in land surface albedo between 

the two reforecasts (the DA reforecasts minus the control reforecasts) range from -0.2 to 0.04 for most places of the TP. The 190 

significant differences in land surface albedo between the two reforecasts are mainly observed in regions where the absolute 

differences are larger than 0.04. While in summer, the differences in land surface albedo after snow assimilation range from -

0.04 to 0.04 for most places of the TP. 
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Considering that the snow depth of the reforecasts changes significantly after snow assimilation, the spatial differences in 

snowfall between the two ensemble reforecasts are also analysed (Fig. 5, bottom row). In either the spring or the whole period, 195 

the snowfall of the DA reforecasts is more than that of the control reforecasts in the southeastern TP, especially around the 

boundary of the WTP and ETP, while the results are reversed in the WTP. Moreover, the differences in snowfall between the 

two reforecasts range from -0.2 to 0.8 mm of water equivalent, and the spatial differences are statistically significant at the 5% 

significance level mainly for regions where the differences are larger than 0.3 mm of water equivalent. In summer, the snowfall 

of the DA reforecasts is more than that of the control reforecasts in the southwestern TP, while the results are reversed in the 200 

northeastern TP. The differences in snowfall between the two reforecasts range from -0.2 to 0.2 mm of water equivalent for 

most places of the TP. 

In summary, the main points are that snow assimilation reduces the positive biases of snow cover fraction and snow depth in 

spring over most areas of the TP, while its impact is limited in the summer, and all the snow variables changes significantly 

after snow assimilation for the ETP and around the boundary of the WTP and ETP in the southern TP. The reduced snow cover 205 

fraction leads to a diminished surface albedo. 

4.2 Evaluation of the temperature and wind reforecasts 

4.2.1 Evaluation of the temperature reforecasts 

Figure 6 presents the daily temperature time series from April 1st to July 31st for the two ensemble reforecasts and CN05.1 

data. The temperature reforecasts were averaged over the domain (i.e., the WTP and ETP) and the time series was smoothed 210 

by a 5-day moving window. The black line represents CN05.1 data. In the WTP (Fig. 6a), the ensemble-means of the 

temperature reforecasts are lower than the CN05.1 temperature. However, the DA reforecasts are in excellent agreement with 

the CN05.1 temperature at the initial time (thereby reducing the large initial bias as expected from a decreased snowpack) and 

are slightly closer to CN05.1 in the first month and a half. In the ETP (Fig. 6b), the initial bias reduction is even larger (about 

5 K) and, while the ensemble-means of temperature reforecasts are lower than the CN05.1 temperature for most of the time, it 215 

remains closer to the CN05.1 temperature for about one month and a half. The temperatures show little change between both 

reforecast ensemble-means after June, consistent with the lack of change in the snowpack in summer. 

The basin-averaged Spearman’s correlation coefficients (CCs) and mean absolute error (MAEs) of daily temperature between 

the two ensemble reforecasts and CN05.1 data are presented in Fig. 7. The CCs here are calculated for temporal correlations. 

The + in the figure represents the member which pasts the first or third quartiles when calculating the metrics. In the WTP, the 220 

CCs of temperature are higher than 0.80 and the MAEs are smaller than 4.2 ℃. After snow assimilation, the median and mean 

values of the CCs and MAEs are smaller. In the ETP, the CCs are higher than 0.78 and the MAES are smaller than 3.6 ℃. As 

for the WTP, the MAEs of the DA reforecasts are smaller than those of the control reforecasts, indicating that the snow 

assimilation improves the temperature forecasts. Furthermore, the correlations and mean error of daily temperature between 

the temperature reforecasts and CN05.1 temperature are lower in the ETP than in the WTP. 225 
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Figure 8 presents the spatial differences in daily temperature between the ensemble reforecasts and CN05.1 data, and between 

the two reforecasts. In spring, the temperature reforecasts are lower than the CN05.1 temperature for most places of the TP. 

