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Review of
“Comment on: Macroscopic water vapor diffusion is not enhanced in snow”

by Andrew C. Hansen

To simplify the reading, I will use Hansen’s notations.

Two types of average

Assuming the existence of a Representative Elementary Volume Y = Yha ∪ Yi where Yha and Yi
are respectively the volume occupied by the humid air and the ice phase, two types of average
must be distinguished:

• the α-phase intrinsic average (α ∈ {ha, i})

〈•〉α =
1

|Yα|

∫
Yα

• dV (i)

• and the volume average

〈•〉 = 1

|Y |

∫
Y
• dV = φha 〈•〉ha + (1− φha) 〈•〉i (ii)

The paradox raised by Hansen comes from the difference between these two averages for the
water vapor flow Jv. As the water vapor flux is 0 in the ice phase

〈Jv〉 = φha 〈Jv〉ha (iii)

Homogenization in the general case

More than 30 years ago I worked on the heat and mass transfer in porous wet media [1, 8, 2].
If the solid surfaces of the porous material are wet, confounding the solid and liquid thermal
conductivities, which are now the ice conductivity, the problem is exactly the same as the heat
and mass transfer in snow. The case of wet porous media is easier to investigate experimentally
measuring the macroscopic heat conductivity. More increasing the temperature leads to an
increase of the contribution of the water vapor transport to the heat transfer helping to elucidate
clearly the mechanisms.

We do both experiments [1] and the homogenization of the process using the volume averaging
technique [8]. The main conclusions of this theoretical part are briefly recalled. The technical
details are given in reference [2] unfortunately in french.

Two equations have to be solved at the snow macroscale corresponding to the water vapor
mass balance and the heat transfer equation:

φha
∂γv
∂t

= ∇ ·
(
dγv
dθ

D

1− xv
·∇θ

)
− ṁ (iva)

〈ρc〉 ∂θ
∂t

= ∇ · (k ·∇θ) + usg ṁ (ivb)
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where
k is the Fourier thermal conductivity of the medium defined at the snow scale,
∇θ ≡ 〈∇θ〉 is the volume average temperature gradient,
D is the macroscopic water vapor diffusion coefficient,
〈ρc〉 = φha(ρc)ha + φi(ρc)i is the volume heat capacity of the snow,
ṁ is the mass of condensed water vapor into ice per unit volume of snow,
usg the latent heat of sublimation.

In equation (iva) for the the vapor transport, note that the volume average of the water vapor

flux is 〈Jv〉 = −
dγv
dθ

D

1− xv
·∇θ, which defines the vapor diffusion coefficient (tensor) D at the

macroscale for the snow. The factor 1− xv, where xv is the vapor mole fraction in humid air in
the denominator introduced by assuming stagnant air, can be discarded in the case of snow as
the mole fraction xv is small.

Combining the two preceding relations with the reasonable hypothesis that the transport and
phase change terms are much larger than the temporal variation of the water vapor density leads
to

〈ρc〉 ∂θ
∂t

= ∇ · (kapp ·∇θ) (v)

where the apparent thermal conductivity kapp is given by

kapp = k + usg
dγv
dθ
D = k + kdif

D

Dv−a
(vi)

with kdif = usgDv−a
dγv
dθ

. The closure problem to be solved to determine the macroscopic
coefficients is given for completeness in the Appendix. Starting from standard equations at the
microscale the asymptotic homogenization process is a purely mathematical tool without any
additional physical hypothesis. The homogenization process is similar to reference [3] except for
the condition at the ice surface where thermodynamic equilibrium is imposed (air is saturated,
which is called fast kinetics hypothesis in [5, 6]) rather than the impervious condition imposed
by [3].

The normalized water vapor diffusion coefficient defined as f =
D

Dv−a
verifies the relation (see

[2] and Appendix)
φha 〈∇θ〉ha = f ·

(
φha 〈∇θ〉ha + φi 〈∇θ〉i

)
(vii)

which proves, at least intuitively, that in the isotropic case f is less than 1 and that therefore
the solid ice phase acts as a resistance to water vapor transport.

Historical note

The problem of simultaneous heat and mass transfer in wet porous media goes back to Krischer
[7], who pointed out the important contribution of the evaporation-condensation process to the
thermal conductivity noting that at temperature larger than 65 oC, kdif > kwater. Therefore
increasing water saturation, that is replacing kdif by kwater, leads to a decrease of the apparent
thermal conductivity. In the soil domain, the first contributors are Philip and de Vries [9] and
de Vries [4]. Interestingly the unnecessary idea of an enhanced water vapor diffusion in porous
media also exits in the soil domain: the fluid phase is supposed to transfer immediately the
condensing water vapor due to a modification of the curvature of the meniscus (see figure 2 in
[9]).
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Layered microstructue

Application of homogenization to the particular case of a series medium (layered microstructure)
has been considered in reference [2]:

klm =
ki (kha + (1− φha) kdif )

(1− φha) (kha + kdif ) + φhaki
(viiia)

f =
Dlm

Dv−a
=

φha
kha + kdif

1− φha
ki

+
φha

kha + kdif

≤ 1 (viiib)

kapp = klm + kdif
Dlm

Dv−a
=

1

1− φha
ki

+
φha

kha + kdif

(viiic)

The preceding result can be proved using simple arguments. First as the equivalent conductivity
of the humid air phase is kha + kdif , the apparent conductivity kapp of the layered medium is
straightforwardly given by equation (viiic). Therefore the temperature gradient in the humid air
is given by

(kha + kdif )

