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Abstract. Spatially dense and continuous information on avalanche occurrences is crucial for numerous safety related ap-

plications such as avalanche warning, hazard zoning, hazard mitigation measures, forestry, risk management and numerical

simulations. This information is today still collected in a non-systematic way by observers in the field. Current research has ex-

plored the application of remote sensing technology to fill this information gap, by providing spatially continuous information

on avalanche occurrences over large regions. Previous investigations have confirmed the high potential of avalanche mapping5

from remote sensed imagery to complement existing databases. Currently, the bottleneck for fast data provision from optical

data is the time- consuming manual mapping. In our study we deploy a slightly adapted DeepLabV3+, a state-of-the-art deep

learning model, to automatically identify and map avalanches in SPOT6/7 imagery from 24 January 2018 and 16 January 2019.

We relied on 24’778 manually annotated avalanche polygons split into geographically disjoint regions for training, validating

and testing. Additionally, we investigate generalization ability by testing our best model configuration on SPOT 6/7 data from10

6 January 2018 and comparing to avalanches we manually annotated for that purpose. To assess the quality of the model re-

sults, we investigate the probability of detection (POD), the positive predictive value (PPV) and the F1-score. Additionally, we

assessed the reproducibility of manually annotated avalanches in a small subset of our data. We achieved an average POD of

0.610, PPV of 0.668 and an F1-score of 0.625 in our test areas and found an F1-score in the same range for avalanche outlines

annotated by different experts. Our model and approach are an important step towards a fast and comprehensive documentation15

of avalanche periods from optical satellite imagery in the future, complementing existing avalanche databases. This will have

a large impact on safety related applications, making mountain regions safer.

1 Introduction

Information about occurred avalanches, their location and dimensions are pivotal for many applications such as avalanche

warning, hazard zoning, hazard mitigation infrastructure, forestry, risk management and numerical simulations (e.g. Meister,20

1994; Rudolf-Miklau et al., 2015; Bebi et al., 2009; Bründl and Margreth, 2015; Christen et al., 2010; Bühler et al., 2022).

Currently this information is reported and collected unsystematically by observers and (local) avalanche warning services. In
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recent years different groups have proposed to use remote sensing to fill that gap and provide spatially continuous, complete

maps of avalanche occurrences over some region of interest (Bühler et al., 2009; Lato et al., 2012; Eckerstorfer et al., 2016;

Korzeniowska et al., 2017). It has been shown that avalanches can be identified with sufficient reliably from optical data (e.g.,25

Bühler et al., 2019) or Synthetic Aperture Radar (SAR; e.g., Eckerstorfer et al., 2016; Abermann et al., 2019), with varying

degrees of completeness depending on the sensor and the size of the avalanches (Hafner et al., 2021).

Both optical and SAR data have inherent advantages and disadvantages which we would like to elaborate on in the following

section: For the acquisition of suitable data, SAR is independent of cloud cover, whereas for optical data a clear sky is a crucial

prerequisite. Consequently, optical data may only capture occurred avalanches after a period with activity is over (except for30

avalanches releasing solely due to the warming during the day), whereas with SAR information may also be retrieved during

an avalanche period. Due to that independence from low-visibility weather conditions, and in the case of Sentinel-1 a 12-day

repeat cycle at mid latitudes, the temporal resolution is in the best case daily in northern Norway or about every 6 days in

central Europe (numbers for two Sentinel-1 satellites acquiring data, currently the temporal resolution is about half as Sentinel-

1B has not been acquiring since 23 December 2021). The optical satellite data currently known to be suitable for avalanche35

mapping need to be ordered specifically and are therefore only available at isolated dates in time. Compared to SAR, optical

data is however easier to process and interpret. In our previous work (Hafner et al., 2021) we compared the performance and

completeness of SAR Sentinel-1 as well as optical SPOT 6/7 and Sentinel-2 for avalanche mapping. In a detailed analysis of the

manual mappings we found the following: the ground sampling distance of 10m makes Sentinel-2 unsuitable for the mapping

of avalanches. The mapping from SPOT 6/7 is overall more complete compared to Sentinel-1, which is mostly caused by the40

inability to confidently map avalanches of size 3 and smaller in Sentinel-1 imagery, a characteristic related to the underlying

spatial resolution of approximately 10-15m for Sentinel-1 and 1.5m for SPOT 6/7. Depending on the application, practitioners