After snow assimilation, the reforecasts become closer to the CN05.1 temperature, especially for the ETP and around the 

boundary of the WTP and ETP. In summer, for most places of the TP, the temperature reforecasts are lower than the CN05.1 

temperature and the spatial differences in daily temperature between the two reforecasts range from -0.4 ℃ to 0.4 ℃. For the 230 

whole period, the spatial differences between the temperature reforecasts and CN05.1 daily temperature are similar to those in 

spring. The most distinctly spatial characteristic is that the temperature of the DA reforecasts is significantly higher than that 

of the control reforecasts for the ETP and around the boundary of the WTP and ETP. Moreover, the spatial differences between 

the temperature reforecasts and CN05.1 daily temperature are statistically significant at the 5% significance level for places 

where the absolute differences are larger than 2.0 ℃, while the statistically significant regions of the spatial differences 235 

between the two reforecasts are mainly concentrated in regions where the differences are larger than 1.2 ℃. 

4.2.2 Changes in wind field and upper air variable with the snow assimilation 

It is noticeable that the significant differences in snow variables between the two reforecasts, while present over most of the 

TP in the spring, nevertheless maximize for the ETP and around the boundary of the WTP and ETP in the southern TP (Fig. 

2, Fig. 4 and Fig. 5), which is consistent with the spatial changes in temperature (Fig. 8). Furthermore, besides the local impacts 240 

of snow assimilation on temperature, the horizontal heat transport is also influenced by the snow assimilation. Therefore, the 

changes in 10 m horizontal wind field after snow assimilation are also analysed (Fig. 9). With snow assimilation, the wind 

speed of the DA reforecasts is much larger than that of the control reforecasts in the ETP in either the spring or the whole 

period. Moreover, the closer to the centre of the ETP, the larger the wind speed increase. However, the added snow assimilation 

has little impact on the 10 m wind field in summer as the snowpack state changes little at the meantime. 245 

Figure 10 presents the geopotential height and temperature at 600 hPa. The geopotential height at 600 hPa is used to analyse 

the cyclonic anomalies with added snow assimilation. In spring or the whole period, the geopotential height at 600 hPa of the 

DA reforecasts is lower than that of the control reforecasts for the whole TP, especially for the ETP and around the boundary 

of the WTP and ETP. The significant differences in geopotential height at 600 hPa between the two reforecasts are mainly 

observed in regions where the absolute differences are larger than 4 gpm. The results are consistent with convergence and 250 

ascent, and are also consistent with past results in previous study: Zhang et al. (2021) found cyclonic anomaly over TP, i.e., 

increased low-level convergence and ascent, was in response to decreased snow cover in late spring. 

The temperature at 600 hPa is also presented to further verify the horizontal heat transport with added snow assimilation. It 

can be seen that in spring and the whole period, the temperature at 600 hPa of the DA reforecasts is higher than that of the 

control reforecasts for most areas of the TP, especially for the ETP and around the boundary of the WTP and ETP. The spatial 255 

differences in temperature at 600 hPa are similar with those in geopotential height at 600 hPa but with reversed changes, i.e., 

the temperature increases when the geopotential height decreases. Furthermore, the increases in temperature are also consistent 

with the increases in wind, as the warmer air is advected with the wind. 
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4.3 Evaluation of the precipitation reforecasts 

Despite the notable improvements in the predicting snow and surface temperature in the snow assimilation forecasts, at least 260 

in the first month and a half, it remains to be seen if these translate to precipitation. Actual predictability studies with dynamical 

prediction systems stressed that a more realistic land initialization improves surface temperature forecasts but the impact on 

precipitation remains weaker (Koster et al., 2010; 2011). Figure 11 presents the total daily precipitation time series from April 

1st to July 31st for the two ensemble reforecasts and the GPM data. As for snow depth and temperature, the precipitation 

reforecasts were averaged over the domain (i.e., the WTP and ETP) and the time series was smoothed by using a 5-day moving 265 

window. The black line represents GPM data. In the WTP, the ensemble-mean precipitation for the two ensemble reforecasts 

generally have the same seasonal tendency as the observations, albeit the weekly variability is smaller. There is no obvious 

difference in ensemble-mean precipitation between the two reforecasts. However, in the ETP, the ensemble-mean precipitation 

of the DA reforecasts is higher than that of the control reforecasts, especially during a few episodes occurring mostly before 

June 1st. This increase could hence be related to the snow and circulation changes which were most pronounced over ETP in 270 

the spring. Moreover, the ensemble-mean precipitation of the two reforecasts is much more than GPM precipitation before 

June 25th, in line with the aforementioned model excess in precipitation. Although the ranges of two reforecasts are similar, 

those of the control reforecasts cover the GPM data better in both the WTP and ETP. However, the upper limits of the ranges 

of the DA reforecasts are pretty high around June 3rd while the GPM precipitation is small. 

