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Abstract. Theoretical models for the prediction of decay rate and dispersion process of gravity waves traveling into an inte-

grated ice cover are introduced. The term “wet beam” is chosen to refer to these models as they are developed by incorporat-

ing water-based radiation forces, including heave damping and added mass, which are absent in most conventional models.

Presented wet beam models differ from each other according to the rheological behavior considered for the ice cover. Two-

parameter viscoelastic solid models accommodating Kelvin-Voigt (KV) and Maxwell mechanisms along with a one-parameter5

elastic solid model are used to describe the rheological behavior of the ice layer. Quantitative comparison between the landfast

ice field data and model predictions suggests that wet beam models, adopted with both KV and Maxwell mechanisms, predict

the decay rate more accurately compared to a dry beam model. Furthermore, the wet beam models, adopted with both KV

and Maxwell mechanisms, are found to construct decay rates of disintegrated ice fields, though they are built for a continuous

ice field. Finally, it is found that wet beam models can accurately construct decay rate curves of freshwater ice, though they10

cannot predict the dispersion process of waves accurately. To overcome this limitation, three-parameter solid models, termed

Standard Linear Solid (SLS) mechanisms, are suggested to be used to re-formulate the dispersion relationship of wet beam

models, which were seen to construct decay rates and dispersion curves of freshwater ice with an acceptable level of accu-

racy. Overall, the two-parameters wet beam dispersion relationships presented in this research are observed to predict decay

rates and dispersion process of waves travelling into actual ice covers, though three-parameter wet beam models were seen to15

reconstruct the those of freshwater ice formed in a wave flume.

1 Introduction

Mutual interaction between water waves and ice is a multi-physical problem, frequently occurring in polar seas where waves

can penetrate ice covers, traveling over kilometers until they die out. The phase and group speeds of the resulting gravity-

flexural waves advancing through the ice can be different from that of an open-water sea owing to the effects of forces caused20

by solid motions. There is a pressing need to understand the mutual effects of ice and gravity waves on each other due to the

recent retreat of the sea ice in the Arctic (Stroeve et al., 2008; Comiso et al., 2008; Meier et al., 2013), and the emergence of

large and powerful wind-generated water waves in the Antarctic (Young et al., 2011), which can affect the ice-extent (Kohout

et al., 2014) by breaking the ice. Modelers aiming to simulate wave propagation in polar regions need to use proper formulations

to calculate the ice-induced energy damping and the group speed of waves traveling into ice covers (Rogers and Orzech, 2013;25

Liu et al., 2020).
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Mathematical modeling of the wave-ice interaction has first received the attentions of researchers in the 19th century. The

first model was developed by Greenhill (1886), who formulated harmonic motions in a fluid domain covered with an elastic

beam. To build the model, he assumed that the ice extent was spanned over an infinite way and the solid body had relatively

small motions. This model lacks energy damping, but, instead, it can be employed in the prediction of the dispersion processes,30

the result of which is observed to be consistent with the physics of long integrated bodies covering water.

The Greenhill study is the kernel of the next generation of models established for the prediction of mutual effects of water

waves and ice. Researchers looking into the wave-ice interaction developed models by modifying the original model of Green-

hill. Early developments of models dating back to years between the 1950s and 1970s when scientists had become able to reach

polar seas, recording the wave climate. The energy of waves traveling through the ice was observed to be reduced by sea ice35

(Robin, 1963; Wadhams, 1972) and the phase speed was observed to be affected by the ice. The Greenhill model lacked the

former since it was developed for an elastic solid body.

Following the Greenhill’s model, various mathematical models of wave-ice interaction have been developed. To address the

energy decay of an integrated consolidated ice field, scholars have mostly prescribed viscoelastic behavior for the ice (e.g.

Squire and Allan (1977); Wang and Shen (2010)) or presumed that a thin layer of viscous fluid (e.g. De Carolis and Desiderio40

(2002)) can be representative of the ice behavior. To consider the scattering of water waves by its edge, or their reflection by

cracks or changes in the thickness, matching methods have been used (e.g. Fox and Squire (1991); Zhao and Shen (2013)).

Models developed for the prediction of decay rates and the dispersion process of continuously integrated ice have been

developed by assuming small displacement for the cover. Thus, they solve the solid dynamic problem by using an Euler-

Bernoulli beam theory. Their applications have been seen to be limited. This can be due to the reason that they have mostly45

developed by simplifying the problem, neglecting some aspects of the fluid and solid motions. Studies performed in the recent

decade provide a clear picture of this fact. In some studies concerned with the dispersion process of waves advancing in ice (or

elastic) covers, formulated dispersion relationships were reported to reconstruct the dispersion plot with an effective value of

rigidity (or Young Modulus), which is much smaller than what was measured in dry tests (Langleben, 1962; Sakai and Hanai,

2002; Cheng et al., 2019). In some other studies, different values of ice viscosity were seen to give the best fitting for energy50

damping, which may not agree with reality (Marchenko et al. (2021)).

To overcome the limitations of available models, the role of different mechanisms in energy dissipation and the parameters

influencing the dispersion process of waves propagating in ice should be understood well. Reviewing the structure of all

developed models (example of review papers: Squire et al. (1995); Squire (2007); Collins et al. (2016); Squire (2020)), one

can conclude that energy dissipation is either assumed to be triggered by solid motions (e.g. Wang and Shen (2010)) or by55

fluid motion, such as heave damping, overwash or shear stresses (e.g. Liu and Mollo-Christensen (1988); Mosig et al. (2015);

Herman et al. (2019); Huang et al. (2019)). Furthermore, the dispersion process is dependent on ice rigidity in most of the

models, and the effects of fluid motion on the dispersion process are rarely taken into account. All these together confirm that

new models can still improved by considering the fluid-based and solid-based energy damping mechanisms at the same time.

The coexistence of solid-based and fluid-based dissipation mechanisms in formulations may help us reconstruct the decay rates60
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with fewer limitations and solve the fluid-solid problem for a more realistic condition. In addition, the ability of models in the

calculation of the dispersion process can be modified by considering the effects of the viscosity of solid and fluid forces.

