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Abstract. Accurate and quickrapid extraction of glacier boundaries plays an important role in studiesthe study of glacier 

inventory, glacier change, and glacier movement,. With the successive launches of high-resolution remote-sensing satellites 10 

and it facesthe increasing abundance of available remote-sensing data, great opportunities and challenges due to the increasing 

availability of high-resolution remote sensing images with larger data volume and richer texture informations.now exist. In 

this study, we improved the DeepLab V3+ as Attention DeepLab V3++, and designed a complete solution based on the 

improved network to automatically extract glacier outlines from the Gaofen-6 PMS images with a spatial resolution of 2 m. 

In the solution, the Test-Time Augmentationtest-time augmentation (TTA) was adopted to increase model robustness, and the 15 

Convolutional Block Attention Moduleconvolutional block attention module (CBAM) was added into the Atrous Spatial 

Pyramid Poolinatrous spatial pyramid poolin (ASPP) structure in DeepLab V3+ to enhance the weight of the target pixels and 

reduce the impact of uselesssuperfluous features. The results show that the improved model effectively improvesincreases the 

robustness of the model, enhances the weight of target image elements, and reduces the influence of non-target elements. 

Compared with deep -learning models, such as FCN, U-Net and DeepLab3+, the improved model performs better, with OA 20 

and Kappa coefficients of 99.58% and 0.9915 for  in the test dataset, respectively.. Moreover, our method achieves the highest 

OA and Kappa of 99.40% and 0.9846 superior performance for glacier boundary extraction in parts of the Tanggula Mountains 

and, the Kunlun Mountains and the Qilian Mountains based on Gaofen-6 PMS images, showing its. It could distinguish glaciers 

from terminal moraine lakes, thin snow and clouds, thus demonstrating excellent performance and great potential for rapid and 

precise extraction of glacier boundaries. 25 

1 Introduction 

The cryosphere is one of the five major circles of climate systemsystems (Li et al., 2008), of which mountain glaciers are an 

important part whose changes. Changes in mountain glaciers are closely related to regional climate, and are regarded as natural 

indicators and early warner of climate change (Oerlemans, 1994; Pfeffer et al., 2008; Azam et al., 2018). Since the second half 
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of the 20th century, climate warming has led to the rapid shrinkage of glaciers around the worldglobally (Yao et al., 2012), 30 

causing important impactproducing major impacts on the utilization of regional water resources and rise ofrising sea levellevels 

(King et al., 2012; Grinsted, 2013; Schrama et al., 2014). Accurate extraction of glacier boundaries can helpassist to detect the 

status of glacier areas (Racoviteanu et al., 2015) and understandelucidate the response pattern of glaciers to climate change 

(Bishop et al., 2004; Sun et al., 2018). As a large-range and long-range sensing technology for ground exploration, remote 

sensing can rapidly achieveobtain glacier information, including theirits boundary, velocity, etc. (Robson et al., 2015; Zhang 35 

et al., 2019). However, most of the existingextant research on glacier changes and glacier inventories areis based on remote -

sensing images of low- to medium-resolution, such as Landsat series and Aster images (Liu et al., 2020; Zhao et al., 2020), 

which may result in an inaccurate estimation of the global glacier resource to some extent (e.g., the glacier area threshold for 

the Randolph Glacier Inventory (RGI) is 0.01 km2). The availableAvailable remote -sensing data are increasingly abundant 

with thedue to successive launches of high-resolution remote -sensing satellites, and. Indeed, the efficient and rapid acquisition 40 

of glacier boundaries based on these data is currently constitutes a frontier issue in glacier remote -sensing research. 

Glacier boundaries are generally extracted by manual visual interpretation and semi-automatic or automatic methods. 

The former can yield relatively accurate results, but the applications based on high-resolution imagery over a wide area are 

both time-consuming and laborious (Yan and Wang, 2013). The latter extracts glaciers based on itstheir spectral differences 

from other features that, e.g., snow/ice has a strong absorption in the short-wave infrared band (1.55-1.75 μm) and a robust 45 

reflection in the visible to near-infrared band (0.45-0.90 μm) (Guo et al., 2017),). Methods used in this approach mainly 

includinginclude the ratio method (Ji et al., 2020), the snow cover index (Wang et al., 2021a), and supervised classification 

and unsupervised classification (Nie et al., 2010), etc.). However, the absence of a short-wave infrared band in some high-

resolution optical remote -sensing images (such ase.g., QuickBird satellite images, WorldView-2 satellite images, SPOT-6 

NAOMI, and Gaofen-6 PMS) limits the application of the ratio method and Normalized Difference Snow Indexnormalized 50 

difference snow index (NDSI)), which have a better extraction effect. 

Deep learning has been widely adopted in the field of computer vision and image processing in recent years (Girshick, 

2015), which). It can automatically obtain mid- and high-level abstract features from images due to its powerful feature 

learning and characterization capabilities compared with the traditional classification methods (Redmon et al., 2016). At 

present, numerous typical deep -learning models, such as Full Convolutional Networkfull convolutional network (FCN) (Long 55 

et al., 2015), Segnet (Badrinarayanan et al., 2017), U-Net (Ronneberger et al., 2015), and DeepLab series (Chen et al., 2018)), 

have been successfully applied to the semantic segmentation task of remote -sensing images (Huang et al., 2018; Tong et al., 

2020)), including the cryosphere domain. For example: Zhang et al. (2019) automatically delineated the calving front of the 

Jakobshavn Isbræ Glacier using a deep -learning method; Robson et al. (2020) combined deep learning and object-based image 

analysis to extract rock glacier boundaries in the La Laguna catchment in Northern Chile and the Poiqu catchment in Central 60 

Himalaya; He et al. (2021) extracted the glacial lakes of the Alatau Mountains of Tianshan through deep learning; Marochov 

et al. (2021) segmented Sentinel-2 image covered marine-terminating outlet glaciers in Greenland into seven classes using 
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Convolutional Neural Network;the convolutional neural network (CNN); Baumhoer et al. (2019) extracted Antarctic glacier 

and ice shelf fronts at nine locations using deep learning based on Sentinel-1 images.; and Xie et al. (2020) built the GlacierNet 

for debris-covered glacier mapping. However, the attention mechanism hascurrent methods may not been used in themake 65 

optimal use of glacier extractionfeatures, and the most studies wereare limited to extractextracting small-scale glaciers in some 

regionsareas using low- to medium-resolution remote-sensing images, which may overlook some smaller glaciers. Therefore, 

the combination of deep learning and attention mechanism has the potential to provide an effective and powerful technique for 

the automatic extraction of mountain glaciers. 

