
Spatio-temporal reconstruction of winter glacier mass balance in the
Alps, Scandinavia, Central Asia and Western Canada (1981-2019)
using climate reanalyses and machine learning
Matteo Guidicelli1, Matthias Huss1,2,3, Marco Gabella4, and Nadine Salzmann5,6

1Department of Geosciences, University of Fribourg, Fribourg, Switzerland
2Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zurich, Zurich, Switzerland
3Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
4Federal Office of Meteorology and Climatology MeteoSwiss, Locarno-Monti, Switzerland
5WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
6Climate Change, Extremes and Natural Hazards in Alpine Regions Research Center CERC, Davos, Switzerland

Correspondence: Matteo Guidicelli (matteo.guidicelli@unifr.ch)

Abstract. Spatio-temporal reconstruction of winter glacier mass balance is important for assessing long-term impacts of cli-

mate change. However, high-altitude regions significantly lack reliable observations which is limiting the calibration of glacio-

logical and hydrological models. Reanalysis products provide estimates of snow precipitation also for remote high-mountain

regions, but this data come with inherent uncertainty and assessing their biases is difficult given the low quantity and quality

of available (long-term) in-situ observations. In this study, we aim at improving knowledge on the spatio-temporal variations5

in winter glacier mass balance by exploring the combination of data from reanalyses and direct snow accumulation observa-

tions on glaciers using machine learning. We use the winter mass balance data of 95 glaciers distributed over the European

Alps, Western Canada, Central Asia and Scandinavia, and compare them with the total precipitation from the ERA-5 and

the MERRA-2 reanalysis products during the snow accumulation seasons from 1981 until 2019. We develop and apply a

machine-learning model to adjust the precipitation from the reanalysis products along the elevation profile of the glaciers, and10

consequently to reconstruct the winter mass balance in both space (for glaciers without observational data) and time (filling ob-

servational data gaps). The employed machine-learning model is a gradient boosting regressor (GBR), which combines several

meteorological variables from the reanalyses (e.g. air temperature, relative humidity) with topographical parameters. These

GBR-derived estimates are evaluated against the winter mass balance data using (i) independent glaciers (site-independent

GBR) and (ii) independent accumulation seasons (season-independent GBR). Both approaches resulted in reduced biases and15

increased correlation between the precipitation of the original reanalyses and the winter mass balance data of the glaciers.

Generally, the GBR models have also shown a good representation of the spatial (vertical elevation intervals) and temporal

(years) variability of the winter mass balance on individual glaciers.
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1 Introduction

Climate change considerably alters the high-mountain cryosphere (e.g. Beniston, 2012; Vorkauf et al., 2021; Marty, 2008;20

Beniston et al., 2018; Bormann et al., 2018). Vanishing glaciers and changes in the seasonal snow regime significantly change

water availability and storage capacities in worldwide high-mountain regions, impacting adjacent lowlands far away (e.g.

Viviroli et al., 2007; Immerzeel et al., 2020). Cryospheric hazards such as slope failures and glacier lake outburst floods (e.g.

Gobiet et al., 2014; Rasul and Molden, 2019) are other impacts of climate change in mountain regions, with direct adverse

impacts on mountain societies (e.g. Adger et al., 2003; Hock et al., 2019). The rate and magnitude of cryospheric changes25

significantly depend on the evolution of the high-altitude precipitation regime. The elevation dependency of precipitation

trends is however unclear; while precipitation trends from station observations often show an inconsistent picture with no

systematic changes with elevation, gridded datasets show reduced precipitation increases at higher elevations (e.g. Pepin et al.,

2022). It is thus crucial to improve our understanding of the local high-altitude climate-cryosphere interaction (e.g. Stone et al.,

2013; Salzmann et al., 2014; Huss et al., 2017; Barandun et al., 2020). However, at the local scale and particularly at very30

high altitudes, snow and precipitation in-situ observations are typically very scarce, spatially not optimally distributed, with

low temporal resolution, too short in time or with important gaps caused by technical challenges, difficult accessibility and

thus complicated and lavish maintenance (e.g. Beniston et al., 2012; Tapiador et al., 2012). This is an important limitation for

studies focusing on the long-term effects of climate change at the high-mountain cryosphere, which require snow accumulation

data covering decadal periods (e.g. Seiz et al., 2010). At very high altitudes, mostly only measured snow water equivalent35

(SWE) as the cumulative snow accumulation on glaciers is available. Measurements of SWE on glaciers are typically used

for the determination of winter mass balance (Cogley et al., 2011), an important variable in international glacier monitoring

(e.g. Zemp et al., 2013). The main process of snow accumulation is the total precipitation received by the glacier during the

accumulation season. Since melting is often negligible during this time period, SWE on glaciers represents a reliable measure

of local winter precipitation and was thus used for a comparison with precipitation products in different studies (e.g. Gugerli40

et al., 2020; Guidicelli et al., 2021). However, other processes such as deposition of hoar, freezing rain or snow drift caused by

winds and avalanching can also influence the accumulation (Dadic et al., 2010; Gascoin et al., 2013).

Worldwide spatio-temporally continuous information on precipitation, snow depth and SWE is also provided by climate

reanalyses that merge physical laws with the assimilated satellite and ground observations (e.g. Hersbach et al., 2020; Gelaro

et al., 2017). However, the performance of reanalysis results can vary greatly depending on the region and the elevation range45

of interest (Sun et al., 2018). Large biases in reanalysis precipitation are particularly found in high-mountain regions (e.g. Liu

and Margulis, 2019; Zandler et al., 2019). The scarcity of observations available for assimilation and the coarse resolution of

such models limit their accuracy in areas of complex topography and their suitability for studies at a local scale (e.g. Salzmann

and Mearns, 2012, (for snow)).

Thus, the further development of techniques to spatially and/or temporally transfer the available observational series be-50

tween sites and/or filling data gaps, is critical and urgently needed (e.g. Salzmann et al., 2014). Downscaling of precipitation

estimates of reanalyses is thereby a necessary step to represent the local conditions in high-mountain regions. Different statis-
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tical and dynamical downscaling methods exist (cf. Maraun et al., 2010), which have also been employed and evaluated over

glacierized regions (e.g. Mölg and Kaser, 2011). For instance, Liston and Elder (2006) developed a quasi–physically based,

meteorological model to produce high-resolution (30 m to 1 km horizontal grid) atmospheric forcings for several variables,55

where the precipitation adjustment is a nonlinear function of the elevation difference between the grid and the point of interest.

The same equation was used by Gupta and Tarboton (2016), who proposed an approach to downscale the MERRA (Rienecker

et al., 2011) variables. They obtained a Nash-Sutcliffe efficiency greater than 0.70 for downscaled monthly precipitation at

173 SNOTEL (Snow Telemetry) sites. Fiddes and Gruber (2014) adapted this method for the Swiss Alps by including a cli-

matological parameter based on the Alpine precipitation data set provided by the Climatic Research Unit (gridded monthly60

precipitation totals at 10 arc-min resolution over the Alps, for the period 1800–2003). Their product allowed improving the

purely lapse-rate-based approach of Liston and Elder (2006), obtaining a correlation coefficient of 0.6 (versus 0.5) against

the annual precipitation observed at 40 ANETZ (MeteoSwiss automatic meteorological network) stations. Recently, machine-

learning methods have demonstrated their high performance to statistically downscale reanalyses (and global climate models)

estimates of precipitation and other meteorological variables, from sub-daily and daily (e.g. Serifi et al., 2021; Wang et al.,65

2021) to monthly and seasonal (e.g. Sachindra et al., 2018; Najafi et al., 2011; Sun and Tang, 2020) resolution. However,

downscaling methods for snow (and precipitation) are rarely assessed at very high elevations, mainly due to the scarcity of

ground observations. Consequently, long-term effects of climate change on the snowpack at very high elevations are not well

understood yet (e.g. Seiz et al., 2010).

In this study, we thus aim at analyzing total precipitation biases of reanalysis datasets (ERA-5 and MERRA-2) over the70

snow accumulation season on glaciers, i.e. at the highest elevations of different mountain ranges. The precipitation estimates

are compared with the winter glacier mass balance data covering a period of up to 39 years from 95 glaciers in the European

Alps, Scandinavia, Central Asia and Western Canada. The selection of these regions/glaciers depends on the data consistency

and availability (see Sec. 2.2). Ultimately, we aim at reconstructing the winter glacier mass balance from partial information. In

order to achieve this goal, we develop and evaluate a machine-learning approach based on gradient boosting regressor (GBR)75

models (see Friedman, 2001) to adjust the total precipitation of reanalysis (main driver of snow accumulation) along the

elevation profiles of the glaciers. More specifically, the GBR models aim at allowing the spatio-temporal transferability of the

learned information over the 95 glaciers to other glaciers with no ground observations and/or filling gaps of observational series.