The present paper aims to develop wave-ice interaction models by considering fluid forces and solid forces. Distinguishing

the developed models from the conventional ones, fluid forces, including heave damping and added mass are hypothesized to

emerge under the elastic or viscoelastic ice layer covering water, vibrating due to the wave forces. Different solid mechanisms,65

linking stress and strains arising in the solid layer, are employed to establish these models. This paper is structured as follows.

Models are developed in Section 2. In Section 3, results including wave height decay rates and dispersion curves are presented.

At the first step, sensitivities of models to different parameters are analyzed. At the next step, predictions of models are com-

pared against field and flume measurements. Afterward, two other patterns of rheological behavior are also used to formulate

dispersion relationships. Finally, a discussion on the ability of models in the prediction of decay rates and dispersion curves is70

presented. In Section 4, concluding remarks and suggestions are presented.

2 Models

2.1 Development of Models

Consider a two-dimensional fluid domain containing water. The domain extend is stretched over an infinite length and has

a depth of D. An ice sheet covers the upper surface of the domain. It implies that no air-water interaction occurs at all. A75

schematic of the domain is shown in Figure 1 (panel c). Water waves propagate in this domain and their energy is dissipated

over time. Assuming that wave height is decayed exponentially, wave height at a longitudinal position of x is formulated as

H(x) =H0(x)e−α(x−x0), (1)

In Equation 1, α is the decay rate of wave height, and H(x) is the wave height at x= x0. In addition, as was explained in

Section 1, the wavelength of ice-covered sea (the distance between two consecutive wave crests) can be different from that of80

open-water condition (see Figure 1 b).

Let the fluid to be ideal and irrotational. Hence, the fluid motion is represented by the potential field, which is indicated

with Φ(x, t). Assuming that fluid has a linear cyclic motion with a frequency of ω, the potential field can be re-written in the

frequency domain, as per

Φ(x; t) = Re
[
φ(x)eiωt

]
. (2)85

The Laplace Equation holds the fluid domain:

∇2φ(x) = 0 −∞< x <∞ −D < z < ξ. (3)

Here, ξ is the elevation of the upper layer of the fluid domain with respect to the calm water line.
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The vertical component of velocity is zero at the sea-bed, which signifies that

∂zφ(x) = 0 −∞< x <∞ z =−D. (4)90

The solid body covering the upper layer of the water is assumed to be very thin and its thickness is denoted with h. Assuming

linearity, vertical motion of the upper layer is expressed as Z(x; t) = Re
[
z(x)eiωt

]
. In the absence of fluid forces, the solid

layer follows the Euler-Bernoulli beam theory, as per

−ω2 (ρih)z+
GEh

3

6(1− ν)
z4 = p −∞< x <∞, (5)

where GE is the dynamic shear modulus of the material, which shall be introduced later. p is the wave-induced pressure,95

causing the vibration. The above equation is formulated for a dry beam (see panel a of Figure 1), which vibrates under the

force of water waves.

In a more realistic condition, when any floating body moves due to the force of water waves, a radiation force appears,

which is expressed as f =−ω2Az+ iωBz. A and B =−B are respectively added mass and damping coefficients of the solid

body in the vertical direction (Lamb, 1932; Newman, 1977). These two coefficients are phenomenological, related to the wave100

radiation potential field around the body having vertical motion (e.g. Tavakoli et al. (2020)). Also, hydrostatic force emerges

when a floating body interacts with water waves. Thus, Equation 5 can be extended to

(
ρwg−ω2 (ρih+A)

)
z− i(ωB)z+

GEh
3

6(1− ν)
z4 = p −∞< x <∞. (6)

Equation 6 is an extended version of the Euler-Bernoulli beam model which is adopted for a beam exposed to water radiation

forces. Hence, the term “wet beam” is used with an aim to distinguish the model developed based on Equation 6 from what105

was presented in Equation 5. The boundary condition on the fluid-solid interface is formulated as

(
ρwg−ω2 (ρih+A)

)
(∂zφ)− i(ωB)(∂zφ) +

GEh
3

6(1− ν)
∂xxxx (∂zφ) = ρwω

2φ −∞< x <∞. (7)

Using the separation of variable, the solution of Laplace Equation can be established as the sum of eikx coshkz. Therefore,

the general form of the dispersion equation can be established as

k tan(kD) =
ρwω

2

GEh3

6(1−ν)k
4 + ρwg−ω2 (ρih+A)− i(ωB)

. (8)110

As was mentioned, GE is the shear stress modulus of the material having cyclic motions which depends on the mechanical

behavior of the substance. As explained before, solid ice cover can be either assumed to be elastic or viscoelastic. As such,

models have been developed for both elastic and viscolelastic ice layers. As displayed in Figure 1 d, Mechanical behaviour of

these materials can be shown by using a spring (which demonstrates the elasticity nature of the material) and a dashpot (which

demonstrates the viscous nature of the material).115

For an elastic solid body, GE is given by

GE =G. (9)
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Air

Air

Solid body

Waves propagating in an open-sea condition 

The sea-bed

Water 

A layer of ice

The sea-bed

Water 

(a) A dry beam 

(b) Open-water 

(c) Ice-covered sea 

Pure elastic material Kelvin Voigt (KV) material Maxwell material

(d) Solid models

Figure 1. A pictograph of the problem and the different patterns of rheological behavior considered for the ice layer. Panel a and b repetitively

show a dry beam and waves propagation in an open-water sea. Panel c shows waves propagating in an ice-covered sea. Panel d shows different

rhelogical behavior that can be considered for the ice.

where G is the shear modulus of the material.