The temporal CCs and mean absolute relative error (MAREs) of daily precipitation between the two ensemble reforecasts and 275 

GPM data are presented in Fig. 12. It can be noticed that the correlations between the precipitation reforecasts and GPM 

precipitation become lower after snow assimilation, especially for the ETP. However, the median and mean values of the 

MAREs become smaller after snow assimilation in the WTP, while the results are reversed in the ETP. In general, the temporal 

correlations are lower but the relative error is larger in the ETP than in the WTP. The changes in the median and mean values 

of the MAREs are also larger in the ETP than in the WTP. Furthermore, the variation ranges of the CCs and MAREs are larger 280 

for the DA reforecasts than for the control reforecasts. 

The spatial differences in daily precipitation between the ensemble reforecasts and GPM data, and between the two reforecasts 

are displayed in Fig. 13. In spring, the reforecasts underestimate daily precipitation in the ETP while they overestimate daily 

precipitation in the WTP. The precipitation of the DA reforecasts is more than that of the control reforecasts in the southeastern 

TP, especially around the boundary of the WTP and ETP. In summer, the spatial distributions for the two reforecasts are quite 285 

similar. The two ensemble reforecasts underestimate daily precipitation in the central TP while overestimate daily precipitation 

in other regions, especially in the southern TP. Moreover, the precipitation of the DA reforecasts is more abundant than that 

of the control reforecasts in the WTP while less in the ETP. As for the whole period, the spatial differences between the 

precipitation reforecasts and GPM daily precipitation are similar to those in spring. The most significantly spatial characteristic 

is that the precipitation of the DA reforecasts is larger than that of the control reforecasts around the boundary of the WTP and 290 

ETP in the southern TP. In addition, the spatial differences between the precipitation reforecasts and GPM daily precipitation 
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are statistically significant at the 5% significance level over the whole TP, while those between two reforecasts are only 

statistically significant for regions where the differences are larger than 0.3 mm. 

5 Discussions 

Twin reforecasts with and without snow assimilation above 1500 m over the TP were conducted in this case study in spring 295 

2018 to investigate how snow assimilation influences the long-range prediction of snow, temperature and precipitation over 

the TP. Three snow variables (i.e., snow cover fraction, snow depth and snowfall) and land surface albedo were firstly analysed. 

The results indicate that the snow cover fraction and snow depth of the two ensemble reforecasts are larger than the 

observations, i.e., the TPSCF snow cover fraction and TPSD snow depth, for most places of the TP. However, the snow cover 

fraction and snow depth of the DA reforecasts are less than those of the control reforecasts for most places of the TP, especially 300 

for the ETP and around the boundary of the WTP and ETP, which means that the snow cover fraction and snow depth for the 

DA experiment are closer to the observations. Because of the more realistic, reduced snow cover fraction for the DA 

experiment, the land surface albedo is also smaller for most places of the TP, especially for the ETP and around the boundary 

of the WTP and ETP in the southern TP. However, the snowfall of the DA reforecasts is larger than that of the control 

reforecasts for the ETP and around the boundary of the WTP and ETP in the southern TP. 305 

For temperature, the two ensemble reforecasts can capture the seasonal tendencies of the observed temperature. The temporal 

correlations of the reforecasts are higher than 0.78 over the TP when compared with the CN05.1 temperature. Usually, it is 

difficult to have high correlations in seasonal forecasting, here the results probably come from the marked seasonal cycle. 

However, the reforecasts tend to underestimate daily temperature. The snow assimilation improves mean error but decreases 

correlations of the temperature reforecasts when comparing with the CN05.1 data. As the data assimilation is performed for 310 

snow variables rather than temperature directly, the decrease in correlations of temperature reforecasts might be attributed to 

the changes in complex regional thermodynamics processes. Moreover, the temperature of the DA reforecasts is considerably 

higher than that of the control reforecasts, especially for the ETP and around the boundary of the WTP and ETP. It is worth 

noting that in regions where the snow cover fraction, snow depth and land surface albedo are smaller, the temperature is higher. 