The main objective of this study is to propose a new method for automatic extraction of glacier boundaries from high -70 

resolution Gaofen-6 PMS images based on the DeepLab V3+ network and attention mechanism. Then, to ascertain the accuracy 

and robustness of the proposed method by comparing with the reference outlines of glaciers based on manual interpretation of 

orthorectified images taking parts of the Tanggula Mountain andMountains, Kunlun MountainMountains and Qilian Mountains 

as the test region. Meanwhile, we assess our result by comparing with GAMDAM glacier inventory (GGI) (Nuimura et al., 

2015) and the glacier coverage data on the Tibetan Plateau in 2017 (TPG2017) (Ye et al., 2017; Ye, 2019). 75 

2 Model structure and data process scheme 

In this study, we used the DeeplabDeepLab V3+ in combination with the attention mechanism (sectionSect. 2.1) to explore the 

glacier extraction method based on high spatial resolution images. The Gaofen-6 images were preprocessed and divided into 

two groups, firstly. Firstly, the former was used to make samples by data augmentation to train the improved DeeplabDeepLab 

V3+, and then the latter was used to test the trained model by performing the classification (sectionSect. 2.3). Meanwhile, the 80 

Testtest-time augmentation (TTA) was added intoto this classification to improve model accuracy, which is described in 

SectionSect. 2.4. Figure 1 shows the overall flow of the method. 
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Figure 1. The overallOverall flow of glacier extraction based on deep learning,. (a) the model training,; (b) the 

predictprediction process. 85 

2.1 Network structure 

DeepLab V3+, an encoding-decoding architecture proposed by Chen et al. (2018), is currently one of the most advanced 

semantic segmentation algorithms. In this paper, we improved the DeepLab V3+ model by adding an attention mechanism to 

the encoding-decoding structure (Attention DeepLab V3+). In the encoder, the ResNet 34 (He et al., 2016) was used as the 

backbone network (Sect. 2.1.3) to extract semantic information to obtain the low-level featurefeatures, and then the Atrous 90 

Spatial Pyramid Poolingatrous spatial pyramid pooling (ASPP) module with attention mechanism was connected to obtain the 

encoder feature. ASPP is a parallel structure with dilated convolution, which expands the perceptual field to obtain multi-scale 

contextual information from the image. The attention mechanism, on the other hand, increases the weight of the target image 

element. These two parts will be described in detail in Sect. 2.1.1 and 2.1.2, respectively. 

In the decoder, the low-level featurefeatures and the encoder feature maps were input. The encoder feature performed an 95 

upsampling with a factor of four, and then fused with the low-level feature. After thatfeatures. Subsequently, a depthwise 

separable convolution (Sect. 2.1.4) and a bilinear interpolation upsampling with a factor of four were executed to extract the 

expected features and output them at the same size as the input image (Fig. 2). 
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Figure 2. Architecture of Attention DeepLab V3+. 100 

2.1.1 Attention mechanism 

The attention mechanism can learn contextual information and capture the internal correlationcorrelations. Its basic idea is to 

ignore irrelevant information and focus on key information in operations (Woo et al., 2018). In this paper, we used the 

Convolutional Block Attention Module convolutional block attention module (CBAM) (Fig. 3) (Woo et al., 2018)), including 

a channel attention module (CAM) and a spatial attention module (SAM), to obtain the channel attention weights along both 105 

channel (FC) and spatial dimensionattention weights (FS) in turn, and. We then multiplied withthese by the original feature 

map A∈RC×H×W to adaptively adjust the features and increase the weights of target features. to generate refined feature F∈

RC×H×W (Woo et al., 2018): 

 

C SF A F F=                                                                                     (1) 110 

where  stands for the element-wise multiplication. If the two operands have different dimensions, the values are broadcast 

(copied) in such a way that the spatial attention values are broadcast along the channel dimension and the channel attention 

values are broadcast along the spatial dimension. 

In CAM, average-pooling and max-pooling operations were used to aggregate spatial information of a feature map, 

generating two different spatial context descriptors: Fcavg and Fcmax. Both are then forwarded to a shared multi-layer perceptron 115 

(MLP) to generate the output features, which are then merged using element-wise summation. The merged sum is finally sent 

to the sigmoid function σ to produce the channel attention map FC∈RC×1 ×1.  To reduce the parameter resources, the hidden 

size of MLP is set to RC /r×1 ×1,  where r is defined as the reduction ratio. The channel attention is computed as follows: 

( )( ) ( )( )( )C 1 0 1 0cavg cmaxF W W F W W F= +                                                (2) 
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where W0∈RC/r×C and W1∈RC×C/r stand for the MLP weights, which are shared for both inputs; and the ReLU activation 120 

function is followed by W0. 

In SAM, average-pooling and max-pooling operations were used to aggregate channel information to generate two 2D 

maps: Fsavg∈R1×H×W and Fsmax∈R1×H×W. Each denotes average-pooled features and max-pooled features across the channel, 

respectively. They are then concatenated and convolved by a standard convolution layer, producing the 2D spatial attention 

map FS∈R1×H×W. The spatial attention is computed as follows: 125 

7 7

maxS ( ([ ; ]))savg sF f F F =                                                          (3) 

where σ is the sigmoid function; and f 7×7 represents a convolution operation with the filter size of 7×7. 

 

Figure 3. Attention module,. (a)-(c) Channelchannel attention module, Spatialspatial attention module, and CBAM, 

respectively. 130 

2.1.2 Attention ASPP 

Dilated/atrous convolution adds the hole to the standard convolution kernel to increase the reception field. Dilated convolution 

has an additional hyper-parameter, termed the dilation rate, which refers to the number of intervals in the kernel (e.g., the 

normal convolution is a dilatation rate of 1). The ASPP structure replaces the partial volumes of the deep neural network with 

athe dilated convolution (Yu and Koltun, 2015), which expands the perceptual field without increasing the parameters, thus 135 

obtaining more feature information. The structure consists of a 1 × 1 convolutional layer, a pooling layer, and three dilated 

convolutions with expansion rates of 6, 12, and 18 in parallel. 
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However, the dilated convolution may cause discontinuity of spatial information, which was addressed by incorporating 

CBAM into the juxtaposition structure of the extracted features in this paper. The role of the attention mechanism was to focus 

on the noticed target pixel and enhance its weight, and the dilated convolution in the ASPP can obtain contextual information 140 

at different scales. Adding the attention mechanism could make the features of related categories more aggregated, thus 

effectively reducereducing the phenomenon of empty features. The five branches of the juxtaposition structure obtained more 

contextual information by collecting features from different sensory domains, and by combining this information with refined 

feature maps, dependencies between pixels and differences between categories were gaineddetermined (Fig. 4). 