not only want to know when and where an avalanche occurred, but also the outlines. When analyzing which part of an avalanche

can typically be identified using Sentinel-1 we found (in accordance with, among others, Eckerstorfer et al., 2022) that it is

mostly the deposit, but may include patches from track and release area. When only using Sentinel-1 data it is therefore neither45

possible to derive the number of avalanches occurred (possibly several unconnected patches for one avalanche), nor the size

of the occurred avalanches (size of patches detected does not usually correspond to avalanche size). Consequently, unless

unambiguous with respect to the terrain, the origin and release area of avalanche deposits detected using SAR images remain

unknown. In contrast, except for shaded areas, in SPOT 6/7 avalanches can be identified from release zone to deposit in almost

all cases. Additionally, research suggests SAR to be a lot less reliable for detecting dry snow avalanches compared to wet50

snow avalanches (among others Hafner et al., 2021; Eckerstorfer et al., 2022). The above statements made about SPOT 6/7 are

transferable to optical data with similar or better spatial and spectral resolution.

To bypass the time-consuming manual mapping, several groups have explored (semi-) automatic mapping approaches. Büh-

ler et al. (2009) used a processing chain that relies on directional, textural and spectral information to automatically detect

avalanches in airborne optical data. Lato et al. (2012) and Korzeniowska et al. (2017) applied object-based classification55

techniques to optical high spatial resolution data (0.25 - 0.5 m). Wesselink et al. (2017) and Eckerstorfer et al. (2019) have

introduced and consequently refined an algorithm to automatically detect avalanches in Sentinel-1 SAR imagery, via changes
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of the backscatter between pre- and post-event images. Karbou et al. (2018) also utilized changes in backscatter to identify

avalanche debris. For avalanche detection in Radarsat-2 imagery, Hamar et al. (2016) used supervised classification with a

random forest classifier. On the contrary, the avalanche mapping from optical satellite data has so far been exclusively done60

manually (Bühler et al., 2019; Hafner et al., 2021; Abermann et al., 2019).

The deployment of machine learning for remote sensing image analysis has seen a surge in the last decade (Ma et al., 2019).

Modern deep learning methods often outperform competing ones in complex image understanding tasks, and have been used for

example to detect rock glaciers (Robson et al., 2020), landslides (Prakash et al., 2021) and crop types in fields (Cai et al., 2018).65

For avalanches, the use of deep learning has so far focused on Sentinel-1 imagery: Waldeland et al. (2018) applied a pre-trained

ResNet (He et al., 2016) for avalanche identification by change detection using manual reference annotations. Bianchi et al.

(2021) segmented avalanches with a fully convolutional U-Net (Ronneberger et al., 2015), also relying on manual annotations

for training the network. Sinha et al. (2019a) proposed a fully convolutional VGG16 network (Simonyan and Zisserman, 2015)

that was trained on, and compared against, an inventory of avalanche field observations. With the same inventory, Sinha et al.70

(2019b) also, alternatively used a Variational Autoencoder (Kingma and Welling, 2019) for avalanche detection.

In contrast to previous studies, our work is the first to attempt to use deep learning for the detection of avalanches in optical

satellite data. This is of major importance, as the largest avalanche mapping from remotely sensed imagery to date, with

24’778 single avalanche polygons (Bühler et al., 2019; Hafner and Bühler, 2019, 2021), relied on optical SPOT 6/7 satellite

imagery. Furthermore, there have been investigations with external data into the reliability and completeness of mappings from75

SPOT 6/7 (Hafner et al., 2021). Consequently, an automation of the manual mapping from this imagery would allow for a fast

comprehensive documentation of future avalanche periods with background knowledge about how well it works and how much

avalanche area approximately is missed. Without an automation it is not feasible to cover large regions quickly. With manual

image interpretation (Hafner et al., 2021) it took approximately one hour to manually delineate avalanches in SPOT images

covering a region of ≈27.5 km2. Thus, in this work we develop, describe and apply a deep learning approach for avalanche80

mapping based on the SPOT 6/7 sensor with the goal to automate the mapping process, so as to cover large areas and eventually

operate at country-scale. We developed a variant of DeepLabV3+ (Chen et al., 2018) that takes as input SPOT 6/7 images and a

digital elevation model (DEM), and outputs spatially explicit raster maps of avalanches. For our DeepLabV3+ variant we made

the encoder and decoder deformable (Dai et al., 2017), thereby our convolutional kernels adapt according to the underlying

terrain, which is essential in the study of avalanches. In addition to a careful description of the network architecture we evaluate85

results, compare to previous work, examine the reproducibility of the manually mapped avalanches, and discuss the potential

and limitations of our method.