The decreased snowpack of the DA reforecasts means that less heat is required for snowmelt (Datt et al., 2008; Duffy and 315 

Bennartz, 2018), and the smaller land surface albedo means that more heat is absorbed by the earth, altogether leading to the 

higher temperature. The analyses of snow variables only explain the local impacts of snow assimilation on temperature, while 

ignoring the horizontal heat transport. Therefore, the 10 m wind field is also analysed and the centre of changes in 10 m wind 

field is observed in the ETP, which is coincident with the centre of changes in snow and temperature in the ETP, especially 

the closer to the centre, the wind speed increases more. This means, with snow assimilation, the higher wind speed transports 320 

more heat from surrounding regions to the centre. Therefore, the spatial changes show that the closer to the centre of changes 

in wind field, the higher the temperature rises. 
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When using the GPM precipitation as a benchmark, the precipitation reforecasts perform better in the WTP than in the ETP, 

with higher temporal correlations and smaller mean error in the WTP. With the snow assimilation, the biases between the 

precipitation reforecasts and GPM precipitation become larger in the ETP while smaller in the WTP, and the temporal 325 

correlations between the precipitation reforecasts and GPM precipitation become smaller. The smaller correlations and larger 

biases of the precipitation reforecasts in the ETP after snow assimilation may be partly caused by the uncertainties in 

observations. The bulk of the precipitation over the TP falls as snow in winter and spring, but the GPM products tend to 

underestimate snowfall which may result in underestimation of total precipitation (Behrangi et al., 2014; Immerzeel et al., 

2015). However, the snowfall reforecasts become larger after snow assimilation, especially in the ETP and around the boundary 330 

of the WTP and ETP, which may further lead to the smaller correlations and larger biases between the precipitation reforecasts 

and GPM precipitation. In addition, the precipitation of the DA reforecasts is significantly larger than that of the control 

reforecasts in the southeastern TP, especially around the boundary of the WTP and ETP, similar to the spatial changes in 

temperature reforecasts. With the higher temperature, the evaporation intensity becomes higher and more moisture is carried 

to the atmosphere (Zhang et al., 2019; Yong et al., 2021), which provide conditions for the more precipitation. Moreover, it 335 

can be noticed that the largest differences in snowfall between the two reforecasts (the DA reforecasts minus the control 

reforecasts) reach 0.8 mm of water equivalent, while those in precipitation reach 1.8 mm, meaning that most of the increased 

precipitation is in the form of rainfall. 

Although a comprehensive assessment of the impacts of added snow assimilation above 1500 m over the TP on the long-range 

prediction of snow, temperature and precipitation was conducted, some issues remain. For example, the impacts of snow 340 

assimilation on the circulation (including upper-air) on the subseasonal-to-seasonal time scale, i.e., on the subtropical jet and 

downstream wave train and monsoon development remains to be investigated. This study focuses on surface level and explore 

how the snow assimilation influences snow, temperature and precipitation predictions through the relations among snow, 

temperature, wind and precipitation. Future studies will be done on pressure levels and further investigate the impacts of snow 

assimilation on the circulation. Moreover, bias-correction methods (e.g., quantile mapping) are usually applied to improve 345 

temperature and precipitation predictions (Themeßl et al., 2011; Chen et al., 2013). As this study puts more emphasis on the 

impacts of snow assimilation, bias-correction methods can be considered in future studies to further improve the skill of 

seasonal forecasts. 

6 Conclusions 

Twin reforecasting experiments for the spring and summer 2018 with IMS snow DA below 1500 m globally while the other 350 

had additional IMS snow DA above 1500 m over the TP, were used to investigate the impacts of snow assimilation on seasonal 

snow and meteorological forecasts over the TP. The main conclusions can be drawn as follows: 

(1) The snow cover fraction and snow depth of the two ensemble reforecasts are larger than the observations for most places 

of the TP. With the snow assimilation, the snow cover fraction and snow depth of the reforecasts are closer to the observations. 
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With snow assimilation, the snow cover fraction and snow depth are less for the ETP and around the boundary of the WTP 355 

and ETP than that from the control reforecasts, and the land surface albedo of the DA reforecasts is also smaller than that of 

the control reforecasts for the regions where the snow cover fraction reduces. However, the snowfall of the DA reforecasts is 

more than that of the control reforecasts for the ETP and around the boundary of the WTP and ETP in the southern TP. 