The new information provided by our exploratory study is expected to be helpful to improve the calibration of glaciological

and hydrological models in observation-scarce regions.80

2 Study sites and data

The study was conducted on 95 glaciers located in the Alps, Scandinavia, Central Asia and Western Canada (Fig. 1), where the

longest time series and the highest density of winter glacier mass balance data are available. In the following, we describe the

different data sources used in the study.

3



2.1 Reanalysis data85

We used data from ERA-5 and MERRA-2 reanalyses since these are currently among the most widely used reanalysis products,

providing the highest spatial resolution and covering the longest time period in all the regions of our study.

2.1.1 ERA-5

ERA-5 is the fifth generation of the European Centre for Medium-Range Weather Forecasts atmospheric reanalyses of the

global climate (see Hersbach et al., 2020, for more information). In this study, we used several variables from the ERA5 hourly90

data on single levels from 1979 to present (Hersbach et al., 2018b), and the ERA5 hourly data on pressure levels from 1979

to present (Hersbach et al., 2018a), all with a spatial resolution of 0.25° x 0.25° (∼30 km). All variables were resampled on

a daily timescale before usage. The list of variables selected for the analysis is reported in Tab. B1. The ERA-5 precipitation

variable used in the study is "tp" (total precipitation) from the ERA-5 single levels.

2.1.2 MERRA-295

MERRA-2 is the second version of the Modern-Era Retrospective Analysis for Research and Applications (see Gelaro et al.,

2017, for more information). In this study, we used several variables from the MERRA-2 Land Surface Diagnostics (Global

Modeling and Assimilation Office (GMAO), 2015b), the MERRA-2 Single-Level Diagnostics (Global Modeling and Assimi-

lation Office (GMAO), 2015c) and the MERRA-2 Analyzed Meteorological Fields (Global Modeling and Assimilation Office

(GMAO), 2015a). All variables have a spatial resolution of 0.5° x 0.625° (∼50 km), and we resampled them on a daily timescale100

before usage. The list of the selected variables is reported in Tab. B2. The MERRA-2 precipitation variable used in the study

is "PRECTOTLAND" (total precipitation) from the MERRA-2 Land Surface Diagnostics.

2.2 Winter mass balance data

The World Glaicer Monitoring Service (WGMS) compiles and publishes standardized observations on changes in mass, vol-

ume, length and area of glaciers collected by national monitoring programmes and local observers around the world (glacier105

fluctuations (see Zemp et al., 2021, for more details)). The data compilation provided by the WGMS based on dozens of de-

tailed national monitoring programs is unique in terms of providing consistent in-situ data in different regions of the world at

the highest elevation of mountain ranges, i.e. on glaciers, that can be used for comparison with precipitation datasets.

Thus, we used the winter mass balance data separated per elevation intervals (EE-MASS-BALANCE data sheet in WGMS,

2021) and we refer to them as Bw in this study. Point observations are also available (EEE-MASS-BALANCE POINT data110

sheet in WGMS, 2021) but are not used in this study because of the smaller amount of glaciers with complete information

reported (observation dates, elevation, coordinates). We only considered the Bw data where the elevation interval is indicated

in the WGMS database. The glacier area related to each elevation interval was also used to weight the Bw data. In addition, we

considered the average slope and aspect of the glaciers by using the information provided in the Randolph Glacier Inventory

version 6 (RGI Consortium, 2017).115
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The winter mass balance is the result of the balance between the gain of snow which accumulates over the glacier, as well as

refreezing of liquid water within the snowpack, and the loss caused by melting and sublimation over the accumulation season.

Other processes such as snow drift caused by winds can also influence the accumulation. The amount of snow melt is typically

minor compared to the snow accumulation and thus negligible in the comparison with the precipitation totals performed in

this study. Snow accumulation is expressed in SWE (e.g. Østrem and Brugman, 1991), which is calculated by multiplying the120

measured snow depth with the respective bulk density of the snowpack. The snow depth is typically measured with a snow

probe or ground-penetrating radar, while the snow density is usually measured in snow pits or by coring and is subsequently

extrapolated to all observations on a glacier. The WGMS database only provides information on Bw but does not generally

allow tracing whether density was directly measured or not.

The Bw data used in this study correspond to the mean winter balance for the glacier area within the respective elevation125

interval. Various spatial extrapolation techniques were applied by the national observers to infer elevation band average snow

accumulation from the (sparse) point observations, which can be challenging due to important local-scale variability in snow

depth (e.g. Dadic et al., 2010; Helfricht et al., 2014; Sold et al., 2016). Unfortunately, the WGMS database does not allow trac-

ing the methods used, hence, resulting in an uncertainty that is difficult to be estimated. Often, no direct snow depth and density

observations are available at the most extreme elevations of the glaciers because of high surface slopes and difficult accessi-130

bility. The employed techniques in the framework of the Swiss national program GLAMOS (Glacier Monitoring Switzerland,

which provides the data of the Swiss sites to WGMS) are described in Huss et al. (2021). The impact of the inter- and extrap-

olation of direct SWE measurements acquired on glaciers to obtain Bw data used in this study on our results is discussed in

Section 5.2.5.

The starting date of the accumulation season is not precisely known, but often determined with a stratigraphic system (i.e.135

since the date of the minimum surface in the previous summer) (e.g. Mayo et al., 1972; Cogley et al., 2011). The date of the

minimum surface varies between the years and also across the glacier. In fact, snow accumulation starts typically later at lower

elevations than at higher elevations (Huss et al., 2009). However, in this study we used a unique starting date for the entire

glacier according to the information provided in the WGMS database. The end of the season is determined by the day of the

snow survey that is indicated in the WGMS database. In this study, we cumulated precipitation amounts over the accumulation140

season. The impact of the date considered as beginning of the accumulation season on our results is discussed in Section 5.2.5.

3 Methods

First, we derived total or average of all variables provided by the reanalyses for the entire accumulation season. Subsequently,

a machine-learning model to adjust the total precipitation (see Sec. 2.1.1 and 2.1.2) of the reanalyses over glaciers for the

accumulation season was developed to reconstruct the Bw along the elevation profile of the glaciers. We use a GBR (gradient145

boosting regressor), which makes use of several meteorological variables (original and downscaled) and topographical param-

eters as input variables (predictors). The list of predictors required by the GBR is summarized in Tab. B3, while the variable

names are described in Tabs. B1 (ERA-5) and B2 (MERRA-2). In principle, a different adjustment factor of precipitation
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might be needed depending on the precipitation phase. However, as we only adjust the total precipitation occurring during the

accumulation season, the adjustment factors used here represent the “average” adjustment factor of all precipitation events.150

Moreover, the snowfall variable was used as a predictor in order to enable the GBR model to learn that a different “average”

adjustment factor must be applied depending on the fraction of snowfall and total precipitation (i.e. depending on the main

precipitation phase during the accumulation season).

The applied methods to downscale the meteorological variables used by the GBR model as predictors are described below.

3.1 Downscaling temperature and relative humidity155

In addition to the original variables (all "constants", all "single level" and all "land surface" variables in Tabs. B1 and B2),

the GBR requires some downscaled variables of the reanalyses as predictors at the glacier elevation intervals (see Tab. B3),

including air temperature, dew point temperature and relative humidity (for MERRA-2 and ERA-5), vertical velocity of air

motion (for ERA-5 only) and specific humidity (for MERRA-2 only). The downscaling procedure was applied at a daily

resolution using a linear interpolation between the values of the two closest pressure levels to the center of the elevation160

intervals of the Bw data of the glaciers. This downscaling approach is illustrated in the Supplementary material (Fig. S1).

If information regarding the relative humidity was not directly provided by the reanalyses, we applied approaches presented

by Liston and Elder (2006) and Gupta and Tarboton (2016) to derive it. The applied equations are described in the Appendix

(Section A).