2 Data

For training and validating our proposed mapping system we utilize SPOT 6/7 top-of-atmosphere reflectance images acquired

on 24 January 2018 (referred to as 2018 in the remainder of this paper, Hafner and Bühler, 2019) and 16 January 2019 (referred90

3



to as 2019 from now on, Hafner and Bühler, 2021), together with a set of 24’776 avalanche annotations delineated by manual

photo-interpretation. In both cases the images were acquired after periods with very high avalanche danger, i.e., the maximum

level 5 of the Swiss avalanche warning system (WSL Institute for Snow and Avalanche Research SLF (ed.), 2021). SPOT 6/7

images have a ground sampling distance (GSD) of 1.5 m and provide information in four spectral bands, namely red, green,

blue, and near-infrared (R, G, B, NIR), at a radiometric resolution of 12 bits. The dataset covers an area of ≈12’500 km2 in95

2018 and ≈9’500 km2 in 2019. These two areas partly overlap. As both were acquired in January, the illumination conditions

exhibit little variability between the two years, but they differ in terms of snow conditions: in 2019 the snow line was at a lower

altitude, and consequently there was more dry snow, hardly any wet snow, and fewer glide snow avalanches. As additional

input information we use the Swiss national DEM swissALTI3D. To match the resolution of SPOT imagery, we resample the

DEM (original GSD 2 m) to 1.5 m, aligned with SPOT 6/7. Its nominal vertical accuracy is 0.5 m below the treeline (∼2100 m100

a.s.l.) and 1–3 m above the treeline (swisstopo, 2018). We did not apply atmospheric corrections as our main focus is texture

and the absolute spectral values do not matter for avalanche identification.

The 24’776 avalanches were annotated by a single person, an expert, which we define as somebody very familiar with both

satellite image interpretation and avalanches. For the mapping of avalanches the visual identification of crown and release

areas, track and deposit through texture and hue as well as hints of possible damage have played a role (for details on the105

methodology see Bühler et al., 2019). For each mapped avalanche polygon the expert also recorded a score of how well the

avalanche was visible, splitting the annotations in three groups: complete, well visible outline; mostly well visible outline;

and not completely visible outline, where significant parts had to be inferred with the help of domain knowledge (see also

Bühler et al., 2019). Furthermore, we validated a subset of the initial mapping with independent ground- and helicopter-based

photographs as reference (Hafner et al., 2021). We found that for manual mapping based on SPOT images the probability of110

detection (POD; see Equation 2; the probability of a true avalanche being annotated) is 0.74 for avalanches larger than size 1

(avalanche size is categorised on a scale from 1 to 5, with size 5 the largest and most destructive ones; for more details see WSL

Institute for Snow and Avalanche Research SLF (ed.), 2021). The positive predictive value (PPV; see Equation 2; probability

of an annotated avalanche having a true counterpart) was 0.88, indicating only few false positive annotations (again for size

≥2).115

Additionally, we used SPOT 7 imagery of the Mattertal, Val d’Hérens and Val d’Herémence in Valais, Switzerland from 6

January 2018 covering ≈660 km2 to evaluate our model. The data were acquired for test purposes after a period with high

avalanche danger and the 538 avalanches used for validation have been manually mapped with the same methodology as the

others used in this work and described in Bühler et al. (2019). The geographical region with additional data overlaps with data

acquired on 24 January 2018, but served as test area before and did not go into training or validation (see "Generalitzation120

Test" areas in Figure 5). The images suffer from distortion in steep terrain as they were part of a suitability study for avalanche

mapping from optical data (for details see Bühler et al., 2019) and orthorectified by the satellite providers using the height

information from the Shuttle Radar Topography Mission (SRTM, OpenTopography, 2013).
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3 Method