 145 

Figure 4. The structureStructure of Attention ASPP. 

2.1.3 Backbone 

TheAlthough the ability of CNN to retrieve relevant information from images is enhanced with the increase of the network 

depth (Telgarsky, 2016), but thea network that is too deep network could lead to the gradient explosion and network degradation. 

Residual connections (He et al., 2016) solved this problem by feeding a given layer into the previous one where a building 150 

block of residual learning was included (Fig. 5), and by which, the depth of the network and learning capacity can be 

dramatically increased. There are five versions of the ResNet has many branchesmodel, with different numbers of blocks18, 

34, 50, 101, and 152 layers, respectively. To assess the trade-off between performance and computational efficiency, we 

adoptused ResNet-34 withas the backbone in our work. ResNet-34 consists of 16 blocks (Fig. 5) and 33 convolutional layers 

in total in the present study (He et al., 2016). The first convolutional layer of the overall model is followed by a max pooling 155 

layer. An average pooling layer, a full-connected layer, and a softmax layer are subsequent to the last convolutional layer. It is 

worth noting that the default input channel of ResNet-34 is 3. To classify images that have R, G, B, NIR bands, we adjusted 

the input size of the conversional ResNet-50 to four channels. 
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Figure 5. Residual connection. Each residual block is composed byof convolutions (Conv), batch normalizations (BN)), and 160 

rectified linear units (ReLU). 

2.1.4 Depthwise separable convolution 

In this paper, we added a depthwise separable convolution at the end of semantic segmentation after combining high-level and 

low-level features (Chollet, 2017; Howard et al., 2017).). This convolution can decompose the traditional convolution into a 

depthwise convolution and a 1 × 1 pointwise convolution, improving.  165 

Regarding depthwise convolution, one convolution kernel is responsible for one channel, and one channel is convolved 

by only one convolution kernel. Moreover, the number of feature map channels generated in the process is exactly the same 

as the number of input channels. This operation does not effectively utilize the feature information of different channels at the 

same spatial location. Therefore, pointwise convolution is needed to combine these feature maps to generate new feature maps 

(Howard et al., 2017). The operation of pointwise convolution is highly similar to the conventional convolution operation, in 170 

that the size of its convolution kernel is M×1×1, and M is the number of channels in the previous layer. The number of output 

feature maps is determined by the number of convolution kernels.  

Depthwise separable convolution can improve the efficiency of operation without losing too much accuracy compared 

with normal convolution. In addition, the layers of the neural network with depthwise separable convolution can be deeper for 

the same number of parameters. 175 

2.1.5 Loss function 

Due to the high resolution of Gaofen-6 PMS images and the large size of some glaciers, only a small part of glaciers or other 

features may be present in the sample, which has the potential to cause the sample imbalance. In this paper, the dice loss 

(Milletari et al., 2016) was used as the loss function to mitigate this phenomenon. The diceDice loss is expressed as: 





+

+
−=

U

I
Ld 1                                                                                     180 

(14) 

http://www.youdao.com/w/loss%20function/#keyfrom=E2Ctranslation
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where I is the number of intersectionintersections between sample labels and predicted pixels,; U is the sum of sample labels 

and predicted pixels,; and ε is a constant that is mainly used to prevent the denominator from being zero and smooth the loss 

operation. 

The use of dice loss generally produces severe oscillations during the training of the model when the positive sample is 185 

a small target because a large loss change and a consequentlyconsequent gradient drastic change will occur once some pixels 

of the small target are predicted incorrectly in the case of only foreground and background. Therefore, we introduced a 

combination of cross entropy loss and dice loss to make the network training more stable, and the. The cross-entropy loss is 

as follows: 

)]1log()1()log([
1

iii

i

ic pypy
N

L −−+−=                                                      (25) 190 

where pi is the probability that the pixel is predicted as a glacier,; and yi is the sample label which takes the value of 1 if the 

sample pixel beingis a glacier, and 0 otherwise. 

Therefore, these above two losses were fused as the final loss function.: 

)(5.0 dc LLL +=                                                                                (36) 

2.2.2 The pre Pre-processing procedures of Gaofen-6 PMS image and datasets production 195 

Deep learning requires a large amount of labeled data related to the classification target for training the model. However, the 

currently available open-source datasets cannot meet the requirements of the classification in this paper. ThereforeFor this 

reason, we collected Gaofen-6 PMS images with thethat were less cloudy and snowy from the China High-resolution Earth 

Observation System (https://www.cheosgrid.org.cn/) (Tab. 1S1 in the Supplement) as a training and validation dataset of the 

model, some of which were selected to test the accuracy of the glacier extraction method. The Gaofen-6 satellite, officially 200 

operational since March 21, 2019, is a low-orbiting optical remote -sensing satellite with high spatial resolution, featuring wide 

coverage, high quality, and efficient imaging. A two-meter2-m panchromatic/eight-meter multispectral high-resolution camera 

and a 16-meterm multispectral medium-resolution wide field camera are boarded on the Gaofen-6 satellite, the former with an 

observation width of 90 km and the latter with that of 800 km. 

Table 1. Descriptions of Gaofen-6 PMS images used in this paper. 205 

ID Date Resolution(m) Utilization 

Gaofen6_PMS_E90.9_N35.8 2020-09-21 

2 
Training and 

validation 

Gaofen6_PMS_E91.1_N36.5 2020-09-21 

Gaofen6_PMS_E91.5_N35.8 2020-09-25 

Gaofen6_PMS_E91.7_N36.5 2020-09-25 

Gaofen6_PMS_E91.5_N35.8 2020-11-05 

Gaofen6_PMS_E91.0_N33.6 2020-12-16 
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Gaofen6_PMS_E91.4_N32.8 2020-12-20 

Gaofen6_PMS_E91.9_N32.8 2020-08-19 

Test Gaofen6_PMS_E92.1_N35.8 2020-09-29 

Gaofen6_PMS_E91.6_N33.6 2020-12-20 

Pre-processing, including fusion, orthorectification, geometric alignment and some other operations, were performed 

prior to using the original defective images. Glaciers in the images were extracted as true values by manual visual interpretation. 