3.2 Downscaling precipitation165

The total precipitation over the accumulation season was considered the main driver of Bw. Thus, in order to derive Bw estimates

over the glaciers, we built a machine-learning model that adjusts the total precipitation of reanalysis along the elevation profile

of the glaciers. In this study, we also applied a pre-existing lapse-rate-based approach (not data-informed) for precipitation

downscaling that we considered as a benchmark. The approaches are described below and the results obtained with the two

methods are compared afterward.170

3.2.1 Benchmark

Liston and Elder (2006) proposed a lapse-rate-based approach to downscale reanalysis’ precipitation by accounting for the

elevation difference between the point of interest and the grid of the reanalysis. Whereas they applied the approach to the

MERRA reanalysis, we applied the same approach to MERRA-2 and ERA-5 reanalysis data and used the resulting adjusted

precipitation as a benchmark:175

Padj = Preanalysis
1+κ(Hpoint −Hreanalysis)

1−κ(Hpoint −Hreanalysis)
, (1)

where Preanalysis is the precipitation of the reanalysis, Hreanalysis is the elevation of the reanalysis’ grid, Padj is the adjusted

precipitation at the altitude of the point of interest (Hpoint) and κ is a monthly adjustment factor (cf. table 1 of Liston and
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Elder, 2006). In our study, we used an average factor κ= 0.3214, corresponding to the average between October and April.

The precipitation adjusted with this approach on Findelgletscher is illustrated in Fig. S1.180

3.2.2 GBR model (Gradient Boosting Regressor)

In order to represent a potential non-monotonic increase of snow accumulation (and precipitation) with elevation and to provide

different adjustments of the original reanalysis’ precipitation depending on the region and the site, we built more complex

models based on machine learning. All models are built with the open source "scikit-learn" library for machine learning

in Python (cf. Pedregosa et al., 2011). Specifically, we built a series of GBR models, each consisting of an ensemble of185

weak learning models (estimators) represented by regression trees. Similarly to all tree-based models, GBRs do not provide

continuous estimates. In our case, the goal of the GBR models is to predict the logarithmic adjustment factors of the reanalysis’

precipitation with respect to the Bw along the elevation profile of the glaciers (Eq. 2). In a GBR, the trees are built sequentially,

and the subsequent trees learn from the errors of the previous trees, minimizing the residuals between their predictions and the

reference values.190

FdB,ref = 10log10
Bw

Preanalysis,tot
, (2)

where Preanalysis,tot is the total precipitation of the reanalysis over the accumulation season. The GBR models aim at mini-

mizing the cost function defined in Equation 3, corresponding to the mean square error between the predicted and reference

logarithmic adjustment factors.

MSEdB2 =
1

n

n∑
i=1

(FdB,pred,i −FdB,ref,i)
2 (3)195

Different hyperparameters characterize a GBR. In this study, we applied a grid search to optimize the number of estimators

(number of additive trees, i.e. number of iterations), the maximum depth that each tree can reach, the minimum number of

samples required to be at a leaf node of a tree, and the learning rate, which can vary between 0 and 1 and determines how

quickly the GBR learns by shrinking the contribution of the individual trees on the GBR predictions. The higher the number

of estimators or the maximum depth is, the more complex and less generalized the GBR model is. In contrast, the larger the200

minimum number of samples is, the less complex and more generalized the GBR model is. A smaller learning rate makes

the GBR more robust to the specific characteristics of each individual tree, thus allowing a better generalization. However,

the smaller the learning rate is, the more subsequent trees (iterations) are generally required to reach the minimum of the cost

function. A 10-fold cross-validation was applied with different combinations of hyperparameters. The hyperparameters that

were able to minimize the mean square error of the validation data were chosen. Finally, the GBR model with the chosen205

hyperparameters was tested on independent data.

The validation and the test data were defined differently depending on the goal of the GBR model. For both reanalysis prod-

ucts (ERA-5 and MERRA-2), we built two different GBR models with two different goals and two different cross-validation

and test schemes.
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The first GBR model is site-independent and aims at "extrapolating" the Bw data in time and space (over glaciers with no Bw210

data). For the site-independent GBR, we built 95 models, one for each glacier, trained and validated with the data of the other

94 glaciers. Each glacier is used, in turn, as an independent test for the model based on the data of the other 94 glaciers. Thus,

the site-independent GBR is independent from any data of the glacier where the model is tested (see Fig. 2).

The second GBR model is season-independent and aims at "extrapolating" the Bw data in time only (filling data gaps over

glaciers with discontinuous records of Bw). For the season-independent GBR, we built a model for each year (when the Bw data215

is available) and each glacier. In this case, each year of each glacier is used, in turn, as an independent test for the GBR, which

is trained using the data of the other years (of the tested glacier) and of the other 94 glaciers. Thus, unlike the site-independent

GBR, the season-independent GBR is informed with data of the glacier where the model is tested, excluding only data of

the year when the model is tested. For the season-independent GBR, data of the other 94 glaciers is still used in the training

because many glaciers only have a small number of years with available Bw data. Thus, in case of limited Bw data, this may220

help the GBR to learn from the data of the other 94 glaciers.

The average optimal hyperparameters for all the studied glaciers are reported in Tab. 1. The resulting site-independent model

is more generalized (smaller number of estimators than the season-independent GBR and higher minimum number of samples

per leaf), while the season-independent model is more detailed and can be split into individual sub-models adapted to a small

number of samples. The different architecture between the site-independent and the season-independent GBRs is discussed in225

Sec. 5.2.1.

All variables presented in Section 2.1 and listed in Section B of the Appendix were considered by the GBR as predictors

(separately for ERA-5 and MERRA-2). In addition, we derived and used the differences between the downscaled variables (cf.

Section 3.1) and the estimates at the grid of the reanalysis. Some variables were not only averaged considering all days in the

accumulation season, but also considering only the days with a relevant amount of precipitation, here arbitrarily set to 5 mm.230

The GBRs also use the latitude and longitude of the glacier (same value for the entire glacier), as well as aspect and slope of

the glacier (same value for the entire glacier). A summary of the predictors used by the GBRs is provided in Tab. B3.

During the training phase of our models, the Bw data were weighted by considering the area of the glacier related to the

respective elevation interval. Larger glaciers (and elevation intervals related to larger areas) thus receive more weight than

smaller glaciers (and elevation intervals related to smaller areas).235

3.3 Evaluation metrics for the models’ estimates

3.3.1 Adjustment factors

In order to evaluate the bias between the Bw data and the estimates of the models (original reanalyses, benchmark or GBR),

we computed the adjustment factor f (dimensionless) as:

f =
Bw

Emodel
, (4)240
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where Emodel is the estimate of a model. The adjustment factor FdB is expressed in decibels and is used to derive supplementary

evaluation metrics:

FdB = 10log10
Bw

Emodel
(5)

3.3.2 Glacier-wide means

When deriving a glacier-wide factor (or glacier-wide Bw) for a single accumulation season, we computed a weighted mean of245

the area contained in the individual elevation intervals. These seasonal glacier-wide values were used to derive the Pearson’s

correlations (r), the root mean square error (RMSE), and the fraction of standard error (FSE), between the glacier-wide Bw and

the model estimate. The FSE corresponds to the RMSE divided by the glacier-wide Bw.

3.3.3 Regional metrics

In order to further validate the performance of the GBR models, we derived the glacier-wide FdB described by Equation 5250

for every accumulation season and every glacier with Bw data (FdB,mean). We thus analyzed the four investigated regions

separately by deriving a mean factor per region, as:

FdB,region =

∑n
g=1

∑mg

s=1FdB,mean,g,s

n
∑n

g=1mg
, (6)

where n is the number of glaciers and mg is the number of accumulation seasons with Bw data for the glacier g.

4 Results255

In the following, we first present the main results of our study, i.e. the performance of the GBR models over glaciers in the

Alps, Scandinavia, Central Asia and Western Canada (Sec. 4.1), followed by the analysis of the predictors’ importance in the

GBR models (Sec. 4.2).

4.1 Performance of the GBR models

Overall, the GBR models indicate better agreement in terms of bias, spatial and temporal correlation with the Bw data than260

the original reanalyses and the benchmark for the majority of the studied glaciers. In the following we report in detail on the

comparison between the Bw data, the precipitation estimates of the reanalyses and the GBR models’ estimates.