Many overlapping avalanches exist in the dataset whose boundaries cannot be precisely distinguished from each other even125

by experts. We thus restrict ourselves to identifying all pixels where avalanches have occurred, but do not attempt to group

them into individual avalanche events. In terms of image analysis this corresponds to a semantic segmentation task, where each

pixel is assigned a class label: avalanche or background according to the model confidence. Several deep learning models have

been developed for solving such problems and have achieved excellent results in various domains, such as U-Net (Ronneberger

et al., 2015), HRNetV2 (Sun et al., 2019) and DeepLabV3+ (Chen et al., 2018).130

3.1 Model Architecture

On their way downwards, avalanches are constrained and guided by the local terrain. In order to accurately map avalanches

from the input data, we therefore propose a deep learning architecture that adapts to the underlying terrain model. We build

on state-of-the-art model DeepLabV3+ designed for semantic segmentation and add deformable convolutions that adapt their

receptive field size according the input data, i.e. the terrain model in our case.135

DeepLabV3+ is a popular, fully convolutional semantic segmentation model that has been used successfully with a variety

of datasets. It features a dilated ResNet (He et al., 2016) encoder as a backbone for feature extraction, in combination with

Atrous Spatial Pyramid Pooling module (ASPP). To achieve a wide receptive field able to capture multi-scale context, ASPP

employs dilated convolutions at different rates. Before being fed into the decoder, the resulting features are concatenated and

merged using a 1×1 convolution. These high-level features are then decoded, upsampled and combined with high-resolution,140

low-level features from the first encoder layer. For further details about DeepLabV3+, see Chen et al. (2018).

Our adaptions to the standard DeepLabV3+ include: deformable kernels (Dai et al., 2017) in the encoder and decoder as

well as a small network with offsets that estimates the appropriate kernel deformations in a data-driven manner, and modifies

the decoder such that it can process features from all backbone layers (Figure 1 and Figure 2). These changes add a modest

1.9M network weights to the 22.4M weights of the standard DeepLabV3+.145

The reasoning behind deformable convolution kernels in the backbone (Figure 3) is to adapt their receptive fields to the

underlying terrain. To obtain deformable convolutions, we introduce an additional 18-channel tensor that encodes the 2D offset

of each kernel element at each location i.e., it enables free-form deformations of the kernel, beyond dilation or rotation. The

offsets are not fixed a priori, but calculated as a learned function of the DEM, separately for each feature resolution, by a small

additional network branch. By replacing the first convolution in each residual block with a deformable one, we are able to150

explicitly include the terrain shape encoded in the DEM, but without the need to modify other parts of the architecture, so as

to benefit from the pretrained weights of the encoder.

The augmented decoder helps our DeepLabV3+ to propagate features along specific directions, in our case this is the

possible downhill flow direction of avalanches which can be extracted from the DEM. Hence, we alter the ASPP such that it

aggregates features from all backbone layers, and increases the receptive field. The new module, which we call Deformable155

Spatial Pyramid Flow (DSPF, Figure 4), performs deformable convolutions at different dilation rates. The deformations are
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Figure 1. Overview of our DeepLabV3+ variant. The encoder is shown in more detail in Figure 3 and the Deformable Spatial Pyramid Flow

(DSPF) in Figure 4.

.

Figure 2. For the deformable convolutions, a standard kernel (like the 3× 3 as shown in a) will be adapted according to 2D offsets learned

from the underlying DEM. The green dots in b, c and d exemplarily show possible final positions of the kernel elements, the displacement

from the standard kernel is illustrated by the black arrows.

.

again obtained from our small network with offsets, based on the DEM. In order to propagate information along the gradient

field, we also model the flow direction of an avalanche in the DSFP module of the decoder.

3.1.1 Sampling and Data Split

Given the proposed model architecture and the available computational resources (CPU: 20 Intel Core 3.70 GHz, GPU: 1160

NVIDIA GeForce RTX 2080 Ti), we are unable to process an entire orthomosaic at once. Therefore, we process squared image

subsets, called patches, of up to 512× 512 pixels at training time, which translates into an area of 589’824 m2 at the spatial

resolution of SPOT 6/7 imagery. With our model and computational resources we can simultaneously process batches of 2

image patches per GPU.
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Figure 3. Encoder of our DeepLabV3+ in detail.

.

Figure 4. Detailed architecture of the Deformable Spatial Pyramid Flow (DSPF) used in the Decoder of our DeepLabV3+ variant.

.

For supervised machine learning approaches it is vitally important that all desired classes are present in the patches the model165

learns from. As classes are usually not evenly distributed, class imbalance is a frequent challenge. Our dataset is very imbal-

anced: avalanches cover only one 1785th of the entire area covered by SPOT 6/7 imagery. Re-balancing of class frequencies is

necessary to make sure our model adequately captures the variability of the avalanche class. We use the following pragmatic
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Figure 5. Visualization of the disjoint regions for training, validation and testing for both 2018 and 2019. Also shown are: the test region for

the generalization experiments, where we had additional data from 6 January 2018, and the regions used to study reproducibility of manual

avalanche maps.

