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\begin{abstract} 

Spatially dense and continuous information on avalanche occurrences is crucial for numerous safety 

related applications such as avalanche warning, hazard zoning, hazard mitigation measures, forestry, 

risk management and numerical simulations. This information is today still collected in a non-

systematic way by observers in the field. Current research has explored \DIFdelbegin \DIFdel{and 

proposed applying }\DIFdelend \DIFaddbegin \DIFadd{the application of }\DIFaddend remote sensing 

technology to fill this information gap\DIFaddbegin \DIFadd{, }\DIFaddend by providing spatially 

continuous information on avalanche occurrences over large regions. Previous investigations have 

confirmed the high potential of avalanche mapping from remote sensed imagery to complement 

existing databases. Currently, the bottleneck for fast data provision from optical data is the time- 

consuming manual mapping. In our study we deploy a slightly adapted DeepLabV3+, a state-of-the-

art deep learning model, to automatically identify and map avalanches in SPOT6/7 imagery from 24 

January 2018 and 16 January 2019. We relied on 24'778 manually annotated avalanche polygons split 

into geographically disjoint regions for training, validating and testing. Additionally, we investigate 

generalization ability by testing our best model configuration on SPOT 6/7 data from 6 January 2018 

and comparing to avalanches we manually annotated for that purpose.  

% 

To assess the quality of the model results, we investigate the probability of detection (POD), the 

positive predictive value (PPV) and the F1-score. Additionally, we assessed the reproducibility of 

manually annotated avalanches in a small subset of our data. We achieved an average POD of 0.610, 

PPV of 0.668 and an F1-score of 0.625 in our test areas and found an F1-score in the same range for 

avalanche outlines annotated by different experts. Our model and approach are an important step 



towards a fast and comprehensive documentation of avalanche periods from optical satellite 

imagery in the future, complementing existing avalanche databases. This will have a large impact on 

safety related applications, making mountain regions safer. 

\end{abstract} 
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\introduction %% \introduction[modified heading if necessary] 

 

 

Information about occurred avalanches, their location and dimensions are pivotal for many 

applications such as avalanche warning, hazard zoning, hazard mitigation infrastructure, forestry, risk 

management and numerical simulations \citep[e.g.][]{Meister.1994, RudolfMiklau.2015, 

Bebi.2009,BrundlMargreth.2015, Christen.2010, buhler.2022}. Currently this information is reported 

and collected unsystematically by observers and (local) avalanche warning services. In recent years 

different groups have proposed to use remote sensing to fill that gap and provide spatially 

continuous, complete maps of avalanche occurrences over some region of interest 

\citep{Buhler.2009, Lato.2012, Eckerstorfer.2016, Korzeniowska.2017}. \DIFdelbegin %DIFDELCMD <  

 

%DIFDELCMD < %%% 

\DIFdelend It has been shown that avalanches can be identified with sufficient reliably from optical 

data \citep[e.g.,][]{Buhler.2019} or Synthetic Aperture Radar \citep[SAR; e.g.,][]{Eckerstorfer.2016, 

Abermann.2019}, with varying degrees of completeness depending on the sensor and the size of the 

avalanches \citep{hafner.2021}. 

\DIFaddbegin  

 

\DIFadd{Both optical and SAR data have inherent advantages and disadvantages which we would like 

to elaborate on in the following section: For the acquisition of suitable data, SAR is independent of 

cloud cover, whereas for optical data a clear sky is a crucial prerequisite. Consequently, optical data 

may only capture occurred avalanches after a period with activity is over (except for avalanches 

releasing solely due to the warming during the day), whereas with SAR information may also be 

retrieved during an avalanche period. Due to that independence from low-visibility weather 

conditions, and in the case of Sentinel-1 a 12-day repeat cycle at mid latitudes, the temporal 

resolution is in the best case daily in northern Norway or about every 6 days in central Europe 

(numbers for two Sentinel-1 satellites acquiring data, currently the temporal resolution is about half 

as Sentinel-1B has not been acquiring since 23 December 2021). The optical satellite data currently 

known to be suitable for avalanche mapping need to be ordered specifically and are therefore only 



available at isolated dates in time. Compared to SAR, optical data is however easier to process and 

interpret. In our previous work \mbox{%DIFAUXCMD 

\citep{hafner.2021} }\hspace{0pt}%DIFAUXCMD 

we compared the performance and completeness of SAR Sentinel-1 as well as optical SPOT 6/7 and 

Sentinel-2 for avalanche mapping. In a detailed analysis of the manual mappings we found the 

following: the ground sampling distance of 10m makes Sentinel-2 unsuitable for the mapping of 

avalanches. The mapping from SPOT 6/7 is overall more complete compared to Sentinel-1, which is 

mostly caused by the inability to confidently map avalanches of size 3 and smaller in Sentinel-1 

imagery, a characteristic related to the underlying spatial resolution of approximately 10-15m for 

Sentinel-1 and 1.5m for SPOT 6/7. Depending on the application, practitioners not only want to know 

when and where an avalanche occurred, but also the outlines. When analyzing which part of an 

avalanche can typically be identified using Sentinel-1 we found \mbox{%DIFAUXCMD 

\citep[in accordance with, among others,][]{eckerstorfer.2022} }\hspace{0pt}%DIFAUXCMD 

that it is mostly the deposit, but may include patches from track and release area. When only using 

Sentinel-1 data it is therefore neither possible to derive the number of avalanches occurred (possibly 

several unconnected patches for one avalanche), nor the size of the occurred avalanches (size of 

patches detected does not usually correspond to avalanche size). Consequently, unless unambiguous 

with respect to the terrain, the origin and release area of avalanche deposits detected using SAR 

images remain unknown. In contrast, except for shaded areas, in SPOT 6/7 avalanches can be 

identified from release zone to deposit in almost all cases. Additionally, research suggests SAR to be a 

lot less reliable for detecting dry snow avalanches compared to wet snow avalanches 

\mbox{%DIFAUXCMD 

\citep[among others][]{hafner.2021, eckerstorfer.2022}}\hspace{0pt}%DIFAUXCMD 

. The above statements made about SPOT 6/7 are transferable to optical data with similar or better 

spatial and spectral resolution. 

} 

 

\DIFaddend To bypass the time-consuming manual mapping, several groups have explored (semi-) 

automatic mapping approaches. \citet{Buhler.2009} used a processing chain that relies on 

directional, textural and spectral information to automatically detect avalanches in airborne optical 

data. \citet{Lato.2012} and \citet{Korzeniowska.2017} applied object-based classification techniques 

to optical high spatial resolution data (0.25 - 0.5 m). \citet{Wesselink.2017} and 

\citet{Eckerstorfer.2019} have introduced and consequently refined an algorithm to automatically 

detect avalanches in Sentinel-1 SAR imagery, via changes of the backscatter between pre- and post-

event images. \citet{karbou.2018} also utilized changes in backscatter to identify avalanche debris. 