Considering the high spatial resolution of Gaofen-6 PMS images, the larger scale of glaciers and other features, and the 

inclusion of two kinds of features (glaciers and other features) in the samples whenever possible, the images were cropped into 

roughlyto approximately 1024×1024 size and used as the input for deep -learning training. It is important to prepare a 210 

sufficiently diverse dataset to ensure that the model can be adapted to different scenarios of glacier extraction. In this paper, 

the data augmentation, including randomly clip theclipped Gaofen-6 PMS images, vertical flipping, horizontal flipping and 

diagonal flipping of the samples, as well as clockwise 90° and counterclockwise 90° rotations, were conducted to expand the 

sample library, improve the model accuracy, and enhance its generalization performance. Finally, a training set and a validation 

set containing 36003,600 well-annotated images of 1024×1024 size with blue, green, red, and near infrared bands were 215 

obtained. Meanwhile, we kept a test set was kept containing 400 images without data augmentation. An example of the sample 

is shown in Fig. 6. 

 

Figure 6. The RGB Gaofen-6 samples and ground truth are displayed in the first and second rows, respectively.
 

2.3 Complete glacier extraction 
220 

ASince a sample usually displays only a portion of the glacier, so an image larger than the sample size needs to be input to 

extract the complete glacier. UsuallyIn most cases, the images to be classified wereare generally split into a series of images 

with the same size as the samples and fed into the network for prediction, and then the predicted results are merged into one 

final result image in the cropping order in the prediction process. However, larger classification errors and unsmooth merging 

after clipping could happenoccur due to the insufficient pixel features in the edge areas of each patch. HenceConsequently, we 225 
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adopt the strategy to makeof making the two clipped patches clipped overlap each other to preserve the features of edge pixels 

and make the merging of edges smoother. 

Figure 7 illustrates the process of prediction, in which, the pre-processed original image over the area in the red checkbox 

(Fig. 7a and Fig. 7b) must be spilt into 1024×1024 overlapping patches beforeprior to being input into the network for 

prediction, and then the classification results of each patch are obtained (Fig. 7d). Subsequently, 90% of the central part of 230 

each patch (red checkbox in Fig. 7d) was merged to obtain the classification result (Fig. 7c). 

 

Figure 7. Post processing,. (a) and (b) the RGB images obtained on December 20, 2020,; (c) the final result of merged,merging; 

and (d) the predictprediction results. 

2.4 Test-time augmentation 235 

In this paper, the test-time augmentation (TTA) strategy was used in the result extraction, whichand can be considered as a 

post-processing technique because it is executed during the testing phase (Wang et al., 2021b). Therefore, it does not affect 

the network learning parameters, but triesrather attempts to obtain multiple enhanced copies by performing data enhancement 

operations, such as horizontal and vertical transformations, on each image during the test, and then combiningcombines the 

http://www.youdao.com/w/eng/post%20processing/?spc=post%20processing#keyfrom=dict.typo


12 

 

results of multiple enhanced copies for prediction (Fig. 8). The voting formula is as follows: 240 

n

S

p

n

v


== 1

                                                                                        

(47) 

where p is the probability that the pixel belongs to a glacier.; n is the number of each test image and its copies.; and S is the 

probability of each pixel belonging to the glacier in the image and its copies. Figure 8 showspresents the result of TTA. 

 245 

Figure 8. Test-time augmentation result. (a)-(d) the RGB image obtained on September 29, 2020, its copies, predictprediction 

results, reductive copies results, the result of the vote, respectively. 

2.5 Evaluation metrics 

To quantitatively describe the ability to extract glaciers from high-resolution images using the method proposed byin this study, 

the results obtained from manual visual interpretation were chosen as ground truth to be compared with the classification 250 

http://www.baidu.com/link?url=fcg1CH6LM3S8_YzaVZDrUzFjBomPJsgfdOpBMeyvJRXUFJIxOwNcypJM8KjReGeCIUNfLAhOOHckTTQMBOEDV_KWrzztDwmgv1aDMliLfw3
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results. The overall accuracy (OA) and Kappa coefficient (Kappa) of the confusion matrix were used for accuracy evaluation 

(Olofsson et al., 2014), where OA is the ratio of correctly classified pixels to all pixels in the entire image, and can be calculated 

as follows:We selected the Kappa, mean intersection over union (MIoU), F1-score (F1), and average symmetric surface 

distance (ASD) as the metrics. The Kappa, MIoU and F1 range from 0 to 1, with 1 being equivalent to 100% accuracy. 

n

P
OA 1=                                                                                          (5) 255 

where p1 and n are the number of correctly classified pixels and total pixels, respectively. 

The Kappa is a statistic that measures the agreement between prediction and ground truth, (Olofsson et al., 2014), and 

can be calculated as follows: 

e

e

p

pp
Kappa

−

−
=

1

0
                                                                                 (6) 

2

2211

n

baba
pe

+
=                                                                               (7) 260 

2

( ) ( ) ( ) ( )TP FP TP FN FN TN FP TN
p
e n

+  + + +  +
=                                                             (8) 

( )

1

e

e

TP TN
p

nkappa
p

+
−

=
−

                                                                           (9) 

where p0n is the OA. a1number of total pixels; TP and a2TN are the number of true samples ofpixels correctly predicted to be 

glaciers and correctly predicted to be other features, respectively; and FP and FN are the number of pixels incorrectly predicted 

as glaciers and incorrectly predicted as other features, respectively. b1 and b2 are the number of predicted samples 265 

 MIoU for the binary classification problem (He et al., 2021) is as follows: 

2

TP TN

FP TP FN FP TN FNMIoU

+
+ + + +=                                                            (10) 

 F1 is the harmonic average of precision rate (P) and recall rate (R) (Marochov et al., 2021): 

TP
P

TP FP
=

+
                                                                                    (11) 

TP
R

TP FN
=

+
                                                                                    (12) 270 

1 2
P R

F
P R


= 

+
                                                                                   (13) 

https://so.csdn.net/so/search?q=union&spm=1001.2101.3001.7020
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 ASD is given in pixels/meters and based on the boundaries of the prediction result and ground truth (gt). For each category, 

respectivelypixel of boundary in the prediction result, the Euclidean distance to the closest pixel of another boundary in gt is 

calculated using the approximate nearest neighbor technique and stored. In order to provide symmetry, the same process is 

applied from the boundary of gt to the prediction result (Heimann et al., 2009). ASD is then defined as the average of all stored 275 

distances, which is 0 for a perfect segmentation. The formula is given as follows: 

1 1 2 2
{ , _ ( , ) }

seg seg gt
B p A closet distance p p p A=                                                      (14) 

({ , })
seg gt

ASD mean B B=                                                                           (15) 

where Aseg stands for the pixel of the boundary in the prediction result, and the same can be obtained for the definition of Agt. 

Bseg stands for the distance from the prediction result to gt, the same can be obtained for the definition of Bgt. 280 

3 Experimental result 

This section will test the algorithms in this paper, analyze the experimental results, and addressperform the following two 

questionsthree tasks: (1) examiningexamine the performance of the Attention DeepLab V3+ with TTA on the test set; (2) 

evaluatingevaluate the ability of our method to extract large -scale glaciers. 