.

strategy to ensure a training set that includes relevant examples, and with sufficient representation of both classes: First, we

iteratively sample patch centers inside manually annotated avalanche polygons, while avoiding overlapping patches. In this170

way, we obtain a set of samples that is not overly imbalanced, with ≈3.5× more background pixels than avalanche pixels.

These patches form 95% of our training set. Second, the remaining 5% are sampled randomly in areas without avalanches, to

ensure also patches without avalanche pixels are seen during training. This leads to an effective ratio of 1:4 between avalanche

and background pixels in the 5185 512× 512 patches of the training set.

As the edges of the patches lack context, they were also given smaller weights when calculating the loss function during175

training starting 100 pixels from the edge, decreasing the weight linearly to 10% of the base weight given above at the very

edge. For our DeepLabV3+ we additionally used deep supervision as in Simonyan and Zisserman (2015), to help the model

converge.

3.1.2 Training

For training and quantitative evaluation, the data were split into mutually exclusive, geographically disjoint regions for training180

(80%), validation and hyper-parameter tuning (10%) and testing (10%), as depicted in Figure 5. The test set is located com-

pletely in regions acquired either only in 2018 or only in 2019, but not in the overlap between the two acquisitions, to prevent

memorization (especially of the identical topography).

The network is trained by minimizing a weighted binary cross entropy (BCE) loss (see also 3.1.2), using the Adam opti-

mizer (Kingma and Ba, 2017) for 20 epochs. The base learning rate was initialised to 1×10−4 and reduced by a factor of 4185

after 10 epochs. A summary of the hyper-parameter settings is given in Table 1.
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Table 1. Summary of training parameters

Parameter Value

Loss function Weighted BCE

Optimizer Adam

Initial learning rate 1×10−4

Effective batch size 16

Patch size 512×512

Epochs 20

As a preprocessing step, the input images are normalized channel-wise using the mean and variance values of the entire

dataset. Additionally, we flattened the peak in the image histograms caused by the shadow pixels by transforming negative

values v → (−3 · v2), while keeping positive values unchanged.

Even though our training dataset is large, it covers only two avalanche periods and cannot be expected to account for the190

whole variety of possible conditions. In order to increase the robustness of the network, we further expand the training set

with synthetic data augmentation. We used randomized rotation and flipping for greater topographic variety, mean-shifting and

variance-scaling to simulate varying atmosphere and lighting conditions, as well as patch shifting to increase robustness when

only part of an avalanche is visible. To speed up data loading we used batch augmentation (Hoffer et al., 2019), where the same

sample is read only once and used multiple times with different augmentations computed on the fly. To increase the model’s195

performance, we additionally accumulated gradients over two iterations before weights were updated. Thereby an effective

batch size of 4 (2+2) was reached and the 512× 512 pixel patches may be used (see also Section 4.2).

As mentioned in Section 2 the avalanche polygons come with labels that quantify their visibility in the SPOT data. These

labels are used to re-weight their contributions to the BCE loss as follows: pixels on complete, well visible avalanches have

weight 2, mostly well visible avalanches as well as background pixels not on an avalanche have weight 1, and not completely200

visible avalanches have weight 0.5.

4 Results and Discussion

Predictions are made for a target area specified by vector polygons in the form of shapefiles. To reduce artifacts at the edges

of patches, the samples for the predictions overlap by 100 pixels before being cropped. To assess the detection performance of

the network, we calculated positive predictive value (PPV, also called precision) and probability of detection (POD, also called205

recall) on a pixel level as well as the F1-score. PPV and POD are both based on a standard 2× 2 confusion matrix (Trevethan,

2017). As per pixel metrics take as input a binary mask (avalanche yes or no) and the network yields scores, we thresholded

the predictions at 0.5 before calculating statistics and computed the F1-score as

F1 = 2 · PPV ·POD
PPV+POD

, (1)
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where POD and PPV are defined as210

POD =
TP

TP+FN
and PPV =

TP
TP+FP

, (2)

where TP is true positive, FP is false positive and FN is false negative.