For avalanche detection in Radarsat-2 imagery, \citet{Hamar.2016} used supervised classification 

with a random forest classifier. On the contrary, the avalanche mapping from optical satellite data 

has so far been exclusively done manually \citep{Buhler.2019, hafner.2021, Abermann.2019}. \\  

 

The deployment of machine learning for remote sensing image analysis has seen a surge in the last 

decade \citep{Ma.2019}. Modern deep learning methods often outperform competing ones in 

complex image understanding tasks, and have been used for example to detect rock glaciers 

\citep{Robson.2020}, landslides \citep{prakash.2021} and crop types in fields \citep{cai.2018}. For 



avalanches, the use of deep learning has so far focused on Sentinel-1 imagery: 

\citet{waldeland.2018} applied a pre-trained ResNet \citep{he.2016} for avalanche identification by 

change detection using manual reference annotations. \citet{bianchi.2021} segmented avalanches 

with a fully convolutional U-Net \citep{ronneberger.2015}, also relying on manual annotations for 

training the network. \citet{sinha.2019a} proposed a fully convolutional VGG16 network 

\citep{simonyan.2015} that was trained on, and compared against, an inventory of avalanche field 

observations. With the same inventory, \citet{sinha.2019b} also, alternatively used a Variational 

Autoencoder \citep{Kingma.2019} for avalanche detection.  

 

In contrast to previous studies, our work is the first to attempt to use deep learning for the detection 

of avalanches in \emph{optical} satellite data. This is of major importance, as the largest avalanche 

mapping from remotely sensed imagery to date, with 24'778 single avalanche polygons \DIFdelbegin 

\DIFdel{\mbox{%DIFAUXCMD 

\citep{spot.2018, spot.2019}}\hspace{0pt}%DIFAUXCMD 

}\DIFdelend \DIFaddbegin \DIFadd{\mbox{%DIFAUXCMD 

\citep{Buhler.2019, spot.2018, spot.2019}}\hspace{0pt}%DIFAUXCMD 

}\DIFaddend , relied on optical SPOT 6/7 satellite imagery. Furthermore, there have been 

investigations with external data into the reliability and completeness of mappings from SPOT 6/7 

\citep{hafner.2021}. Consequently, an automation of the manual mapping from this imagery would 

allow for a fast comprehensive documentation of future avalanche periods with background 

knowledge about how well it works and how much avalanche area approximately is missed. Without 

an automation it is not feasible to cover large regions quickly. With manual image interpretation 

\citep{hafner.2021} it took approximately one hour to manually delineate avalanches in SPOT images 

covering a region of $\approx\,$27.5~km$^2$. Thus, in this work we develop, describe and apply a 

deep learning approach for avalanche mapping based on the SPOT 6/7 sensor with the goal to 

automate the mapping process, so as to cover large areas and eventually operate at country-scale. 

We developed a variant of DeepLabV3+ \citep{chen.2018} that takes as input SPOT 6/7 images and a 

digital elevation model (DEM), and outputs spatially explicit raster maps of avalanches. For our 

DeepLabV3+ variant we made the encoder and decoder deformable \citep{Dai.2017}, thereby our 

convolutional kernels adapt according to the underlying terrain, which is essential in the study of 

avalanches. In addition to a careful description of the network architecture we evaluate results, 

compare to previous work, examine the reproducibility of the manually mapped avalanches, and 

discuss the potential and limitations of our method. 

 

 

 

 

\section{Data}\label{subsub:data} 

For training and validating our proposed mapping system we utilize SPOT 6/7 \DIFaddbegin 

\DIFadd{top-of-atmosphere reflectance }\DIFaddend images acquired on 24 January 2018 

\citep[referred to as 2018 in the remainder of this paper,][]{spot.2018} and 16 January 2019 

\citep[referred to as 2019 from now on,][]{spot.2019}, together with a set of 24'776 avalanche 



annotations delineated by manual photo-interpretation. In both cases the images were acquired 

after periods with very high avalanche danger, i.e., the maximum level 5 of the Swiss avalanche 

warning system \citep{slf.2021}. SPOT 6/7 images have a ground sampling distance (GSD) of 1.5~m 

and provide \DIFdelbegin \DIFdel{spectral intensities in the }\DIFdelend \DIFaddbegin 

\DIFadd{information in four spectral bands, namely }\DIFaddend red, green, blue, and near-infrared 

(R, G, B, NIR)\DIFdelbegin \DIFdel{wavelengths}\DIFdelend , at a radiometric resolution of 12 bits. 

The dataset covers an area of $\approx\,$12’500~km$^2$ in 2018 and $\approx\,$9’500~km$^2$ in 

2019. These two areas partly overlap. \DIFdelbegin \DIFdel{Snow reflectance and atmospheric 

influences }\DIFdelend \DIFaddbegin \DIFadd{As both were acquired in January, the illumination 

conditions }\DIFaddend exhibit little variability between the two years, but they differ in terms of 

snow conditions: in 2019 the snow line was at a lower altitude, and consequently there was more dry 

snow, hardly any wet snow, and fewer glide snow avalanches. % 

As additional input information we use the Swiss national DEM \emph{swissALTI3D}. To match the 

resolution of SPOT imagery, we resample the DEM (original GSD 2~m) to 1.5~m, aligned with SPOT 

6/7. Its nominal vertical accuracy is 0.5 m below the treeline (∼2100 m a.s.l.) and 1–3 m above the 

treeline \citep{swisstopo.2018}. We did not apply atmospheric corrections as \DIFdelbegin 

\DIFdel{the water content of the atmosphere is typically low and atmospheric effects therefor 

relatively minor in winter \mbox{%DIFAUXCMD 

\citep{nolin.2010}}\hspace{0pt}%DIFAUXCMD 

. }\DIFdelend \DIFaddbegin \DIFadd{our main focus is texture and the absolute spectral values do not 

matter for avalanche identification.  

}\DIFaddend  

 

\DIFaddbegin \DIFadd{The 24'776 avalanches were annotated by a single person, an expert, which 

we define as somebody very familiar with both satellite image interpretation and avalanches. For the 

mapping of avalanches the visual identification of crown and release areas, track and deposit 

through texture and hue as well as hints of possible damage have played a role \mbox{%DIFAUXCMD 

\citep[for details on the methodology see][]{Buhler.2019}}\hspace{0pt}%DIFAUXCMD 

. }\DIFaddend For each mapped avalanche polygon the expert also recorded a score of how well the 

avalanche was visible, splitting the annotations in three groups: \emph{complete, well visible} 

outline; \emph{mostly well visible} outline; and \emph{not completely visible} outline, where 

significant parts had to be inferred with the help of domain knowledge \citep[see 

also][]{Buhler.2019}. \DIFdelbegin \DIFdel{The methodology for manual avalanche mapping follows 

\mbox{%DIFAUXCMD 

\citet{Buhler.2019} }\hspace{0pt}%DIFAUXCMD 

and is described in more detail there. }\DIFdelend Furthermore, we validated a subset of the initial 

mapping with independent ground- and \DIFdelbegin \DIFdel{helicoper-based }\DIFdelend 

\DIFaddbegin \DIFadd{helicopter-based }\DIFaddend photographs as reference \citep{hafner.2021}. 