For a viscoelastic material, two different simple models can be used. The first one is Kelvin-Voigt (KV) and the second one

is Maxwell. For the former, displacements of both elements (i.e. spring and dashpot) are similar, but the resulting forces are120

different. For a Maxwell material, however, forces emerging in elements are similar, and displacements are different.
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For a KV material, the dynamic shear modulus can be written as

GE =G− iωη. (10)

Here, η is the dynamic viscosity of the material (Serra-Aguila et al. (2019)). The real and imaginary parts of GE are the

storage and loss modulii. The former is responsible for harmonic response, and the latter is is responsible for energy dissipation.125

For a Maxwell material, the dynamic shear modulus is given by

GE =
G
(
τ2ω2

)

(1 + τ2ω2)
− i G(τω)

(1 + τ2ω2)
. (11)

where τ = η/G is the relaxation time (Serra-Aguila et al. (2019)). It is worth noting that dynamic viscosity can affect the

storage Modulus of Maxwell materials, and shear Modulus can affect the loss Modulus of Maxwell materials.

Dispersion relationships can be established for different materials. The first dispersion relationships is developed for water130

waves travelling into a pure elastic material, as

ω2 =
(

Gh3

6(1− ν)ρw
k4 + g− iω B

ρw
− ρi(h+A)

ρw
ω2

)
k tanh(kD). (12)

Another version of this relationship has been previously documented by Mosig et al. (2015), which is originally formulated

by Robinson and Palmer (1990) modeled interaction of an elastic body interacting with water waves. But the added mass term

is included in the above equation, which makes it different from what was presented by Mosig et al. (2015).135

The second dispersion relationship describes the link between frequency and wavenumber for a KV material, which is found

to be

ω2 =
(

Gh3

6(1− ν)ρw
k4− i ωηh3

6(1− ν)ρw
k4 + g− iω B

ρw
− ρi(h+A)

ρw
ω2

)
k tanh(kD). (13)

Finally, the dispersion relationship of a Maxwell material is formulated as

ω2 =

(
G
(
τ2ω2

)
h3

6(1− ν)(1 + τ2ω2)ρw
k4− i G(τω)h3

6(1− ν)(1 + τ2ω2)ρw
k4 + g− iω B

ρw
− ρi(h+A)

ρw
ω2

)
k tanh(kD). (14)140

Each of the above equations provides us with the roots of the dispersion relationships. We choose the dominant root with the

positive real part, which refers to the wave advancing in the solid body. The dominant root is

k = ki− iα. (15)

Here, ki is the wavenumber and α is the wave decay rate which was introduced before.

2.2 Non-dimensional representation145

To analyze results and to use any of the models more easily, all parameters are normalized. Parameters are normalized using

the Buckingham Pi-theorem, enabling us to perform scaling law. For the first dispersion relationship, eight parameters are

involved, but for the second and third relationships, nine parameters are involved. Therefore, five non-dimensional numbers
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are identified for the pure elastic model, and six non-dimensional numbers are identified for models developed for viscoelastic

materials.150

Non-dimensional numbers have been previously presented by different authors, concerted with the field wave-mud or wave-

ice interaction (Jain and Mehta, 2009; Yu et al., 2019). The first non-dimensional number represents the non-dimensional

wavelength in an open-water condition, which is given by

λ̂o = λo/h. (16)

The second non-dimensional number is the non-dimensional wavenumber of waves propagating in a covered sea condition,155

given by

k̂i = ki/ko. (17)

The attenuation rate is normalized as

α̂i = α/ko. (18)

The third non-dimensional number is the elasticity per unit of mass, which can be formulated as160

Ĝ=G/ρigh. (19)

In the present research, Ĝ is called Elasticity number (which is inspired by Yu et al. (2019)). The other non-dimensional number

is

η̂ = η/ρi
√
gh3. (20)

The fourth non-dimensional number is the relative density of the ice, and is calculated by165

ρ̂= ρi/ρw. (21)

The hydrodynamic damping coefficient is normalized by

B̂ =B/ρw
√
gh. (22)

The added mass coefficient can be normalized by

Â=A/ρwh
2. (23)170

Note that the added mass and damping coefficients are assumed to be two-dimensional.

3 Results and discussions

Results of wet beam models are presented in five separate sub-sections. The first sub-section presents a discussion on the

effects of different parameters on the dispersion and decay rate plots. The primary aim is to provide a better understanding
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of the sensitivity of models to mechanical behavior of material and fluid forces. The second and third sub-sections discuss175

the ability of models in reconstruction of the decay rate and dispersion process through comparing their results against field

and flume measurements. A brief summary of these measurements is documented in Table 1. In the fourth sub-section it is

attempted to understand whether any other solid model can be used to formulate the dispersion relationship or not. Final

sub-section of results presents a deep discussion on models and their abilities with covering limitations of models.

3.1 Effects of different parameters on decay rate and dispersion process180

Figure 2 shows the normalized decay rates calculated by setting different values for the mechanical properties of the cover.

The first, second and third columns respectively show the data found for KV, Maxwell, and pure elastic materials. The first

and second rows show the effects of dynamic viscosity on energy decay. The results presented in the first row correspond to a

material with
√
Ĝ= 340 and the ones plotted in the panels of second row correspond to a material with

√
Ĝ= 3.4.

As seen, for a viscoelastic material with a larger rigidity, α̂ increases with the increase in λ̂o reaching a maximum value185

at a critical wavelength. With the increase in λ̂o, α̂ decreases. For a KV material, the critical λ̂o is sensitive to the dynamic

viscosity, growing with the increase in the dynamic viscosity. For a Maxwell material, the increase in the dynamic viscosity

reduces the decay rate. Interestingly, the pure elastic model gives negligible decay rates at small dimensionless wavelengths

(λ̂o < 50). The decay rates of a pure elastic material peaks at a specific λ̂o. It is worthy to note that the dimensionless fluid

damping used to calculate the decay rates is set to be 0.0032.190

To provide a clear picture of the effects of the fluid damping on the decay rates, α̂ vs. λ̂o curve the pure elastic model gives

is plotted in the first and second columns (dashed curve). Interestingly, the decay rates of the viscoelastic materials converge

to that of the pure elastic model, signifying that the contribution of solid-based energy dissipation vanishes at relatively long

waves. Instead, the fluid-based energy damping becomes dominant over the range of long waves.