(2) When using the CN05.1 temperature as benchmark, the two ensemble reforecasts can capture the seasonal tendencies of 

the observed temperature. However, the reforecasts tend to underestimate daily temperature. The added snow assimilation 360 

improves mean error but decreases correlations of the temperature reforecasts when comparing with the CN05.1 data. The 

temperature of the DA reforecasts is significantly higher than that of the control reforecasts for the ETP and around the 

boundary of the WTP and ETP due to the decreased snowpack and smaller land surface albedo after snow assimilation. 

Moreover, the wind (at 10 m) transports more heat from surrounding regions to the centre in the ETP after snow assimilation, 

which further leads to a higher temperature. 365 

(3) When using the GPM precipitation as benchmark, the precipitation reforecasts perform better in the WTP than in the ETP. 

With the snow assimilation, the biases between the precipitation reforecasts and GPM precipitation becomes larger in the ETP 

while smaller in the WTP, which may be partly because of the uncertainty from the GPM observations. The precipitation of 

the DA reforecasts is significantly larger than that of the control reforecasts for the ETP and around the boundary of the WTP 

and ETP as the higher temperature in these regions enables more moisture to be carried to the atmosphere. Moreover, most of 370 

the increased precipitation is in the form of rainfall. 
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Figures 

 
Figure 1: The location and elevation of the Tibetan Plateau (TP) and the location of climate observation stations. 
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 540 
Figure 2: (a-c) The spatial differences in snow cover fraction between IMS and TPSCF, and between the ensemble reforecasts and 
TPSCF in spring; (d-f) The spatial differences in snow cover fraction between the two reforecasts (with – without snow assimilation). 
The stippled regions show the statistical significance of the differences identified by the t-test at a 5% significance level. 
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Figure 3: The time series of snow depth averaged over the domain from April 1st to July 31st for the two ensemble reforecasts and 
TPSD data in the (a) west Tibetan Plateau and (b) east Tibetan Plateau. 
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Figure 4: The spatial differences in snow depth (cm) between the ensemble reforecasts and TPSD (top and middle rows), and between 550 
the two reforecasts (bottom row). The stippled regions show the statistical significance of the differences identified by the t-test at a 
5% significance level. 
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Figure 5: The spatial differences in land surface albedo (top row) and snowfall (bottom row) (mm of water equivalent) between the 555 
two ensemble reforecasts (with – without snow assimilation). The stippled regions show the statistical significance of the differences 
identified by the t-test at a 5% significance level. 
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Figure 6: The daily temperature time series averaged over the domain from April 1st to July 31st for the two ensemble reforecasts 560 
and CN05.1 data in the (a) west Tibetan Plateau and (b) east Tibetan Plateau. 
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Figure 7: The Spearman’s correlation coefficient and mean absolute error of daily temperature between the two ensemble 
reforecasts and CN05.1 data. 565 
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Figure 8: The spatial differences in daily temperature (℃) between the ensemble reforecasts and CN05.1 data (top and middle rows), 
and between the two reforecasts (bottom row). The stippled regions show the statistical significance of the differences identified by 
the t-test at a 5% significance level. 570 
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Figure 9: The spatial differences in 10 m horizontal wind field (m/s) between the two ensemble reforecasts (with – without snow 
assimilation). The shaded contours are wind speed. 
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Figure 10: The spatial differences in geopotential height (geopotential meter, gpm) and temperature (℃) at 600 hPa between the 
two ensemble reforecasts (with – without snow assimilation). The stippled regions show the statistical significance of the differences 
identified by the t-test at a 5% significance level. 
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Figure 11: The total daily precipitation time series averaged over the domain from April 1st to July 31st for the two ensemble 
reforecasts and the GPM data in the (a) west Tibetan Plateau and (b) east Tibetan Plateau. 
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Figure 12: The Spearman’s correlation coefficients and mean absolute relative error of daily precipitation between the two ensemble 
reforecasts and GPM data. 
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Figure 13: The spatial differences in total daily precipitation (mm) between the ensemble reforecasts and GPM data (top and middle 590 
rows), and between the two reforecasts (bottom row). The stippled regions show the statistical significance of the differences 
identified by the t-test at a 5% significance level. 
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