We found that for manual mapping based on SPOT images the probability of detection (POD; 

\DIFaddbegin \DIFadd{see Equation~\ref{equ:PODPPV}; }\DIFaddend the probability of a true 

avalanche being annotated) is \DIFdelbegin \DIFdel{74\% }\DIFdelend \DIFaddbegin \DIFadd{0.74 

}\DIFaddend for avalanches larger than size 1 \citep[avalanche size is categorised on a scale from 1 to 

5, with size 5 the largest and most destructive ones; for more details see][]{slf.2021}. The positive 



predictive value (PPV; \DIFaddbegin \DIFadd{see Equation~\ref{equ:PODPPV}; }\DIFaddend 

probability of an annotated avalanche having a true counterpart) was \DIFdelbegin 

\DIFdel{88\%}\DIFdelend \DIFaddbegin \DIFadd{0.88}\DIFaddend , indicating only few false positive 

annotations (again for size $\geq$2). 

 

\DIFaddbegin \DIFadd{Additionally, we used SPOT 7 imagery of the Mattertal, Val d’Hérens and Val 

d’Herémence in Valais, Switzerland from 6 January 2018 covering $\approx\,$660 km$^2$ to 

evaluate our model. The data were acquired for test purposes after a period with high avalanche 

danger and the 538 avalanches used for validation have been manually mapped with the same 

methodology as the others used in this work and described in \mbox{%DIFAUXCMD 

\citet{Buhler.2019}}\hspace{0pt}%DIFAUXCMD 

. The geographical region with additional data overlaps with data acquired on 24 January 2018, but 

served as test area before and did not go into training or validation (see "Generalitzation Test" areas 

in Figure~\ref{fig:TrainCoAreas}). The images suffer from distortion in steep terrain as they were part 

of a suitability study for avalanche mapping from optical data \mbox{%DIFAUXCMD 

\citep }\hspace{0pt}%DIFAUXCMD 

}[\DIFadd{for details see}][]{\DIFadd{Buhler.2019}} \DIFadd{and orthorectified by the satellite 

providers using the height information from the Shuttle Radar Topography Mission 

\mbox{%DIFAUXCMD 

\citep[SRTM,][]{srtm.2013}}\hspace{0pt}%DIFAUXCMD 

.  

} 

 

 

 

\DIFaddend \section{Method} 

Many overlapping avalanches exist in the dataset whose boundaries cannot be precisely 

distinguished from each other even by experts. We thus restrict ourselves to identifying all pixels 

where avalanches have occurred, but do not attempt to group them into individual avalanche events.  

In terms of image analysis this corresponds to a semantic segmentation task, where each pixel is 

assigned a class label: \emph{avalanche} or \emph{background} according to \DIFdelbegin \DIFdel{its 

class score}\DIFdelend \DIFaddbegin \DIFadd{the model confidence}\DIFaddend . 

Several deep learning models have been developed for solving such problems and have achieved 

excellent results in various domains, such as U-Net \citep{ronneberger.2015}, HRNetV2 

\citep{sun.2019} and DeepLabV3+ \citep{chen.2018}.  

 

 

\subsection{Model Architecture} 



On their way downwards, avalanches are constrained and guided by the local terrain. In order to 

accurately map avalanches from the input data, we therefore propose a deep learning architecture 

that adapts to the underlying terrain model. We build on state-of-the-art model DeepLabV3+ 

designed for semantic segmentation and add deformable convolutions that adapt their receptive 

field size according the input data, i.e. the terrain model in our case. 

 

\textbf{DeepLabV3+} is a popular, fully convolutional semantic segmentation model that has been 

used successfully with a variety of datasets. It features a dilated ResNet \DIFaddbegin 

\DIFadd{\mbox{%DIFAUXCMD 

\citep{he.2016} }\hspace{0pt}%DIFAUXCMD 

}\DIFaddend encoder as a backbone for feature extraction, in combination with Atrous Spatial 

Pyramid Pooling module (ASPP). To achieve a wide receptive field able to capture multi-scale context, 

ASPP employs dilated convolutions at different rates. Before being fed into the decoder, the resulting 

features are concatenated and merged using a 1$\times$1 convolution. These high-level features are 

then decoded, upsampled and combined with high-resolution, low-level features from the first 

encoder layer. For further details about DeepLabV3+, see \citet{chen.2018}. 

 

Our adaptions to the standard DeepLabV3+ include: \emph{deformable kernels} \citep{Dai.2017} in 

the encoder and decoder as well as a small network with offsets that estimates the appropriate 

kernel deformations in a data-driven manner, and modifies the decoder such that it can process 

features from \emph{all backbone layers} (Figure~\ref{fig:AvanetOverview} \DIFaddbegin 

\DIFadd{and Figure~\ref{fig:DefConvs}}\DIFaddend ). These changes add a modest 1.9M network 

weights to the 22.4M weights of the standard DeepLabV3+.  

 

The reasoning behind \emph{deformable convolution kernels in the backbone} 

(Figure~\ref{fig:Encoder}) is to adapt their receptive fields to the underlying terrain. To obtain 

deformable convolutions, we introduce an additional 18-channel tensor that encodes the 2D offset 

of each kernel element at each location i.e., it enables free-form deformations of the kernel, beyond 

dilation or rotation. The offsets are not fixed \DIFdelbegin \DIFdel{a-priori}\DIFdelend \DIFaddbegin 

\DIFadd{a priori}\DIFaddend , but calculated as a learned function of the DEM, separately for each 

feature resolution, by a small additional network branch.  

By replacing the first convolution in each residual block with a deformable one, we are able to 

explicitly include the terrain shape encoded in the DEM, but without the need to modify other parts 

of the architecture, so as to benefit from the pretrained weights of the encoder. 

 

\begin{figure}[t] 

\includegraphics[width=17cm]{AvanetOverview_hori.png} 

\centering 

\caption{Overview of our DeepLabV3+ variant. The encoder is shown in more detail in 

Figure~\ref{fig:Encoder} and the Deformable Spatial Pyramid Flow (DSPF) in 

Figure~\ref{fig:AvanetDSPF}.} 



\label{fig:AvanetOverview}. 

\end{figure} 

 

\begin{figure}[t] 

\includegraphics[width=15cm]{DefConvs1.png} 

\centering 

\caption{For the deformable convolutions, a standard kernel (like the $3\times3$ as shown in a) will 

be adapted according to 2D offsets learned from the underlying DEM. The green dots in b, c and d 

exemplarily show possible final positions of the kernel elements, the displacement from the standard 

kernel is illustrated by the black arrows. } 

\label{fig:DefConvs}. 

\end{figure} 

 

The \emph{augmented decoder} helps our DeepLabV3+ to propagate features along specific 

directions, in our case this is the possible downhill flow direction of avalanches which can be 

extracted from the DEM. Hence, we alter the ASPP such that it aggregates features from \emph{all} 

backbone layers, and \DIFdelbegin \DIFdel{increase }\DIFdelend \DIFaddbegin \DIFadd{increases 

}\DIFaddend the receptive field. The new module, which we call \emph{Deformable Spatial Pyramid 

Flow} (DSPF, Figure~\ref{fig:AvanetDSPF}), performs deformable convolutions at different dilation 

rates. The deformations are again obtained from our small network with offsets, based on the DEM. 

In order to propagate information along the gradient field, we also model the flow direction of an 

avalanche in the DSFP module of the decoder. 