Now we discuss the decay rates of covers with a lower rigid (second row). No critical λ̂o is observed in α̂ vs. λ̂o curves195

the KV model gives for a low Elasticity number. Decay rate of KV model with low rigidity reduces with an increase in

dimensionless wavelength. The increase in the dynamic viscosity can affect the decay rate, though its effects are noticeable at

shorter waves. For longer waves, however, different values of η̂ give similar decay rates, which match with the those of a pure

elastic material. This matches with what was observed for the larger rigidity (upper row). For a Maxwell material with low

Table 1. Cases studied in the present paper.

Reference Type of cover Type of test

Voermans et al. (2021) Landfast ice covers (Arctic and Antarctic) Field measurement

Wadhams et al. (1988) Unconsolidated ice field (Greenland Sea) Field measurement

Meylan et al. (2014) Unconsolidated ice field Field measurement

Yiew et al. (2019) Freshwater ice cover Flume measurement

Sree et al. (2018) Viscoleastic cover Flume measurement
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rigidity, a critical λ̂o emerges over the short wavelength range. Similar to KV materials, the decay rate of Maxwell materials200

with low rigidity are sensitive to the dynamic viscosity over a very short range of wavelengths. The α̂ vs. λ̂o curves found by

setting different values for the dynamic viscosity converge to each other and finally aligned to the decay rates of pure model.

This again confirms that fluid-based energy damping becomes dominant with the increase in the dimensionless wavelength.

The last row of Figure 2 compares the decay rates of materials with different Elasticity numbers. As apparent, when a KV

model is used, an increase in Elasticity number reduces the decay rate. The most significant effects of elasticity on decay205

rate emerge at short wavelengths, where the solid-based energy damping is expected to be dominant. The decay rates of KV

materials with different Elasticity numbers converge to those of the pure elastic material. The decay rate of a Maxwell material

is proportional to its elasticity. Similar to decay rate plots of KV materials with different Elasticity numbers, decay rates of

Maxwell materials with different Elasticity numbers converge to what the pure elastic model predicts.

Figure 3 shows how the consideration of fluid damping can affect the decay rates. Three different plots are presented, each of210

which shows the decay rates found by setting different values for the heave damping coefficient. The solid blue curves show the

data found by setting a zero heave damping, i.e, this plot represents the decay rates calculated in the absence of fluid damping.

The two other plots show the decay rates predicted by setting two different values for the heave damping coefficient.

The left panel of Figure 3 shows the data related to a KV material. As apparent, when the fluid damping coefficient is set

to be zero, the decay rate decreases with a very high rate at λ̂o > 180. By assuming a non-zero value for the heave damping215

coefficient, one abrupt reduction in α̂ vs. λ̂o curve occurs, though the rate of the reduction of the decay rate as a function of the

dimensionless wavelength decreases with the increase in the wavelength. Eventually the decay rate decreases with a mild rate

over the range of λ̂o > 400. This confirms that the fluid-based energy damping becomes dominant over this range. For a large

fluid-damping coefficient, as seen, the sudden reduction in the decay rate does not occur, and decreases with a low rate after

reaching its peak value.220

The decay rates of a Maxwell material with considering different heave damping are plotted in the right panel. Trends of the

presented curves are consistent with the ones observed in the left panel of Figure 3 (KV material). This demonstrates that the

effects of fluid-damping on decay rates are insensitive to the nature considered for materiel, which matches with the presented

formulations for the dispersion relationships.

The dispersion relationships are also employed to calculate wavenumbers of waves propagating into viscoelastic covers.225

Results are depicted in Figure 4. The density of covers is set to be ρi/ρw = 0.9 which is very close to that of the sea ice. The

two upper panels of Figure 4 show the dimensionless wavenumbers found for KV materials with different Elasticity numbers.

Zero heave added mass coefficients (solid curve) and two none-zero heave added mass coefficients are considered.

As apparent, when the Elasticity number of a KV material is greater (left) and the heave added mass is nil, the dimensionless

wavenumber is below 1.0 at small values of λ̂o. This means that, compared to an open-sea condition, gravity waves travail-230

ing into a solid cover becomes longer over the range of short open-water wavelength. k̂i increases with the increase in λ̂o.

and eventually converges into 1.0, where plotted curves are flattened out, meeting the reference line (the dashed blue line).

Interestingly, the contribution of the heave added mass coefficient to the dispersion process in the covered sea can affect the

wavenumber. Under the action of heave added mass forces, wavenumber becomes greater. The effects of heave added mass on
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Figure 2. Effects of the dynamic viscosity (upper and middle rows) and Elasticity number (lower row) on α̂ vs. λ̂o curves different solid

models give.

the wavenumber are more significant over 100< λ̂o < 600. When the heave added mass coefficient is set to be very large, the235

dimensionless wavenumber becomes greater than 1.0, reaching a maximum value and then decreases, converging into 1.0.

For a KV material with low density and a zero heave added mass coefficient, the wavenumber is below 1.0 when the

dimensionless open-water wavelength is small. Compared to a KV material with a greater Elasticity number (left panel), k̂i

becomes lower than 1.0 over a narrower range of λ̂o. This implies that waves propagating into a solid cover are lengthened

over a wider range of dimensionless open water wavelength when rigidity increases. k̂i becomes greater than 1.0 and reaches240

a peak value over the range of short the open-water wavelength ,which is in contrast with what was observed for material with

a larger Elasticity number and zero heave added mass (left panel).
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Figure 3. Effects of heave fluid damping on α̂ vs. λ̂o curves viscoelastic models give.

The heave added mass coefficient is seen to affect the dispersion process of waves propagating into the cover with lower

rigidity, which matches with what was observed for the cover with large rigidity (left panel). But the heave added mass

coefficient can affect the wavenumber of waves travelling through the solid cover more noticeably when rigidity is lower.245

The two lower panels of Figure 4 show the calculated dimensionless wavenumbers of gravity waves propagating into a

solid cover hypothesized to behave in the same way Maxwell materials do. Left and right panels respectively show the curves

corresponding to covers with relatively large and low Elasticity numbers. The trends of curves plotted in the left panel confirm

that the dynamic viscosity can slightly affect the wavenumber of waves advancing in the cover with a large Elasticity number.