4.1.1 Glacier-wide reanalysis’ bias adjustment

Figure 3 shows the comparison between all glacier-wide Bw values and the models’ estimates. MERRA-2 precipitation un-

derestimates Bw more importantly than ERA-5 precipitation in all regions (Fig. 3a and b), with an overall RMSE of 946 mm265

(mean absolute error (MAE) of 749 mm) against 793 mm (611 mm) of ERA-5. Excluding the Alps, the correlation between

the Bw data and the ERA-5 precipitation is always higher than the correlation with the MERRA-2 precipitation. The adjusted
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estimates obtained with the site-independent and the season-independent GBRs allowed us to consistently reduce (increase)

the bias (Pearson correlation (r)) between the precipitation of the original reanalyses and Bw (overall RMSE of 433 mm, MAE

of 326 mm, r of 0.86 for the MERRA-2 site-independent GBR; RMSE of 410 mm, MAE of 307 mm, r of 0.87 for the ERA-5270

site-independent GBR; RMSE of 293 mm, MAE of 211 mm, r of 0.94 for the MERRA-2 season-independent GBR; RMSE

of 275 mm, MAE of 200 mm, r of 0.94 for the ERA-5 season-independent GBR). These results demonstrate the need of an

adjustment of reanalyses data to reproduce Bw data on glaciers, which are, otherwise, largely underestimated in all four regions

involved in this study.

In order to make an in depth analysis of the model performance, we also derived a glacier-wide factor between the Bw275

data and reanalysis-based models’ estimates (Eq. 4) for each accumulation season and for each site separately (Fig. 4). By

comparing Fig. 4b and 4c, it is clear that, in Central Asia, the factors for adjusting the MERRA-2 reanalysis’ precipitation are

much larger than the factors for the ERA-5 precipitation. The benchmark method overestimates the Bw for many glaciers in

the Alps (both ERA-5 and MERRA-2) and several glaciers in Central Asia (ERA-5). The site-independent and especially, the

season-independent GBRs are better scaled with respect to the Bw data than the original reanalyses and the benchmarks. In280

general, the variability of the factors for each glacier is strongly affected by the number of available accumulation seasons with

Bw data (Fig. 4a). A lower variability is usually observed for glaciers with a small number of seasons with Bw data.

Figure 5 shows the mean regional factor between the Bw data and the models’ estimates as a function of the accumulation

seasons from 1981 to 2019. It indicates that the original reanalyses clearly underestimate Bw on glaciers, except for ERA-5 in

Central Asia, where, as a consequence, the benchmark overestimates Bw. However, temporal variations in the mean regional285

bias are also affected by the considered set of glaciers that fluctuates over the analyzed years. In the Alps, we observe increasing

biases of the original reanalyses in recent years, where a much larger number of glaciers is available. In Scandinavia, the bias of

MERRA-2 and ERA-5 is similar and all the models are generally not able to remove it completely. In, Central Asia, there is a

tendency for all models to yield lower adjustment factors before the 2000s than afterwards. However, this has to be interpreted

with care, because only one glacier was considered between 2002 and 2014. The continuity of the available Bw data in Western290

Canada is too limited to analyze temporal changes in the adjustment factors.

In order to evaluate the robustness of the GBR models to reduce the glacier-wide bias of the reanalysis, we performed

a temporal and spatial validation of their predictions (Fig. 6). The performance of the season-independent models improves

when using more accumulation seasons in the training data (Fig. 6a, c, e and g). Training the models with more than 20

seasons, however, does not seem to further improve performance consistently. The performance of the site-independent models295

is constant because they are never trained with Bw data of the tested glacier. When no Bw data of the tested glacier is used to

train the season-independent models (as for the site-independent models), their performance is worse than the site-independent

models, confirming the importance of a specific optimization scheme depending on the goal of the model.

As also expected, the performance of the site-independent models decreases when data of neighbouring glaciers are excluded

from the training (Figs. 6b, d, f and h). The highest impact is on the performance of the MERRA-2 site-independent GBR in300

Central Asia. Overall, the bias of the site-independent GBR models remains comparable to the bias obtained with the bench-

mark method even when excluding all other glaciers located within 1000 km from the training. For the season-independent
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models, we always kept the Bw data of the tested glacier in the training data, and only excluded the other glaciers. This ex-

plains why the season-independent models perform better and are less sensitive to the removal of neighbouring glaciers from

the training process.305

The good performance of the GBRs in terms of bias suggests that they can be used for Bw reconstruction over glaciers

where no ground observations are available (site-independent GBRs) and for filling data gaps of the recorded observations

(season-independent GBRs). However, the performance generally decreases when the glacier is not in proximity to the glaciers

used to train the GBR models. Furthermore, we assume that the resulting performance strongly depends on the characteristics

of the glacier with respect to the glaciers used in the training. The results indicate moreover that the season-independent GBRs310

outperform the site-independent GBRs to reduce the bias against Bw data, especially in regions with a limited number of

glaciers with Bw data. In conclusion, filling data gaps is much simpler than estimating Bw on glaciers with no observations.

4.1.2 Spatial winter mass balance variability on individual glaciers

In order to evaluate the ability of the GBR models to reproduce the spatial variability of the Bw over individual glaciers, we

compared the vertical profiles of Bw to the estimates of the models. For Rhonegletscher for instance (Alps, Fig. 7a), both315

site-independent and season-independent GBRs are able to represent the shape of the vertical profile of the Bw, which is

characterized by an increasing Bw until 3350 m a.s.l. and a more stable/decreasing Bw in the upper part of the glacier. This

vertical profile cannot be reproduced by using the benchmark approach, where, by definition, the precipitation is monotonically

increasing with the elevation. Decreasing Bw is also clearly indicated in the upper part of Abramov glacier (Central Asia, Fig.

7b) in 1992. As suggested by the point observations reported, this is certainly the result of extrapolating to elevation ranges not320

or only poorly covered with data. However, this has a limited influence on the GBR models than the lower part of the glacier,

as it received higher weights because of the larger areas (see Sec. 2.2). The site-independent GBRs are not able to adjust the

precipitation by consistently reducing the bias with Bw. On the other hand, the season-independent GBRs are able to better

fit the altitudinal distribution of Bw. In this case, we observe that the maximum Bw coincides with the maximum downscaled

MERRA-2 relative humidity. In the case of Storglaciären (Scandinavia, Fig. 7c), Bw is underestimated by the benchmark, while325

the GBR models (the season-independent especially) are able to better represent the steep increase of Bw over the glacier. In

the case of Sykora glacier (Western Canada, Fig. 7d), all GBR models show a good agreement with Bw data. By comparing the

coefficients of variation, it is clear that the season-independent GBRs are able to reproduce better the amplitude of the spatial

variability of the Bw than the site-independent GBRs (see Supplementary Tab. S1). Furthermore, the correlations demonstrate

that the GBRs outperform the benchmark method to reproduce the Bw of almost all glaciers of this study (Tab. S1).330

4.1.3 Temporal winter mass balance variability on individual glaciers

In general, the GBR models show a better performance in reproducing the relative changes of Bw among individual years for

the same glacier than the original reanalysis (see Tab. 2). The correlation between the GBR models’ estimates and the Bw

over the years is often much higher than for the original reanalysis. The level of significance of the correlation between the

original ERA-5 or/and MERRA-2 improves when the GBR models are applied, especially for Goldbergkees, Graasubreen, and335
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Ts. Tuyuksuyskiy glacier. However, in some cases we still have low correlations, indicating that the models are not suitable to

represent the temporal variability. Furthermore, although the season-independent GBRs are the best models to reduce the bias,

the relative changes among years are sometimes better explained by the site-independent GBRs. In fact, the number of years

of data of the tested glacier used to train the season-independent GBRs does not seem to impact his performance in terms of

temporal correlation with the Bw data (see Supplementary Fig. S3). The number of years with available Bw data is typically340

much smaller in Western Canada and Central Asia than in the Alps and Scandinavia (see Fig. 4a), therefore, we could not

robustly evaluate the ability of the models to represent the temporal variability of the Bw data for these regions.

4.2 Importance of predictors in the GBR models

In order to understand the importance of the predictors used by the GBR models (i.e. those not related to the elevation of the

glaciers and their elevation difference with the reanalysis’ grid), we evaluated the changes in terms of overall GBR model per-345

formance when suppressing groups of predictors. For both ERA-5 and MERRA-2 site-independent GBR models, the smallest

RMSE results when using all predictors (Fig. 8a and b). The RMSE particularly increases when suppressing the MERRA-2

single level and pressure levels variables from the predictors. In turn, for both ERA-5 and MERRA-2 season-independent GBR

models, the smallest RMSE results when suppressing the single level and pressure levels variables from the predictors (Fig.

8c and d). The RMSE increases most when suppressing the year, the topographical parameters and the glaciers coordinates350

simultaneously as predictors.