 

 

\begin{figure}[t] 

\includegraphics[width=18cm]{Encoder.png} 

\centering 

\caption{Encoder of our DeepLabV3+ in detail.} 

\label{fig:Encoder}. 

\end{figure} 

 

\begin{figure}[t] 

\includegraphics[width=13cm]{DSPF.png} 

\centering 

\caption{Detailed architecture of the Deformable Spatial Pyramid Flow (DSPF) used in the Decoder of 

our DeepLabV3+ variant.} 



\label{fig:AvanetDSPF}. 

\end{figure} 

 

\subsubsection{Sampling and Data Split} \label{subsub:dataSampling} 

\DIFdelbegin \DIFdel{Satellite images are normally too large to be processed with deep learning 

methods all at onceand are therefore cropped to patchesof smaller size. Furthermore, a frequent 

challenge in }\DIFdelend \DIFaddbegin \DIFadd{Given the proposed model architecture and the 

available computational resources (CPU: 20 Intel Core 3.70 GHz,  

GPU: 1 NVIDIA GeForce RTX 2080 Ti), we are unable to process an entire orthomosaic at once. 

Therefore, we process squared image subsets, called patches, of up to $512\times512$ pixels at 

training time, which translates into an area of 589'824~m$^2$ at the spatial resolution of SPOT 6/7 

imagery. With our model and computational resources we can simultaneously process batches of 2 

image patches per GPU. 

} 

 

\DIFadd{For }\DIFaddend supervised machine learning approaches \DIFaddbegin \DIFadd{it is vitally 

important that all desired classes are present in the patches the model learns from. As classes are 

usually not evenly distributed, class imbalance is a frequent challenge. Our dataset }\DIFaddend is 

\DIFdelbegin \DIFdel{the class imbalance. In our dataset it is }\DIFdelend very imbalanced: 

avalanches cover only one 1785th of the entire area covered by SPOT 6/7 imagery. Re-balancing of 

class frequencies is necessary to make sure our model adequately captures the variability of the 

avalanche class. 

We use the following pragmatic strategy to ensure a training set that includes relevant examples, and 

with sufficient representation of both classes: 

% 

First, we iteratively sample patch centers inside \DIFaddbegin \DIFadd{manually annotated 

}\DIFaddend avalanche polygons, while avoiding overlapping patches. In this way, we obtain a set of 

samples that is not overly imbalanced, with $\approx$3.5$\times$ more background pixels than 

avalanche pixels. These patches form 95\% of our training set. \DIFdelbegin \DIFdel{The }\DIFdelend 

\DIFaddbegin \DIFadd{Second, the }\DIFaddend remaining 5\% are sampled randomly in areas 

without avalanches, to ensure also patches without avalanche pixels are seen during training. This 

leads to an effective ratio of 1:4 between avalanche and background pixels in the 5185 

$512\times512$ patches of the training set.  

 

As the edges of the patches lack context, they were also given smaller weights when calculating the 

loss function during training starting 100 pixels from the edge, decreasing the weight linearly to 10\% 

of the base weight given above at the very edge. For our DeepLabV3+ we additionally used deep 

supervision as in \citet{simonyan.2015}, to help the model converge.  

\DIFdelbegin \DIFdel{To increase the model's performance, gradients are accumulated over two 

iterations before weights are updated. Thereby an effective batch size of 16 (8+8) is reached and the 

$512\times512$ pixel patches may be used (see also section~\ref{subsub:ablation}). Predictions are 



made for an area specified by a shapefile. To reduce artifacts at the edges of patches, the samples for 

the predictions overlap by 100 pixels before being cropped. 

}\DIFdelend  

 

\subsubsection{Training}\label{sub:trainingDetails} 

For training and quantitative evaluation, the data were split into mutually exclusive, geographically 

disjoint regions for training (80\%), validation and hyper-parameter tuning (10\%) and testing (10\%), 

as depicted in Figure~\ref{fig:TrainCoAreas}. The test set is located completely in regions acquired 

either only in 2018 or only in 2019, but not in the overlap between the two acquisitions, to prevent 

memorization (especially of the identical topography). 

 

\begin{figure}[t] 

\includegraphics[width=16cm]{TrainTestValiAreas1a.png} 

\centering 

\caption{Visualization of the disjoint regions for training, validation and testing for both 2018 and 

2019. Also shown are: the test region for the generalization experiments, where we had additional 

data from 6 January 2018, and the regions used to study reproducibility of manual avalanche maps.} 

\label{fig:TrainCoAreas}. 

\end{figure} 

 

The network is trained by minimizing a weighted binary cross entropy (BCE) loss (see also 

~\ref{sub:trainingDetails}), using the Adam optimizer~\citep{kingma.2017} for 20 epochs. The base 

learning rate was initialised to 1$\times$10$^{-4}$ and reduced by a factor of 4 after 10 epochs. A 

summary of the hyper-parameter settings is given in Table~\ref{tab:networkParams}.  

 

\begin{table}[!ht] 

  \centering 

  \caption{Summary of training parameters} 

  \label{tab:networkParams} 

  \begin{tabular}{|l|c|}  

  \hline 

    \textbf{Parameter} & \textbf{Value} \\ \hline\hline 

    Loss function & Weighted BCE \\ \hline 

    Optimizer & Adam \\ \hline 

    Initial learning rate & 1$\times$10$^{-4}$ \\ \hline 



    Effective batch size & 16 \\ \hline 

    Patch size & 512$\times$512 \\ \hline 

    Epochs & 20 \\ \hline 

  \end{tabular} 

\end{table} 

 

 

As a preprocessing step, the input images are normalized channel-wise using the mean and variance 

values of the entire dataset. 

%DIF <  \ks{slightly vague. Perhaps better "are normalised by mapping the value range of the image 

dataset to [-?..?]"} 

Additionally, we flattened the peak in the image histograms caused by the shadow pixels by 

transforming negative values $v\rightarrow (-3\cdot v^2)$, while keeping positive values unchanged. 

 

Even though our training dataset is large, it covers only two avalanche periods and cannot be 

expected to account for the whole variety of possible conditions. In order to increase the robustness 

of the network, we further expand the training set with synthetic data augmentation. We used 

randomized rotation and flipping for greater topographic variety, mean-shifting and variance-scaling 

to simulate varying atmosphere and lighting conditions, as well as patch shifting to increase 

robustness when only part of an avalanche is visible. To speed up data loading we used batch 

augmentation \citep{hoffer.2019}, where the same sample is read only once and used multiple times 

with different augmentations computed on the fly. \DIFaddbegin \DIFadd{To increase the model's 

performance, we additionally accumulated gradients over two iterations before weights were 

updated. Thereby an effective batch size of 4 (2+2) was reached and the $512\times512$ pixel 

patches may be used (see also Section~\ref{subsub:ablation}).  

}\DIFaddend  

 

 

As mentioned in Section~\ref{subsub:data} the avalanche polygons come with labels that quantify 

their visibility in the SPOT data. These labels are used to re-weight their contributions to the BCE loss 

as follows: pixels on \emph{complete, well visible} avalanches have weight 2, \emph{mostly well 

visible} avalanches as well as \emph{background} pixels not on an avalanche have weight 1, and 

\emph{not completely visible} avalanches have weight 0.5.  