The influence of dynamic viscosity on wavenumber is not significant and emerges over a relatively narrow range, (the close-250

up view provides the evidence). Dimensionless wavenumber is seen to be insensitive to the dynamic viscosity of Maxwell

materials when Elasticity number is low (right panel).

3.2 Ability of models in prediction of the decay rates

Decay rates of two recent field tests are presented in Figure 5 (circle markers). Upper and lower rows respectively display

the data corresponding to field tests took place in Arctic and Antarctic. The first, second, and third columns of Figure 5255

respectively show the decay rates predicted by prescribing Kelvin-Voigt, Maxwell, and pure elastic materials. The decay rates

found by setting zero heave damping coefficient are also plotted to demonstrate how the inclusion of the fluid damping can

improve the accuracy of models in the prediction of the decay rates.

Viscoelastic models cannot follow the field data when fluid heave damping is set to be zero, and tails of curves diverge

from that of the field data. This can be seen in both upper and lower rows of Figure 5. In this condition, the increase of the260

dynamic viscosity cannot affect the trend of α̂ vs. λ̂o, and may only shift the curve upward or downward, depending on the
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Figure 4. Effects of the added mass force (upper row) and the dynamic viscosity (lower row) on the dispersion curves of waves propagating

in an ice-cover.

nature considered for the material. But, when the fluid damping coefficient is set to be non-zero, the α̂ vs. λ̂o follow the field

data. This confirms that heave damping can contribute in energy damping occurring under a landfast ice cover. Interestingly,

heave damping coefficients used to predict the decay rates of viscoelastic are similar.

For the KV material, a dynamic viscosity of 1.3× 108Pa.s gives the best fitting for both ice covers. But for a Maxwell265

material, a dynamic viscosity of 4.4× 1010Pa.s gives the best fitting. Finally, the pure elastic material assumption can also be

used to fit curves with the field experiments. But, compared to KV and Maxwell models, a greater value of heave fluid damping

gives the best fitting for an elastic model.

The decay rates of two different broken ice fields are calculated using the wet beam models and are compared against

measurements. Field data and calculated decay rates are plotted in Figure 6. The data presented in upper and lower panels of270

this Figure are respectively documented in Wadhams et al. (1988); Meylan et al. (2014).
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Figure 5. Comparisons between α̂ vs. λ̂o curves predicted by different models and the data measured by Voermans et al. (2021). Upper and

lower rows respectively show data measured in Arctic and Antarctic. In the first and second columns, decay rates predicted by setting a zero

heave damping are also plotted. The shear Modulus of ice is set to be 1 GPa.

Wet beam models established for viscoelastic materials can predict decay rate curves of broken ice field with a good level

of accuracy when heave damping is incorporated in calculations. Similar to curves plotted in Figure 5, increase or decrease in

the dynamic viscosity of the material can shift the curves vertically, not affecting the tail of α̂ vs. λ̂o curve. The curve given

by a pure elastic material is not accurate at all dimensionless wavelengths. This implies that to accurately compute the decay275

rate of a broken ice field, solid-based energy damping caused by the viscoleastic behaviour of the solid needs to be taken into

consideration which is being lacked in a pure elastic model.

Wet beam models are employed to calculate the decay rates of waves traveling into viscoelastic covers, with an aim to

understand whether they can be used to predict attenuation rates measured in flume tests or not. The reconstructed α̂ vs. λ̂o

curves are presented in Figure 7. The upper and lower rows show the data corresponding to covers with low and large rigidity.280

The curves reconstructed by viscoelastic models cannot follow the experimental data if the fluid damping is not considered.

Dashed and dashed-dotted curves plotted in the first and second columns provide shreds of evidence. Their results only match

with experimental data at very small dimensionless open-water wavelengths. Viscoelastic-based models can accurately predict

decay rates when the fluid damping is set to be non-zero. The elastic model can calculate decay rates with an acceptable level

of accuracy. The fluid heave damping that gives the best fitting for pure elastic material is slightly greater than those of models285

built for viscoelastic materials.
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Figure 6. Comparisons between α̂ vs. λ̂o curves predicted by different models and the data measured by by Wadhams et al. (1988), upper

row, and Meylan et al. (2014), lower row. In the first and second columns, decay rates predicted by setting a zero heave damping are also

plotted. The shear Modulus of ice is set to be 1 GPa.

At the final stage, the decay rates of the freshwater ice formed in the wave flume of the University of Melbourne are predicted

by using the presented models. Figure 8 displays the decay rates plots and experimental data. The results presented in the upper

and lower rows of Figure 8 are related to 1 cm and 1.5 cm thick ice covers. Before conducting flume experiments, Parra et al.

(2020) measured the Young Modulus of the dry freshwater ice, reporting that Young Modulus is nearly 3 GPa.290

The KV model can accurately predict the decay rates of 1 cm thick ice when dynamic viscosity is set to be 2.6 × 109

Pa.s. Inclusion of the heave fluid damping is seen to be ineffective when KV model is used. The Maxwell model can also

predict the decay rate curve of the 1 cm thick ice cover with a good level of accuracy. But the decay rates Maxwell model

predicts depend on the fluid heave damping. The model developed for pure elastic materials can construct α̂ vs. λ̂o curve if

fluid damping is set to be 1300 Pa.s/m, which is as 13 times greater than those considered for KV and Maxwell models.295

This significant difference between heave damping of pure elastic model and viscoelastic models, which was never observed

in previous Figures, indicating that the solid-based damping highly contributes to energy dissipation over the range of tested

waves in the laboratory. To compensate the absence of the solid-based energy damping of the pure elastic model, a very large

heave damping needs to be used. This is in contrast with what was observed for the tests of Sree et al. (2018), where the

difference between fluid heave damping of elastic and viscoelastic models was not significant. The big difference between the300

Elasticity numbers of the covers tested by Sree et al (2018) and ice covers tested by Yiew et al. (2019) explains this behavior.
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Figure 7. Comparison between α̂ vs. λ̂o curves predicted by models and the data measured by Sree et al. (2018). Upper and lower rows show

the data related to a cover with a shear Modulii of 20KPa and 80KPa respectively.