However, skipping reanalysis variables from the set of predictors leads to higher errors for some individual glaciers, espe-

cially in the representation of the temporal variability of the Bw data. In fact, excluding the reanalysis variables, the year is

the only predictor able to vehiculate the climatological information, in other words, the year is the only predictor that could be

used by the GBR to predict a different adjustment factor depending on the accumulation season (all the other predictors are355

constant in time). Therefore, and to allow a fairer comparison between site-independent and season-independent GBRs, in all

our following analyses we always included all predictors.

In order to infer the importance of the predictors for the individual study regions, we built an individual GBR for each region.

We furthermore performed a principal component analysis (PCA) considering the ten predictors most frequently used by the

GBRs for each region. In the Alps, lower factors between Bw and ERA-5 precipitation result at lower latitudes, and the glaciers360

affected by 100 m westerly winds (negative u component of the wind speed) have generally higher factors than those affected

by easterly winds (Supplementary Fig. S2a). In Scandinavia, we notice a cluster of five glaciers with smaller ERA-5 factors and

higher downscaled temperatures during precipitation events (Fig. S2c). In Central Asia, the glaciers’ aspect is the predictor that

most clearly discriminates between high and low factors between Bw and both ERA-5 and MERRA-2 precipitation. Glaciers

with ∼North-facing slopes show smaller ERA-5 factors and ∼East-facing slopes higher MERRA-2 factors (Fig. S2e and f).365

In Western Canada, lower ERA-5 factors correlate with larger precipitation amounts and lower elevation of the glaciers, while

MERRA-2 factors are clearly lower at higher latitudes, which are characterized by stronger southerly winds at 850 hPa (Fig.

S2g and f).
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5 Discussion

The GBR models developed, evaluated and presented in this study showed a better overall agreement in terms of bias, spatial370

and temporal correlation with the Bw data than the original reanalyses and the benchmark (lapse-rate-based approach described

in Sec. 3.2.1) for the majority of the studied glaciers in the Alps, Scandinavia, Central Asia and Western Canada. In the

following, we provide a comprehensive discussion of the approach and the results.

5.1 Advantages and disadvantages of gradient boosting regressors

5.1.1 Differences with lapse-rate-based approaches375

With the exception of some specific sites, our GBR models outperformed the benchmark method (lapse-rate-based approach

(Sec. 3.2.1)) in the Alps, Scandinavia, Central Asia and Western Canada regarding the reduction of the bias against glacier-wide

Bw data (Figs. 4 and 5). This suggests that data-informed models such as our GBRs are needed to adjust reanalysis to different

glaciers sites, which can be characterized by different topographical and climatic conditions, and where the performance of

reanalysis’ estimates can vary greatly depending on the region (e.g. Sun et al., 2018). In fact, (independent) Bw data were used380

to train our GBR models, allowing the GBRs to learn specific characteristics of actual Bw on glaciers, and to transfer them to

unknown sites (site-independent GBRs) and unknown seasons (season-independent GBRs).

The GBR models also outperform the benchmark to reproduce the spatial variability of Bw on individual glaciers. We

observed lower Bw in the uppermost sections of many glaciers which may be attributed to preferential snow deposition re-

distribution processes, caused by the interplay between snow, wind and the generally steep topography (e.g. Sold et al., 2016;385

Gerber et al., 2019). The ability of GBRs to model non-linear relationships allows a better representation of the vertical profiles

of Bw than the benchmark method (Fig. 7, Tab. S1). In fact, the observed spatial variability of Bw could not be reproduced with

the benchmark method, which by definition cannot represent decreasing values with the elevation (cf. Eq. 1).

Both, the GBR models and the benchmark do not require direct in-situ observations to be applied. However, the benchmark

method is independent from any Bw data used in this study (not data-informed). In turn, the performance of the GBR models390

is influenced by the amount of data used to train the models and strongly depends on the characteristics of the glacier with

respect to the glaciers used to train the models.

5.1.2 Differences with other machine-learning algorithms

Intuitively, we preferred a tree-based algorithm given the high inhomogeneity in terms of spatial distribution of the considered

glaciers. As further discussed in Sec. 5.2.1, a tree-based algorithm can exploit the coordinates (if provided as predictors) to395

easily split into individual sub-models adapted to different regions of the world (from the continental scale to the glacier-

specific scale). Such operations would not be possible by using a simpler model such as a multiple linear regression. Also, it is

less clear to us how artificial neural networks would behave given the considerable inhomogeneity of the spatial distribution. In

fact, we have chosen a tree-based algorithm because of its higher readability in terms of the predictors’ usage compared to other
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machine-learning methods (e.g. Huysmans et al., 2011; Freitas, 2014). A disadvantage of tree-based algorithms, however, could400

be that this approach does not predict continuous values. Yet, here, we aim at predicting an adjustment factor depending on a

classification based on the used predictors, which is exactly the purpose of a tree-based algorithm. The choice of a gradient

boosting instead of other tree-based algorithms (e.g. random forest (Breiman, 2001)) is motivated by the fact that gradient

boosting is a gradient descent algorithm, where each additional tree tries to reduce the bias (which is the main goal of our

study) rather than the variance of the predictions.405

5.2 Impact of the data used to train the GBR models

5.2.1 Site-independent and season-independent GBRs

The lower generalization of the season-independent GBRs compared with the site-independent GBRs allows the splitting into

individual sub-models adapted to a small number of samples (see Tab. 1). This enables to exploit the Bw data of the tested

glacier by creating a specific sub-model, but can result in an overfit of the training data. In contrary, the higher generalization410

of the site-independent GBRs allows learning on overall relationships between the used predictors and the reference adjustment

factors (Eq. 2).

The used training data and the selected hyperparameters also have a direct influence on the predictors needed by the GBR

models to reduce the cost function (Eq. 3). In fact, the use of reanalysis variables (from single level and pressure levels)

as predictors, caused an increase of the overall RMSE of both ERA-5 and MERRA-2 season-independent GBRs against415

the Bw data of all glaciers of the study (Fig. 8c and d). However, despite the high correlation of the downscaled reanalysis

variables (cf. Section 3.1) with the elevation of the glaciers, their inclusion in the set of predictors for the training of the

site-independent GBRs reduced the overall RMSE (Fig. 8a and b). This difference can be explained by the combined effect

of using data of the tested glacier in the training of the season-independent GBRs, and defining a small minimum number

of samples required to create a leaf node of the GBR. In fact, the season-independent GBR can theoretically exploit the420

coordinates to split into individual sub-models adapted to individual glaciers. Therefore, the season-independent GBRs can

learn the adjustment factors observed in the other accumulation seasons of the tested glacier and predict a similar adjustment

factor for the tested accumulation season, with no need of learning overall relationships between the reanalysis predictors and

the reference adjustment factors (Eq. 2).

In general, the year was included in the set of predictors for the GBRs because it may allow learning the climatological425

information and potential trends in terms of reanalysis biases against the Bw data. This can be relevant in case reanalysis

variables included in the predictors are not able to represent the hypothetical trends of these biases, which can exist due to

the increasing availability of observational data that could have been assimilated by reanalysis models over the years. From

Fig. 8, we notice that the year has a different impact on the site-independent and the season-independent GBRs. For the site-

independent GBR, the withdrawal of the year from the predictors leads to a smaller increase of the overall RMSE than the430

withdrawal of the reanalysis variables (pressure levels and single level). In contrast, for the season-independent GBR, the best

performance is reached by withdrawing the reanalysis variables. Thus, given the mentioned ability of the season-independent
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GBR to potentially create sub-models for specific glaciers using their coordinates, we think that the year may be the one

predictor to actually vehiculate the climatological information in this case (the GBR model learns which periods correspond to

larger/smaller biases for the tested glacier).435

5.2.2 Spatial and temporal transferability of the GBR models

The GBR models were trained with almost 100 glaciers distributed over the four regions on three continents. Between the

regions we observed different robustness and performances. The performance of the GBR models tends to decrease when

removing Bw data of neighbouring glaciers from the training process (Fig. 6b, d, f and h). Neighbouring glaciers were removed

from the training as a function of the distance (range) from the tested glacier. Our results suggest that more available glaciers440

with Bw data would probably greatly improve the performance in Central Asia and Western Canada, where our dataset is limited

in terms of number of monitored glaciers and the horizontal spacing between different sites is considerable. In the Alps, the

network of monitored glaciers is much denser. Thus, more glaciers are excluded from the training for shorter distances than

in other regions, impacting the performance of the site-independent GBR models. When the range of excluded neighbouring

glaciers is extended to 1000 km, a strongly reduced number of glaciers of the same region is still used in the training, meaning445

that the models are almost exclusively trained with the glaciers of the other regions (the site-independent GBR becomes almost

a region-independent GBR). The climate conditions and the complexity of the weather processes can be very different among

the four investigated regions (and even within the individual regions). A region-independent model is thus not expected to

provide accurate results. In Scandinavia, a linear precipitation gradient with elevation is more appropriate than in the more

complex topography of the Alps and Central Asia (e.g. Rasmussen and Andreassen, 2005). Thus, the site-independent GBR450

models are only performing slightly better than the benchmark when the full set of the other glaciers is used in the training,

indicating that a simpler lapse-rate-based approach might be preferable. However, considering the four regions, the bias of the

region-independent GBR models remains comparable to the bias obtained with the benchmark method, which is independent

from any ground observation.