 

\section{Results and Discussion} 

 

\DIFdelbegin \DIFdel{To }\DIFdelend \DIFaddbegin \DIFadd{Predictions are made for a target area 

specified by vector polygons in the form of shapefiles. To reduce artifacts at the edges of patches, 



the samples for the predictions overlap by 100 pixels before being cropped. To }\DIFaddend assess 

the detection performance of the network, we calculated positive predictive value (PPV, also called 

precision) and probability of detection (POD, also called recall) on a pixel level as well as the F1-score. 

PPV and POD are both based on a standard $2\times2$ confusion matrix \citep{Trevethan.2017}. As 

per pixel metrics take as input a binary mask (avalanche yes or no) and the network yields scores, we 

thresholded the predictions at 0.5 before calculating statistics and computed the F1-score as 

\begin{equation} 

\text{F1} = 2 \cdot \frac{\text{PPV} \cdot \text{POD}}{\text{PPV} + \text{POD}}, 

\label{equ:F1} 

\end{equation} 

where POD and PPV are defined as 

\begin{equation} 

\text{POD} = \frac{\text{TP}}{\text{TP} + \text{FN}} \qquad \text{and} \qquad \text{PPV} = 

\frac{\text{TP}}{\text{TP} + \text{FP}}, 

\DIFaddbegin \label{equ:PODPPV} 

\DIFaddend \end{equation} 

where TP is true positive, FP is false positive and FN is false negative. 

 

 

 In this paper the presented pixel-wise metrics (POD, PPV and F1-score) represent the average score 

over all the patches we tested on. As our dataset is imbalanced and the F1 score non-symmetric, we 

calculated those metrics for both avalanches and the background. Additionally, we wanted to 

estimate how many avalanches were detected by each model. Consequently, for the object-based 

metrics we tested two different measures: we counted an avalanche as detected if 50\% or 80\% of 

all pixels within an avalanche from the manual mapping had a score of 0.5 or higher. 

 

 

\subsection{Results and generalization ability} 

\DIFaddbegin \DIFadd{Results were calculated for the test areas and are reported in }\DIFaddend 

Table~\ref{tab:networkResults}\DIFdelbegin \DIFdel{demonstrates that a }\DIFdelend \DIFaddbegin 

\DIFadd{. Compared to the }\DIFaddend standard DeepLabV3+\DIFdelbegin \DIFdel{has a lower POD 

(}\DIFdelend \DIFaddbegin \DIFadd{, our model, when run with the parameters described in 

Table~\ref{tab:networkParams}, has a higher POD for avalanches (0.610 vs. }\DIFaddend 

0.587)\DIFdelbegin \DIFdel{than our method (0.610) }\DIFdelend \DIFaddbegin \DIFadd{, 

}\DIFaddend while having the same PPV\DIFdelbegin \DIFdel{, both for avalanches}\DIFdelend . This 

results in an F1-score of 0.612 for the standard DeepLabV3+ and 0.625 for our version\DIFdelbegin 

\DIFdel{with the F1-score for the background being almost identical for both models. For }\DIFdelend 

\DIFaddbegin \DIFadd{. For the }\DIFaddend background, the pattern is similar, the POD is slightly 

better for our method (0.894), compared to the standard DeepLabV3+ (0.888), while the PPV is 



slightly higher for the standard model (0.900 vs. 0.894). \DIFdelbegin \DIFdel{The }\DIFdelend 

\DIFaddbegin \DIFadd{Consequently, the }\DIFaddend F1-score is \DIFdelbegin \DIFdel{again 

}\DIFdelend very similar, as it only differs by one in the third decimal place between our and the 

standard DeepLabV3+. 

 

For any supervised classification and deep learning methods in particular, the ability to generalize 

well to new datasets and regions not seen during the training phase is key. To evaluate this, we test 

our trained model using \DIFdelbegin \DIFdel{unseen SPOT 6 imagery of the Mattertal, Val d’Hérens 

and Val d’Herémence in Valais, Switzerland }\DIFdelend \DIFaddbegin \DIFadd{SPOT 7 imagery 

}\DIFaddend from 6 January \DIFdelbegin \DIFdel{2018 covering $\approx\,$660 km$^2$ (see 

Figure~\ref{fig:GenMattertal}). The data were acquired for test purposes after a period with high and 

very high avalanche danger and the avalanches used for validation have been manually mapped with 

the same methodology as the others used in this work and described in \mbox{%DIFAUXCMD 

\citet{Buhler.2019}}\hspace{0pt}%DIFAUXCMD 

. The geographical region with additional data overlaps with data acquired on 24 January 2018, but 

served as test area before and did not go into training or validation (see 

Figure~\ref{fig:TrainCoAreas}). The images suffer from distortion in steep terrain as they were part of 

a usability study for avalanche mapping from optical data \mbox{%DIFAUXCMD 

\citep }\hspace{0pt}%DIFAUXCMD 

}%DIFDELCMD < [%%% 

\DIFdel{for details see}%DIFDELCMD < ][]{%%% 

\DIFdel{Buhler.2019}%DIFDELCMD < } %%% 

\DIFdel{and orthorectified by the satellite providers using the height information from the Shuttle 

Radar Topography Mission \mbox{%DIFAUXCMD 

\citep[SRTM,][]{srtm.2013}}\hspace{0pt}%DIFAUXCMD 

.  

}%DIFDELCMD <  

 

%DIFDELCMD < %%% 

\DIFdel{The test }\DIFdelend \DIFaddbegin \DIFadd{2018. The test }\DIFaddend metrics for 

predictions on the data from 6 January 2018 were calculated with the standard DeepLabV3+ and the 

adapted DeepLabV3+. As Table~\ref{tab:networkResults} shows, our version generalizes very well 

\DIFaddbegin \DIFadd{(see also Figure~\ref{fig:GenMattertal})}\DIFaddend , the metrics only differ 

from tests on the initial dataset in the fourth decimal place. The standard DeepLabV3+ on the other 

hand, does not generalize so well as the POD and the detection rates per avalanche are lower than 

for testing on the initial data\DIFdelbegin \DIFdel{(see Table~\ref{tab:networkResults})}\DIFdelend .  

 

We also investigated object-based metrics for all model variations, when detection means 50\% of 

the avalanche area the models rightly capture between roughly 58\% and 69\% of all avalanches and 



between 38\% and 51\% when detection requires 80\% of the area (Table~\ref{tab:ObasedMetrics}). 

Again the the standard DeepLabV3+ performs slightly worse than our adapted DeepLabV3+, 

especially when run on data from a new avalanche period (6 January 2018). Therefore, our 

DeeplabV3+ shows better ability to generalize to new and previously unseen data. \DIFdelbegin 

\DIFdel{The }\DIFdelend \DIFaddbegin \DIFadd{Overall, the }\DIFaddend best performance is 

achieved when considering sunlit avalanche parts only, for both training and testing.  