〈
dθ

dx

〉ha
=

1

1− φha
ki

+
φha

kha + kdif

〈
dθ

dx

〉
(ix)

The water vapor flux in the humid air phase 〈Jv〉ha is given by

〈Jv〉ha = −Dv−a

1

kha + kdif
1− φha
ki

+
φha

kha + kdif

〈
dθ

dx

〉
(x)

and the volume average water vapor flux is therefore given by

〈Jv〉 = φha 〈Jv〉ha + (1− φha) 〈Jv〉i = φha 〈Jv〉ha (xi)

as the water vapor flux is 0 in the ice phase. Finally the normalized water vapor diffusion
coefficient is given by

f =
Dlm

Dv−a
=

φha
kha + kdif

1− φha
ki

+
φha

kha + kdif

(xii)

The expression (viiia) for klm is simply deduced from the relation kapp = klm + kdif
Dlm

Dv−a
.

If the solid (ice) conductivity is much larger than the gas or the diffusive conductivity as
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considered by Hansen, we have:

klm =
kha + (1− φha) kdif

φha
(xiiia)

f =
Dlm

Dv−a
= 1 (xiiib)

kapp =
kha + kdif

φha
=
kha + usgDv−a

dγv
dθ

φha
(xiiic)

(xiiid)

These results are exactly those of [5, 6]. If in the decomposition of kapp, the heat conductivity
only due to conduction k0 is introduced

kapp = k0 + fexp kdif with k0 =
1

φha
kha

+
(1− φha)

ki

(xiv)

where the so-called experimental diffusion water diffusion factor fexp (because easy to determine
experimentally) is written as [1, 8]

fexp =
1

φha

(
1 +

φikha
φhaki

)(
1 +

φhi(kha + kdif )

φhaki

) (xv)

It is immediate to check that fexp can exceed unity. In the limiting case of a very large value of
ki, i.e. when (1− φha) /ki � φha/(kha + kdif ), the maximum value obtained is fexp → 1/φha.

These findings agree fully with Fourteau et al. [5, 6].

Comparison with Hansen’s result

The table below summarizes Hansen’s results and the result of the homogenization calculation.

Hansen Homogenization

klm
kha

φha

kha + (1− φha)Dv−ausg
dγv
dθ

φha

Dlm
Dv−a
φha

Dv−a

kapp = klm +Dlmusg
dγv
dθ

kha +Dv−ausg
dγv
dθ

φha
idem

If the definition (11) proposed by Hansen of the energy flux is correct, the splitting between the
conductive flux (12) and the mass flux (13) does not give the rigorous result furnished by the
homogenization procedure.
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Definition of the macroscopic diffusion coefficient or the thermal conductivity

It should be noted that the definition of the macroscopic diffusion coefficient or the thermal
conductivity has nothing to do with the modification of the snow structure. The definition of
these coefficients implies that, when subjected to a concentration or a temperature gradient, the
medium reacts instantaneously by a mass or heat flux. Since the ice front velocity is much lower
than the vapor velocity, the medium can be assumed motionless. The temporal rearranging of
the snow is another problem.

Other comments

• Line 299-303
The diffusion coefficient (16) obtained also by Fourteau et al. [5] is defined to represent the volume
average water vapor flux 〈Jv〉, which is needed in the macroscopic equations (iv). The flux leaving
the upper boundary condition is a microscopic flux in the humid air phase, which in the particular
case of the layered medium is equal to the humid air phase average: 〈Jv〉ha = 〈Jv〉/φha.

• Line 305-309
The Fourier thermal conductivity klm defined by (xiiia) obviously contains a diffusive part. If
not, using kapp = k0 + fexpλdif can lead to fexp values larger than 1, which is not expected.
• §3.4

At the homogenized macroscale, it is no more possible to distinguish separately the contribution
of the two phases. This is evident when thinking about more complex geometries than the layered
microstructure.

Conclusion

I completely agree with the calculations and arguments of Fourteau et al. [5, 6]. Hansen’s
calculations in the simple case of a multilayer structure are quite correct considering the internal
modification of the snow structure. But his definition of the macroscopic coefficients (the splitting
between the conductive and the diffusive parts) does not coincide with the precise rules given by
the scaling process.
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Appendix: closure problem and definition of the macroscopic coefficients

Assuming the existence of a Representative Elementary Volume, the different quantities can be
computed using a so-called closure problem on a spatially periodic unit cell Y = Yha ∪ Yi for the
function χα (α ∈ {ha, i}) with periodic boundary conditions at the external cell frontiers Y :

Yha : ∇2χha = 0 (xvia)
Yi : ∇2χi = 0 (xvib)

∂Ygs : χha = χi (xvic)
−n · [(kha + kdif ) (I +∇χha)] = −n · ki (I +∇χi) (xvid)

Therefore the normalized water vapor diffusion coefficient is given by:

f =
D

Dv−a
= φha

(
I + 〈∇χha〉

ha
)

(xvii)

where I is the identity tensor. The Fourier thermal conductivity is given by

k = (1− φha) ki
(
I + 〈∇χi〉

i
)
+ φhakha

(
I + 〈∇χha〉

ha
)

(xviii)

and the apparent thermal conductivity is given by:

kapp = k + usg
dγv
dθ
Dv−aφha

(
I + 〈∇χha〉

ha
)

(xix)

It is immediate to verify that the apparent thermal conductivity of the medium kapp is that of a
two-phase medium comprising a solid phase of conductivity ki and a gas phase of conductivity
kha + kdif .

Finally note that [2]

〈∇θha〉ha =
(
I + 〈∇χha〉

ha
)
·∇θ (xx)