3.1 Experimental setup 285 

For the experimental platform, we used a central processing unit with processoran Intel Core i9-10920 (3.50 GHz) 

whichprocessor, configured with 64GB64 GB of memory, a graphics card with Nvidia GeForce RTX 2080 Ti 11GB of video 

memory, the Windows 10 64-bit operating system, and pythonPython programming implementation. In terms of software 

environment, we chose the pytorch as the deep -learning framework, CUDA version 11.1 as the graphics processing unit (GPU) 

computing platform, and cuDNN8.0 as the deep -learning GPU acceleration library. 290 

In this paper, the ratio of training set, validation set, and test set was 8: 1: 1. The training set was used to optimize the 

network parameters (weights and bias), the validation set to prevent overfitting and optimize the hyperparameters of the 

network (learning rate), and the test set to evaluate the effectiveness of the model trained on the training set, where the images 

in the test set were not processed by data augmentation. 

Gaofen-6 PMS imageimages, with a spatial resolution of 2 m, allowsallow a large number of pixels occupied by a glacier. 295 

Therefore, four10 scenes of Gaofen-6 PMS imageimages covering glaciers in parts regions of the Tanggula Mountains and, 

the Kunlun Mountains (Image 1: 91°32′7″ E, 33°24′3″ N; Image 2: 91°48′53″ E, 32°57′27″ N: Image 3: 91°57′3″ E, 35°49′53″ 

N; Image 4: 92°4′47″ E, 33°6′29″ N), and the Qilian Mountains were selected to test the capability of extracting the large-scale 

glaciers by the model in this paper. The test images were acquired from July to December (Tab. S2 in the Supplement). The 

whole visual procedure to extract glacierglaciers is shown in Fig. 9. 300 
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Figure 9. The procedure of glacier extraction. Firstly, the pre-processed image obtained on December 20August 19, 2020. (a) 

werewas clipped into 1024 x× 1024 overlapping patches (b), and then input into the model to obtain the predicted result (c). 

Secondly, we merged the results were merged, and classified the pixel values greater than 0.5 were classified as glaciers to obtain 

the final binary map (d and e). Thirdly, the binary map from above can be converted to a vector (f) and smoothed (g). Finally, 305 

the glacier was segmented using ASTER GDEM to obtain individual glacier vector boundaries (h). 

3.2 Experiments on the Gaofen-6 test set 

In this section, we explored the effectiveness of our network on the test set by comparing the results with FCN, U-Net and 

DeepLab V3+, in which the FCN that was specifically used was the FCN 32s network, and U-Net was added the backbone 

network of Resnet ResNet-18. Figure 10 shows the visualized prediction results of some test sets on different methods. The 310 

extracted results derived from FCN were almost error-free,; however, had ait exhibited poor performance on the test set, which 

may duebe ascribed to its direct upsampling of 16, resulting in the loss of the detailed information in glacier boundaries. The 

difference between the performances of U-Net and DeepLab V3+ on the test set was small,. U-Net worked better in Fig. 10-

4/5/6 and DeepLab V3+ in Fig. 10-1/2/3., with both methods occasionally misidentifying other features as glaciers. It is 

obvious that the Attention DeepLab V3+ with TTA model haspossesses the best glacier extraction capability, which extracts 315 

glacier boundaryboundaries with excellent continuity and fewer fine patches. 
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Figure 10. Comparison of test results of different networks.  

Figure 11 shows the calculated confusion matrix, OA and Kappa of each model on the test sets. In terms of OA, the 

Attention DeepLab V3+ with TTA model achieved the highest score of 99.58%, with misidentified pixels accounted for 0.42% 320 

of the total pixels. This was followed by DeepLab V3+ with the score of 99.47% and a misidentified pixels percentage of 0.53% 

duo to more glacier pixels being misclassified as other features. Similar to DeepLab V3+, U-Net misclassified glaciers as other 

features, with the misidentified pixels percentage of 0.60% of and OA of 99.40% that lower than the Figure 11 shows the 

confusion matrix, Kappa, MIoU, F1-score, and ASD calculated for each model on the test set. In terms of Kappa, MIoU and 
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F1, the FCN network has the lowest accuracy of 0.9706, 0.9710, and 0.9838, respectively, because it cannot obtain the exact 325 

boundary of the glaciers. However, it has the smallest ASD error of 13.1686 px (26.3372 m). Since the test set has only a small 

range of images of 1024×1024 px, this network produces fewer fragment patches when classifying the test set, but it tends to 

ignore smaller glaciers when recognizing large range images. Kappa, MIoU, and F1 of U-Net were higher than FCN, 

respectively, and this method can obtain more accurate glacier boundaries. The ASD, however, is the highest (17.5268 px, 

35.0536 m), which is attributable to its tendency to misidentify features, and the percentage of misidentified pixels is 0.60%. 330 

The next is DeepLab V3+, which has an ASD error of 16.4501 px (32.9002 m) and a percentage of incorrectly identified pixels 

of 0.53%. It also has higher Kappa, MIoU, and F1 accuracy compared to the first two methods. The Attention DeepLab V3+ 

with TTA model has the highest Kappa, MIoU and F1, and the ASD is higher than FCN but lower than U-Net and DeepLab 

V3+. Moreover, the percentage of incorrectly identified pixels to total pixels is 0.42% compared to DeepLab V3+, which is 

0.11% lower than DeepLab V3+. From the above analysis, it is shown that the capability of our network model is relatively 335 

high. 

 

Attention DeepLab V3+ with TTA model 0.18%. The comparison results of Kappa were similar to that of OA, with the 

highest value of Attention DeepLab V3+ with TTA model (0.9915), followed by DeepLab V3+ model (0.9893) and U-Net 

(0.9879), lowest by FCN (0.9706). 340 

Figure 11. Performance of extraction models by confusion matrix, OAKappa, MIoU, F1, and KappaASD. 

3.3 Experiments on Gaofen-6 imageimages 

In this section, we compared the ability of extracting complete glaciers based on four scene10 scenes of Gaofen-6 images 

(section 3.1) using our method, Single-Band Threshold Methodthe single-band threshold method (SBTM)), and Random 

Forestrandom forest (RF). Meanwhile, FCN, U-Net, and DeepLab V3+ were selected for comparationcomparison because the 345 
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complexity of the large-scale remote -sensing images may result in the performance on the test set being unsuitable for 

extracting the huge complete glaciers. TheSome experimental results of each method are shownpresented in FigFigs. 12-15, 

and OAKappa, MIoU, F1, and KappaASD were calculated for the extraction results to evaluate the performance of different 

methods (Tab. 21 shows the total accuracy, as detailed in Supplement Tab. S2). 