It was also demonstrated that when Elasticity number is low, the solid-based energy damping contributes to energy dissipation

over a narrow range of wavelengths (second row of Figure 2), compared to a cover with a larger Elasticity number (first row of

Figure 2).

The KV model under-predicts the decay rate curve of 1.5 cm thick ice cover irrespective of the values of the dynamic305

viscosity and the fluid heave damping coefficients. The Maxwell model, however, can construct α̂ vs. λ̂o curve when a dynamic

viscosity value of 4×106 Pa.s is set. This value is lower than that the dynamic viscosity gave the best fitting for the thinner ice.

Artificial effects, boundary conditions, and the presence of side walls may cause a larger energy damping pattern when fluid

interacts with the thicker ice (Sutherland et al., 2016). Thus, different values of dynamic viscosity give the best fitting for 1 cm

and 1.5 cm thick ice covers. It is important to note that dynamic viscosity values giving the best fitting for the landfast ice were310

not seen to be different (Figure 5), where artificial effects are less likely to contribute. As seen, fluid heave damping does not

have any significant effect on the curve over the range of tested waves. It can only affect the tail of curve. This again confirms

that the solid-based energy damping is dominant over the range of tested waves. If tests covered a wider range of open-water

wavelengths, especially longer ones, a proper value for fluid damping could be found through fitting predicted curves with

experimental data. When the pure elastic model is used to calculate decay rates, a very large heave fluid damping needs to be315

set, but the curve can never meet the experimental data.
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Figure 8. Comparison between α̂ vs. λ̂o curves predicted by models and the data measured by Yiew et al. (2019). Upper and lower rows

show the data related to freshwater ice covers with thicknesses of 1 cm and 1.5 cm, respectively.

3.3 Ability of models in the prediction of the dispersion process

The accuracy of models in the calculation of the dispersion process of waves travelling through viscoelastic covers is also

evaluated. First, the dispersion curves of waves propagating into landfast ice are constructed, and then the dispersion curves of

waves advancing in freshwater ice are plotted.320

Figure 9 shows the normalized wavenumber k̂i vs. λ̂o curves of landfast ice. Symbols indicate the field measurements

and curves denote the calculated dimensionless wavenumbers. Left and right panels repressively show predictions made for

Maxwell and KV materials. As seen, both models can predict the dispersion process of waves traveling into the landfast ice

with an acceptable level of accuracy. The inputs that are used for the construction of dispersion curves are similar to what gives

the best fitting for decay rates.325

Figure 10 shows the k̂i vs. λ̂o plots of the flume tests performed in University of Melbourne. It was observed that none of the

models can predict the dispersion process of waves interaction with freshwater ice with the inputs gave the best fitting for the

decay rates plots (Figure 8). This is in contrast with what was observed in Figure 9, where models accurately predicted the wave

dispersion process with similar inputs utilized for the calculation of decay rates. As seen, when dispersion process of waves

interacting with freshwater is constructed by using a KV model, Young Modulus values of 5× 105 Pa and 2.5× 108 Pa give330

the best fitting for the dispersion processes of 1 cm and 1.5 cm ice covers, respectively . As explained in the literature, some
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Figure 9. Comparison between k̂i vs. λ̂o curves predicted by wet beam models and the data measured by Voermans et al. (2021). Upper and

lower rows respectively show data related to tests performed in Arctic and Antarctic. The shear Modulus of ice is set to be 1 GPa.

other researchers observed that the effective Young Modulus of a material is different and smaller from what is measured in dry

tests. For a Maxwell material, however, different values of dynamic viscosity can be used to fit the curves with the experimental

data. It was previously demonstrated that the dynamic viscosity can affect k̂i vs. λ̂o plots by increasing the wavenumber over

the range of short waves. By setting larger values for the dynamic viscosity, the constructed dispersion curve matches with the335

experimental data (the solid curve).

3.4 Other models

In sub-sections 3.2 and 3.3, it was observed that proposed models cannot accurately calculate the dispersion process and decay

rates of waves advancing into the freshwater ice. Artificial effects may have contributed to the dispersion and dissipation
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Figure 10. Comparison between k̂i vs. λ̂o curves predicted by wet beam models and the data measured by Yiew et al. (2019). Upper and

lower rows show the data related to freshwater ice covers with thicknesses of 1 cm and 1.5 cm, respectively.

process, though the large difference between inputs giving the best fit for the decay rate and dispersion plots still leaves us with340

a big question mark about the main reason for such a difference.

As discussed, other researchers have hypnotized that the effective elasticity or dynamic viscosity of the wet ice interacting

with water waves can be different from what have been measured in dry tests. While the whole paper looks into ability of KV,

Maxwell and pure elastic materials and discusses how accurate their results can be, the idea of developing other models by

considering various viscoelastic materials rises. We can use the other solid models to evaluate whether Young Modulus giving345

the best result for decay rates and dispersion process match with what is found in dry tests or not.
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Figure 11. Standard linear solid models. Left and right panels respectively show the SLS KV and SLS Maxwell models.

To provide an answer to the above question, the linear combination of KV and Maxwell materials, known as Standard

Linear Solid (SLS) model, is used to describe the mechanical behaviour of ice. Standard Linear Solid models are also called

“Zener”. Two different Zener models have been introduced in this paper. The first one is a SLS model established using a

Kelvin approach (Spring in series with KV). The other model is acquired employing a Maxwell approach (Spring in parallel350

with Maxwell). The schematic of both of these models are shown in Figure 11. The storage and loss modulii of these two solid

models are formulated as

GE =
GKGM
GK +GM

(
GM +

GKGM
GK +GM

)
(ωτ)2

1 + (ωτ)2
− i
(
GM +

GKGM
GK +GM

)
(ωτ)

1 + (ωτ)2
, (24)

GE =GK +
GM

(
τ2ω2

)

(1 + τ2ω2)
− i GM (τω)

(1 + τ2ω2)
. (25)355

The same way used to establish dispersion relationships in the Section 2 is applied, and the related dispersion relationships

are formulated as
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Decay rates and dispersion of waves propagating into the 1.5 cm freshwater ice cover are recalculated by using the two

introduced SLS models and plotted in Figure 12. The Left and right panels respectively show the results found using SLS KV

and SLS Maxwell models. Dispersion curves are plotted in upper panels, and the decay rates are illustrated in lower panels.