 

 

\begin{sidewaystable}[!ht] 

  \centering 

  \caption{Segmentation results for the test areas for the standard DeepLabV3+ and our DeepLabV3+, 

results of predicting on data from a previously unseen avalanche period and variations to our model 

for the ablation. The metrics shown are the averages from all tested patches. \DIFaddbegin 

\DIFadd{The bold fonts signify the model, data, and parameters that were varied compared to what 

we used as standard in our work.}\DIFaddend } 

  \label{tab:networkResults} 

  \begin{tabular}{ p{1.6cm} p{1.8cm} p{1.4cm} p{1.4cm} p{2cm} p{1.4cm} p{1cm} p{1cm} p{1cm} 

p{1cm} p{1cm} p{1cm}} 

  \hline 

    Model & SPOT data & training data & patch size & bands &loss function & POD & PPV & F1 & POD 

back & PPV back & F1 back  \\ \hline\hline 

    \textbf{standard DeepLabV3+} & 24.01.2018 16.01.2019 & whole avalanches& 512$\times$512 & 

R, NIR, DEM & weighted BCE & 0.587 & 0.667 & 0.612 & 0.888 & 0.900 & 0.885 \\ \hline 

    adapted DeepLabV3+ & 24.01.2018 16.01.2019 & whole avalanches& 512$\times$512 & R, NIR, 

DEM & weighted BCE & 0.610 & 0.668 & 0.625& 0.894 & 0.894 & 0.884 \\ \hline 

    \textbf{standard DeepLabV3+} & \textbf{06.01.2018} & whole avalanches & 512$\times$512 & R, 

NIR, DEM & weighted BCE & 0.547 & 0.667 & 0.591 & 0.876 & 0.916 & 0.887 \\ \hline 

    adapted DeepLabV3+ & \textbf{06.01.2018} & whole avalanches & 512$\times$512 & R, NIR, DEM 

& weighted BCE & 0.610 & 0.668 & 0.625 & 0.894 & 0.895 & 0.884 \\ \hline 

    adapted DeepLabV3+ & 24.01.2018 16.01.2019 & whole avalanches& {\bf 256$\times$256} & R, 

NIR, DEM & weighted BCE & 0.723 & 0.587 & 0.645 & 0.720 & 0.796 & 0.720 \\ \hline 

    adapted DeepLabV3+ & 24.01.2018 16.01.2019 & whole avalanches& {\bf 128$\times$128} & R, 

NIR, DEM & weighted BCE & 0.898 & 0.659 & 0.829 & 0.340 & 0.551 & 0.452 \\ \hline 

    adapted DeepLabV3+ & 24.01.2018 16.01.2019 & whole avalanches& 512$\times$512 & R, NIR, 

DEM & \textbf{unweighted BCE} & 0.688 & 0.575 & 0.622 & 0.887 & 0.908 & 0.888 \\ \hline 

    adapted DeepLabV3+ & 24.01.2018 16.01.2019 & whole avalanches& 512$\times$512 & \textbf{R, 

G, B, NIR, DEM} & weighted BCE & 0.559 & 0.682 & 0.613 & 0.883 & 0.913 & 0.889 \\ \hline 



    adapted DeepLabV3+ & 24.01.2018 16.01.2019 & whole avalanches& 512$\times$512 & \textbf{R, 

G, B, NIR, DEM, Wallis-filtered} & weighted BCE & 0.610 & 0.668 & 0.597 & 0.876 & 0.906 & 0.880 \\ 

\hline 

    adapted DeepLabV3+ & 24.01.2018 16.01.2019 & \textbf{release area only}& 512$\times$512 & R, 

NIR, DEM & weighted BCE & 0.053 & 0.665 & 0.183 & 0.777 & 0.992 & 0.856 \\ \hline 

    adapted DeepLabV3+ & 24.01.2018 16.01.2019 & \textbf{deposits only}& 512$\times$512 & R, 

NIR, DEM & weighted BCE & 0.196 & 0.788 & 0.347 & 0.797 & 0.986 & 0.868 \\ \hline 

    adapted DeepLabV3+ & 24.01.2018 16.01.2019 & \textbf{sunlit avalanche parts only} & 

512$\times$512 & R, NIR, DEM & weighted BCE & 0.668 & 0.653 & 0.639 & 0.918 & 0.910 & 0.907 \\ 

\hline 

  \end{tabular} 

\end{sidewaystable} 

 

\clearpage 

 

\begin{table}[!ht] 

  \centering 

  \caption{Object-based metrics for selected model configurations.} 

  \label{tab:ObasedMetrics} 

  \begin{tabular}{p{2cm} p{1.8cm} c p{2.5cm} p{2.5cm}}  

  \hline 

    Model & SPOT data & Training data & Detection rate 50\% of avalanche area & Detection rate 

80\% of avalanche area \\ \hline\hline 

    standard DeepLabV3+ & 24.01.2018 16.01.2019 & whole avalanches & 0.63 & 0.45 \\ \hline 

    adapted DeepLabV3+ & 24.01.2018 16.01.2019 & whole avalanches & 0.66 & 0.46 \\ \hline 

    standard DeepLabV3+ & 06.01.2018 & whole avalanches & 0.58 & 0.38 \\ \hline 

    adapted DeepLabV3+ & 06.01.2018 & whole avalanches & 0.66 & 0.46 \\ \hline 

    adapted DeepLabV3+ & 24.01.2018 16.01.2019 & sunlit avalanches only & 0.69 & 0.51 \\ \hline 

  \end{tabular} 

\end{table} 

 

\begin{figure}[t] 

\DIFdelbeginFL %DIFDELCMD < \includegraphics[width=14cm]{20180106_Scores_Mattertal.png} 

%DIFDELCMD < %%% 



\DIFdelendFL \DIFaddbeginFL \includegraphics[width=14cm]{fig06_new.png} 

\DIFaddendFL \centering 

\caption{An example for the \DIFdelbeginFL \DIFdelFL{scores }\DIFdelendFL \DIFaddbeginFL 

\DIFaddFL{model confidence }\DIFaddendFL when predicting on data from a previously unseen 

avalanche period from 6 January 2018 (SPOT 6 data © Airbus DS 2018). The \DIFaddbeginFL 

\DIFaddFL{values closer to 1, in }\DIFaddendFL darker hues\DIFaddbeginFL \DIFaddFL{, 

}\DIFaddendFL indicate places where the model is more confident \DIFaddbeginFL \DIFaddFL{about 

the existence of an avalanche}\DIFaddendFL . In the illuminated regions those areas almost always 

\DIFdelbeginFL \DIFdelFL{correspond to }\DIFdelendFL \DIFaddbeginFL \DIFaddFL{overlap with 

}\DIFaddendFL manually mapped avalanches.}  

\label{fig:GenMattertal}. 