 350 

Figure 12. GlacierDemonstration of glacier extraction maps of the image (1) obtainedbased on the image of December 20, 2020. 

(regional centroid coordinates of 91.54° E, 33.40° N). (a) the RGB image.; (b) the ground truth.; and (c)–(h) SBTM, RF, FCN, 

U-Net, DeepLab V3++, and Attention DeepLab V3+ with TTA, respectively. 
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Figure 13. GlacierDemonstration of glacier extraction maps of the image (2) obtainedbased on the image of August 19, 2020. 
355 

(regional centroid coordinates of 91.81° E, 32.96° N). (a) the RGB image.; (b) the ground truth.; and (c)–(h) SBTM, RF, FCN, 

U-Net, DeepLab V3++, and Attention DeepLab V3+ with TTA, respectively. 

 

Figure 14. GlacierDemonstration of glacier extraction maps of the image (3) obtainedbased on the image of September 29, 2020. 

(regional centroid coordinates of 91.95° E, 35.83° N). (a) the RGB image.; (b) the ground truth.; and (c)–(h) SBTM, RF, FCN, 360 

U-Net, DeepLab V3++, and Attention DeepLab V3+ with TTA, respectively. 

http://www.baidu.com/link?url=fcg1CH6LM3S8_YzaVZDrUzFjBomPJsgfdOpBMeyvJRXUFJIxOwNcypJM8KjReGeCIUNfLAhOOHckTTQMBOEDV_KWrzztDwmgv1aDMliLfw3
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Figure 15. GlacierDemonstration of glacier extraction maps of the image (4) obtainedbased on the image of August 19, 2020. 

(regional centroid coordinates of 92.08° E, 33.11° N). (a) the RGB image.; (b) the ground truth.; and (c)–(h) SBTM, RF, FCN, 

U-Net, DeepLab V3++, and Attention DeepLab V3+ with TTA, respectively. 365 

TheWhen extracting complete glaciers, SBTM performed well when the spectral features of images are simple (Fig. 12), 

but had the worst effectiveness when the reflectance of some glaciers is similar to that of other features (FigFigs. 12 to 15). 

The RF had ahas better glacier extraction capability than SBTM due to its use of four bands., but the method is prone to 

misidentify spectrally similar features, such as terminal moraine lakes. The deep learning yielded a better result than the above 

methods, which was trace-free and smooth despite being mergedthe merging of many sample-sized images. Among the deep 370 

-learning methods, our method hadachieved the best performance, with extraction results similar to the ground truth. 

In terms of accuracy,For the three metrics Kappa, MIoU and F1, SBTM has the lowest accuracy with OA and Kappa of 

97.3%0.9147, 0.9217, and 0.94259316, respectively, followed by the FCNRF and RF. It should be noted that OA and Kappa 

of RF were 98.97% and 0.9740, respectivelyFCN, which were higher than that of FCN (98.80%, 0.9702) on the whole, but 

lower for image (1). Itobtained glacier boundaries that are rough. This was followed by U-Net and DeepLab V3+, but+; they 375 

also had aachieve good score.results, obtaining more accurate glacier boundaries and extracting them better in the face of 

complex spectral features. Our method had the best accuracy with has the highest scoresaccuracy in allthe test images with 

0.9818, 0.9821, and 0.9854 for Kappa, MIoU, and F1, respectively. 

For ASD, SBTM also had the highest OAvalue of 116.8237 px (233.6474 m), and Kappa of 99.40%RF had the second 

highest value of 70.5443 px (141.0886 m). Both methods produced many fine patches, resulting in larger ASD. U-Net and 380 

0.9846, respectivelyDeepLab V3+ have smaller ASD compared to the previous two methods. Unlike its performance on the 

test set, FCN has more errors in extracting larger glaciers than our method, and tends to ignore smaller glaciers due to direct 
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upsampling, but still has a smaller ASD of 27.1095 px (54.219 m). Our method produces a minimum ASD of 21.5695 px 

(43.139 m) when extracting a larger range of glaciers, which is 5.54 px (11.08 m) less than FCN. 

Table 21. Comparison of different glacier extraction methods on Gaofen-6 imageimages. 385 

Gaofen-6 images Image (1) Image (2) Image (3) Image (4) Total 

Evaluation 

metrics 
OA (%) Kappa OA (%) Kappa OA (%) Kappa OA (%) Kappa OA (%) Kappa 

SBTM 95.51 0.8892 98.51 0.9565 99.09 0.9790 97.80 0.9454 97.73 0.9425 

RF 98.99 0.9755 99.07 0.9730 99.16 0.9807 98.67 0.9669 98.97 0.9740 

FCN 99.08 0.9779 98.82 0.9678 98.96 0.9761 98.35 0.9592 98.80 0.9702 

U-Net 99.58 0.9897 99.10 0.9739 99.42 0.9866 98.76 0.9692 99.22 0.9799 

DeepLab V3+ 99.74 0.9937 99.19 0.9761 99.50 0.9885 98.77 0.9694 99.30 0.9819 

Attention 

DeepLab V3+ 

with TTA 

99.76 0.9942 99.31 0.9800 99.56 0.9897 98.98 0.9746 99.40 0.9846 

Evaluation 

metrics 
SBTM RF FCN U-Net DeepLab V3+ 

Attention 

DeepLab V3+ 

with TTA 

Kappa 0.9147 0.9555 0.9667 0.9745 0.9787 0.9818 

MIoU 0.9217 0.9572 0.9675 0.9751 0.9791 0.9821 

F1 0.9316 0.9645 0.9736 0.9797 0.9830 0.9854 

ASD  
116.8237 px 

(233.6473 m) 

70.5443 px 

(141.0886 m) 

27.1095 px 

(54.2190 m) 

61.7339 px 

(123.4678 m) 

40.1783 px 

(80.3566 m) 

21.5695 px 

(43.1390 m) 

 

3.4 Comparative Experimentexperiment with or without TTA 

We improved the accuracy of the Attention DeeplabDeepLab V3+ model by employing TTA during testing, and verified the 

effectiveness by comparing the results with thatthose without TTA. Table. 2 shows the scores of each evaluation index, in 

which, the Attention DeepLab V3+ is more accurate than the other networks tested in this paper, with thea higher OAKappa, 390 

MIoU and KappaF1 (99.54%08, 0.9908, and 0.99089948, respectively) than DeepLab V3+ (99.47%, 0.9893)., 0.9894, and 