The performance of the season-independent GBR models improved consistently when including in the training only a few455

other seasons of Bw data related to the tested glacier (Fig. 6a, c, e and g). This thus demonstrates the uniqueness of the Bw

distribution over each glacier that cannot be easily reproduced by using the relations learned at other glaciers. However, this

also indicates that the Bw distribution, and its relation with precipitation, is similar in different years (see also e.g. Grünewald

et al., 2013; Sold et al., 2016). For our application, there would be added benefit from Bw data on additional glaciers rather

than on additional seasons.460

The inclusion of the year in the set of predictors is not problematic for temporal reconstruction of Bw with limited gaps, but

could be a limitation for extrapolation to future conditions (using for instance global or regional climate models data in lieu

of reanalysis). In fact, even though the use of the year as predictor could allow identifying and modelling trends of reanalysis

biases against the Bw data, these trends would be limited to the training period of the GBRs. In contrast, the exclusive use of

reanalysis variables as predictors could allow identifying and modelling trends of biases as function of specific climatological465

conditions represented by reanalysis variables.
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Furthermore, the use of total seasonal averages as inputs for the GBRs has limitations for the application of the presented

approach. The GBRs provide an estimate of the overall adjustment factor for the reanalysis precipitation according to the aver-

age climatic conditions of the accumulation season. Thus, a unique adjustment factor is estimated for the whole accumulation

season. The application of this adjustment factor to daily precipitation data, would allow obtaining an average estimate of the470

SWE evolution during the accumulation season. However, the obtained SWE evolution would neglect potential melt of snow

during the accumulation season (see Sec. 2.2), as well as potentially different adjustment factors for precipitation at higher tem-

poral scales than seasonal. This limitation is related to the lack of reference in-situ observations at higher temporal resolution

than seasonal available for our study, focusing in different regions of the world and at high elevations.

5.2.3 Representation of the temporal variability of the winter mass balance475

All GBRs aimed at minimizing the MSE between the predicted and reference logarithmic adjustment factors (Eq. 3). The

improvement of the temporal correlation between the original reanalysis and the Bw data is thus a consequence of bias-adjusted

estimates over accumulation seasons rather than a primary goal of the GBRs. A sensitivity test reported in the Supplementary

material (Fig. S3) suggests that the season-independent GBRs are not very sensitive to the number of years of data of the

tested glacier used for training. Their performance is comparable to the site-independent GBRs (Tab. 2). Furthermore, only480

in a few cases the site-independent GBRs show a performance inferior to the original reanalysis or the benchmark method

(e.g. Ts. Tuyuksuyskiy glacier). These promising results suggest that our new estimates could also be used to derive Bw trends

with generally higher accuracy than the original reanalyses, thus potentially providing insights on the relation between climate

change and both snow accumulation and precipitation at the highest elevations of mountain ranges, where virtually no direct

precipitation records are available. Still, the limited number of glaciers with abundant Bw data coverage available over sufficient485

number of years does not allow us to perform a complete application of this approach.

5.2.4 Impact of the chosen reanalyses on the GBR models

At a regional scale, the total precipitation estimated in the accumulation season by the original MERRA-2 has shown larger

biases than the original ERA-5 when compared to Bw on glaciers. The coarser spatial resolution of MERRA-2 is certainly a

factor causing larger biases in complex high-mountain areas (e.g. Zandler et al., 2019; Chen et al., 2021). In fact, a coarse490

resolution directly implies that mountains are more strongly smoothed. The absolute elevation of a grid cell is thus lower for a

coarse resolution and the estimated precipitation also refers to the lower elevation of the grid cell.

The performance of the original ERA-5 and MERRA-2 has a direct impact on the GBR models. However, the GBR models

were able to compensate for such differences in the bias. In fact, the biases of the ERA-5 and MERRA-2 GBR models are

much closer to each other than the biases of the original reanalyses (see Fig. 3a, b, c and d). The differences between the495

performance of our GBR models are also caused by the different predictors that have been used. For instance, we considered all

the topographical predictors describing the reanalysis’s subgrid complexity of both reanalysis products and ERA-5 is providing

more descriptors than MERRA-2 (see Tab. B1 and B2).
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5.2.5 Influence of the winter mass balance data accuracy on the GBR models

Our study strongly relies on reference Bw data on glaciers. However, various problems are related to the direct measurements of500

snow accumulation on glaciers thus leading to uncertainties in the observations (e.g. Zemp et al., 2013; Sold et al., 2016; O’Neel

et al., 2019; Huss et al., 2021). Most importantly, snow accumulation measured at individual points needs to be extrapolated

in space to obtain Bw data used in our analysis. At the highest elevations of glaciers with a typically difficult accessibility for

manual observations, results are often purely based on extrapolation techniques (e.g. Østrem and Brugman, 1966; Cogley et al.,

2011; Huss et al., 2021). Given that the WGMS database does not generally report how this was achieved and how many actual505

observations were available in a given elevation interval, it is difficult to assess the integrative uncertainty in the Bw data used.

In order to illustrate the importance of the extrapolated Bw data used in this study, we more closely inspected point winter snow

observations for 12 Swiss sites and three years (2016-2018) based on a dataset with higher resolution and full documentation

(GLAMOS, 2021).

Figure 9a indicates that a lower number of manual observations was typically performed at the lowest and the highest eleva-510

tions of the glaciers. In some elevation bands, even no manual observations are available and Bw data refer to an extrapolation.

However, a much larger number of manual observations is typically performed in the elevation intervals corresponding to the

largest areas of the glaciers (Fig. 9a and c). As indicated by Fig. 9e, considerable uncertainties might exist in the analyzed

vertical profiles of Bw. However, the weighting function dependent on the area of the intervals used in the training of the GBR

models assigned more importance to the Bw data in such observation-rich areas. Furthermore, the main results of the study515

relate to glacier-wide Bw data, which for most glaciers is very close to the glacier-wide mean of the manual observations as

also indicated in Fig. 9e (only in three out of 34 cases the ratio of glacier-wide mass balance to the average of all individual

observations is larger than 1.10 and in no case the ratio is lower than 0.90).

Another source of uncertainty that is difficult to assess is the starting date of the accumulation season. We considered the

same starting date for all elevation intervals, even though it varies over the glacier’s elevation range. The accumulation of snow520

starts later at low elevations and earlier at high elevations. Therefore, the different elevations also collect different precipitation

totals (as the periods differ). The impact on the study of the date considered as beginning of the accumulation season has been

evaluated with a sensitivity test (Fig. 9). For the same 12 Swiss glaciers and three years as above we rely on the more detailed

data set of point winter mass balance data that documents start dates of measured cumulative snow precipitation of the winter

season for each location individually. Start dates have been inferred based on a distributed glaciological modelling approach525

driven by daily local weather data (Huss et al., 2021). The total precipitation of ERA-5 and MERRA-2 were derived over these

varying starting dates and were compared with the total precipitation obtained with non-varying, average starting dates (Fig.

9b, d and f). Figure 9b indicates that at high (low) elevations, the accumulation season can start up to 20 days before (after)

the unique date that we considered for all elevation intervals. These differences may translate in different amounts of total

precipitation. In extreme cases, the total MERRA-2 (Fig. 9d) or ERA-5 (Fig. 9f) precipitation that would be obtained with530

varying dates would be almost twice (or half) of the total precipitation that we considered. However, the impact on the main

results presented above is limited because these large differences are typically observed at the highest/lowest elevations of the
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glaciers, where the glacier area is minor and thus, a lower weight is assigned to the Bw data in the training of the GBR models.

Moreover, the main results of the study are based on glacier-wide values and for both MERRA-2 and ERA-5 we observe very

small differences in terms of glacier-wide precipitation totals for the majority of the Swiss glaciers. Only in six out of 34 cases535

the glacier-wide ratio is smaller (larger) than 0.97 (1.03), and only in two cases it exceeds 1.10.