In this paper the presented pixel-wise metrics (POD, PPV and F1-score) represent the average score over all the patches we

tested on. As our dataset is imbalanced and the F1 score non-symmetric, we calculated those metrics for both avalanches and

the background. Additionally, we wanted to estimate how many avalanches were detected by each model. Consequently, for215

the object-based metrics we tested two different measures: we counted an avalanche as detected if 50% or 80% of all pixels

within an avalanche from the manual mapping had a score of 0.5 or higher.

4.1 Results and generalization ability

Results were calculated for the test areas and are reported in Table 2. Compared to the standard DeepLabV3+, our model, when

run with the parameters described in Table 1, has a higher POD for avalanches (0.610 vs. 0.587), while having the same PPV.220

This results in an F1-score of 0.612 for the standard DeepLabV3+ and 0.625 for our version. For the background, the pattern

is similar, the POD is slightly better for our method (0.894), compared to the standard DeepLabV3+ (0.888), while the PPV is

slightly higher for the standard model (0.900 vs. 0.894). Consequently, the F1-score is very similar, as it only differs by one in

the third decimal place between our and the standard DeepLabV3+.

For any supervised classification and deep learning methods in particular, the ability to generalize well to new datasets and225

regions not seen during the training phase is key. To evaluate this, we test our trained model using SPOT 7 imagery from 6

January 2018. The test metrics for predictions on the data from 6 January 2018 were calculated with the standard DeepLabV3+

and the adapted DeepLabV3+. As Table 2 shows, our version generalizes very well (see also Figure 6), the metrics only differ

from tests on the initial dataset in the fourth decimal place. The standard DeepLabV3+ on the other hand, does not generalize

so well as the POD and the detection rates per avalanche are lower than for testing on the initial data.230

We also investigated object-based metrics for all model variations, when detection means 50% of the avalanche area the

models rightly capture between roughly 58% and 69% of all avalanches and between 38% and 51% when detection requires

80% of the area (Table 3). Again the the standard DeepLabV3+ performs slightly worse than our adapted DeepLabV3+,

especially when run on data from a new avalanche period (6 January 2018). Therefore, our DeeplabV3+ shows better ability

to generalize to new and previously unseen data. Overall, the best performance is achieved when considering sunlit avalanche235

parts only, for both training and testing.
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Table 3. Object-based metrics for selected model configurations.

Model SPOT data Training data Detection rate 50%

of avalanche area

Detection rate 80%

of avalanche area

standard

DeepLabV3+

24.01.2018

16.01.2019

whole avalanches 0.63 0.45

adapted

DeepLabV3+

24.01.2018

16.01.2019

whole avalanches 0.66 0.46

standard

DeepLabV3+

06.01.2018 whole avalanches 0.58 0.38

adapted

DeepLabV3+

06.01.2018 whole avalanches 0.66 0.46

adapted

DeepLabV3+

24.01.2018

16.01.2019

sunlit avalanches only 0.69 0.51

4.2 Ablation studies

To understand how our changes to the standard DeepLabV3+ affect performance we varied the model in different ways and

trained, tested and compared the performance. These results can be found in Table 2. First, we investigated the influence of

the deformable backbone and discovered that including it outperforms the non-deformable backbone configurations of the240

standard DeepLabV3+. This is the case in our test areas for 2018 and 2019, but also for testing on the avalanche period from 6

January 2018. Secondly, the avalanches in our network have been weighted (see 3.1.2) according to the quality index assigned

by the manual mapper. To quantify the effects of using weights we ran training with unweighted BCE and observed a decrease

in POD, a slight increase in PPV and overall a smaller F1-score. Additionally, in our adapted version of DeepLabV3+ we

only considered the Red and Near-Infrared from SPOT as well as the DEM as input channels. We cannot test the adapted245

DeepLabV3+ without the DEM, as it is explicitly included as an integral part of the network. We analyzed however, how

including all SPOT channels (additionally Blue and Green) and also adding another Wallis filtered channel (to bring out details

in the shade) affects network performance (see Table 2). For our model we found that including more channels did not improve

the performance, rather training time was longer and metrics worse than with the initial channels.

250

We hypothesize that the proportion of potential avalanche area and context visible in the patches strongly influences network

output. To investigate this, we have trained our model with varying patch size: 512× 512, 256× 256 and 128× 128 pixels

(corresponding to 768× 768, 384× 384 and 192× 192 meters). Quantitative results in Table 2 show the largest patch size

performs best considering metrics for both avalanches and background. When comparing them visually (Figure 7) this is

further supported, as the predictions on the smallest size are patchy, dispersed over the image showing the model is unsure255
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Figure 6. An example for the model confidence when predicting on data from a previously unseen avalanche period from 6 January 2018

(SPOT 6 data © Airbus DS 2018). The values closer to 1, in darker hues, indicate places where the model is more confident about the

existence of an avalanche. In the illuminated regions those areas almost always overlap with manually mapped avalanches.