0.9941, respectively), and the ASD was 2.5522 px (5.1044 m) lower. The addition of TTA increases the OA and Kappa, MIoU, 

and F1 of the network by 0.04%0007, 0.0007, and 0.0005, respectively, and the ASD was 0.6812 px (1.3624 m) lower. This 

removes some discriminative errors of the pixels (Fig. 16), thus improving the performance of the model in extracting glaciers. 
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Table.3 confusion 2. Confusion matrix of test set resultresults. 395 

Method Attention DeepLab V3+ Attention DeepLab V3+ with TTA 

Pixel number Predicted Yes Predicted NO Predicted Yes Predicted NO 

Actual Yes 186712209 949981 186798674 885576 

Actual No 966562 230801649 880097 230866053 

OA 99.54% 99.58% 

Kappa 0.9908 0.9915 

Evaluation 

metrics 
SBTM RF FCN U-Net DeepLab V3+ 

Attention 

DeepLab V3+ 

with TTA 

Kappa 0.9147 0.9555 0.9667 0.9745 0.9787 0.9818 

MIoU 0.9217 0.9572 0.9675 0.9751 0.9791 0.9821 

F1 0.9316 0.9645 0.9736 0.9797 0.9830 0.9854 

ASD  
116.8237 px 

(233.6473 m) 

70.5443 px 

(141.0886 m) 

27.1095 px 

(54.2190 m) 

61.7339 px 

(123.4678 m) 

40.1783 px 

(80.3566 m) 

21.5695 px 

(43.1390 m) 

 

 

Figure 16. Examples of the results with or without TTA,. (a) and (e) are RGB images,; (b) and (f) are ground truth,; (c) and 

(g) are Attention DeepLab V3+,+; and (d) and (h) are Attention DeepLab V3+ with TTA. 

4 Discussion 400 



23 

 

4.14.1 Performance and wider application 

The experimental results show that our method achieves advanced pixel-level classification performance in glacier extraction 

from high-resolution remote-sensing images when applied to 10 different regions of three different mountain ranges. The 

attention mechanism assists the network to increase the feature weights on glacial image elements, which makes the 

classification more accurate. In addition, the TTA strategy to increase network robustness makes it possible to achieve good 405 

results in different situations, and can effectively distinguish glaciers from thin snow (Fig. 17a, b), thin clouds (Fig. 17c, d), 

and terminal moraine lakes (Fig. 17e, f). In the case of complex spectral features, it possesses a clear advantage in glacier 

extraction. Moreover, our method produces continuous glacier boundaries with reduced fine patches, which can markedly 

reduce the workload of further post-processing. 

 410 

Figure 17. Examples of our results in different situations, such as thin cloud-covered, thin snow-covered, and terminal moraine 

lakes. 

However, when dealing with images with more snow or thicker clouds, it is difficult for the method in this paper to extract 

glaciers accurately because the real information of the surface is covered. Figure 18 shows high-resolution images of the same 

area in different periods and the extraction results of our method. The extraction is better when there is less snow in the image, 415 

and conversely it is easy to identify the snow as a glacier, which is a challenging problem to be solved when using optical 

remote-sensing images. 

 

Figure 18. Examples of the results obtained by our method at different times in the same region (regional centroid coordinates 

of 92.27° E, 32.96° N). 420 

4.2 Advantages and limitations 
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Compared with previous studies on glacier extraction, the main achievements of this paper are three-fold: (1) building a glacier 

dataset with high spatial resolution for deep learning,; (2) improving the DeepLab V3+ model by adding an attention 

mechanism,; and (3) proposing an effective method to extract glaciers from high-resolution remote -sensing images. 

We expectedanticipated that our method differs from previous glacier extraction methods that focused only on small 425 

scale, such as monitoring changes in the Antarctic ice shelf front and melting of the Greenland outlet glaciers (Baumhoer et 

al., 2019; Zhang et al., 2019), but it can be applied to extract complete glacier over a large extentarea. Unlike traditional 

glacier extraction methodsprevious studies that depend onlyrelied on spectrumspectral features, the or information, such as 

texture and shape (Cheng et al., 2021; Zhang et al., 2021), high-spatial resolution images possess more rich information of 

texture, shape, and spatial distribution of ground objects, which contribute significantly to distinguish categories with similar 430 

spectral characteristics (Tong et al., 2020). Based on which, our method can automatically learn the features to distinguish 

glaciers from terminal moraine lake, thin clouds and snow (Fig. 13 and 15), showing an obvious advantage in glacier 

extraction in the case of complex spectrum characteristics. Our method yields the continuous glacier boundaries with 

fewer fine patches, which can reduce the workload for the further post-processing. Furthermore, the adoption of attention 

mechanism and TTA both improved the effectiveness of our model to extract glaciers in the test set (Fig. 11 and 16).2020). 435 

Furthermore, a better glacier extraction method is expected to result in more accurate glacier inventory. 

Although our method does not work well when images are covered by large amounts of clouds or snow, we do not 

recommend using this method with poor quality data, considering that in most glacier inventory or glacier change research, 

the images used are good quality images with less clouds and less snow. The method in this paper was not used to extract the 

debris-or clouds-covered glaciers, in which cases errors may occur. Additionally, certain features, such as frozen rivers, were 440 

sometimes mistaken for glaciers. Another drawback is that, despite the short prediction time of the well-trainingtrained model, 

its production took a lot ofwas time-intensive due to the lack of readily available glacier datasets based on high-resolution 

remote sense-sensing images. 

4.23 The difference between inventories 

The amount of glacier resources is critical to regional water resources and future sea level rise (Bolch et al., 2012) and). In 445 

addition, the accurate extraction of glaciers contributes to the exact assessment of ice volume and mass balance, as well as the 

measurement of glacier length (Immerzeel et al., 2010). Existing glacier inventories are generally based on images with low/- 

to medium -spatial resolution, which may misestimate the global glacier size to somea certain extent, therefore. Therefore, we 

discussed the differences between GGI and TPG2017 from the test images, where the former was produced by manual 

delineation using Landsat TM/ETM+ images in 1999-2003 (Nuimura et al., 2015) and the latter was generated based on 450 

Landsat OLI images in 2013-2018. To better explore the differences between the inventories, glaciers were firstly divided into 

accumulation zonezones and ablation areaareas based on the median area elevation that is deemed as the material equilibrium 
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line altitude (ELA)), which is higher than the actual ELA for some glaciers (e.g., disintegrating glaciers) (Braithwaite and 

Raper, 2009), but has little effect for this study. The median altitude of glaciers is different in each region, which is 5645 m in 

the in this study (Tab. 3Tanggula Mountains and 5441 m in the Kunlun Mountains (Tab. 4). 455 

Table 43. Summary of glaciers in GGI, TPG2017, and our data. 