This analysis suggests that the used Bw data and the considered start dates can lead to relevant uncertainties in the analysis

of vertical profiles. However, this does not generally have a relevant impact on our conclusions, which are mainly based on

glacier-wide values.

6 Conclusions540

In this study, we developed and evaluated a machine-learning approach based on gradient boosting regressor models to adjust

the total precipitation of reanalysis datasets (ERA-5 and MERRA-2) over the accumulation season on glaciers, and to ultimately

reconstruct spatio-temporal winter mass balance (Bw). The high performance achieved with our approach allowed us to use it

to derive observation-independent Bw estimates over glaciers in the Alps, Scandinavia, Central Asia and Western Canada. Data

on Bw covering a period of up to 39 years from 95 glaciers (WGMS, 2021) were used to train our approach.545

The most important variables that were automatically selected by our GBR models were those related to the elevation

difference between the glacier surface and the terrain model underlying the reanalyses. The latitude and longitude of the studied

sites were also frequently used in order to discriminate between regions that are characterized by different climate conditions

and weather systems, allowing the GBR models to be split into individual sub-models adapted to specific sub-regions.

In general, the total precipitation of the reanalyses largely underestimates observed Bw on glaciers. The largest (relative)550

regional underestimation is observed in Central Asia for MERRA-2 and in Scandinavia for ERA-5 (Fig. 3). The GBR models

allowed reducing these biases. In Central Asia and Western Canada, the correlation between the original reanalyses’ estimates

and the Bw on the analyzed glaciers has considerably increased with the season-independent GBRs only. With the exception

of some specific glaciers, our GBR models outperformed the benchmark method (lapse-rate-based approach) in the Alps,

Scandinavia, Central Asia and Western Canada by reducing the bias of the original reanalysis against the Bw data (Fig. 4).555

This suggests that more complex and data-informed models such as our GBRs are needed to adjust reanalysis data to differ-

ent glaciers located in different topographical settings and climatic conditions, and to overcome the varying performance of

reanalysis data for different region of the world.

Our results furthermore indicate that the season-independent GBRs outperform the site-independent GBRs to reduce the

bias, which consequently makes filling temporal data gaps much simpler than estimating Bw of glaciers where no in-situ560

observations are available. Thus, denser network of ground-based snow accumulation measurements and/or improved remote

sensing observations, are of great importance to further develop methods that allow spatio-temporal transferability of the

observed snow and/or precipitation in high-mountain areas.

The GBR models, compared to the original reanalyses, have moreover shown improved performance in reproducing temporal

changes (over years) of Bw for the majority of the analyzed glaciers. Generally, our GBR models would allow deriving more565
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accurate Bw trends than the original reanalyses, thus potentially providing insights on the relation between climate change and

snow accumulation over glaciers.

We finally demonstrated that machine-learning models (with robust cross-validation schemes) can be powerful instruments to

adjust precipitation estimates over glaciers. The new information that our approach is able to deliver can significantly improve

the calibration of glaciological and hydrological models in different regions of the world, in particular for regions where the570

quantity and quality of observations is very limited and the spatial resolution and performance of reanalysis products is (too)

low.

Appendix A: Equations used to derive the relative humidity

The relative humidity is not directly provided by all the reanalysis products, therefore we derived it by applying a similar

approach to Liston and Elder (2006) and Gupta and Tarboton (2016), which is presented hereafter.575

A1 ERA-5

The relative humidity is not directly provided at the grid level, therefore, we combined the 2 m temperature (t2m) and dew

point temperature (d2m) as follows:

r2m∗ =
a ∗ exp( b∗d2m

c+d2m )

a ∗ exp( b∗t2m
c+t2m )

(A1)

where r2m∗ is the computed 2 m relative humidity and for ice/snow, a= 611.21Pa, b= 22.452 and c= 272.55◦C.580

A2 MERRA-2

MERRA-2 is not providing the relative humidity at the grid and at the pressure levels, furthermore, the dew point temperature

is not provided at the pressure levels either, therefore, we combined the specific humidity and the pressure in order to derive

them (at the grid and at the pressure levels). For ice/snow, a= 611.21Pa, b= 22.452 and c= 272.55◦C.

Vapour pressure:585

e∗ =
QV ∗P

0.622+QV
(A2)

where the specific humidity QV =QV 10M for the grid and QV =QVlevels for the pressure levels, the pressure P = PS for

the grid and P = Plevels for the pressure levels. The vapour pressure e∗ was named e10M∗ for the grid and e∗levels for the

pressure levels.

Dew point temperature:590

Td∗ = 273.15+
c ∗ ln( e

∗

a )

b− ln( e
∗

a )
(A3)

The dew point temperature Td∗ was named Td10M∗ for the grid and Td∗levels for the pressure levels.
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Relative humidity:

RH∗ =
a ∗ exp( b∗Td∗

c+Td∗ )

a ∗ exp( b∗T
c+T )

(A4)

where the temperature T = T10M for the grid and T = Tlevels for the pressure levels. The relative humidity RH∗ was named595

RH10M∗ for the grid and RH∗
levels for the pressure levels.

Appendix B: Derivation and list of the variables used in the GBR models

In Tab. B1 and Tab. B2, we report the complete list of variables selected from the reanalyses products. In Tab. B3 we provide

a summary of all the variables used by the GBR models.

Data availability. Winter mass balance data separated per elevation intervals are freely available at https://wgms.ch/data_databaseversions/600

(EE-MASS-BALANCE data sheet in WGMS, 2021, last access: 01.06.2021). The average slope and aspect of the glaciers were ob-
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Figure 1. Mean elevation and distribution of the glaciers used in the study (data source: (WGMS, 2021)). Glaciers shown in Fig. 7 are

highlighted in red.
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Figure 2. Training, cross-validation with hyperparameters selection and test scheme for the site-independent GBR model. FdB,ref is the

reference adjustment factor (Eq. 2), and FdB,pred is the adjustment factor predicted by the GBR model.
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Figure 3. Comparison between all glacier-wide Bw values and the model estimates: (a) original MERRA-2 , (b) original ERA-5, (c) MERRA-

2 site-independent GBR, (d) ERA-5 site-independent GBR, (e) MERRA-2 season-independent GBR, (f) ERA-5 season-independent GBR.
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divided by the regional mean Bw) and the number of all seasons of all glaciers (N pts) for each region are also reported. The boxplots indicate

the distribution of the model’s estimates (right) and of the Bw data (top) for each region.
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Figure 4. (a) Number of seasons with available Bw data for each glacier. Factors between seasonal glacier-wide Bw and (b) ERA-5-based

models and (c) MERRA-2 based models, for each glacier of the study. The variability shown in the boxplots is given by the different seasons

of Bw data.
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Figure 5. Mean regional factor between the Bw data and the reanalysis-based models’ estimates as a function of the accumulation seasons

from 1981 to 2019 (last available season): (a) Alps, (b) Scandinavia, (c) Central Asia and (d) Western Canada. The error bars indicate the

standard deviation of the regional factors. For each season, all glaciers with available Bw data were considered (the number of glaciers used

to derive the regional factor is indicated by the gray bars).
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Figure 6. Evaluation of the mean regional factor between the Bw data and the reanalysis-based models’ estimates (FdB,region defined in Eq.