.

about the occurrence of avalanches. With increasing context through a larger patch size though, the model becomes more

confident and the avalanche borders are distinctly visible.

Subsequently, in order to understand what is better for training the network, we trained on avalanche deposits or release

areas only. As deposit area, we assumed the lower third (based on elevation) of each manually mapped avalanche, ignoring

those avalanches were the deposit had been inferred. For the release areas, we used the zones identified by Bühler et al. (2019),260

again disregarding those avalanches where the release zone had been inferred and were therefore uncertain. As results in

Table 2 show, performance for predicting all avalanches is a lot worse in both cases. We also observe that PPV and POD are

significantly higher when the network is trained on deposits only, rather than trained only on release areas. This resulted in an

increase of 0.146 in F1-score and suggests that the original model might also be learning more from texture rich avalanche

deposits than from release zones.265

Finally, the experts manually mapping the avalanches generally perceived those in the sun as better visible. Hafner et al.

(2021) confirmed that and found the POD to be higher roughly by a factor five for avalanches in fully illuminated terrain
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Figure 7. Comparison of results for four patches when training the network with different patch sizes. The tiles depict (a) the SPOT 6 image,

(b) the manually mapped annotations used as reference, (c) the predictions thresholded at 0.5, and (d) the predicted avalanche probability

(SPOT 6 data © Airbus DS 2018). Visual inspections show, the model is a lot more confident the larger the patch size.

.

compared to those, at the time of image acquisition, in fully shaded terrain. In order to investigate this further, we used a

Support Vector Machine (SVM) classifier to calculate a shadow mask for both 2018 and 2019. The mask also includes most

forested areas due to their speckled sun/shade pattern. Subsequently, we excluded the avalanche parts being located in the270

shade and trained only with the remaining areas (about one fourth of the avalanche area per year). Calculating the metrics

considering only avalanches in illuminated areas, we found an increase of 0.058 in POD, a slight decrease of 0.015 in PPV and
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consequently an increase in F1-score of 0.014. The object-based metrics (Table 3) are also slightly better when only considering

sunlit regions.

4.3 Reproducibility of manually mapped avalanches275

To assess the degree of label noise in our dataset, we conducted a reproducibility experiment on the manually mapped

avalanches to understand how similar the assessment of a given area by different experts would be. In other fields several

comprehensive studies have already been conducted to investigate inter-observer variability, for example for contouring organs

in medical images (Fiorino et al., 1998) or for manual glacier outline identification (Paul et al., 2013). For our investigation

five people attempted to replicate the manual mapping with the same methodology as used before and described in detail in280

Bühler et al. (2019). All five mapping experts are very familiar with satellite imagery and/or avalanches and received the same

standardized introductions. The experiment was conducted twice in an area of 90 km2 around Flims, Switzerland, on the 2018

and 2019 SPOT 6/7 imagery (see Figure 5). The area contains avalanches in the shade and in illuminated terrain as well as

all outline quality classes in the initial mappings (Hafner and Bühler, 2019, 2021). The mapping experts did not see another

mapping before having finished theirs.285

Table 4. F1-scores for the reproducibility investigation: the bold values in the upper right part of the table represent the scores comparing

two expert mappings in illuminated terrain, the lower left values the scores in shaded terrain.

Expert 1 Expert 2 Expert 3 Expert 4 Expert 5

Expert 1 0.758 0.623 0.617 0.653

Expert 2 0.401 0.711 0.723 0.724

Expert 3 0.232 0.198 0.656 0.782

Expert 4 0.188 0.236 0.205 0.786

Expert 5 0.123 0.155 0.204 0.244

Calculating F1-score (see Equation 1), between all experiment mappings, we found an overall F1-score of 0.381 in illumi-

nated and 0.018 in shaded areas (area-wise metrics). Comparing two expert mappings at a time, the values range from 0.617

to 0.786 in the illuminated regions and from 0.123 to 0.401 in the shaded regions of our study area (Table 4). The F1-scores

of the expert manual mappings with the initial mapping are in the same range (not shown). The results from 2018 (Figure 8)

illustrate that for some selected avalanches the agreement is very good while, especially in the shade, there is little agreement290

among experts on the presence of avalanches.