SLS KV and SLS Maxwell model both construct k̂i vs. λ̂o plots similarly. Interestingly, the equivalent Young Modulus of the

SLS KV model is 2.5× 104 Pa and that of the SLS Maxwell model is 3.3× 109 Pa. This confirms that the SLS KV model365
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which is built using the KV approach can only predict the predicted process with a very low equivalent Young Modulus, which

is much smaller than Young Modulus found in dry tests (which is around 2.6 ×109 Pa). But the equivalent Young Modulus

of the SLS Maxwell model is close to what is found in dry tests. This signifies that the freshwater ice formed in the flume

is more likely to behave similarly to a SLS Maxwell material. This can explain the difference between the effective Young

Modulus reported in different experimental researches. Researchers who conducted those flume/basin experiments concluded370

that a lower Young Modulus should be used to calculate the dispersion process of waves propagating into ice when a dispersion

equation built on the basis of pure elastic material (or the KV material) is employed. But as observed here, the material is more

prone to show a rheological behavior falling in between those of the KV and Maxwell materials, arranged using a Maxwell

approach, the equivalent Young Modulus of which is close to what is measured in dry tests.

The decay rates are seen to be well predicted by both models. The interesting point is that, the KV model was found not be375

able to construct the decay rates of 1.5 cm thick. But as seen here, the results of SLS KV model fairly agree with experimental

measurements. The SLS Maxwell model can predict the decay rate very well. The trend of the decay rates given by SLS

Maxwell and SLS KV are very similar.

3.5 Final discussion

Decay rates and dispersion curves of gravity waves propagating into an ice cover can be constructed using the presented wet380

beam models. With the same setups (e.g. dynamic viscosity and Young Modulus), different models can give different curves

for the decay rates and the dispersion process. Thus, the choice of the model for the prediction of the decay rates and the

dispersion process is very important. This needs a better understanding of the ice mechanics and the way it is formed. Simply

stated, the mechanics of ice is a very complicated field of research, with lots of open questions not have been answered yet.

Models formulated in the present research follow the basic of the Euler-Bernoulli beam theory, which describes displace-385

ments of a solid layer by assuming small motions. To provide a clear picture of this theory, transverse sections of a beam flexed

due to an external/internal load should be assumed. If the displacement field follows the Euler-Bernoulli law, the normal vector

of any transverse section is always parallel to the axis of the beam. That is, no local rotational motion occurs. This is different

from what happens for a solid body following the Timoshenko–Ehrenfest beam theory, where rotational motions are taken into

consideration (Timoshenko and Woinowsky-Krieger, 1959). Furthermore, to establish any model, the mechanical behaviour390

of a substance should be formulated. It left us with two general choices as we are following a beam theory: The ice can be

hypothesized to be either elastic or viscoelastic. When elastic behavior is considered, Hooke’s law is utilized to formulate the

relationship between the stress and the resulting strain. If viscoelastic behavior is assumed, different linear models can be used.

The KV and Maxwell models are commonly used for this aim, the former which represents a viscoelastic solid body, and the

latter which represents a mass of viscoelastic fluid.395

Using mechanical behavior prescribed for the ice and employing an Euler-Bernoulli equation, dispersion relationships can

be formulated. If the ice layer is assumed to be dry and no fluid-solid interaction is taken into account, dispersion relationships

for wave motions in dry beams are acquired. If the multi-physical problem is considered, the ice layer is assumed to settle down

on the water surface and fluid forces emerge. If the fluid motion is assumed to be linear, three different forces including heave
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Figure 12. Comparison between predictions of SLS models and values measured byYiew et al. (2019). Upper and lower rows show the decay

rates and dispersion plots. Equivalent Young Modulus of the SLS KV model is 2.5× 104 Pa and equivalent Young Modulus of the SLS

Maxwell model is 3.3× 109 Pa. Dynamic viscosity of SLS KV model is 4× 107 Pa.s and dynamic viscosity of the SLS Maxwell model

is 3.5× 109 Pa.s.

stiffness, heave damping, and heave added mass forces emerge. The original model of Greenhill (1886) and Fox and Squire400

(1991) models only consider stiffness of fluid, i.e, the dispersion relationship presented by them has one extra term compared to

the dispersion relationship of a purely dry elastic beam, which is the stiffness term. The dispersion relationship formulated by

Mosig et al. (2015) has included fluid heave damping but only for an elastic material, and the available formulated dispersion

relationship of a viscoelastic material with no heave damping. But in reality, fluid heave damping occurs due to wave radiation

(which generates added mass and damping forces) and its presence does not have any inconsistency with the viscoelasticity of405
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the ice. That comes from the basic of marine hydrodynamics where the Radiation Problem is formulated to describe motions

of any solid body on the water surface (Newman, 1977). To conclude, a more general dispersion relationship, compared to

available ones, can be formulated if three fluid force terms are considered. In the present research, all three fluid forces were

considered to formulate the dispersion relationship of a wet layer of ice, covering water.