\end{figure} 

 

 

\subsection{Ablation studies} \label{subsub:ablation} 

To understand how our changes to the standard DeepLabV3+ affect performance we varied the 

model in different ways and trained, tested and compared the performance. These results can be 

found in Table~\ref{tab:networkResults}. First, we investigated the influence of the deformable 

backbone and discovered that including it outperforms the non-deformable backbone configurations 

of the standard DeepLabV3+. This is the case in our test areas for 2018 and 2019, but also for testing 

on the avalanche period from 6 January 2018. Secondly, the avalanches in our network have been 

weighted (see~\ref{sub:trainingDetails}) according to the quality index assigned by the manual 

mapper. To quantify the effects of using weights we ran training with unweighted BCE and observed 

a decrease in POD, a slight increase in PPV and overall a smaller F1-score. Additionally, in our 

adapted version of DeepLabV3+ we only considered the Red and Near-Infrared from SPOT as well as 

the DEM as input channels. We cannot test the adapted DeepLabV3+ without the DEM, as it is 

explicitly included as an integral part of the network. We analyzed however, how including all SPOT 

channels (additionally Blue and Green) and also adding another Wallis filtered channel (to bring out 

details in the shade) affects network performance (see Table~\ref{tab:networkResults}). For our 

model we found that including more channels did not improve the performance, rather training time 

was longer and metrics worse than with the initial channels.\\ 

 

We hypothesize that the proportion of potential avalanche area and context visible in the patches 

strongly influences network output. To investigate this, we have trained our model with varying 

patch size: $512\times512$, $256\times256$ and $128\times128$ pixels (corresponding to 

$768\times768$, $384\times384$ and $192\times192$ meters). Quantitative results in 

Table~\ref{tab:networkResults} show the largest patch size performs best considering metrics for 

both avalanches and background. When comparing them visually (Figure~\ref{fig:PatchVari}) this is 

further supported, as the predictions on the smallest size are patchy, dispersed over the image 

showing the model is unsure about the occurrence of avalanches. With increasing context through a 

larger patch size though, the model becomes more confident and the avalanche borders are 

distinctly visible.  

 



Subsequently, in order to understand what is better for training the network, we trained on 

avalanche deposits or release areas only. As deposit area, we assumed the lower third (based on 

elevation) of each manually mapped avalanche, ignoring those avalanches were the deposit had 

been inferred. For the release areas, we used the zones identified by \citet{Buhler.2019}, again 

disregarding those avalanches where the release zone had been inferred and were therefore 

uncertain. As results in Table~\ref{tab:networkResults} show, performance for predicting all 

avalanches is a lot worse in both cases. We also observe that PPV and POD are significantly higher 

when the network is trained on deposits only, rather than trained only on release areas. This resulted 

in an increase of 0.146 in F1-score and suggests that the original model might also be learning more 

from texture rich avalanche deposits than from release zones.  

 

\begin{figure}[t] 

% \includegraphics[width=17.5cm]{QualitativeExamples.png} 

\includegraphics[width=17.5cm]{Fig7_Qualitative_new.png} 

\centering 

\caption{Comparison of results for four patches when training the network with different patch sizes. 

The tiles depict (a) the SPOT 6 image, (b) the manually mapped annotations used as reference, (c) the 

predictions thresholded at 0.5, and (d) the predicted avalanche probability (SPOT 6 data © Airbus DS 

2018). Visual inspections show, the model is a lot more confident the larger the patch size.}  

\label{fig:PatchVari}. 

\end{figure} 

 

 

Finally, the experts manually mapping the avalanches generally perceived those in the sun as better 

visible. \citet{hafner.2021} confirmed that and found the POD to be higher roughly by a factor five 

for avalanches in fully illuminated terrain compared to those, at the time of image acquisition, in fully 

shaded terrain. In order to investigate this further, we used a Support Vector Machine (SVM) 

classifier to calculate a shadow mask for both 2018 and 2019. The mask also includes most forested 

areas due to their speckled sun/shade pattern. Subsequently, we excluded the avalanche parts being 

located in the shade and trained only with the remaining areas (about one fourth of the avalanche 

area per year). Calculating the metrics considering only avalanches in illuminated areas, we found an 

increase of 0.058 in POD, a slight decrease of 0.015 in PPV and consequently an increase in F1-score 

of 0.014. The object-based metrics (Table~\ref{tab:ObasedMetrics}) are also slightly better when 

only considering sunlit regions.  

 

 

\subsection{Reproducibility of manually mapped avalanches} 

To assess the degree of label noise in our dataset, we conducted a reproducibility experiment on the 

manually mapped avalanches to understand how similar the assessment of a given area by different 

experts would be. In other fields several comprehensive studies have already been conducted to 

investigate inter-observer variability, for example for contouring organs in medical images 



\citep{fiorino.1998} or for manual glacier outline identification \citep{paul.2013}. For our 

investigation five people attempted to replicate the manual mapping with the same methodology as 

used before and described in detail in \citet{Buhler.2019}. All five mapping experts are very familiar 

with satellite imagery and/or avalanches and received the same standardized introductions. The 

experiment was conducted twice in an area of 90 km$^2$ around Flims, Switzerland, on the 2018 

and 2019 SPOT 6/7 imagery (see Figure~\ref{fig:TrainCoAreas}). The area contains avalanches in the 

shade and in illuminated terrain as well as all outline quality classes in the initial mappings 

\citep{spot.2018, spot.2019}. The mapping experts did not see another mapping before having 

finished theirs. 

 

\begin{table}[!ht] 

  \centering 

  \caption{F1-scores for the reproducibility investigation: the bold values in the upper right part of 

the table represent the scores comparing two expert mappings in illuminated terrain, the lower left 

values the scores in shaded terrain.} 

  \label{tab:ReproResults} 

  \begin{tabular}{c| c c c c c}  

  \hline 

      & Expert 1 & Expert 2 & Expert 3 & Expert 4 & Expert 5 \\ \hline\hline 

    Expert 1 & & {\bf 0.758} & {\bf 0.623} & {\bf 0.617} & {\bf 0.653} \\  

    Expert 2 & 0.401 &  & {\bf 0.711} & {\bf 0.723} & {\bf 0.724} \\  

    Expert 3 & 0.232 & 0.198 &  & {\bf 0.656} & {\bf 0.782} \\  

    Expert 4 & 0.188 & 0.236 & 0.205 &  & {\bf 0.786} \\  

    Expert 5 & 0.123 & 0.155 & 0.204 & 0.244 &  \\ \hline 

  \end{tabular} 

\end{table} 

 

 

\begin{figure}[t] 

\DIFdelbeginFL %DIFDELCMD < \includegraphics[width=12cm]{Rep_map.png} 

%DIFDELCMD < %%% 

\DIFdelendFL \DIFaddbeginFL \includegraphics[width=12cm]{Rep_map_new.png} 

\DIFaddendFL \centering 

\caption{Heat map examplarily illustrating expert agreement on avalanche area for avalanches 

mapped from SPOT in January 2018 (24 January 2018, SPOT 6 © Airbus DS2018). Agreement in the 

shade (northern part of the study area) is generally lower than in the sunlit areas to the south. 



\DIFdelbeginFL \DIFdelFL{The Figure also shows that agreement is }\DIFdelendFL \DIFaddbeginFL 

\DIFaddFL{Dark blue indicates }\DIFaddendFL very good \DIFdelbeginFL \DIFdelFL{only on few 

selected avalanches (depicted }\DIFdelendFL \DIFaddbeginFL \DIFaddFL{agreement or }\DIFaddendFL 

in \DIFdelbeginFL \DIFdelFL{dark blue)}\DIFdelendFL \DIFaddbeginFL \DIFaddFL{other words marks 

areas that where identified as an avalanche by all five involved experts}\DIFaddendFL . For 

\DIFdelbeginFL \DIFdelFL{the }\DIFdelendFL \DIFaddbeginFL \DIFaddFL{a }\DIFaddendFL more 

detailed location of the reproducibility study area see Figure~\ref{fig:TrainCoAreas}. } 

\label{fig:compStudy}. 