Reexamining the results from the network now in the light of this experiment, the adapted DeepLabV3+ is equally good

as the experts in identifying avalanches. In other words, we cannot expect a computer algorithm to provide better scores than

the average F1-score of two mapping experts. Even for the avalanches with the highest agreement, a specific boundary line295

will usually not match exactly. This makes it hard for any network to learn the localisation of boundaries. We do not yet know
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Figure 8. Heat map examplarily illustrating expert agreement on avalanche area for avalanches mapped from SPOT in January 2018 (24

January 2018, SPOT 6 © Airbus DS2018). Agreement in the shade (northern part of the study area) is generally lower than in the sunlit areas

to the south. Dark blue indicates very good agreement or in other words marks areas that where identified as an avalanche by all five involved

experts. For a more detailed location of the reproducibility study area see Figure 5.

.

what exactly causes the differences in avalanche identification between experts. Therefore we plan on conducting a thorough

analysis on imagery with different spatial resolutions in the future. This will help to better understand the inherent mapping

uncertainty of avalanches and may give an indication what performance can be expected if training computational detection

algorithms on different optical data.300

4.4 Limitations of this study

The three avalanche periods for which we have SPOT imagery all occurred in January. Those images are relatively close

to the winter solstice and therefore have a high percentage of shaded area. The amount of shaded area depends very much

on the terrain and on the season. Around Davos, Switzerland, for example, 43% of the area is shaded at winter solstice but

only 7% three months later (both at SPOT 6/7 image acquisition time; Hafner et al., 2021). We know that the quality of the305
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manually annotated avalanches is lower in shaded areas (POD: 0.15 shade, 0.86 illuminated, 0.74 overall; Hafner et al., 2021).

Consequently, the training data have lower quality in shaded regions, which makes learning there more difficult for our model

and leads to lower model confidence as well as poorer results. Based on the results when training and testing on sunlit avalanche

parts only, however, we see potential for better overall metrics when a smaller portion of the area is shaded closer to the summer

solstice. But regardless how much area is well illuminated, the challenges in the shade remain and make results in those areas310

less trustworthy. Further research to better understand and tackle that problem is needed.

Additionally, even though 2018 includes wet snow and wet snow avalanches, the snow in January is generally colder and

drier than towards the end of the winter. Consequently, we do not know how well our model performs under different snow

conditions, for example in spring. Whether our model already generalizes enough or is biased towards high winter conditions

and requires retraining with different snow conditions we could not yet test.315

5 Conclusion and outlook

We present a novel deep learning approach for avalanche mapping with deformable convolutions that adapts its notion of the

local terrain according to the input digital elevation model (DEM). Experiments at large scale with optical, high spatial resolu-

tion (1.5 m) SPOT 6/7 satellite imagery show that our approach achieves good performance (F1-score 0.625) and generalizes

well to new scenes not seen during the training phase (F1-score 0.625). As reference data for training, validating and testing320

our model we relied on 24’747 manually mapped and annotated avalanches from two avalanche periods on different years.

With our adapted DeepLabV3+ we were able to detect 66% of all avalanches. By varying model parameters and the input data

we analyzed the impact of different configurations on the mapping result. We found that weighting the avalanches according

to the perceived visibility did result in slightly better metrics than when not weighting them. By training on release areas

and deposits only we demonstrated that the network learns more from deposits (Table 2) and by excluding shaded areas from325

training we showed that in illuminated terrain both training is easier and test results are better (F1-score 0.639). Furthermore,

we investigated expert agreement for manual avalanche mapping in a small reproducibility study and found that agreement

on avalanche area is substantially lower than expected. Compared to the model, the agreement between experts is in the same

range as the adapted DeepLabV3+ performance.

Our work is an important step towards a fast and comprehensive documentation of avalanche periods from optical satellite330

imagery. This could substantially complement existing avalanche databases, improving their reliability to perform hazard

zoning or the planning of mitigation measures. For the future we aim at conducting a more throughout study investigating

expert agreement for manual avalanche identification and its implications for automated avalanche mapping. Additionally,

we intend to study the performance of our model on data from different sensors and time periods. Furthermore, we plan on

improving results by masking out areas where avalanche cannot occur using for example modelled avalanche hazard indication335

data from (Bühler et al., 2022).
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