Energy dissipation is caused by solid-based energy damping and fluid-based energy damping. The former is dominant over410

high frequencies (corresponding to short waves in an open-water condition), and the latter is dominant over small frequencies

(corresponding to long waves in an open-water condition). The solid-based energy damping is caused by the viscoelastic

resistance emerging in the solid and is absent for an elastic material. Regardless of the viscoelastic model used to treat the

mechanical behavior of the material, the solid-based energy damping decreases with an increase in the wavelength. With an

increase in Elasticity number, the wavelength range over which solid-based energy damping is dominant becomes wider. This415

matches with physics. The body is more rigid and solid responses can contribute to energy damping of longer waves, compared

to bodies with low rigidity. The fluid-based energy dissipation is generated by radiation forces, decreasing with the increase

in wavelength. But compared to the solid-based energy damping, the rate of decrease is much smaller. The energy damping

triggered by a pure elastic cover is only due to the presence of heave damping forces. Thus, to compensate for the lack of solid-

based energy damping of an elastic cover, larger heave damping needs to be considered. Energy decay triggered by the landfast420

ice covers which have large rigidity can be computed using the viscoelastic models if fluid heave damping is included. If it is

not, models cannot work properly and the predicted decay curves diverge from field measurements. This well confirms that

fluid-based energy damping contributes to total energy dissipation. Both viscoelastic models were seen to construct the decay

curves, fairly follow field measurements. But the dynamic viscosity values were seen to be much different. A KV material may

be a more realistic indicator of ice behavior as the lanfast ice is expected to be solid.425

Decay rates of broken ice fields were seen to be calculated by both viscoelastic models when the fluid-based energy damping

is considered. This provided us with another piece of evidence for the contribution of heave forces to energy dissipation.

Compared to landfast ice covers, different values of the dynamic viscosity were observed to give the best fitting for the decay

rates of waves advancing in water partially covered with broken ice floes. The coexistence of open-water and ice floes on the

upper layer of the fluid domain can explain this. Models are formulated for an integrated layer of solid ice. If water is included,430

a mixed thin layer represents the cover. A volume fraction model may describe the dynamic viscosity of the layer. The dynamic

viscosity of the water is much smaller compared to that of ice, but the water entrapped between ice floes may be turbulent,

leading to eddy generation (turbulent flow can cause damping of waves, e.g. Tavakoli et al. (2022)). The KV model gives the

best fitting of decay rate when the dynamic viscosity is reduced, compared to the landfast ice. In contrast, the Maxwell model

gives the best fitting with a larger dynamic viscosity. Thus, what can be concluded is that if water reduces the dynamic viscosity435

of the upper layer, the KV model will more likely to be a better indicator of the ice behavior. Otherwise, the Maxwell model

prescribes the mechanical behaviour of the material.

The decay rates of the freshwater ice were also calculated. The pure elastic materials can reconstruct the decay rates only if a

very large heave damping is used, which may not be realistic. But, viscoelastic models were seen to predict the decay rate plots.

Models, however, were not able to capture the dispersion process under freshwater ice covers with the same input observed to440
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give the best decay rates. Effective values were seen to construct dispersion plots with an acceptable level of accuracy. This

has been observed and reported by other scholars over the last two decades, who measured the wavelength and phase speed

of disintegrated elastic/viscoelastic covers. The interesting point is that, when a Maxwell model is used, the dynamic viscosity

can affect the dispersion process. This motivates us to build other models which formulate the storage modulus by applying the

dynamic viscosity. Two available linear models were introduced. One is SLS KV and the other is SLS Maxwell. Both models445

include two springs and one dashpot. The equivalent Young Modulus giving the best fitting when SLS KV is used is 2.5× 104

Pa, which is much smaller compared to that of real freshwater ice. But, for SLS Maxwell, the equivalent Young Modulus was

seen to be 3.3× 109 Pa which is close to that of freshwater ice.

Based on what was observed when SLS models were used, it can be concluded that simple models such as Maxwell and KV,

cannot reproduce behavior of the freshwater ice formed in the flume, and its behavior is different from that of the landfast ice.450

There are still doubts about the behaviour of broken sea ice. Both Maxwell and KV models were found to give the best fitting.

One reason is that the wave phase is not measured in most of the field tests that took place in the broken ice field, and researchers

were mostly concerned with decay rates. Since the phase speed and dispersion plots are not available, the performance of

models in the reconstruction of dispersion plots cannot be evaluated. Especially, this could show whether changes in the

dynamic viscosity can modify the accuracy of the Maxwell model in the prediction of dispersion or not (dispersion curves455

Maxwell model give is sensitive to dynamic viscosity). That may be still an open question for the future.

4 Conclusions

The common approach used to predict decay rates and dispersion of waves passing through an ice cover is to formulate

a dispersion relationship, the roots of which give the decay rate and the relative wavenumber in an ice-covered sea. The

majority of models developed for wave-ice interaction have been developed based on two approaches. First, ice was assumed460

to be a viscous fluid or a viscoelastic solid layer. Second, ice was assumed to be elastic, and the fluid forces were taken into

account. This paper aimed to present wet beam models by considering both of fluid-based and solid-based energy dissipation

mechanisms by accommodating different rheological for the ice layer (KV, Maxwell, and pure elastic materials). Thus the

models were called “wet beam” which refers to water-based forces that are taken into consideration.

Predictions of models and field measurements were quantitatively compared against each other. KV and Maxwell models465

were seen to reconstruct the decay rates and dispersion process of landfast ice with a great level of accuracy. Decay rates were

observed to be poorly predicted if the fluid-based energy damping is not taken into account, suggesting that this mechanism

has a very important role in ice-induced energy decay over the range of long waves. The decay rates of unconsolidated ice

fields were also seen to be accurately predicted by KV and Maxwell models by setting a non-zero value for the fluid damping

coefficient.470

Decay rates and wave dispersion of freshwater ice were predicted. The pure elastic model was seen to predict the decay

rate with an unrealistic heave fluid damping. The decay rates predicted by KV and Maxwell models were seen to agree with

experiments, though the dispersion plots were observed to diverge from the experimental data.
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Two standard linear solid models were used and two other dispersion relationships were formulated. These relationships

were seen to predict the attenuation rate and the dispersion plots with a good level of accuracy. But, the SLS model which was475

fundamentally based on the KV material gave the best fitting with an unrealistic Young Modulus.

Overall, the wet beam dispersion relationships developed by accommodating two-parameter solid models are able to predict

the decay rates and dispersion process of ice fields. But, for freshwater ice flume, a three-parameter solid model may increase

the accuracy of the predictions. In the future, nonlinear models can also be developed to consider the effects of wave steepness,

and other beam theories can be employed.480
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