\end{figure} 

 

Calculating F1-score (see \DIFdelbegin \DIFdel{Formula}\DIFdelend \DIFaddbegin 

\DIFadd{Equation}\DIFaddend ~\ref{equ:F1}), between all experiment mappings, we found an overall 

F1-score of 0.381 in illuminated and 0.018 in shaded areas \DIFaddbegin \DIFadd{(area-wise 

metrics)}\DIFaddend . Comparing two expert mappings at a time, the values range from 0.617 to 

0.786 in the illuminated regions and from 0.123 to 0.401 in the shaded regions of our study area 

(Table~\ref{tab:ReproResults}). The F1-scores of the expert manual mappings with the initial 

mapping are in the same range (not shown). The results from 2018 (Figure~\ref{fig:compStudy}) 

illustrate that for some selected avalanches the agreement is very good while, especially in the 

shade, there is little agreement among experts on the presence of avalanches. \\ 

 

 

 

Reexamining the results from the network now in the light of this experiment, the adapted 

DeepLabV3+ is equally good as the experts in identifying avalanches. In other words, we cannot 

expect a computer algorithm to provide better scores than the average F1-score of two mapping 

experts. Even for the avalanches with the highest agreement, a specific boundary line will usually not 

match exactly. This makes it hard for any network to learn the localisation of boundaries. We do not 

yet know what exactly causes the differences in avalanche identification between experts. Therefore 

we plan on conducting a thorough analysis on imagery with different spatial resolutions in the future. 

This will help to better understand the inherent mapping uncertainty of avalanches and may give an 

indication what performance can be expected if training computational detection algorithms on 

different optical data. 

 

 

\subsection{Limitations of this study} 

The three avalanche periods for which we have SPOT imagery all occurred in January. Those images 

are relatively close to the winter solstice and therefore have a high percentage of shaded area. 

\DIFdelbegin \DIFdel{(\mbox{%DIFAUXCMD 

\citet{hafner.2021} }\hspace{0pt}%DIFAUXCMD 

identified for 180 km$^2$ around Davos that the share }\DIFdelend \DIFaddbegin \DIFadd{The 

amount }\DIFaddend of shaded area \DIFdelbegin \DIFdel{at the SPOT 6/7 image acquisition time 



ranges from }\DIFdelend \DIFaddbegin \DIFadd{depends very much on the terrain and on the season. 

Around Davos, Switzerland, for example, }\DIFaddend 43\% \DIFaddbegin \DIFadd{of the area is 

shaded }\DIFaddend at winter solstice \DIFdelbegin \DIFdel{to }\DIFdelend \DIFaddbegin \DIFadd{but 

only }\DIFaddend 7\% three months later \DIFdelbegin \DIFdel{. Even }\DIFdelend \DIFaddbegin 

\DIFadd{\mbox{%DIFAUXCMD 

\citep[both at SPOT 6/7 image acquisition time;][]{hafner.2021}}\hspace{0pt}%DIFAUXCMD 

. We know that the quality of the manually annotated avalanches is lower in shaded areas 

\mbox{%DIFAUXCMD 

\citep[POD: 0.15 shade, 0.86 illuminated, 0.74 overall;][]{hafner.2021}}\hspace{0pt}%DIFAUXCMD 

. Consequently, the training data have lower quality in shaded regions, which makes learning there 

more difficult for our model and leads to lower model confidence as well as poorer results. Based on 

the results when training and testing on sunlit avalanche parts only, however, we see potential for 

better overall metrics when a smaller portion of the area is shaded closer to the summer solstice. But 

regardless how much area is well illuminated, the challenges in the shade remain and make results in 

those areas less trustworthy. Further research to better understand and tackle that problem is 

needed.  

} 

 

\DIFadd{Additionally, even }\DIFaddend though 2018 includes wet snow and wet snow avalanches, 

the snow in January is generally colder and drier than towards \DIFdelbegin 

\DIFdel{spring}\DIFdelend \DIFaddbegin \DIFadd{the end of the winter}\DIFaddend . Consequently, 

we do not know how well our model performs under different snow \DIFdelbegin \DIFdel{and 

illumination }\DIFdelend conditions, for example in spring. \DIFdelbegin \DIFdel{Based on the results 

when training and testing on sunlit avalanche parts only, we see potential for better overall metrics 

as a smaller portion of the area is shaded. But whether our network }\DIFdelend \DIFaddbegin 

\DIFadd{Whether our model }\DIFaddend already generalizes enough or is biased towards 

\DIFdelbegin \DIFdel{January }\DIFdelend \DIFaddbegin \DIFadd{high winter }\DIFaddend conditions 

and requires retraining with \DIFdelbegin \DIFdel{spring SPOT 6/7 }\DIFdelend \DIFaddbegin 

\DIFadd{different snow conditions }\DIFaddend we could not yet test. 

 

 

 \conclusions[Conclusion and outlook] 

We present a novel deep learning approach for avalanche mapping with deformable convolutions 

that adapts its notion of the local terrain according to the input digital elevation model (DEM). 

Experiments at large scale with optical, high spatial resolution (1.5 m) SPOT 6/7 satellite imagery 

show that our approach achieves good performance (F1-score 0.625) and generalizes well to new 

scenes not seen during the training phase (F1-score 0.625). As reference data for training, validating 

and testing our model we relied on 24'747 manually mapped and annotated avalanches from two 

avalanche periods on different years. With our adapted DeepLabV3+ we were able to detect 66\% of 

all avalanches. By varying model parameters and the input data we analyzed the impact of different 

configurations on the mapping result. We found that weighting the avalanches according to the 

perceived visibility did result in slightly better metrics than when not weighting them. By training on 

release areas and deposits only we demonstrated that the network learns more from deposits 



(\DIFdelbegin \DIFdel{F1-score release areas 0.183; F1-score deposits 0.347}\DIFdelend \DIFaddbegin 

\DIFadd{Table~\ref{tab:networkResults}}\DIFaddend ) and by excluding shaded areas from training 

we showed that in illuminated terrain both training is easier and test results are better (F1-score 

0.639). Furthermore, we investigated expert agreement for manual avalanche mapping in a small 

reproducibility study and found that agreement on avalanche area is substantially lower than 

expected. Compared to the model, the agreement between experts is in the same range as the 

adapted DeepLabV3+ performance.  

 

Our work is an important step towards a fast and comprehensive documentation of avalanche 

periods from optical satellite imagery. This could substantially complement existing avalanche 

databases, improving their reliability to perform hazard zoning or the planning of mitigation 

measures. For the future we aim at conducting a more throughout study investigating expert 

agreement for manual avalanche identification and its implications for automated avalanche 

mapping. Additionally, we intend to study the performance of our model on data from different 

sensors and time periods. Furthermore, we plan on improving results by masking out areas where 

avalanche cannot occur using for example modelled avalanche hazard indication data 

from~\citep{buhler.2022}.  
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