6) depending on different data used in the training of the GBR models. Left column - evaluation of the performance of the season-independent

GBR models as a function of the number of seasons of the tested glacier used in the training (from no data to a maximum of 40 years of

data of the tested glacier). (a) Model validation depending on the number of training seasons per glacier in the Alps, (c) Scandinavia, (e)

Central Asia and (g) Western Canada. Right column - evaluation of the robustness of the GBR models as a function of the number of other

glaciers in the same region used in the training. All glaciers located within a range growing from 0 to 1000 km from the tested glacier were

excluded from the training. (b) Model evaluation depending on the range of excluded glaciers from the training in the Alps, (d) Scandinavia,

(f) Central Asia and (h) Western Canada.
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(b) ABRAMOV GLACIER (Central Asia) - 1992
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(d) SYKORA GLACIER (Western Canada) - 1984

Figure 7. Vertical profiles of Bw at the end of a specific accumulation season: (a) Rhonegletscher (Alps), (b) Abramov glacier (Central

Asia), (c) Storglaciären (Scandinavia) and (d) Sykora glacier (Western Canada). RH refers to the average relative humidity during days with

a minimum precipitation of 5 mm. Note that the scale of the y-axis differs between the panels.
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Figure 8. Overall root mean square error (RMSE) between Bw and GBR models using different groups of predictors, for all analyzed glaciers

and years: (a) ERA-5 site-independent GBR, (b) MERRA-2 site-independent GBR, (c) ERA-5 season-independent GBR, and (d) MERRA-2

season-independent GBR. The "pressure levels" group refers to all variables derived from the pressure-levels data, i.e. "downscaled" variables

and "delta_variable" (except for the elevation difference) in Tab. B3. The "single level" group refers to all "single-level" variables listed in

Tab. B3. The "topography" group refers to the topographical parameters describing the reanalysis’s subgrid complexity (all "constants" in

Tabs. B1 and B2) and the average slope and aspect of the glaciers by using the information provided in the Randolph Glacier Inventory

version 6 (RGI Consortium, 2017).
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Figure 9. Sensitivity analysis of extrapolated Bw data and used starting dates for 12 glaciers in the Swiss Alps between 2016 and 2018

(GLAMOS, 2021). Left column - difference between Bw data used in this study and point-SWE observations: (a) Number of manual ob-

servations performed in the elevation intervals of the glaciers. (c) Area of the glacier according to the elevation interval. (e) Ratio between

the observed SWE and the Bw data. Right column - impact of the date considered as beginning of the accumulation season on seasonal

precipitation totals: (b) Differences between accurate (varying) dates of the beginning of the accumulation period and the used dates in the

study (the day and the month of the used dates are written on the figure (DD.MM)). (d) Ratio between the total precipitation of MERRA-2

according to the accurate dates and the used dates. (f) Ratio between the total precipitation of ERA-5 according to the accurate dates and the

used dates.
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Table 1. Average hyperparameters of the optimized GBR models of all the studied glaciers: n estimators is the number of additive trees (i.e.

iterations) in the GBR; max. depth is the maximum depth that each tree can reach; min. samples leaf is the minimum number of samples

required to be at a leaf node of a tree; learning rate determines how quickly the GBR learns (it shrinks the contribution of the individual trees

on the GBR prediction); subsample indicates the fraction of samples used for fitting the individual trees.

Site-independent GBR Season-independent GBR

ERA-5 MERRA-2 ERA-5 MERRA-2

n estimators 86 99 131 123

max. depth 7 7 8 8

min. samples leaf 72 77 10 11

learning rate 0.07 0.07 0.09 0.08

subsample 0.8 0.7 0.8 0.8
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Table 2. Pearson correlation (r [-]) between the reanalysis-based models and the glacier-wide Bw over the accumulation seasons (temporal

correlation) separated by regions. Only the glaciers with a minimum of 15 seasons with Bw data are shown (i.e. no glacier in Western Canada).

The significance of the correlation is based on Student’s t-distribution. The level of the correlation significance is indicated as follows: not

significant (p-value > 0.10), significant (p-value ≤ 0.10), highly significant (p-value ≤ 0.05).

r (p-value) n seasons

Original Benchmark GB site-indep GB season-indep

Glacier ERA-5 MERRA-2 ERA-5 MERRA-2 ERA-5 MERRA-2 ERA-5 MERRA-2

Allalingletscher 0.71 0.74 0.68 0.70 0.76 0.81 0.80 0.86 16

Claridenfirn 0.71 0.83 0.74 0.85 0.69 0.83 0.74 0.82 38

Griesgletscher 0.45 0.53 0.47 0.55 0.53 0.57 0.60 0.57 34

Silvrettagletscher 0.56 0.63 0.55 0.62 0.59 0.67 0.59 0.66 35

Ghiacciaio del Ciardoney 0.66 0.52 0.66 0.52 0.64 0.50 0.61 0.36 19

Ghiacciaio di Fontana Bianca 0.88 0.90 0.87 0.89 0.86 0.86 0.78 0.90 15

Goldbergkees 0.46 0.31 0.46 0.31 0.63 0.62 0.58 0.35 15

Jamtalferner 0.60 0.65 0.60 0.64 0.70 0.64 0.76 0.69 24

Vernagtferner 0.64 0.66 0.64 0.65 0.65 0.64 0.52 0.59 31

Wurtenkees 0.65 0.56 0.65 0.56 0.67 0.69 0.70 0.67 26

Aalfotbreen 0.80 0.78 0.81 0.79 0.90 0.91 0.93 0.93 37

Austdalsbreen 0.94 0.91 0.94 0.91 0.93 0.93 0.92 0.94 31

Engabreen 0.84 0.79 0.82 0.77 0.84 0.75 0.82 0.81 38

Graasubreen 0.38 0.28 0.38 0.28 0.49 0.56 0.58 0.68 38

Hansebreen 0.88 0.85 0.88 0.85 0.92 0.92 0.94 0.94 32

Hellstugubreen 0.59 0.46 0.58 0.44 0.66 0.72 0.63 0.76 37

Langfjordjoekelen 0.74 0.72 0.74 0.72 0.85 0.80 0.81 0.70 26

Nigardsbreen 0.76 0.72 0.75 0.71 0.80 0.79 0.82 0.81 38

Rembesdalskåka 0.78 0.74 0.74 0.70 0.79 0.83 0.84 0.84 38

Storbreen 0.77 0.80 0.77 0.79 0.82 0.86 0.82 0.85 30

Ts. Tuyuksuyskiy glacier 0.43 0.25 0.47 0.28 0.42 0.15 0.41 0.49 31
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Table B1. ERA-5 variables used in the study.

Product type Variable abbreviation Variable full name

ERA-5 constants z Surface geopotential

anor Angle of sub-gridscale orography

isor Anisotrpy of sub-gridscale orography

slor Slope of sub-gridscale orography

sdor Standard deviation of orography

ERA-5 single levels u100, u10 100, 10 m U wind component

v100, v10 100, 10 m V wind component

d2m 2 m dew point temperature

t2m 2 m temperature

bld Boundary layer dissipation

blh Boundary layer height

cp Convective precipitation

csf Convective snowfall

lsp Large-scale precipitation

lspf Large-scale precipitation fraction

lsf Large-scale snowfall

msl Mean sea level pressure

sf Snowfall

slhf Surface latent heat flux

ssr Surface net solar radiation

str Surface net thermal radiation

sp Surface pressure

sshf Surface sensible heat flux

tcrw Total column rain water

tcsw Total column snow water

tp* Total precipitation

p54.162 Vertical integral of temperature

deg0l 0 degrees C isothermal level

ERA-5 pressure levels t Temperature

at 1000, 850, 700, 500, 400, 300 hPa r Relative humidity

w Vertical velocity

*tp was used as precipitation variable.
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Table B2. MERRA-2 variables used in the study.

Product type Variable abbreviation Variable full name

MERRA-2 constants PHYS Surface geopotential height

SGH Isotropic stdv of GWD topography

MERRA-2 land surface diagnostics PRECSNOLAND Snowfall

PRECTOTLAND* Total precipitation

TSURF Surface temperature

MERRA-2 single-level diagnostics CLDPRS Cloud top pressure

CLDTMP Cloud top temperature

DISPH Zero plane displacement height

H100, H850, H500, H250 Height at 1000, 850, 500, 250 mb

OMEGA500 Vertical velocity at 500 hPa

PBLTOP Pbltop pressure

PS Surface pressure

Q850, Q500, Q250 Specific humidity at 850, 500, 250 hPa

QV10M, QV2M 10, 2 m specific humidity

SLP Sea level pressure

T10M, T2M 10, 2 m air temperature

T850, T500, T250 Air temperature at 850, 500, 250 hPa

T2MDEW Dew point temperature at 2 m

T2MWET Wet bulb temperature at 2 m

TQI Total precipitable ice water

TQL Total precipitable liquid water

TQV Total precipitable water vapour

TROPPB Tropopause pressure, blended estimate

TROPPT Tropopause pressure, thermal estimate

TROPPV Tropopause pressure, EPV estimate

TROPQ Tropopause specific humidity, blended estimate

TROPT Tropopause temperature, blended estimate

U50M, U10M, U2M 50, 10, 2 m eastward wind

U850, U500, U250 Eastward wind at 850, 500, 250 hPa

V50M, V10M, V2M 50, 10, 2 m northward wind

V850, V500, V250 Northward wind at 850, 500, 250 hPa

MERRA-2 analyzed meteorological fields at 1000 to T Air Temperature

700 hPa (25 hPa steps) and 700 to 400 hPa (50 hPa steps) QV Specific humidity

*PRECTOTLAND was used as precipitation variable.
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