Image Region 

Attention 

DeepLab V3+ 
GGI TPG2017 

Area Area Difference Area Difference 

km2 km2 km2 % km2 km2 % 

Image (1) 
Ablation 29.12 33.43 -4.31 -14.80 32.34 -3.22 -11.06 

Accumulation 40.90 36.36 4.54 11.10 42.90 -2 4.89 

Image (2) 
Ablation 11.09 15.20 -4.11 -37.06 15.46 -4.37 -39.40 

Accumulation 9.65 8.00 1.65 17.10 10.22 -0.57 -5.91 

Image (3) 
Ablation 21.47 22.59 -1.12 -5.22 23.14 -1.67 -7.78 

Accumulation 21.24 20.54 0.7 3.30 21.38 -0.14 -0.66 

Image (4) 
Ablation 45.18 49.37 -4.19 -9.27 48.23 -3.05 -6.75 

Accumulation 37.60 32.76 4.84 12.87 39.03 -1.43 -3.80 

Total 216.25 218.25 -2.00 -0.92 232.70 -16.45 -7.61 

Mountains Region 

Attention 

DeepLab V3+ 

with TTA 

GGI TPG2017 

Area Area Difference Area Difference 

km2 km2 km2 % km2 km2 % 

Tanggula 
Ablation 102.97 112.37 -9.4 -9.13 112.28 -9.31 -9.04 

Accumulation 101.94 90.88 11.06 10.85 107.92 -5.98 -5.87 

Kunlun 
Ablation 61.01 61.05 -0.04 -0.07 62.80 -1.79 -2.93 

Accumulation 60.73 57.10 3.63 5.98 59.91 0.82 1.35 

Qilian 
Ablation 59.61 65.55 -5.94 -9.96 63.76 -4.15 -7.78 

Accumulation 59.31 57.43 1.88 3.17 59.92 -0.61 -0.66 

Total 445.57 444.38 1.19 0.27 466.59 -21.02 -4.72 

 

Our extracted glacier area differs from that of GGI by only -2.001.19 km2, accounting for -0.9227% of the extracted area, 

while; whereas, the area difference with TPG2017 is -16.4521.02 km2, accounting for -7.614.72% of the extracted area (Tab. 

4). In detail4). Our extracted glacier boundaries have a high similarity in shape to GGI and TPG2017 (Fig. 19). Specifically, 460 

our model extracts a larger glacier area in the accumulation zone than GGI, which is mainly dueattributable to the omission of 
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the shaded area in the upper glacier by GGI (Nuimura et al., 2015). However, the glacier area in the ablation zone obtained by 

our model is smaller than that in GGI, which is rationalreasonable because of the retreat of glaciers in the ablation zone under 

the dramatic warming (Fig. 20a-d). Compared with the results of TGP2017, the glacier areas extracted by our method are 

smaller in both the ablation and accumulation zones, while the difference is significantly larger in the ablation zone than in the 465 

accumulation zone, indicating that the glaciers’ change is mainly concentrated in the ablation area, which is consistent with 

the general pattern of glacier changes (Fig. 20e-h). From the perspective of data sources, GGI and TPG2017 were produced 

by Landsat TM/ETM+/OLI images with a resolution of 30 m/15 m. Our data waswere obtained from Gaofen-6 PMS images 

with a resolution of 2 m, such that fewer mixed pixels in the image allow for more detaildetailed classification of glaciers and 

other features, as well as the more accurate extraction of glacier boundaries, which leads to the smaller glacier area for the 470 

data in this paper (Fig. 19). In general, our method allows a more accurate extraction of the bare intact glaciers, although in a 

few cases, . Even though other features are misclassified as glaciers, but  in a few cases, a small amount of manual 

modification can provide a more exact data for the glacier inventory. 

 

Figure 19. The comparisonComparison of different glacier inventories. Our data waswere obtained in 2020,; the GGI was 475 

produced in 2002; and the TGP2017 was madeproduced in 2017. 
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Figure 20. (a)-(d) are the comparison between our resultresults and the GAMDAM glacier inventory,; and (e)-(h) are the 

comparison between our resultresults and the TPG2017. The greenGreen and blue colors are the same and different areas in the 

two datasets, respectively. 480 

5 ConclusionConclusions and prospectprospects 

In this paper, a glacier extraction method using the DeepLab V3+ network with attention mechanism and TTA was proposed 

to accurately extract glaciers from high-resolution remote -sensing images. This method can helpassist to improve the accuracy 

of the automatically extracted glacier outlines and solve the problem that most high-resolution images cannot extract glacier 

profiles using traditional methods, such as NDSI, due to the lack of a short-wave infrared band. By comparingcomparison 485 

with FCN, U-Net and DeepLab V3+, the superior glacier extraction ability of our model was demonstrated, with the highest 

OA and Kappa of 99.58% and 0.9915, respectively. 

FourTen scenes of Gaofen-6 PMS imageimages with glaciers were selected to test the ability of extractionextracting 

complete glaciers over a large extentarea. Comparison with other glacier extractedextracting methods shows that our model 

has betterachieves the best performance with the OA, and kappa of 99.40% and 0.9846, respectively, which could 490 

distinguish glaciers from terminal moraine lakelakes, thin snow, and cloudthin clouds. Moreover, the glacier boundary 

obtained from our method was continuous with less fine patches, thus substantially reducing the workload for post-processing. 

When comparing the glaciers extracted by our method with the GGI and TPG2017, weit was found that our data have a more 

detailed representation of bare ice boundaryboundaries, which can provide a more accurate data for glacier inventory after 

manual revision. 495 

In the future, we will makeperform further research and adjustmentadjustments in the following four aspects: (1) 

improving the algorithm to increase the network’s ability to learn glacier features; (2) adding more samples to diversify the 

training samples and allow the network to learn more features to solve the existing difficulties of extracting debris-covered 

glaciers; (3) using other high-resolution remote -sensing image andimages, SAR imageimages, etc., to compensate for the 

loss of extraction accuracy of optical images under cloud occlusion; and (4) applying transfer learning to reduce the time cost 500 

of sample annotation to allow deep learning to be putapplied to glaciersglacier extraction more quickly, thus improving model 

generalization. 

 

Code and data availability. Gaofen-6 PMS images are available at China High-resolution Earth Observation System 

(https://www.cheosgrid.org.cn/). The datasets including the GGI and TPG2017 used in this study are freely available. The code 505 

for deep learning is available from https://github.com/yiyou101/glacier-extraction.git, and sample datasets of glacier can be 

provided upon request from the corresponding readers. 
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